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Abstract

In this work, we study reproducing kernel (RK) collocation method for peridynamic Navier equation. In the first part,
we apply a linear RK approximation to both displacement and dilatation, and then back-substitute dilatation and solve the
peridynamic Navier equation in a pure displacement form. The RK collocation scheme converges to the nonlocal limit for
a fixed nonlocal interaction length and also to the local limit as nonlocal interactions vanish. The stability is shown by
comparing the collocation scheme with the standard Galerkin scheme using Fourier analysis. In the second part, we apply
the RK collocation to the quasi-discrete peridynamic Navier equation and show its convergence to the correct local limit when
the ratio between the nonlocal length scale and the discretization parameter is fixed. The analysis is carried out on a special
family of rectilinear Cartesian grids for the RK collocation method with a designated kernel with finite support. We assume
the Lamé parameters satisfy λ ≥ µ to avoid extra assumptions on the nonlocal kernel. Finally, numerical experiments are
onducted to validate the theoretical results.
c 2020 Elsevier B.V. All rights reserved.

eywords: Peridynamic Navier equation; Reproducing kernel collocation; Convergence analysis; Quasi-discrete nonlocal operator; Meshfree
ntegration; Asymptotically compatible schemes

1. Introduction

Peridynamics is a nonlocal theory of continuum mechanics introduced by Silling in [1,2]. Peridynamic models
avoid the use of spatial differentiation and they have attracted interest among researchers, especially for treating
problems with fractures and material failure [3–5]. Mathematical analysis of the peridynamics models have been
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carried out in [6–10] and it is well understood that the linear peridynamic Navier equation is well-posed. Many
numerical methods have been developed to solve the peridynamic Naiver equation [11–19] and this is the main
focus of our work. Other than [18] which is a variational method, the rest solve the nonlocal governing equation
in the strong form without rigorous convergence analysis. To our knowledge, this is the first work that provides
convergence analysis for non-variational numerical methods of the peridynamic Navier equation.

Nonlocal models introduce a length scale δ, called the horizon in peridynamics, which takes into account
interactions over finite distances. As δ → 0, the nonlocal interactions vanish and the nonlocal model recovers
its local limit, i.e., a partial differential equation. Numerical methods that preserve this limiting behavior in
discrete form are called asymptotically compatible (AC) schemes [18,20–22]; many numerical methods for nonlocal
models are not AC and may converge to the wrong local limit [21]. It is challenging to design AC schemes for
nonlocal models. Another difficulty is the accurate evaluation of the nonlocal integral, which can be computationally
prohibitive especially when the nonlocal kernels are singular, and it is often necessary to use a high-order Gaussian
quadrature rule [14,23]. Many works have been done to address these two challenges [16,18,19,24–27].

Finite Element Method (FEM) [18] with linear basis functions is AC but the evaluation of the double integral
[23,24,28] discourages the use of variational formulation for nonlocal models. Many mesh-free methods [16,17,26]
for peridynamics, which use the volume of the particles as integration weights, are easy to implement but these
methods do not converge to the correct local limit as the nonlocal length scale vanishes. A mesh-free integration
scheme for the peridynamic Navier equation is introduced in [19], however, it lacks convergence analysis. The
quadrature weights are calculated using the generalized moving least square technique and this mesh-free integration
scheme converges to the correct local limit for nonlocal diffusion [29]. An important consequence of the mesh-free
integration scheme is that it is straightforward to include “bond breaking” which provides a way to simulate fractures
or material failure [19].

We have developed an AC RK collocation scheme for nonlocal diffusion models and introduced a quasi-discrete
nonlocal diffusion operator using a mesh-free integration technique [29] to avoid using high-order Gauss quadrature
rules and save the computational costs. RK collocation on this quasi-discrete nonlocal diffusion operator converges
to the correct local limit. The purpose of this work is to extend the methodology to the peridynamic Navier equation.

First, we show RK collocation on the peridynamic Navier equation is AC. We use a similar strategy as in [29] to
show the stability and consistency of the RK collocation method. The key idea for stability analysis is to compare
the Fourier representation of the collocation scheme with the Galerkin scheme [29,30]. Similar ideas have been
exploited in [31–34]. Since the Fourier symbol of the peridynamic Navier operator is a matrix instead of a scalar,
the stability analysis is more involved for the peridynamic Navier equation than that of the nonlocal diffusion.
Indeed, in order to simplify the discussion, we need to assume that the two Lamé parameters, λ and µ, satisfy the
constraint λ ≥ µ. The uniform consistency of the numerical scheme, which is crucial to show that the scheme is
AC, is established using the synchronized convergence property of the linear RK approximation with special RK
support sizes [35–37]. Then, to obviate the need to use high-order Gauss quadrature rules and save computational
costs, we introduce the quasi-discrete peridynamic Navier equation by carefully designing the integration weights.
Convergence analysis of the RK collocation scheme on the quasi-discrete peridynamic Navier operator is presented
when the ratio between horizon δ and the grid size hmax is fixed.

This paper is organized as follows. In Section 2, we introduce the peridynamic Navier equation with Dirichlet
oundary conditions and also the quasi-discrete counterparts using finite summation of symmetric quadrature points
n replacement of the integral. In Section 3, we present the RK collocation method with special choices of RK
upport size. Section 4 discusses the convergence analysis of the RK collocation method for the peridynamic Naiver
quation and shows that this RK collocation scheme is AC. Then the convergence analysis of the collocation method
n the quasi-discrete peridynamic Navier equation is presented in Section 5. Section 6 gives numerical examples
o complement our theoretical analysis. Finally, we provide conclusions in Section 7.

. Peridynamic Navier equation

In this section, we first introduce some notations that are used throughout the paper. The spatial dimension
s denoted as d(d = 2 or 3). An arbitrary point x ∈ Rd is expressed as x = (x1, . . . , xd). A multi-index,∑d
= (α1, . . . , αd), is a collection of d non-negative integers and its length is |α| = i=1 αi . As a consequence,
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we write xα
= xα1

1 . . . xαd
d for a given α. We let Ω ⊂ Rd be an open bounded domain and then the corresponding

nteraction domain is defined as

ΩIi = {x ∈ Rd
\Ω : dist(x,Ω ) ≤ iδ} , i = 1 or 2,

where δ is the nonlocal length scale and we denote Ωiδ = Ω ∪ΩIi , for i = 1 or 2. Ω is the domain of interest, and
the nonlocal boundary condition is imposed on ΩI2 as a volumetric constraint [7].

Next, we present the state-based linearized peridynamic Navier equation introduced in [2,38], and then use
the quasi-discrete nonlocal operators proposed in [29] to formulate the quasi-discrete counterparts. We differ in
convention of notations from nonlocal vector calculus [12] which is more suited for variational formulations [7], but
use instead notations for the bond-based peridynamics operator together with the nonlocal divergence and gradient
operators as defined in [39–41]. These notations are more natural for the presentation of the collocation method
that will be introduced in the next section.

2.1. Nonlocal operators

The linearized state-based peridynamic Navier operator consists of two parts; one is the bond-based peridynamic
operator and the other is the composition of the nonlocal gradient and divergence operators. The bond-based
peridynamic operator is defined, for a given vector-valued function u(x) : Rd

→ Rd, as

LB
δ u(x) =

∫
Rd

ρδ(| y − x|)
y − x

| y − x|
⊗

y − x
| y − x|

(u( y) − u(x))d y, (1)

where ρδ(| y − x|) is the nonlocal kernel. We assume the nonlocal kernel is non-negative and symmetric, and has
the following scaling,

ρδ(|s|) =
1

δd+2 ρ

(
|s|
δ

)
, (2)

where ρ(|s|) is a non-negative and non-increasing function with compact support in B1 (for the rest of the paper,
we denote Bδ as Bδ(0), a ball of radius δ about 0), and it has a bounded second order moment, i.e.,∫

B1

ρ(|s|)|s|2ds = d . (3)

Notice that since ρδ is supported on Bδ , the integration in Eq. (1) is in fact over the ball, Bδ(x), for any x ∈ Rd.
The weighted volume m(x) is defined as

m(x) =

∫
Rd

ρδ(| y − x|)| y − x|
2d y. (4)

From Eqs. (2)–(4), it is easy to see that m(x) = d for all x. We remark that the weighted volume defined here as
Eq. (4) is a scaled form of the definition in [1,2,42]. Next, the nonlocal divergence operator Dδ is defined as [39,40],

Dδu(x) =

∫
Rd

ρδ(| y − x|)( y − x) · (u( y) + u(x))d y,

nd in the sense of principle value, Dδ can also be written as

Dδu(x) =

∫
Rd

ρδ(| y − x|)( y − x) · (u( y) − u(x))d y. (5)

s a consequence of the nonlocal divergence operator, nonlocal dilatation θ (x) is given as,

θ (x) =
d

m(x)
Dδu(x). (6)

For a scalar-valued function θ (x) : Rd
→ R, the nonlocal gradient operator Gδ is defined by

Gδθ (x) =

∫
Rd

ρδ(| y − x|)( y − x)(θ ( y) − θ (x))d y. (7)

Finally, we have the linearized state-based peridynamic Navier operator,

LS
δ u(x) =

Cα µ
LB

δ u(x) +
Cβ d(λ − µ)

GδDδu(x), (8)

m(x) (m(x))2
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where Cα and Cβ are scaling parameters which will be given shortly, and λ and µ are Lamé parameters which are
assumed to be constant in this work. The static peridynamic Navier equation with homogeneous Dirichlet boundary
condition can be formulated as{

−LS
δ u(x) = f (x), x ∈ Ω ,

u(x) = 0, x ∈ ΩI2 .
(9)

e remark that because the kernel ρδ(|s|) is compactly supported in a ball of radius δ, it is only necessary to impose
olumetric constraint on ΩI2 . Even though we have defined u(x) on Rd, we do not need the values of u on Rd

\Ω2δ

o define Eq. (9). By introducing p = (λ − µ)θ , we can rewrite Eq. (9) in a mixed form, as follows,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−

Cα µ

m(x)
LB

δ u(x) −
Cβ

m(x)
Gδ p(x) = f (x), x ∈ Ω ,

d (λ − µ)
m(x)

Dδu(x) − p(x) = 0, x ∈ Ωδ,

u(x) = 0, x ∈ ΩI2 .

(10)

The local limit of LS
δ is denoted as LS

0 when δ → 0 [9]. We select Cα = 30, Cβ = 3 for three-dimensional linear
elasticity and Cα = 16, Cβ = 2 for two-dimensional plane strain, then

LS
0 u(x) = µdiv(∇u(x)) + (µ + λ)∇divu(x), ∀x ∈ Ω ,

and the δ → 0 limit of Eq. (9) becomes{
−LS

0 u = f , in Ω ,

u = 0, on ∂Ω .
(11)

Define the “energy space” Sδ as

Sδ :=

{
u ∈ L2(Rd

;Rd) :

∫
Rd

∫
Rd

ρδ(| y − x|)(Tr(D∗u)( y, x))2d ydx < ∞

}
,

here Tr(D∗u) is the trace of the operator D∗ defined in [8,10] as

D∗u( y, x) := (u( y) − u(x)) ⊗
y − x

| y − x|
.

Then the weak formulation of Eq. (9) can be formed with solutions in the constrained energy space

Sc,δ(Ω ) := {u ∈ Sδ : u(x) = 0, ∀x ∈ Rd
\Ω}.

It is shown in [10] that the static peridynamic Navier equation (Eq. (9)) is well-posed as a result of the Lax–Milgram
theorem and nonlocal Poincaré inequality. In fact, the nonlocal Poincaré inequality in [9,10] gives the following

niform stability result.

heorem 2.1. Assume that Ω̃ ⊂ Rd is an open bounded connected domain and δ ∈ (0, δ0] for some δ0 > 0. Let
u ∈ Sδ and u|Rd\Ω̃ = 0. Then the bilinear form (−LS

δ u, u) is an inner product and there exists a constant C > 0
hich depends on δ0 and Ω̃ , such that for all u ∈ Sδ with u|Rd\Ω̃ = 0, we have

|(−LS
δ u, u)| ≥ C∥u∥

2
L2(Rd;Rd) .

.2. Quasi-discrete nonlocal operators

As introduced in [29], we use a finite number of symmetric quadrature points s in the horizon to evaluate the
ntegral such that the weighted volume defined in Eq. (4) is exact,

m(x) =

∑
s∈Bϵ

δ (0)

ωδ(s)ρδ(|s|)|s|2 = d, (12)

here ωδ(s) is the quadrature weight at quadrature point s and satisfies the following assumptions

ω (s) ≥ 0 and ω (s) = ω (|s|), (13)
δ δ δ
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Fig. 1. Quadrature points (black dots) are shown in the horizon of an arbitrary point x ∈ Ω . The dashed lines form the RK collocation grid
which will be introduced in Section 3. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

and Bϵ
δ (0) is a finite collection of symmetric quadrature points s in the ball of radius δ about 0. The notation ϵ can

be seen as the discretization parameter of the ball Bδ and we assume ϵ1 := ϵ/δ is a fixed number. We use Bϵ
δ to

denote Bϵ
δ (0) for the rest of the paper. An example of quadrature points in the horizon of an arbitrary point x ∈ Ω

s shown in Fig. 1.
Due to the scaling of the nonlocal kernel ρδ(|s|), see Eq. (2), we also have the scaling of the quadrature weights

δ(s) as

ωδ(s) = δdω
( s
δ

)
,

here ω(s) is the quadrature weight at s ∈ Bϵ1
1 and ϵ1 = ϵ/δ can be seen as the discretization parameter of the unit

all. As a consequence, we have a discrete version of Eq. (3) as,∑
s∈B

ϵ1
1

ω(s)ρ(|s|)|s|2 = d. (14)

owever, unlike the nonlocal diffusion in [29], Eq. (14) alone is not sufficient for the construction of a consistent
uasi-discrete peridynamic Navier operator and additional constraints are necessary. We will now define the
uasi-discrete peridynamic Navier operator and complete the constraints on quadrature weights afterwards.

We now formulate the quasi-discrete counterparts of the nonlocal operators defined in the previous subsection.
he quasi-discrete bond-based peridynamic operator LB

δ,ϵ acting on u(x) : Rd
→ Rd is defined as

LB
δ,ϵu(x) =

∑
s∈Bϵ

δ

ωδ(s)ρδ(|s|)
s
|s|

⊗
s
|s|

(u(x + s) − u(x)). (15)

Similarly, the quasi-discrete nonlocal divergence operator Dϵ
δ is formulated as,

Dϵ
δ u(x) =

∑
s∈Bϵ

δ

ωδ(s)ρδ(|s|) s · (u(x + s) − u(x)), (16)

A direct consequence of the quasi-discrete nonlocal divergence operator is the nonlocal dilatation,

θ ϵ(x) =
d

m(x)
Dϵ

δ u(x), (17)

here we have abused the definition of nonlocal dilatation. We remark that θ ϵ is a continuous function with respect
o x and its definition differs from Eq. (6). We also have the quasi-discrete nonlocal gradient operator,

Gϵ
δ θ

ϵ(x) =

∑
s∈Bϵ

δ

ωδ(s)ρδ(|s|) s (θ ϵ(x + s) − θ ϵ(x)), (18)

Finally, we arrive at the linearized state-based quasi-discrete peridynamic Navier operator,

LS
δ,ϵu(x) =

Cαµ
LB

δ,ϵu(x) +
Cβd(λ − µ)

Gϵ
δDϵ

δ u(x), (19)

m(x) (m(x))2
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and the static peridynamic Navier equation can be reformulated as{
−LS

δ,ϵu(x) = f (x), x ∈ Ω ,

u(x) = 0, x ∈ ΩI2 .
(20)

Similar to Eq. (10), if we let p = (λ − µ)θ ϵ , we can rewrite Eq. (20) as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−

Cα µ

m(x)
LB

δ,ϵu(x) −
Cβ

m(x)
Gϵ

δ p(x) = f (x), x ∈ Ω ,

d (λ − µ)
m(x)

Dϵ
δ u(x) − p(x) = 0, x ∈ Ωδ,

u(x) = 0, x ∈ ΩI2 .

(21)

To guarantee consistency, we require the quasi-discrete peridynamic Navier operator to possess the quadratic
xactness property, i.e., for u being any quadratic polynomials,

LS
δ,ϵu = LS

δ u . (22)

his condition also ensures that the quasi-discrete peridynamic Navier operator LS
δ,ϵ converges to LS

0 as δ goes to
. Eq. (22) is fulfilled if and only if∑

s∈B
ϵ1
1

ω(s)ρ(|s|)
s2

i s2
j

|s|2
=

∫
s∈B1

ρ(|s|)
s2

i s2
j

|s|2
ds, (23)

for all i, j = 1, . . . , d. It is easy to see that the quantities in Eq. (23) are bounded because of Eq. (3) and the
constraint given by Eq. (14) is only a subset of the constraints presented by Eq. (23).

3. RK collocation method

In this section, we discuss the RK collocation method and formulate the collocation scheme for the peridynamic
Navier equation (9) and its quasi-discrete counterpart Eq. (20). First, we introduce the collocation grid. Let □ be a
rectilinear Cartesian grid on Rd,

□ := {xk := k ⊙ h | k ∈ Zd
},

where ⊙ denotes component-wise multiplication, i.e.,

k ⊙ h = (k1h1, . . . , kdhd),

for k = (k1, . . . , kd), and h = (h1, . . . , hd) where h j is the discretization parameter in the j th dimension. Similarly,
component-wise division is denoted as ⊘:

k ⊘ h =

(
k1

h1
, . . . ,

kd

hd

)
.

e remark that the grid size h j can vary for different j and we let hmax = maxd
j=1 h j and hmin = mind

j=1 h j . For
instance, in two dimension, rectangular grids are allowed. In addition, we assume that the grid □ is quasi-uniform
such that h can be rewritten as

h = hmax ĥ , (24)

where ĥ is a fixed vector with its maximum component being 1 and the minimum component being bounded below.
Next, we let S(□) be the trial space equipped with RK basis on □, i.e., S(□) = span{Ψk(x) | k ∈ Zd

}. The RK
asis function Ψk(x) is given as

Ψk(x) =

d∏
φ

(
|x j − xk j |

2h j

)
, (25)
j=1
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where xk j = k j h j is the j th component of xk, 2h j is the RK support in the j th dimension, and φ(x) is the cubic
B-spline function

φ(x) =

⎧⎪⎨⎪⎩
2
3 − 4x2

+ 4x3, 0 ≤ x ≤
1
2 ,

4
3 (1 − x)3, 1

2 ≤ x ≤ 1,

0, otherwise.
(26)

Remark 3.1. For the simplicity of presentation, we choose the RK support size a = a0h where a0 = 2 in this
work but the analysis works for a general even number a0 [29,43].

Thus, the RK basis function can reproduce linear polynomials [36,43,44], i.e.,∑
k∈Zd

Ψk(x)xα
k = xα, for |α| = 1. (27)

For u ∈ C0(Rd
;R), we define the restriction to □ by

rhu := (u(xk))k∈Zd ,

and the restriction to (□ ∩ Ω ) as

rh
Ωu := (u(xk)), xk ∈ (□ ∩ Ω ),

where □∩Ω is the collection of grid points that only reside in Ω . For a sequence (uk)k∈Zd on R, the RK interpolation
perator is defined by

ih(uk) :=

∑
k∈Zd

Ψk(x)uk.

For j = 1, . . . , d, we denote u j (x) : Rd
→ R the j th component of a vector field u(x) = [u1(x), . . . , ud(x)]T and

enote (u j,k)k∈Zd the j th component of the vector sequence

(uk)k∈Zd = [(u1,k)k∈Zd , . . . , (ud,k)k∈Zd ]T .

hen the RK interpolation operator ih acting on (uk)k∈Zd is naturally understood as ih(uk) := [ih(u1,k), . . . ,
h(ud,k)]T . Now we let

Π h
:= ihrh

e the interpolation projector mapping from C0(Rd) to S(□). Therefore, we can write

Π h u := [Π hu1, . . . ,Π
hud]T ,

here Π hu j (x) is the RK approximation of u j (x),

Π hu j (x) =

∑
k∈Zd

Ψk(x)u j (xk).

Finally, we apply RK approximation on both u and θ , back-substitute θ into the first equation of Eq. (10) and
btain

LS
δΠ

h u =
Cα µ

m(x)
LB

δ Π
h u +

Cβd (λ − µ)
(m(x))2 GδΠ

h(DδΠ
h u).

ollowing a similar procedure, we arrive at

LS
δ,ϵΠ

h u =
Cα µ

m(x)
LB

δ,ϵΠ
h u +

Cβd (λ − µ)
(m(x))2 Gϵ

δΠ
h(Dϵ

δΠ
h u).

Let S
(
□ ∩ Ω;Rd

)
be the space defined as

S
(
□ ∩ Ω;Rd)

:=

⎧⎨⎩u =

∑
ukΨk

⏐⏐ uk = 0 for such k that xk /∈ (□ ∩ Ω)

⎫⎬⎭ .
k∈Zd
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The RK collocation scheme of Eq. (9) is then written as follows. Find a function u ∈ S(□ ∩ Ω;Rd), such that

− rh
ΩLS

δ u = rh
Ω f . (28)

Similarly, the RK collocation scheme of Eq. (20) is given as

− rh
ΩLS

δ, ϵu = rh
Ω f , (29)

for u ∈ S(□ ∩ Ω;Rd). Here LS
δ u and LS

δ,ϵu represent, respectively,

LS
δ u =

Cα µ

m(x)
LB

δ u +
Cβd (λ − µ)

(m(x))2 GδΠ
h(Dδu),

nd

LS
δ,ϵu =

Cα µ

m(x)
LB

δ,ϵu +
Cβd (λ − µ)

(m(x))2 Gϵ
δΠ

h(Dϵ
δ u).

The main contribution of this paper is to show the convergence analysis of the two collocation schemes Eqs. (28)
and (29).

4. Convergence analysis of the RK collocation method

In this section, we show the convergence analysis of the RK collocation scheme Eq. (28), which is used in [14]
without any analysis. The convergence study of Eq. (29) will be presented in Section 5. We note that a convergence
proof of the RK collocation method for nonlocal diffusion problems is provided in [29], and the analysis is extended
to the peridynamic Navier equation in this work. The main objective is to show that the solution of the numerical
scheme converges to the nonlocal problem for a fixed δ as the grid size hmax vanishes, and to the correct local
problem as δ and hmax both go to zero.

4.1. Stability

In this subsection, we show the stability of the RK collocation scheme Eq. (28). We first define a norm in the
space of vector-valued sequences by

|(uk)k∈Zd |h := ∥ih(uk)∥L2(Rd;Rd) . (30)

For a sequence (uk) only defined for k being in a subset of Zd, we can always extend (uk) by zero to k ∈ Zd.
Then without further explanation, |(uk)|h is always understood as (30) with zero extension. We present the stability
esult first and show the proof at the end of this subsection.

heorem 4.1. For any δ ∈ (0, δ0], there exists a constant C > 0 that depends on Ω and δ0, such that for
u ∈ S(□ ∩ Ω;Rd),

|rh
Ω (−LS

δ u)|h ≥ C∥u∥L2(Rd;Rd).

To prove Theorem 4.1, we borrow the idea from [29,30] and compare the RK collocation scheme with the
alerkin scheme using Fourier analysis. Some intermediate results are required to facilitate the proof. We define

n inner product in l2(Zd
;Rd),

((uk), (vk))l2 :=

∑
k∈Zd

u1,kv1,k + · · · +

∑
k∈Zd

ud,kvd,k =

d∑
j=1

∑
k∈Zd

u j,kv j,k.

he Fourier series of a vector-valued sequence (uk) is defined as

ũ(ξ ) = [ũ1(ξ ), . . . , ũd(ξ )]T

nd the j th component of ũ(ξ ) is

ũ j (ξ ) :=

∑
e−i k·ξ u j,k,
k∈Zd
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where

u j,k = (2π )−d
∫

Q
ei k·ξ ũ j (ξ )dξ ,

for Q := (−π, π)d.
We present the Fourier symbol of the peridynamic Navier operator −LS

δ in the next lemma. The Fourier transform
of a function u ∈ L2(Rd

;Rd) is defined by

û(ξ ) :=

∫
Rd

e−i x·ξ u(x)dx.

The proof of the following lemma can be found in Appendix A.1.

Lemma 4.2. The Fourier symbol of the peridynamic Navier operator LS
δ is given by

− L̂S
δ u(ξ ) = M S

δ (ξ )̂u(ξ ), (31)

where the Fourier symbol M S
δ (ξ ) is a d × d matrix and consists of two parts,

M S
δ (ξ ) = M B

δ (ξ ) + M D
δ (ξ ), (32)

where

M B
δ (ξ ) =

Cµ

δ2 p1(δ|ξ |)
(

Id − ξ⃗ ξ⃗
T )

+
Cµ

δ2 q1(δ|ξ |)ξ⃗ ξ⃗
T
, (33)

and

M D
δ (ξ ) =

Cλ,µ

δ2 (b1(δ|ξ |))2 ξ⃗ ξ⃗
T
, (34)

where Id is the d-dimensional identity matrix, ξ⃗ =
ξ

|ξ |
is the unit vector in the direction of ξ , Cµ = Cαµ/d and

λ,µ = Cβ(λ − µ) are material dependent constants, the scalars p1(|ξ |), q1(|ξ |) and b1(|ξ |) are given by

p1(|ξ |) =

∫
B1

ρ(|s|)
s2

1

|s|2
(1 − cos(|ξ |sd))ds, (35)

q1(|ξ |) =

∫
B1

ρ(|s|)
s2

d

|s|2
(1 − cos(|ξ |sd))ds, (36)

b1(|ξ |) =

∫
B1

ρ(|s|)sd sin(|ξ |sd)ds. (37)

If Cλ,µ ≥ 0, we can immediately see, from Eq. (32), that the Fourier symbol M S
δ (ξ ) is positive definite as shown

n the next lemma.

emma 4.3. Assume λ ≥ µ, the Fourier symbol M S
δ (ξ ) is positive definite for any ξ ̸= 0.

Proof. By observation, M S
δ (ξ ) is a real matrix. Moreover, from Eqs. (35) and (36) we know that

p1(δ|ξ |), q1(δ|ξ |) > 0, for δ|ξ | ̸= 0.

Let v be a nonzero vector, then |vT ξ⃗ | ≤ |v| since |ξ⃗ | = 1. Use Lemma 4.2 we have

δ2vT M S
δ (ξ )v ≥ Cµ p1(δ|ξ |)vT

(
Id − ξ⃗ ξ⃗

T )
v

+
[
Cµq1(δ|ξ |) + Cλ,µ (b1(δ|ξ |))2] vT ξ⃗ ξ⃗

T
v,

= Cµ p1(δ|ξ |)
(
|v|

2
− |vT ξ⃗ |

2)
+

[
Cµq1(δ|ξ |) + Cλ,µ (b1(δ|ξ |))2]

|vT ξ⃗ |
2
,

> 0,
here we have used the assumption that Cλ,µ = λ − µ ≥ 0. □
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Remark 4.4. Notice that M B
δ (ξ ) is a positive definite matrix for all nonzero ξ . The assumption λ ≥ µ ensures that

M D
δ (ξ ) is positive semidefinite, and simplifies the discussions of Fourier symbols for the discrete equations. We

remind readers that the well-posedness of Eq. (9) proved in [10] is for general materials without this constraint.

The peridynamic Navier operator LS
δ defines two bilinear forms on l2(Zd

;Rd):(
ih(uk), −LS

δ ih(vk)
)

=

∑
k, k′

∈Zd

(
(ukΨk) , −LS

δ (vk′Ψk′ )
)

, (38)

nd (
(uk), −rhLS

δ ih(vk)
)

l2 =

d∏
j=1

h j

∑
k,k′

∈Zd

(uk) ·
(
−LS

δ (vk′Ψk′ )
)

(xk) . (39)

he inner product (·, ·) in Eq. (38) is the standard L2(Rd
;Rd) inner product defined as

(u, v) =

∫
Rd

u(x) · v(x)dx =

d∑
j=1

∫
Rd

u j (x)v j (x)dx ∀u, v ∈ L2(Rd
;Rd) .

ence, Eq. (38) defines a quadratic form corresponding to the Galerkin method, meanwhile, Eq. (39) corresponds
o the collocation method. The following lemma compares the two quadratic forms Eqs. (38) and (39). The idea
f the proof comes from [29, Lemma 4.2] but the derivations are much more involved. We provide the proof of
emma 4.5 in Appendix A.2.

emma 4.5. Let ũ(ξ ) and ṽ(ξ ) be the Fourier series of the sequences (uk), (vk) ∈ l2(Zd
;Rd) respectively. Then

(i)
(
ih(uk), −LS

δ ih(vk)
)

= (2π)−d
∫

Q
ũ(ξ ) · MG(δ, h, ξ )̃v(ξ )dξ ,

(ii)
(
(uk), −rhLS

δ ih(vk)
)

l2 = (2π)−d
∫

Q
ũ(ξ ) · MC (δ, h, ξ )̃v(ξ )dξ ,

(iii) There exists a constant C > 0 independent of δ, h and ξ such that MC (δ, h, ξ ) − C MG(δ, h, ξ ) is positive
definite for any ξ ̸= 0,

where MG and MC are defined as

MG(δ, h, ξ ) = 28d
∑
r∈Zd

M B
δ ((ξ + 2π r) ⊘ h)

d∏
j=1

h j

(
sin(ξ j/2)
ξ j + 2πr j

)8

+ 28d+4
∑
r∈Zd

M D
δ ((ξ + 2π r) ⊘ h)

d∏
j=1

h j

(
sin(ξ j/2)
ξ j + 2πr j

)12

,

(40)

MC (δ, h, ξ ) = 24d
∑
r∈Zd

M B
δ ((ξ + 2π r) ⊘ h)

d∏
j=1

h j

(
sin(ξ j/2)
ξ j + 2πr j

)4

+ 24d+4
∑
r∈Zd

M D
δ ((ξ + 2π r) ⊘ h)

d∏
j=1

h j

(
sin(ξ j/2)
ξ j + 2πr j

)8

.

(41)

Finally, we are ready to prove Theorem 4.1 using Lemma 4.5.

Proof of Theorem 4.1. The proof the theorem is similar to [29, Theorem 4.1]. For any sequence (uk) ∈ l2(Zd
;Rd), it

is easy to see that the norm |(uk)|h defined in Eq. (30) is equivalent to |(uk)|l2 . Then for u = ih(uk) ∈ S(□∩Ω; Rd),
e have

|(uk)|h · |rh
Ω (−LS

δ u)|h ≥ C |((uk), rh
Ω (−LS

δ u))l2 |,

= C |((u ), rh(−LSih(u ))) |,
k δ k l2
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≥ C |(ih(uk), (−LS
δ ih(uk)))|,

≥ C∥u∥
2
L2(Rd;Rd).

The first line comes from the Cauchy–Schwartz inequality and the third line from Lemma 4.5. The fourth line uses
the stability result given in Theorem 2.1 since u = ih(uk) ∈ S(□ ∩ Ω; Rd) ⊂ Sδ and for a sufficiently large and
fixed domain Ω̃ ⊃ Ω , we have u|Rd\Ω̃ = 0. □

4.2. Consistency

In this subsection, we show that the consistency error between the RK collocation scheme Eq. (28) and the
nonlocal model Eq. (9) is uniformly bounded by Ch2

max with a constant C independent of δ. Uniform consistency
is the key to the asymptotic compatibility of a numerical method for nonlocal problems. If the RK support size is
chosen carefully, the linear RK approximation has synchronized convergence property which is the major ingredient
in the proof of uniform consistency. Indeed, it is shown in [29, Remark 3.2] and [36, Theorem 5.2] that the
synchronized convergence property holds with RK support a = 2r0h (r0 ∈ N) for linear RK approximations.
We skip the proof and present the result in the following lemma, and refer readers to [29,35–37] for more details.
For the rest of the paper, we adopt the following notations for a vector-valued function u ∈ Cn(Rd

;Rd),

|u|∞ = sup
1≤ j≤d

sup
x∈Rd

|u j (x)|, and

|u(l)
|∞ = sup

1≤ j≤d
sup
|β|=l

sup
y∈Rd

|Dβu j ( y)|, 1 ≤ l ≤ n.

Lemma 4.6 (Synchronized Convergence). Let u ∈ C4(Rd) be a scalar-valued function and Π hu be the RK
nterpolation of u with the shape function given by Eq. (25), then Π hu has synchronized convergence, namely⏐⏐Dα(Π hu − u)

⏐⏐
∞

≤ C |u(|α|+2)
|∞h2

max, for |α| = 0, 1, 2,

where C is a generic constant independent of hmax .

Next, we study the truncation error of the RK collocation method on the peridynamic Navier operator.

emma 4.7 (Uniform Consistency). Assume u ∈ C4(Rd
;Rd), then

|rhLS
δΠ

h u − rhLS
δ u|h ≤ Ch2

max|u
(4)

|∞,

where C is independent of hmax and δ.

Proof. We first define the interpolation error of u j (x), for x ∈ Rd, and j = 1, . . . , d, as

E j (x) = Π hu j (x) − u j (x),

hen

E(x) = [E1(x), . . . , Ed(x)]T . (42)

By restricting on the grid point xk, for i = 1, . . . , d, the truncation error of LB
δ is given as⏐⏐[LB

δ

(
Π h u − u

)]
i (xk)

⏐⏐ =
⏐⏐[LB

δ E
]

i (xk)
⏐⏐ ,

=

⏐⏐⏐⏐⏐⏐
d∑

j=1

∫
Bδ

ρδ(|s|)
si s j

|s|2
(
E j (xk + s) − E j (xk)

)
ds

⏐⏐⏐⏐⏐⏐ . (43)

ext, using Lemma 4.6, we can bound the interpolation error by

|E j (xk + s) + E j (xk − s) − 2E j (xk)| ≤ C |s|2 max
|α|=2

⏐⏐Dα E j (x)
⏐⏐
∞

,

2 (4) 2
(44)
≤ C |s| |u j |
∞

hmax .
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Combining Eqs. (43) and (44), we have⏐⏐[LB
δ

(
Π h u − u

)
(xk)]i

⏐⏐ ≤ Ch2
max

d∑
j=1

|u(4)
j |

∞

∫
Bδ

ρδ(|s|)|si ||s j | ds,

≤ Ch2
max

⏐⏐u(4)
⏐⏐
∞

,

(45)

where we have used Eq. (3) and C > 0 is a generic constant depending the dimension, d.
Next, we define the interpolation error of the nonlocal dilatation as

Eθ = Π hDδΠ
h u − Dδu,

= Π h(DδΠ
h u − Dδu) + Π hDδu − Dδu,

= Π hDδ E + (Π hθ − θ ),

(46)

here we have used the definition of the nonlocal dilatation Eq. (6). There are two RK interpolation projectors
Π h) in the first line of Eq. (46) because we apply RK interpolation to u and θ , then back-substitute θ to get a

pure displacement form. The nonlocal gradient operator acting on Eθ can be bounded by

|[Gδ Eθ (xk)]i | =

⏐⏐⏐⏐∫
Bδ

ρδ(|t|)ti (Eθ (xk + t) − Eθ (xk)) d t
⏐⏐⏐⏐ ,

≤ max
|β|=1

⏐⏐Dβ Eθ

⏐⏐
∞

∫
Bδ

ρδ(|t|)|ti ||t| d t ,

≤ C max
|β|=1

⏐⏐Dβ Eθ

⏐⏐
∞

,

≤ C max
|β|=1

⏐⏐DβΠ hDδ E
⏐⏐
∞

+ C max
|β|=1

⏐⏐Dβ(Π hθ − θ )
⏐⏐
∞

,

(47)

for i = 1, . . . , d. We can bound the first term in the last line of Eq. (47) by

max
|β|=1

⏐⏐DβΠ hDδ E
⏐⏐
∞

= max
|β|=1

⏐⏐⏐⏐⏐⏐
d∑

j=1

DβΠ h
∫

Bδ

ρδ(|s|)s j
(
E j (x + s) − E j (x)

)
ds

⏐⏐⏐⏐⏐⏐
∞

,

≤

d∑
j=1

∫
Bδ

ρδ(|s|)|s j ||s|ds max
|α|=|β|=1

⏐⏐DβΠ h Dα E j (x)
⏐⏐
∞

,

≤ Ch2
max

⏐⏐u(4)
⏐⏐
∞

,

(48)

here the derivation of the second line to the last can be obtained by similar expansion of [37, eq.(36)] and the
esults of [43, Lemma 4.1] together with Lemma 4.6. Next, we have the bound of the second term in the last line
f Eq. (47) as

max
|β|=1

⏐⏐Dβ(Π hθ − θ )
⏐⏐
∞

≤ C
⏐⏐θ (3)

⏐⏐
∞

h2
max , (49)

nd
⏐⏐θ (3)

⏐⏐
∞

is bounded by

⏐⏐θ (3)
⏐⏐
∞

=
d

m(x)
max
|β|=3

⏐⏐⏐⏐⏐⏐
d∑

j=1

Dβ

∫
Bδ

ρδ(|s|)s j
(
u j (x + s) − u j (x)

)
ds

⏐⏐⏐⏐⏐⏐
∞

,

≤ C
d∑

j=1

∫
Bδ

ρδ(|s|)|s j ||s|ds max
|α|=4

⏐⏐Dαu j (x)
⏐⏐
∞

,

≤ C
⏐⏐u(4)

⏐⏐
∞

.

(50)

By collecting Eqs. (47)–(50), we can bound the truncation error of the composition of the nonlocal gradient and
ivergence operators by⏐⏐[(GδΠ

hDδΠ
h u − GδDδu)(xk)]i

⏐⏐ ≤ Ch2
max

⏐⏐u(4)
⏐⏐
∞

. (51)

inally, the proof is finished by combining Eqs. (45) and (51). □
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.3. Convergence

We conclude this section by showing the convergence results of the RK collocation method. The RK collocation
cheme converges to the nonlocal solution as grid size hmax goes to zero for a fixed δ and to the corresponding local
imit as δ and hmax both vanish. Combining the stability Theorem 4.1 and the consistency Lemma 4.7 of the RK
ollocation method, we can immediately show the convergence to the nonlocal solution. We present the following
heorem without proof as it follows the procedure similarly as in [29, Theorem 4.7].

heorem 4.8 (Uniform Convergence to Nonlocal Solution). For a fixed δ ∈ (0, δ0], assume the nonlocal exact
olution uδ is sufficiently smooth, i.e., uδ

∈ C4
(
Ω2δ; Rd

)
. Moreover, assume |uδ (4)

|∞ is uniformly bounded for
every δ. Let uδ,h be the numerical solution of the collocation scheme Eq. (28), then,

∥uδ
− uδ,h

∥L2(Ω;Rd) ≤ Ch2
max,

where C is independent of hmax and δ.

Before showing that the convergence of the RK collocation scheme to the local limit is independent of δ, we
need the bound of truncation error between the collocation scheme and the local limit of the peridynamic Navier
model.

Lemma 4.9 (Asymptotic Consistency I). Assume u ∈ C4(Rd
; Rd), then

|rhLS
δΠ

h u − rhLS
0 u|h ≤ C |u(4)

|∞(h2
max + δ2),

where C is independent of hmax and δ.

roof. From Lemma 4.7 and the continuous property of the nonlocal operators, we have⏐⏐rhLS
δΠ

h u − rhLS
0 u

⏐⏐
h ≤

⏐⏐rhLS
δΠ

h u − rhLS
δ u

⏐⏐
h +

⏐⏐rhLS
δ u − rhLS

0 u
⏐⏐
h ,

≤ C
⏐⏐u(4)

⏐⏐
∞

(h2
max + δ2). □

Combining Theorem 4.1 and Lemma 4.9, we have the uniform convergence (asymptotic compatibility) to the
ocal limit. We leave out the proof of the next theorem for conciseness because it is similar to the proof of
heorem 4.8.

heorem 4.10 (Asymptotic Compatibility). Assume the local exact solution u0 is sufficiently smooth, i.e., u0
∈

4(Ω2δ; Rd). For any δ ∈ (0, δ0], uδ,h is the numerical solution of the collocation scheme Eq. (28), then,

∥u0
− uδ,h

∥L2(Ω;Rd) ≤ C(h2
max + δ2).

5. Convergence analysis of the RK collocation on the quasi-discrete peridynamic Navier equation

In practice, accurate evaluation of the integral in nonlocal models is computationally prohibitive especially if the
nonlocal kernel is singular. This motivates us to use the quasi-discrete nonlocal models as introduced in Section 2.2.
It is practical to couple δ with grid size hmax because this results in a banded linear system. In this section, we
ssume δ = M0hmax where M0 > 0. As hmax goes to zero, so does δ, and the quasi-discrete nonlocal operator
onverges to its local limit. We provide convergence analysis of the collocation scheme Eq. (29) to its local limit.

.1. Stability

We start with the stability of the collocation scheme Eq. (29).

heorem 5.1. For any δ ∈ (0, δ0], there exists a generic constant C > 0 which depends on Ω , δ0 and M0, such
hat for u ∈ S(□ ∩ Ω;Rd),

|rh
Ω (−LS

δ,ϵu)|h ≥ C∥u∥L2(Rd;Rd).
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To prove Theorem 5.1, we need the Fourier symbol of the quasi-discrete peridynamic Navier operator LS
δ,ϵ ,

shown in Lemma 5.2. We present the lemma without proof because the proof follows similarly as Lemma 4.2 using
the fact that the quadrature points are symmetric and the quadrature weights are positive, see Eq. (13).

Lemma 5.2. The Fourier symbol of the quasi-discrete peridynamic Navier operator LS
δ,ϵ is given by

− L̂S
δ,ϵu(ξ ) = M S

δ,ϵ(ξ )̂u(ξ ), (52)

where the Fourier symbol M S
δ,ϵ(ξ ) is a d × d matrix and can be written as

M S
δ,ϵ(ξ ) = M B

δ,ϵ(ξ ) + M D
δ,ϵ(ξ ), (53)

where

M B
δ,ϵ(ξ ) =

Cµ

δ2 pϵ1
1 (δ|ξ |)

(
Id − ξ⃗ ξ⃗

T )
+

Cµ

δ2 qϵ1
1 (δ|ξ |)ξ⃗ ξ⃗

T
, (54)

and

M D
δ,ϵ(ξ ) =

Cλ,µ

δ2

(
bϵ1

1 (δ|ξ |)
)2

ξ⃗ ξ⃗
T
, (55)

where the scalars pϵ1
1 (|ξ |), qϵ1

1 (|ξ |) and bϵ1
1 (|ξ |) are given as follows

pϵ1
1 (|ξ |) =

∑
s∈B

ϵ1
1

ω(|s|)ρ(|s|)
s2

1

|s|2
(1 − cos(|ξ |sd)), (56)

qϵ1
1 (|ξ |) =

∑
s∈B

ϵ1
1

ω(|s|)ρ(|s|)
s2

d

|s|2
(1 − cos(|ξ |sd)), (57)

bϵ1
1 (|ξ |) =

∑
s∈B

ϵ1
1

ω(|s|)ρ(|s|)sd sin(|ξ |sd). (58)

From Lemma 5.2, we have the Fourier representation of the collocation scheme on the quasi-discrete peridynamic
avier operator as follows.

emma 5.3. Let ũ(ξ ) and ṽ(ξ ) be the Fourier series of the sequences (uk), (vk) ∈ l2(Zd
;Rd) respectively. Then

((uk), −rhLS
δ,ϵih(vk))l2 = (2π)−d

∫
Q

ũ(ξ ) · Mϵ
C (δ, h, ξ )̃v(ξ )dξ , (59)

where Mϵ
C is defined as

Mϵ
C (δ, h, ξ ) = 24d

∑
r∈Zd

M B
δ,ϵ ((ξ + 2π r) ⊘ h)

d∏
j=1

h j

(
sin(ξ j/2)
ξ j + 2πr j

)4

+ 24d+4
∑
r∈Zd

M D
δ,ϵ ((ξ + 2π r) ⊘ h)

d∏
j=1

h j

(
sin(ξ j/2)
ξ j + 2πr j

)8

.

(60)

Moreover, there exists C > 0, independent of δ and h such that,

Mϵ
C (δ, h, ξ ) − C MC (δ, h, ξ ) (61)

is positive definite for any ξ ̸= 0.

Proof. The derivation of Eq. (60) is similar to Eq. (41), we can simply replace M S
δ (ξ + 2π r) with M S

δ,ϵ(ξ + 2π r).
The challenge is to show that Eq. (61) is positive definite.

Following similar arguments in the proof of [29, lemma 6.2] to obtain [29, eq.(6.8)], we have for ξ ∈ Q,

pϵ1
1 (δ |ξ ⊘ h|)

d∏
h j

(
sin(ξ j/2)
ξ j + 2πr j

)4

≥ Cϵ1
p |ξ |

2
d∏

h j . (62)

j=1 j=1
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imilarly, we can obtain

qϵ1
1 (δ|ξ ⊘ h|)

d∏
j=1

h j

(
sin(ξ j/2)
ξ j + 2πr j

)4

≥ Cϵ1
q |ξ |

2
d∏

j=1

h j , (63)

here Cϵ1
q > 0 is a generic constant. Combining Eqs. (62) and (63), we have the following bound, for ξ ∈ Q,

Mϵ
C (δ, h, ξ ) ≥ Cµ

(
|ξ |

δ

)2 {
Cϵ1

p

(
Id − ξ⃗ hξ⃗

T
h

)
+ Cϵ1

q ξ⃗ hξ⃗
T

h

} d∏
j=1

h j

≥ min{Cϵ1
p , Cϵ1

q }Cµ

(
|ξ |

δ

)2 d∏
j=1

h j Id ≥ C
(

|ξ |

δ

)2 d∏
j=1

h j Id,

(64)

here ξ h = ξ ⊘ h and we have ignored the terms for r ̸= 0 because they are non-negative and positive definite.
Next, we use the fact that

1 − cos(x) ≤ x2 and sin(x) ≤ x, for x ≥ 0,

to obtain, for any r ∈ Zd,

p1 (δ| (ξ + 2π r) ⊘ h|) ≤

(
δ|ξ + 2π r|

hmax

)2 ∫
B1

ρ(|s|)
s2

1 s2
d

|s|2
ds ≤ C |ξ + 2π r|2,

nd

q1 (δ| (ξ + 2π r) ⊘ h|) ≤ C |ξ + 2π r|2, b1 (δ| (ξ + 2π r) ⊘ h|) ≤ C |ξ + 2π r|,

here we have used Eq. (3). Hence we obtain

p1 (δ| (ξ + 2π r) ⊘ h|)

d∏
j=1

h j

(
sin(ξ j/2)
ξ j + 2πr j

)4

≤ C |(ξ + 2π r)|2
(

sin(ξ/2)
ξ + 2π r

)4 d∏
j=1

h j ≤ C p
|ξ |

2

|ξ r |
2

d∏
j=1

h j ,

(65)

where ξ r = ξ + 2π r and C p is a generic constant. Similarly,

q1 (δ| (ξ + 2π r) ⊘ h|)

d∏
j=1

h j

(
sin(ξ j/2)
ξ j + 2πr j

)4

≤ Cq
|ξ |

2

|ξ r |
2

d∏
j=1

h j (66)

nd

[b1 (δ| (ξ + 2π r) ⊘ h|)]2
d∏

j=1

h j

(
sin(ξ j/2)
ξ j + 2πr j

)8

≤ Cb
|ξ |

2

|ξ r |
2

d∏
j=1

h j , (67)

here Cq , Cb > 0. By gathering Eqs. (65)–(67), we have

MC (δ, h, ξ )

≤

(
|ξ |

δ

)2 ∑
r∈Zd

C pCµ

(
Id − ξ⃗ h,r ξ⃗

T
h,r

)
+ CqCµξ⃗ h,r ξ⃗

T
h,r + CbCλ,µξ⃗ h,r ξ⃗

T
h,r

|ξ r |
2

d∏
j=1

h j ,

≤ C
(

|ξ |

δ

)2 d∏
j=1

h j Id, (68)

where ξ h,r = (ξ + 2π r) ⊘ h.
Finally, Eq. (61) is shown by combining Eqs. (64) and (68). □
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a

Proof of Theorem 5.1. By applying Lemma 5.3, the proof follows similarly to the proof of Theorem 4.1. □

5.2. Consistency

In this subsection, we establish the consistency of collocation scheme Eq. (29) the and its local limit as δ and
hmax both go to zero. The following lemma shows the truncation error between LS

δ and LS
δ,ϵ with the ratio ϵ/δ being

fixed.

Lemma 5.4. Assume u ∈ C4(Rd
;Rd), then for i = 1, . . . , d,⏐⏐[LS

δ,ϵu − LS
δ u

]
i

⏐⏐ ≤ Cδ2
⏐⏐u(4)

⏐⏐
∞

.

Proof. Using Taylor’s theorem, for x ∈ Rd, j = 1, . . . , d, and s ∈ Bδ we have

u j (x + s) − u j (x) =

∑
|α|=1,2

sα Dαu j (x)
α!

+

∑
|β|=3

sβ
Rβ,+

j (x)

β!
, (69)

nd
u j (x + s)+u j (x − s) − 2u j (x)

=2
∑
|α|=2

sα Dαu j (x)
α!

+

∑
|β|=4

sβ
Rβ,+

j (x) + Rβ,−

j (x)

β!
,

(70)

where Rβ,±

j (x) is given by

Rβ,±

j (x) = |β|

∫ 1

0
(1 − τ )|β|−1

⏐⏐Dβ
(
u j (x ± τ s)

)⏐⏐ dτ . (71)

Notice that |Rβ,±

j (x)| ≤ C |u(|β|)
j |

∞
. For simplicity of presentation, we now write Rβ

j (x) := Rβ,+

j (x) + Rβ,−

j (x).
First, we study the truncation error between LB

δ u and LB
δ,ϵu, for i = 1, . . . , d,⏐⏐[LB

δ,ϵu(x) − LB
δ u(x)]i

⏐⏐
=

⏐⏐⏐⏐ d∑
j=1

∑
|α|=2

Dαu j (x)
α!

⎛⎝∑
s∈Bϵ

δ

ωδ(|s|)ρδ(|s|)
si s j

|s|2
sα

−

∫
Bδ

ρδ(|s|)
si s j

|s|2
sαds

⎞⎠
+

∑
|β|=4

1
2β!

⎛⎝∑
s∈Bϵ

δ

ωδ(|s|)ρδ(|s|)
si s j

|s|2
sβ Rβ

j (x) −

∫
Bδ

ρδ(|s|)
si s j

|s|2
sβ Rβ

j (x)ds

⎞⎠ ⏐⏐⏐⏐
≤ 0 +

⏐⏐u(4)
⏐⏐
∞

d∑
j=1

∑
|β|=4

⎛⎝∑
s∈Bϵ

δ

ωδ(|s|)ρδ(|s|)
|si s j |

|s|2
|s|β +

∫
Bδ

ρδ(|s|)
|si s j |

|s|2
|s|βds

⎞⎠ ,

≤ Cδ2
⏐⏐u(4)

⏐⏐
∞

,

(72)

where we have used Eqs. (4), (14), (23) and (70).
Next, via Eq. (69), the quasi-discrete nonlocal divergence operator Dϵ

δ acting on u can be written as

Dϵ
δ u(x) =

d∑
j=1

∑
|α|=1,2

Dαu j (x)
α!

∑
s∈Bϵ

δ

ωδ(|s|)ρδ(|s|)s j sα

+

d∑
j=1

∑
|β|=3

1
β!

∑
s∈Bϵ

δ

ωδ(|s|)ρδ(|s|)s j sβ Rβ,+

j (x),

=

d∑ ∂u j

∂x j
(x) +

d∑ ∑ 1
β!

∑
ϵ

ωδ(|s|)ρδ(|s|)s j sβ Rβ,+

j (x),

(73)
j=1 j=1 |β|=3 s∈Bδ



Y. Leng, X. Tian, N.A. Trask et al. / Computer Methods in Applied Mechanics and Engineering 370 (2020) 113264 17

w
r

w
E

w

L
δ

n
N
t
c
f
p

i

L

here we have used Eq. (12) as well as the symmetry of the quadrature points. We immediately have a similar
esult for Dδ ,

Dδu(x) =

d∑
j=1

∂u j

∂x j
(x) +

d∑
j=1

∑
|β|=3

1
β!

∫
Bδ

ρδ(|s|)s j sβ Rβ,+

j (x)ds. (74)

Then, the truncation error between Gϵ
δDϵ

δ u and GδDδu is given by⏐⏐[Gϵ
δDϵ

δ u − GδDδu]i (x)
⏐⏐

=

⏐⏐⏐⏐ d∑
j=1

∑
|α|=1,2

Dα(∂u j/∂x j )(x)
α!

⎛⎝∑
t∈Bϵ

δ

ωδ(|t|)ρδ(|t|)ti tα
−

∫
Bδ

ρδ(|t|)ti tαd t

⎞⎠
+

d∑
j=1

∑
|γ |=3

1
γ !

⎛⎝∑
t∈Bϵ

δ

ωδ(|t|)ρδ(|t|)ti tγ R̃γ ,+

j (x) −

∫
Bδ

ρδ(|t|)ti tγ R̃γ ,+

j (x)d t

⎞⎠
+

d∑
j=1

∑
|β|=3

1
β!

∑
t∈Bϵ

δ

ωδ(|t|)ρδ(|t|)ti
∑
s∈Bϵ

δ

ωδ(|s|)ρδ(|s|)s j sβ
(

Rβ,+

j (x + t) − Rβ,+

j (x)
)

−

d∑
j=1

∑
|β|=3

1
β!

∫
Bδ

ρδ(|t|)ti
∫

Bδ

ρδ(|s|)s j sβ
(

Rβ,+

j (x + t) − Rβ,+

j (x)
)

dsd t
⏐⏐⏐⏐,

≤ 0 + C

⎛⎝ d∑
j=1

∑
|γ |=3

⏐⏐u(4)
⏐⏐
∞

γ !

∑
t∈Bϵ

δ

ωδ(|t|)ρδ(|t|)|ti ||tγ
| +

∫
Bδ

ρδ(|t|)|ti ||tγ
|d t

⎞⎠
+

d∑
j=1

∑
|β|=3

⏐⏐u(4)
⏐⏐
∞

β!

∑
t∈Bϵ

δ

ωδ(|t|)ρδ(|t|)|ti ||t|
∑
s∈Bϵ

δ

ωδ(|s|)ρδ(|s|)|s j |
⏐⏐sβ

⏐⏐
+

d∑
j=1

∑
|β|=3

⏐⏐u(4)
⏐⏐
∞

β!

∫
Bδ

ωδ(|t|)ρδ(|t|)|ti ||t|d t
∫

Bδ

ωδ(|s|)ρδ(|s|)|s j |
⏐⏐sβ

⏐⏐ ds

≤ Cδ2
⏐⏐u(4)

⏐⏐
∞

.

(75)

here R̃γ ,+

j is the remainder by expanding ∂u j/∂x j similarly as Eq. (69). Notice that in Eq. (75) we have used
qs. (73) and (74), and the fact that⏐⏐⏐Rβ,+

j (x + t) − Rβ,+

j (x)
⏐⏐⏐ ≤ C

⏐⏐⏐u(|β|+1)
j

⏐⏐⏐
∞

|t| ,

hich comes from the definition Eq. (71).
Eqs. (72) and (75) together complete the proof. □

Lemma 5.4 shows that with the number of quadrature points inside the horizon being fixed, the error between
S
δ u and LS

δ,ϵu is of the order O(δ2). So to reduce the error between them, one needs to reduce the horizon size
. We also note that [29, Remark 5.2] shows if δ is fixed, the error between the quasi-discrete and continuous
onlocal diffusion operator is bounded by O(ϵ2) and similar results could also be derived for the peridynamic
avier operator. However, this is to say that if nonlocal limit (δ being fixed) is of interest, then one has to increase

he number of quadrature points in the horizon (ϵ → 0) for the quasi-discrete nonlocal operator to approximate the
ontinuous nonlocal operator. In this work, since our concern is to reduce the computational cost by using only a
ew quadrature points (see numerical examples in Section 6), we only discuss the case that the number of quadrature
oints is fixed in the horizon.

Now, we present the discrete model error between the quasi-discrete nonlocal peridynamic Navier equation and
ts local limit.

emma 5.5 (Asymptotic Consistency II). Assume u ∈ C4(Rd
;Rd), then

|rh LS Π h u − rh LS u0
| ≤ C

⏐⏐u(4)
⏐⏐ (h2

+ δ2).
Ω δ,ϵ Ω 0 h ∞ max
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Proof. In order to prove this lemma, we need the following intermediate result⏐⏐rhLS
δ,ϵΠ

h u − rhLS
δ,ϵu

⏐⏐
h ≤ Ch2

max

⏐⏐u(4)
⏐⏐
∞

. (76)

The proof of Eq. (76) is similar to Lemma 4.7, following the replacement of the nonlocal operators with their
quasi-discrete counterparts.

By collecting Eq. (76) and Lemma 5.4, the discrete model error of collocation scheme Eq. (29) is given as⏐⏐rhLS
δ,ϵΠ

h u − rhLS
0 u

⏐⏐
h ≤

⏐⏐rhLS
δ,ϵΠ

h u − rhLS
δ,ϵu

⏐⏐
h +

⏐⏐rhLS
δ,ϵu − rhLS

δ u
⏐⏐
h

+
⏐⏐rhLS

δ u − rhLS
0 u

⏐⏐
h ,

≤ C
⏐⏐u(4)

⏐⏐
∞

(h2
max + δ2

+ δ2). □

5.3. Convergence

Combining Theorem 5.1 and Lemma 5.5, we follow similar procedure as the proof Theorem 4.8 and show that
the numerical solution of Eq. (29) converges to its local limit.

Theorem 5.6. Assume the local exact solution u0 is sufficiently smooth, i.e., u0
∈ C4(Ωδ0;Rd). For any δ ∈ (0, δ0],

et uδ,ϵ,h be the numerical solution of the collocation scheme Eq. (29) and fix the ratio between δ and hmax. Then,

∥u0
− uδ,ϵ,h

∥L2(Ω;Rd) ≤ C(h2
max + δ2).

. Numerical example

In this section, we validate the convergence analysis in the previous sections by considering a numerical example
n two dimension. We let the discretization parameter be h = (h1, h2) where h1 = 2h2, then hmax = h1. Choosing
he manufactured solution u(x1, x2) = [x2

1 (1 − x1)2
+ x2

2 (1 − x2)2, 0]T , we obtain the right-hand side of Eqs. (9)
nd (11) as

f δ(x) = f 0(x) −

[
18λ

5
δ2, 0

]T

here

f 0(x) = −
[
2λ(1 − 6x1 + 6x2

2 ) + 6µ(1 − 4x1 + 4x2
1 − 2x2 + 2x2

2 ), 0
]T

.

We impose the corresponding values of u(x) on ΩI2 such that the exact value to the local limit matches on ∂Ω .
The nonlocal kernel is chosen as ρδ(|s|) =

3
2πδ3|s| , and let Ω = (0, 1)2, E = 1 and ν = 0.4. Therefore, the Lamé

arameters λ = Eν/((1 + ν)(1 − 2ν)) and µ = E/(2(1 + ν)) satisfy the assumption in Lemma 4.3. In the example
ith a fixed δ, we solve the following peridynamic Navier equation{

−LS
δ u(x) = f δ(x), x ∈ Ω ,

u(x) =
[
x2

1 (1 − x2
1 ) + x2

2 (1 − x2
2 ), 0

]T
, x ∈ ΩI2 .

(77)

hen testing the convergence rate as δ and hmax both go to zero, we solve another nonlocal problem{
−LS

δ u(x) = f 0(x), x ∈ Ω ,

u(x) =
[
x2

1 (1 − x2
1 ) + x2

2 (1 − x2
2 ), 0

]T
, x ∈ ΩI2 ,

(78)

hich converges to the local limit{
−LS

0 u(x) = f 0(x), x ∈ Ω ,

u(x) =
[
x2

1 (1 − x2
1 ) + x2

2 (1 − x2
2 ), 0

]T
, x ∈ ∂Ω .

e apply the two collocation schemes as Eqs. (28) and (29) and investigate their convergence properties.
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Fig. 2. Convergence profiles using the RK collocation method.

6.1. RK collocation

We first use the scheme as described in Eq. (28) to solve Eq. (77) for a fixed δ and study the convergence
property to the nonlocal limit. Then we investigate the convergence of the numerical solution to the local limit by
solving Eq. (78) and letting δ go to zero. Integration schemes play a significant role in the convergence profile as
shown in [14]. We apply Gauss integration scheme proposed in [14], and use around 1000 quadrature points in the
horizon of each collocation point so that the integration error is negligible.

Fig. 2 shows the convergence profiles. When δ is fixed, the numerical solution converges to the nonlocal solution
at a second-order convergence rate with error measured in L2 norm. Then we couple δ with hmax by letting both δ

nd hmax go to zero but at different rates, numerical solutions converge to the local limit. Second-order convergence
ates are observed when δ goes to zero faster (δ = h2

max) and at the same rate as hmax (δ = hmax). We only obtain
first-order convergence rate when δ =

√
hmax. The convergence behavior agrees with Theorems 4.8 and 4.10 and

the numerical examples have verified that the RK collocation method is an AC scheme.

6.2. RK collocation on quasi-discrete peridynamic Navier equation

To avoid the need of using high-order Gauss quadrature rules, we have reformulated the peridynamic Navier
equation in Section 2.2, using the quasi-discrete nonlocal operators. It is also more practical to couple the horizon
with grid size as δ = M0hmax because this leads to banded linear systems amenable to traditional preconditioning
echniques. Now, we use the RK collocation method on the quasi-discrete peridynamic Navier equation as discussed
n Eq. (29) to solve Eq. (78) and study the convergence to the local limit as δ and hmax approach to 0 at the same
ate. In this experiment, we let δ = 3ϵ, thus there are 29 integration points in the horizon of each collocation point,
ee Fig. 1. Fig. 3 presents the convergence profiles and second-order convergence rates are observed. The numerical
ndings agree with our analysis in Theorem 5.6 and verify that the RK collocation on quasi-discrete peridynamic
avier equation converges to the correct local limit. When the local limit is of our interest, the computational cost
f using the quasi-discrete nonlocal operators is significantly reduced, compared to Section 6.1.

. Conclusion

In this work, we have designed and analyzed a linear RK collocation method for the peridynamic Navier equation.
e first apply linear RK approximation to both the displacements and dilatation, and then back-substitute dilatation

nto the equation and solve it in a pure displacement form. Numerical solutions of the method converge to both
he nonlocal solution when δ is fixed and its local limit when δ vanishes; convergence analysis of this scheme is
resented in the case of Cartesian grids with varying resolution in each dimension. Because the standard Galerkin
cheme has been proven to be stable, the key idea of analyzing the stability of the collocation scheme is to establish a
elationship between the two schemes. In order to show stability of numerical schemes, we also assume the material
arameters satisfy λ ≥ µ to simplify the discussion, and our analysis is applicable for materials that satisfy this
onstraint.
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Fig. 3. Convergence profiles using the RK collocation on quasi-discrete peridynamic Navier equation.

In addition, we formulate the quasi-discrete version of the peridynamics Navier equation using quasi-discrete
nonlocal operators first proposed in [29] for nonlocal diffusion problems. The key is to replace the integral with
a finite summation of symmetric quadrature points in the horizon with carefully designated quadrature weights
satisfying polynomial reproducing conditions for a given nonlocal (even singular) kernel. Under the assumption
that the quadrature points are symmetrically distributed and that the quadrature weights are positive, we show the
convergence of the RK collocation method on the quasi-discrete peridynamics Navier equation. The discrete solution
of the RK collocation method applied to the quasi-discrete peridynamic Navier equation converges to the correct
local limit.

Compared with previous work [29] on nonlocal diffusion problems, this work is new in the following aspects.
First, the Fourier analysis is extended to the peridynamic Navier system of equations. The Fourier symbol of
the peridynamic Navier operator is a matrix and consists of two parts, while the Fourier symbol of the nonlocal
diffusion is a scalar; more involved derivations are done for the Fourier representations of the collocation schemes
of the peridynamic Navier operator and its quasi-discrete counterpart. Second, we construct the quasi-discrete
peridynamic Navier operator with appropriate quadrature weights. A reformulation of the bounded second-order
moment condition is required to guarantee consistency.

In addition, numerical examples in two dimension are conducted to complement our mathematical analysis and
the same order of convergence is observed as our theoretical result has predicted. That is, for the RK collocation
method, the numerical solution converges to the nonlocal solution for a fixed δ at the order O(h2

max) and to the
orresponding local solution at the order O(δ2

+ h2
max); for the RK collocation method on the quasi-discrete

eridynamic Navier equation, the numerical solution converges to the correct local limit at second order when
he ratio δ/hmax is fixed.

Finally, we remark that there are some interesting topics remain to be addressed in the future. We only consider
xed δ/hmax for the quasi-discrete peridynamic Navier equation in this work, it is worthwhile to study the case
or uncoupled δ and hmax. For classical (local) linear elasticity, FEM solution obtained from the pure displacement
orm often deteriorates and becomes unstable when ν is close to 0.5. For the peridynamic Navier equation, however,
umerical results in [45] show that the meshfree discretization converges to the local limit with a second-order
onvergence rate even for ν = 0.495. It is then interesting to explore the numerical analysis for the nearly impressible
aterials. Moreover, our analysis is limited on rectilinear Cartesian grids but rigorous analysis on a more general

rid, such as quasi-uniform grid, should also be studied in the near future.
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ppendix

.1. Proof of Lemma 4.2

We need to calculate the Fourier symbol of the nonlocal operators first.

emma A.1. The Fourier symbol of the operators LB
δ ,Gδ,Dδ are given by

− L̂B
δ u(ξ ) = M B

δ (ξ )̂u(ξ ), (A.1)

Ĝδθ (ξ ) = i bδ(ξ )θ̂ (ξ ), (A.2)

D̂δu(ξ ) = i bT
δ (ξ )̂u(ξ ), (A.3)

where M B
δ (ξ ) is a d × d matrix and bδ(ξ ) is a vector. They are expressed as

M B
δ (ξ ) =

∫
Bδ

ρδ(|s|)
s ⊗ s
|s|2

(1 − cos(s · ξ ))ds,

= pδ(|ξ |)
(

Id − ξ⃗ ξ⃗
T )

+ qδ(|ξ |)ξ⃗ ξ⃗
T
,

(A.4)

nd

bδ(ξ ) =

∫
Bδ

ρδ(|s|)s sin(s · ξ )ds = bδ(|ξ |)ξ⃗ , (A.5)

where ξ⃗ =
ξ

|ξ |
is the unit vector in the direction of ξ and the scalars pδ(|ξ |), qδ(|ξ |) and bδ(|ξ |) are given by

pδ(|ξ |) =

∫
Bδ

ρδ(|s|)
s2

1

|s|2
(1 − cos(|ξ |sd))ds, (A.6)

qδ(|ξ |) =

∫
Bδ

ρδ(|s|)
s2

d

|s|2
(1 − cos(|ξ |sd))ds, (A.7)

bδ(|ξ |) =

∫
Bδ

ρδ(|s|)sd sin(|ξ |sd)ds. (A.8)

Proof. The derivations of Eqs. (A.1)–(A.3) follow directly from the definition of these nonlocal operators. The
derivation of bδ(ξ ) can be found in [40], and we follow the same strategy to show M B

δ (ξ ),

−L̂B
δ u(ξ ) = −

∫
R3

e−i x·ξ

∫
Bδ

ρδ(|s|)
s ⊗ s
|s|2

(u(x + s) − u(x))dsdx,

= −

∫
Bδ

∫
R3

ρδ(|s|)
s ⊗ s
|s|2

(u(x + s) − u(x))e−i x·ξ dxds,

=

∫
Bδ

ρδ(|s|)
s ⊗ s
|s|2

(1 − ei s·ξ )̂u(ξ )ds,

= M B
δ (ξ )̂u(ξ ),

here M B(ξ ) is given by the first line of Eq. (A.4) and we have used the symmetry of the nonlocal kernel ρ (|s|).
δ δ
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R

a

w

w

F

We proceed to show the second line of Eq. (A.4) only for d = 3 because the case d = 2 is similar. For any
orthogonal matrix R, we have

M B
δ (ξ ) = RT M B

δ (Rξ )R.

We let R be the orthogonal matrix which rotates ξ to be aligned with e, (e = (0, 0, 1)T ), i.e.,

Rξ = |ξ |e.

Then Rξ · s = |ξ |s3 and we have

M B
δ (ξ ) =

∫
Bδ

ρδ(|s|)
1 − cos(|ξ |s3)

|s|2
RT s(RT s)T ds,

is the rotation matrix that rotates ξ by an angle of

arccos
(

e ·
ξ

|ξ |

)
= arccos

(
ξ3

|ξ |

)
,

round the axis in the direction of
ξ × e
|ξ × e|

=
1√

ξ 2
1 + ξ 2

2

(ξ2, −ξ1, 0).

R can be explicitly constructed as

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ξ3

|ξ |
+

ξ 2
2

ξ 2
1 + ξ 2

2

(
1 −

ξ3

|ξ |

)
−ξ1ξ2

ξ 2
1 + ξ 2

2

(
1 −

ξ3

|ξ |

)
−

ξ1

|ξ |

−ξ1ξ2

ξ 2
1 + ξ 2

2

(
1 −

ξ3

|ξ |

)
ξ3

|ξ |
+

ξ 2
1

ξ 2
1 + ξ 2

2

(
1 −

ξ3

|ξ |

)
−

ξ2

|ξ |

ξ1

|ξ |

ξ2

|ξ |

ξ3

|ξ |

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (A.9)

Hence each component of Mδ(ξ ) is written as

[M B
δ (ξ )]ik =

∫
Bδ

ρδ(|s|)
1 − cos(|ξ |s3)

|s|2

3∑
j=1

R j i s j

3∑
l=1

Rlksl ds,

=

∫
Bδ

ρδ(|s|)
1 − cos(|ξ |s3)

|s|2

3∑
j=1

R j iR jks2
j ds, for i, k = 1, 2, 3,

here Ri j is the component of R. We can rewrite the Fourier symbol M B
δ (ξ ) as

M B
δ (ξ ) =

∫
Bδ (0)

ρδ(|s|)
1 − cos(|ξ |s3)

|s|2
M(ξ , s) ds, (A.10)

here each component of M(ξ , s) is given by

Mik =

3∑
j=1

R j i R jks2
j .

rom Eq. (A.9), we arrive at

M(ξ , s) =
1

|ξ |
2

⎡⎣(ξ 2
2 + ξ 2

3 )s2
1 + ξ 2

1 s2
3 ξ1ξ2(s2

3 − s2
1 ) ξ1ξ3(s2

3 − s2
1 )

ξ2ξ1(s2
3 − s2

1 ) (ξ 2
1 + ξ 2

3 )s2
1 + ξ 2

2 s2
3 ξ2ξ3(s2

3 − s2
1 )

ξ3ξ1(s2
3 − s2

1 ) ξ3ξ2(s2
3 − s2

1 ) (ξ 2
1 + ξ 2

2 )s2
1 + ξ 2

3 s2
3

⎤⎦ ,

= s2
1

(
I3 − ξ⃗ ξ⃗

T )
+ s2

3 ξ⃗ ξ⃗
T
,

(A.11)
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w

w
w
E

A

w

w

here we have used the symmetry of the ball and the equivalence of s1 and s2 in the integrand. Substitute Eq. (A.11)
into Eq. (A.10), we obtain the second line of Eq. (A.4), and pδ(|ξ |) and qδ(|ξ |) as given in Eqs. (A.6) and (A.7). □

With the establishment of the previous lemma, we now can prove Lemma 4.2.

Proof of Lemma 4.2. Due to the scaling of the nonlocal kernel Eq. (2), we can rewrite pδ(|ξ |), qδ(|ξ |) and bδ(|ξ |)
as the following

pδ(|ξ |) =
p1(δ|ξ |)

δ2 , (A.12)

qδ(|ξ |) =
q1(δ|ξ |)

δ2 , (A.13)

bδ(|ξ |) =
b1(δ|ξ |)

δ
, (A.14)

here p1(δ|ξ |), q1(δ|ξ |) and b1(δ|ξ |) are given as in Eqs. (35)–(37) respectively. Combining Eqs. (A.1)–(A.3),
e arrive at Eq. (31). Substituting Eqs. (A.12) and (A.13) into Eqs. Eq. (A.4), (A.14) into Eq. (A.5), we obtain
q. (32). □

.2. Proof of Lemma 4.5

Using Eq. (31) and Parseval’s identity, we arrive at

((ukΨk) , −LS
δ (vk′Ψk′ )) = (2π )−d

∫
Rd

(
ukΨ̂k(ξ )

)
·

(
M S

δ (ξ )vk′Ψ̂k′ (ξ )
)

dξ ,

= (2π )−d

∫
Rd

ei(xk′−xk)·ξ
⏐⏐Ψ̂0(ξ )

⏐⏐2 uT
k M S

δ (ξ )vk′dξ ,

= (2π)−d

∫
Q

ei(k′
−k)·ξ uT

k MG(δ, h, ξ )vk′dξ ,

here we have used Eq. (25) and the Fourier transform of the RK shape function

Ψ̂0(ξ ) =

d∏
j=1

ˆ
φ

(
x j

2h j

)
(ξ j ) =

d∏
j=1

h j

(
sin(h jξ j/2)

h jξ j/2

)4

,

here the Fourier transform of the cubic B-spline function is given as

φ̂(ξ ) =
1
2

(
sin(ξ/4)

ξ/4

)4

.

Hence, the Galerkin form Eq. (38) can be written as

(ih(uk), −LS
δ ih(vk)) =

∑
k, k′

∈Zd

(
ukΨk, −LS

δ (vk′Ψk′ )
)

= (2π)−d
∑

k, k′
∈Zd

∫
Q

ei(k′
−k)·ξ uT

k MG(δ, h, ξ )vk′dξ

= (2π)−d

∫
Q

ũ(ξ ) · MG(δ, h, ξ )̃v(ξ )dξ ,

and we have proved (i).
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t

T
λ

R

Next, we use the inverse Fourier transform to write(
−LS

δ (vk′Ψk′ )
)

(xk) = (2π )−d

∫
Rd

ei xk ·ξ M S
δ (ξ )vk′Ψ̂k′ (ξ )dξ ,

= (2π )−d

∫
Rd

ei(xk−xk′ )·ξ M S
δ (ξ )vk′Ψ̂0(ξ )dξ ,

= (2π)−d
d∏

j=1

(h j )−1

∫
Q

ei(k−k′)·ξ MC (δ, h, ξ )vk′dξ ,

hen we arrive at the collocation form Eq. (39) as

(
(uk), −rhLS

δ ih(vk)
)

l2 =

d∏
j=1

h j

∑
k,k′

∈Zd

uk ·
(
−LS

δ (vk′Ψk′ )
)

(xk)

= (2π)−d
∑

k,k′
∈Zd

uk ·

∫
Q

ei(k−k′)·ξ MC (δ, h, ξ )vk′dξ

= (2π)−d

∫
Q

ũ(ξ ) · MC (δ, h, ξ )̃v(ξ )dξ .

his finishes the proof of (ii). Notice that M B
δ and M D

δ are positive semidefinite matrices from the assumption
≥ µ. Then (iii) is a result of the direct comparison of Eqs. (40) and (41).
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