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Partial differential equations (PDEs) are used with huge success to model
phenomena across all scientific and engineering disciplines. However, across
an equally wide swath, there exist situations in which PDEs fail to adequately
model observed phenomena, or are not the best available model for that
purpose. On the other hand, in many situations, nonlocal models that account
for interaction occurring at a distance have been shown to more faithfully
and effectively model observed phenomena that involve possible singularities
and other anomalies. In this article we consider a generic nonlocal model,
beginning with a short review of its definition, the properties of its solution,
its mathematical analysis and of specific concrete examples. We then provide
extensive discussions about numerical methods, including finite element, finite
difference and spectral methods, for determining approximate solutions of the
nonlocal models considered. In that discussion, we pay particular attention
to a special class of nonlocal models that are the most widely studied in the
literature, namely those involving fractional derivatives. The article ends with
brief considerations of several modelling and algorithmic extensions, which
serve to show the wide applicability of nonlocal modelling.
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PART ONE

Nonlocal diffusion models, including fractional models

In order to make the article as self-contained as possible, in this part we
introduce the model equations and discuss solutions of those equations used
in the development and analysis of the numerical methods described in
Part 2. We focus on a general class of nonlocal models that are characterized
by interactions at a distance via integral equation formulations as opposed
to partial differential equations. For the same applications, the nonlocal
models considered provide different representations of physics' compared
to partial differential equation models. Fractional derivative models are
an example of the general class we consider. Because there exists a large
mathematical and computational literature devoted to fractional derivative
models, that class is given special attention throughout the article. However,
also highlighted are the opportunities afforded by the more general nonlocal
models we consider that are not available through the use of fractional
models.

We use the following notational conventions throughout. Exceptions
should not cause confusion. Please note that the adherence to these con-
ventions becomes less strict as one moves from Part 1 to Part 2 to Part 3.

! Throughout, for the sake of economy of exposition, we refer to physics as the setting for
the generic models we consider. Of course, those models also arise in all other physical
science settings, as well as in engineering and the biological and social sciences.
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Roman letters functions depending on a single point,

e.g. u(x), v(x), D(x)
Greek letters functions depending on two points,

e.g- n(x,y), v(z,y), O(z,y)
plain font scalar-valued functions, e.g. u(x), n(x,y)
boldface font vector-valued functions, e.g. u(x), v(z,y)
upper-case boldface font  tensor-valued functions, e.g. D(x), ©(x,y)
calligraphy font operators, functionals, bilinear forms,

e.g. A, D, L

In choosing these notational conventions, our goal is to be as consistent
as possible or practical throughout the article. Unfortunately, because of
the different notations adopted in the literature, the notations used in the
article may differ from those used in some of the cited books and papers.

1. General models for nonlocal diffusion

We consider an integral equation model that is a nonlocal analogue of the
classical Poisson problem

(1.1)

—Lou := =V - (DVu) = f(x) forall x €,
Bu = g(x) for all « € 09,

where 2 € R? denotes a bounded, open domain having boundary 09, f(z)
and g(x) denote given functions defined on © and 052, respectively, and
D(x) denotes a given symmetric, positive definite d x d matrix. For the
boundary conditions operator B, we have the choices

U <« Dirichlet boundary condition,
Bu =< (DVu)-n < Neumann boundary condition,  (1.2)
(DVu) -n +r(x)u < Robin boundary condition,

where r(x) denotes a given function, as well as mixed boundary conditions,
for example Dirichlet and Neumann boundary conditions applied on disjoint,
covering parts of the boundary. Problem (1.1) is a model for steady-state
diffusion, for example.

As will be immediately clear, the nonlocal model we consider is not an
integral or boundary integral reformulation of problem (1.1) based on, for
example, the use of Green’s functions, but rather it models different physics
from (1.1).

Given the bounded, open domain © € R? and given a constant § > 0, we
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(a) (b)

Figure 1.1. Q is light grey whereas Qz, is dark grey and has thickness 6. (a) ¢
smaller than the diameter of Q, (b) § larger than the diameter of Q.

define the interaction domain corresponding to ) as
Qz, := {y € R?\ Q such that y € B;(z) for some x € Q}, (1.3)

where Bs(x) denotes the ball of radius § centred at . We refer to 0 as
the interaction radius or horizon. The nomenclature ‘interaction’ used here
is appropriate because (7, contains all points in the complement domain
R?\ Q that are within a distance § of some point in Q. Note that the four
cases

0<d<<diam(, diamQ<«d<oo, dxdiamQ, J=o00 (1.4)

are all of interest. An illustration of the first two cases is given in Figure 1.1.
For the fourth case we have that the interaction domain Q7 _ = R\ Q.
Also, the case of Q = R? is of considerable interest.

For § > 0, we consider the nonlocal problem for a scalar-valued function
u(z) defined on QU Qz;, given by

{—,C(;’U, = f(x) forall x € Q, (1.5)

Vu = g(x) for all € Q.

Note that the constraint Vu = g is applied on the domain Qz; having nonzero
volume in R?, in contrast to the constraint Bu = g in (1.1), which is applied
on the boundary surface 0€2. For this reason we refer to Vu = ¢ as being
a volume constraint and to (1.5) as a being a volume-constrained problem
(Du, Gunzburger, Lehoucq and Zhou 2012a).

In (1.5), we have that f(x) and g(x) denote given scalar-valued functions
defined on (2 and )z, respectively, and

Loula) =2 /Q () —u(@)l@y)dy rallee (L6)
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where 75(x,y) is a symmetric function, that is,

Y5z, y) =5y, ), (1.7)
and, for any x,

supp(vs(z,y)) = Bs(zx), (1.8)

that is, vs5(x,y) = 0 whenever |y — x| > 0. We note that in some of the
specific cases we consider below, the integral in (1.6) has to be viewed in
the principal value sense. For notational simplicity, we omit ‘p.v.” in front
of the integral sign even in such cases. The operator L is a nonlocal ana-
logue of the partial differential equation (PDE) operator V- (DVu). That
connection is made explicit in Section 1.1. The nonlocal model (1.5) is a
nonlocal analogue of the local PDE diffusion model (1.1) model.
Analogous to (1.2), we have the choice of volume constraints

U < Dirichlet volume constraint,
Vu = < Nsu < Neumann volume constraint, (1.9)
Nsu+r(x)u < Robin volume constraint,

as well as mixed types of volume constraints, where the linear operator N
can be defined in several ways, for example, we have the nonlocal Neumann
or nonlocal flux operator

Nsu == 2/ (u(y) — w(@))vs(x,y)dy for all z € Qg,. (1.10)
Uz,

The operator Ns plays the role that the normal derivative does for the
classical PDE case. In fact, both (DVu) - n and Nsu denote fluxes into a
point x, with € 99 for the PDE case and x € {7, in the nonlocal case.
It is obvious that the definitions of the operators L5 and N5 involve exactly
the same integrand but have different domains of definition, i.e. € for the
former and Qz; for the latter. So, clearly, they can be combined into a
single operator defined over 2 U 27,. However, as is made clear below, it is
convenient to keep using the two operators. For a detailed discussion about
nonlocal fluxes, see Du, Gunzburger, Lehoucq and Zhou (2012a, 2013a).

Because points @ only interact with points y € Bs(x), (1.6) and (1.10)
can be equivalently written as

Lsu := 2/ (u(y) —u(x))vs(x,y)dy for all x € Q (1.11)
Bs(x)
and

Nsu := —2/ (w(y)—u(x))ys(x,y)dy for all x € Qz,, (1.12)
(ngzé)ﬂBg(w)

respectively, where we have used the facts that due to the definition of
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the interaction domain Qz,, (QUQz,) N Bs(x) = Bs(x) for & € Q but
(QUQz,) N Bs(x) C Bs(x) for x € Q.

1.1. A brief review of a nonlocal vector calculus

To make some sense of how the model (1.5) arises and why we refer to it
as a nonlocal analogue of the model (1.1), we need to first introduce some
elements of a nonlocal vector calculus. Note that in this article we also use
elements of the fractional calculus. However, because there are many ex-
cellent references about the fractional calculus and its applications (see e.g.
Baleanu, Diethelm, Scalas and Trujillo 2016, Mainardi 1997, Meerschaert
and Sikorskii 2012), we do not discuss them here.

The classical vector calculus provides a set of tools that are in ubiquitous
use for the modelling, analysis, discretization and numerical analysis of
PDE models, an obvious example being the use of Green’s first identity
to transform the strong formulation of a PDE into a weak formulation. The
foundations of that calculus are the familiar divergence, gradient and curl
differential operators, upon which an edifice is built that includes vector
identities (e.g. div curl v = 0), integral theorems (e.g. Gauss’s theorem)
and much, much more.

A nonlocal vector calculus has been developed (Gunzburger and Lehoucq
2010, Du et al. 2012a, Du, Gunzburger, Lehoucq and Zhou 2013a, Alali,
Gunzburger and Liu 2015, Mengesha and Du 2016, Du 2019, D’Elia et al.
2019a) to deal with nonlocal models such as (1.5) in much the same way as
the classical vector calculus is used to deal with PDE models such as (1.1).
Here, mostly following Du et al. (2013a), we provide a brief introduction to
the nonlocal vector calculus, including notions that are used in the rest of the
article. We remark that certain elements of the nonlocal vector calculus have
previously appeared in Coulhon and Grigoryan (1998), Zhou and Schélkopf
(2005), Gilboa and Osher (2008), Lézoray, Ta and Elmoataz (2010), Lou,
Zhang, Osher and Bertozzi (2010) and Jiang, Lim, Yao and Ye (2011), for
example. However, the discussions in those papers, compared to that in Du
et al. (2013a), are limited in scope and in application and provide only a
partial development of a nonlocal vector calculus that mimics the classical
vector calculus.

The foundation of the nonlocal vector calculus is integral operators that
mimic the three differential operators upon which the classical vector cal-
culus is built.

Given the vector-valued functions vs(z,y): (QUQgz,) x (QU Qz,) — RY
and as(z,y): (QUQZ) x (QUQz,) — RY the action of the nonlocal di-
vergence operator Ds: QU Qz, — R on v(x,y) is defined as

(Do) () = /Q () (@) - asle ) @) dy (113
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for all x € QUQz,, where as(x,y) denotes an antisymmetric function,
that is, as(y, ) = —as(x,y) for all z,y € QU Qz;, and A () denotes
the indicator function. Note that unlike its differential counterpart V-, the
nonlocal operator Dg is not uniquely defined, that is, not only do we have an
unspecified parameter § > 0 but also we have said nothing about a;(x,y)
other than it is an antisymmetric function. The choices one makes for &
and especially as(x,y) can result in operators having very different prop-
erties. Thus ¢ and ag(x,y) are modelling choices dictated by the specific
application one considers. We have already mentioned, in (1.4), the wide
choices of § that are of interest; several choices for as(x,y) are considered
in Section 2.2.1.

Simple manipulations show that, under suitable regularity assumptions
that we do not dwell on here,

/ UD(;VdCB:/ / v-Divdyde, (1.14)
QU QUQz, J U,

where
(Dyu)(z,y) == —(u(y) — w(@))os(x, y) Xp; ) (Y) (1.15)

for all z,y € QU Qz,. From (1.14), it is natural to refer to operator Dj as
being the adjoint operator corresponding to Ds. With D} being the adjoint
of Ds, one may formally refer to —Dj as being a nonlocal gradient operator.

Let Os(z,y): (QUQz,)x (QUQz;) — R™? denote a tensor-valued func-
tion that is symmetric in the function sense, i.e. @s(x,y) = Os(y, x), and
symmetric and positive non-negative definite in the matrix sense. Then,
from the definitions of the nonlocal divergence and gradient operators, we
have that

— Ds(OsDsu) (1.16)

—o / (u(y) — u(@))es(@, y) - (O5(, y)exs(@, 1)) Xisy (o) () d.
QUQI(S

For all ¢,y € QU Qgz,, we define the kernel vs(x,y) as

75(33’ y) = a(;(:c, y) ) (65(337 y)aé(x’y))XBg(m)(y) (117)

Note that vs(x, y) defined in this way satisfies the the symmetry condition
(1.7) and the support condition (1.8), where the former follows from the
fact that X'p;(;)(y) is itself a symmetric function, that is, if y € Bs(z) then
necessarily € Bs(y).
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We then have that (1.16) can be expressed as

Ds(©5Dju) = —2 /Q ()~ @)l ) dy

_— / (uly) — w(@)s(@.y)dy,  (L18)
Bs(x)

where 75(x,y) is given by (1.17) and Ds and Dj are given by (1.13) and
(1.15), respectively.
Of course, we recognize that

Ds(©sD5u) = —Lsu, (1.19)

where Lsu is defined in (1.6) or (1.11). The fact that the operator L5 can
be written as a composition of nonlocal divergence and gradient operators
justifies referring to (1.5) as a (variable coefficient) nonlocal Poisson prob-
lem, that is, Lsu may be viewed as a nonlocal analogue of V- (DVu) for
suitable choices of as(x,y), and, if O is the identity tensor, Lsu is indeed
a nonlocal analogue of the Au.

Remark 1.1 (variable coefficients in nonlocal model). An advantage
accruing from the nonlocal calculus is that, through compositions such
as (1.16) or (1.18), it provides a natural means for generalizing nonlocal
constant coefficient operators such as the fractional Laplace operator to
variable coefficient settings in a manner completely analogous to how one
defines variable coefficient operators in the PDE case. As an example, in
Section 3.4, we describe one way in which this can be done for fractional
diffusion models. [

The final bit of the nonlocal vector calculus that we need is a (generalized)
nonlocal Green’s first identity. In the context of this section, that identity
is given by (Du et al. 2013a)

/ vDs(OsD u) dy = / / Div-(©sD;)udydx. (1.20)
QuQz, auez, Jaues,

We have

Dsv-(©5D5)u = (v(y) — v(@))(u(y) — u(®))ys(,y), (1.21)

so substituting (1.18), (1.10) and (1.21) into (1.20) results in the equivalent
form of the nonlocal Green’s first identity given by

o] ) - @) - u@)sy) dyd
Quez, Joues,

= / v(x)Lsu(x) de +/ v(x)Nsu(z) de. (1.22)
Q

Qz,
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Given our comments about nonlocal fluxes, etc., we We recognize (1.22) as
a nonlocal analogue of the (generalized) local Green’s first identity

/ Vv (DVu)de = —/ vV - (DVu) de +/ vn - (DVu) de.

Q Q N

Derivations in a more rigorous functional analytic setting of nonlocal integral
identities such as similar to (1.22) and the connection to their local analogues
can be found in Mengesha and Du (2016) and Du (2019).

Remark 1.2 (roles played in the kernel by operator definitions
and constitutive functions). It is important to differentiate between
the roles of the functions as5(x,y) and O4(x,y) in the nonlocal models we
are considering. It is clear that ag(x,y) serves to define operators (i.e.
Ds, D; and N given by (1.13), (1.15) and (1.10), respectively), irrespective
of how those operators are used. On the other hand, Os(x,y) serves as
a constitutive function. Thus both as(z,y) and Os(x,y) are modelling
choices. Both influence the properties of solutions of nonlocal models such
as their regularity. Of course, the situation is much the same in the local
PDE case, that is, the operators V- and V are defined irrespective of how
they are used and D(x) denotes a constitutive tensor. [

Remark 1.3 (the choices that define a nonlocal diffusion model).
Recapitulating,

to define a specific nonlocal diffusion model, one must make three mod-
elling choices:

e the horizon § that defines the extent of nonlocal interactions,

e the antisymmetric function ag(x,y) that defines the nonlocal diver-
gence operator Ds and nonlocal gradient operator —Dy,

e the constitutive tensor @;(x, y) that defines the properties of the media.

These three choices are all that enter into the definition (1.17) of the kernel
vs(x,y), so specifying them uniquely defines the operator L5. O

Remark 1.4 (additional operators of the nonlocal vector calculus).
The composition of the nonlocal divergence operator D and its adjoint op-
erator Dj are the only nonlocal operators needed to define the nonlocal
operator L5 that operates on scalar-valued functions. However, other as-
pects of the nonlocal vector calculus, such as nonlocal vector identities and
nonlocal operators acting on vector-valued functions, make use of additional
nonlocal operators.

Thus, in addition to Ds and Dj, we have the nonlocal gradient operator
Gs defined by, for a scalar-valued function v(x,y),

(Go)(x) = /Q )+ e )as(@ ) X () Ay (129
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for all z € 2 U Q7 and its adjoint operator G given by, for a vector-valued
function u(x),

(Gsu)(@,y) = —(uw(y) —u(@)) as(®,Y)Xp;(2) (y) (1.24)

for all z,y € QUQz,. Similarly, we have the nonlocal curl operator Cs
defined by, for a vector-valued function v(x,y),

(Csv)(x) := /Rd(u(y,:c) +v(x,y)) X a(;(:c,y)XB&(m)(y) dy (1.25)

for all z € Q2 U €2z, and its adjoint operator C5 defined by, for a vector-valued
function u(x),

(Csu)(®,y) = —as(x,y) x (w(y) — u(@))Xp;2)(y) (1.26)

for all z,y € QU Qz,. Thus, in the nonlocal vector calculus we have pairs
of divergence operators D5 and —Gj}, gradient operators Gs; and —Dj, and
curl operators Cs and Cj, with Ds, Gs, Cs acting on functions of two points,
i.e. v(x,y) and v(x,y), and Dj, G5, C; acting on functions of one point,
i.e. u(x) and u(x).

With these operators in hand, we have the nonlocal vector identities

{Dd%uw=& Cs(Giu) =0,

Dy(Dtu) = G5(G3u) + Cs(Ciu), (1.27)

which are nonlocal analogues of V- (V x u) =0, V x (Vu) =0 and Au =
V- (Vu) =V(V-u)—V x(V xu), respectively. In particular, we can view
—D;(Dju) = —Gs(G5u) — Cs(C3u) as a nonlocal vector Laplacian.

In addition, the operators introduced in this remark are used in D’Elia
et al. (2019a) to define the nonlocal Hodge-Helmholtz decomposition of
vector-valued functions that depend on two points & and y. Note that the
operators Ds, Dy, Gs and G5, as operators between functions of two points
x and y and functions of one point & or y, do not recover their classical
counterparts in the local limit 6 — 0. Thus, in parallel, additional examples
of nonlocal operators acting on vector-valued functions of one point only
are introduced in Du et al. (2013a) and further analysed in Mengesha and
Du (2016), Du (2019), Du, Tao, Tian and Yang (2019¢) and Lee and Du
(2020). In fact, a nonlocal Helmholtz decomposition of a vector-valued
function w(x) can be established which recovers the classical one in the
local limit; see (Lee and Du 2020). These operators can also be used to
construct a nonlocal analogue of the Stokes equation, which was used to
provide a foundation for the analysis of smoothed particle hydrodynamics
(Du and Tian 2019, Lee and Du 2020). Some of these developments can be
found in Section 21.
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2. Weak formulations of nonlocal models

The model (1.5) is a strong formulation of a nonlocal problem that is re-
quired to hold pointwise on € U €2z,. For nonlocal problems subject to vari-
ous inhomogeneous data, different weak formulations can be considered. In
this section we consider a weak formulation one of the possible weak formu-
lations corresponding to (1.5) and then relate that formulation to a minim-
ization principle. We conclude the section by providing specific examples of
the kernels v5(,y) and their associated energy spaces.

2.1. Function spaces, weak formulations and well-posedness

2.1.1. Function spaces and norms
We define the an ‘energy’ space

V(QUQz,) = {v(z) € L2(QUQg,): [[vllvqua,,) < oo}, (2.1)

where || - ||V(ng15) denotes the ‘energy’ norm defined as
||U||V(QU§216 (2.2)
1/2
([ [ ) vty dyde ol )
QUQI6 QUQI& S

The space V (Q U z,) is by definition a subspace of L?(2 U Qz,) and can be
shown, for suitably chosen kernels (Mengesha and Du 2013), to be a Hilbert
space that comes equipped with the inner product

( V(QuQz,)
/ [ 0 - v@)uly) - u@)ns(e.y) dy da
QUQz, QUQI6
+ (u, v)LQ(QUQI y forall u,v € V(QUQgy). (2.3)

We also have the constrained energy space
Ve(QU Q) = {v(x) e V(QUQz,): v(x) =0 for € Qz, }. (2.4)

Under suitable conditions on the kernels, we can prove a nonlocal Poincaré
inequality (Du et al. 2012a, Mengesha and Du 2013, Du 2019). Thus, we
have that the seminorm

ety = ( [, o Lo ) =@ )y ta) " e

is a norm on V.(Q U z,) equivalent to the the norm (2.2) with equivalence
constants that are independent of 6§ as 6 — 0. Correspondingly, V,(2U Qz,)



NUMERICAL METHODS FOR NONLOCAL AND FRACTIONAL MODELS 13

is a Hilbert space equipped with the inner product

(o hvonnn,) = | . i o, () @) (0(w) — (e () dy e
(2.6)

for all u,v € V.(QUQz,). For more detailed discussions of the conditions
on the kernels and rigorous proofs of the properties on these spaces, we refer
to Mengesha and Du (2015, 2016) and Du (2019).

To allow inhomogeneous data, we define the space V;(Qz;),

Vi(Qz,) = {v = wlq,, for some w € V(QU Qg,)}, (2.7)

which involves restrictions to the domain €27, having finite volume in R A
norm on V;(§z,) can be defined by

ollvigas,y = inflwllvauns ) | @ € VQU0z,), wloy, —v}< /
Qz, 916

One can view V;(€2z,), induced by V(Q U Qz;), as a nonlocal analogue of
the trace space H'/2(9Q) induced by H'(Q). We let V4(Q) denote the
dual space corresponding to V(22U €z,) that is defined in the usual way,
using the L? inner product to define the duality pairing and to also define a
norm || - ||y, (o) on that space. However, one can view V;(f2z;) as a nonlocal
analogue of the trace space H'/2(9Q) for functions belonging to H* ().

As mentioned in Remark 1.2, specific function spaces are defined by mak-
ing specific choices for as(x,y). For some choices, the function spaces so
defined can be shown to be equivalent to standard function spaces such as
Sobolev spaces. See Section 2.2.1 for some examples.

2.1.2. Weak formulations and well-posedness
A weak formulation of problem (1.5) with Vu = u is defined as follows:

Given v5(x,y) defined in (1.17) and given g(x) € V;(Qz,)
and f(x) € V4(Q), find u(x) € V(Q U Qz,) such that

{Ag(u,v) = (f,v) forall ve V(QUQL,),
)

2.9
=g(x) for all © € Qg;, (2:9)
(z) €

where, for all u(x),v

() / / — (@) (uly) — ul@))ys(x.y) dy dz (2.10)
QuQz, QUQI(S

V(Q U Qz,), we have the bilinear form

and, for all f(x) € V4(2), the dual space of V(2 U Qz;) defined by extending
the L? inner product as the duality pairing and with the induced norm

())*75(

y\
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I - lv,(), we have the linear functional

(f,v):/ﬂf(w)v(a:)da:. (2.11)

That (2.9)—(2.11) are indeed a weak formulation corresponding to (1.5) is an
immediate consequence of setting v(x) = 0 on {7, in the nonlocal Green’s
first identity (1.22) so that the term involving Nsu vanishes. Equation (2.9)
is a nonlocal analogue of the weak formulation of problem (1.1) with Bu = u
given by

/ Vv (DVu)dx = (f,v),
Q

for all v € H}(Q) along with u = g on 9.

Under suitable conditions on the kernel 7s(x,y), it can be shown that
the bilinear form Ag(u, v) is symmetric and is continuous and coercive with
respect to Vo(Q U Qz;) so that, by the Lax-Milgram theorem, problem (2.9)
is well-posed. In particular, we have the a priori estimate with respect to
the energy norm for the solution u(x) of (2.9) given by

lullv@@uaz,) < Cs(lfllvae) + l9llvioz,)): (2.12)

where the constant Cs does not depend on §. usually in a benign way.
Moreover, for suitably chosen kernels, one can consider its local (§ — 0)
and fractional (§ — oo) limits, as discussed in Part 2.

Remark 2.1 (a nonlocal Neumann model). We can of course also define
a weak formulation of (1.5) for Vu = Nju, that is, for a nonlocal Neumann
problem. In this case a weak formulation is given by: find u € V(Q U Qz,)\R
such that

As(u,v) = (f,v) —I—/Q g(x)v(x)dx forallve V(QUQL)\R,

/Qf(a:)da:—i—/QI g(x)dx =0,

where f € V() and for the Neumann problem g(x) belongs to the dual
space of V(U Qz;)lo,, - In (2.13), the quotient space V(U Qz;) \ R is
used to ensure uniqueness of solutions. The second equation in (2.13) is
a compatibility condition on the data f and g that is necessary to ensure
existence.

Equation (2.13) is a nonlocal analogue of the weak formulation corres-
ponding to (1.1) with Bu = (DVu) - n given by

/VU-(DVu)dcc:/fvdw—i-/ gvdx
Q Q Gle!

(2.13)



NUMERICAL METHODS FOR NONLOCAL AND FRACTIONAL MODELS 15

for all v € H*(Q2) \ R and a pair of prescribed data, also denoted by f and
g, that satisfy along with the compatibility condition

/fdaH—/ gdx = 0.
Q 0

We note that, although other ways of defining a nonlocal Neumann problem
can also be used. have been proposed, perhaps the one in (2.13) is the
most ‘natural’ in relation to the nonlocal vector calculus. For additional
discussions about nonlocal Neumann problems, see e.g. Cortazar, Elgueta,
Rossi and Wolanski (2008), Du (2019), Mengesha and Du (2015, 2016), Tao,
Tian and Du (2017) and D’Elia, Tian and Yu (2019d). One can also find a
fractional version of (1.5) with Vu = Nsu in (Deng, Li, Tian and Zhan 2018)
for a nonlocal Neumann problem of the fractional Laplacian in the bounded
domain. In addition, for specialized power-like kernels, one can also relate
this to problems associated with problems related to the regional Laplacian
defined by (3.6). O

For the sake of economy of exposition, we will focus on (2.9) in which
Vu = u and, at times, we will even focus on the homogeneous version of
(2.9) for which g(x) = 0. Most of what is said about (2.9) can be extended
to nonlocal Neumann problems.

2.1.8. Relation to an energy minimization principle
The weak formulation (2.9) can also be derived as the Euler-Lagrange equa-
tion for an energy minimization principle. Consider the energy functional

(u; f,75) / / —u(z))*y5(z, y) dy da
QUQI5 QUQI(;

— / f(x)u(x) de (2.14)
Q

and the following minimization principle:

Given v;5(x,y) defined in (1.17) and given g(x) € V;(Qz,)
and f(x) € V4(Q), find u(x) € V(Q U Qz,) such that

Es(u; f,ys) is minimized
subject to u(x) = g(x) for « € Qg,. (2.15)
Using standard techniques from the calculus of variations, one easily sees
that (2.9) is indeed the Euler-Lagrange equation corresponding to the en-

ergy minimization principle (2.15) under suitable conditions on the kernel
vs(x,y) and data f and g.
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2.2. Kernel choices and the corresponding energy spaces
We assume that v5(x, y) given by (1.17) can be written in the form
75(1"71/) = ¢5(w7y)05(may)XB(g(m)(y)a (216)

where 05(x, y) and ¢s(x, y) denote positive, non-negative, symmetric, scalar-
valued functions. This form is very general with respect to both operators
and constitutive functions. In fact, by setting

as(x,y) = y—z Vos(x,y) (2.17)

ly — x|
and
y—x y—x
Os(x,y) = —- (@5 z,y > 2.18
(@) ly — z| ( My—ﬂ (2.18)

in (1.17), we arrive at (2.16). Thus the only assumption made is that
ag(x,y) is directed along the vector y — . Note that as(x,y) given by
(2.17) is indeed an antisymmetric function, whereas 6s(x, y) given by (2.18)
is indeed a positive, non-negative, symmetric function if ®;(x,y) is a sym-
metric in the function sense and symmetric and positive non-negative def-
inite in the matrix sense.

We do not combine 0s(x, y) and ¢s(x, y) into a single function because we
want to keep separate the operator definition and constitutive roles played
by vs(x,y); note that ¢s is only related to a5 whereas 65 is only related to
®;. Thus ¢s(x,y) now takes over the role of as(x,y) in this regard, and
Os5(x,y) can be viewed as a constitutive function. Note also that as(x,y)
as given by (2.17) can be used to define the ‘first-order’ nonlocal operators
Ds and Dj, whereas v5(x,y) is used to define the ‘second-order’ nonlocal
operator L5 and the ‘Neumann’ nonlocal operator Ny. We will refer to
vs(x,y) as the kernel, ¢s(x,y) as the kernel function and Os(x,y) as a
constitutive function.

Remark 2.2 (scalar constitutive tensors). The case of Os(x,y) being
a scalar tensor (i.e. if @s(x,y) = Os5(x,y)I, where I denotes the identity
tensor and fs(x,y) denotes a scalar-valued function) is by far the most
common case considered, just as it is for a scalar diffusivity tensor D = a(x)I
in the local PDE case. In this case, (2.18) becomes a tautology. Also, in
this case, (1.17) simplifies to

Y5(x,y) = Os(x, y)as(x,y) - as(T, Y) X () (Y)
= 96(w7y)|a5(w7y)‘2XBg(w)(y)'

Remark 2.3 (homogeneous and inhomogeneous nonlocal operat-
ors). If ©5(z,y) = Os(|ly — () and ¢s(z, y) = ¢s(ly — x), that is, ©5 and
¢s are radial functions, then (1.5) is a model for a homogeneous medium.
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This is not surprising because @4 and ¢;s being radial functions means that
the nature of the interaction between a point  and another point y is inde-
pendent of the location of the point «; that interaction only depends on the
distance |y — x| between @ and y. In this case, (1.5) is a nonlocal analogue
of the PDE —V - (DVu) = f in which D is a constant tensor. If in addition
©®; is a scalar tensor, (1.5) is a nonlocal analogue of the PDE —kAu = f
in which x is a constant. Thus, to obtain an inhomogeneous model, both
Os(x,y) and ¢5(x,y) cannot be radial functions. Note that ¢s(x,y) is in-
deed often chosen to be a radial function, in which case ®s(x,y) has to be
non-radial for Ls to be an inhomogeneous operator. It is important to note
that a constant coefficient nonlocal problem does not mean that the kernel
and constitutive functions are themselves constant functions; they merely
need to be radial functions.

2.2.1. A list of kernel functions in common use

Because 65(x, y) is a constitutive function which is not specific even within a
single application, we focus on choices for the function ¢s(x, y) that determ-
ines generic properties of a model. However, we again note that because we
have assumed that Og(x,y) is a symmetric, positive non-negative definite
tensor, it follows that f5(x,y) is a positive non-negative function for all
z,y € QUQg;.

We also assume, as is usually the case, that for all x,y € QU Qg;, the
constitutive function 05(x, y) is bounded from above and below by positive
constants whose values do not depend on §. In fact, often 5(x,y) does
not depend on §. Thus we focus on a list of kernel functions ¢5(x,y). In
Table 2.1 we provide the energy spaces corresponding to the kernel functions
we list.

General Translation-invariant, integrable kernel functions. The kernel func-
tion is translation-invariant, that is, ¢s(x,y) = ¢s(y — x), and satisfies for
some positive constant C > 0,

CS/ |¢5(y — )| dy < oo for all z € QU Q. (2.19)
QUQI(;

In the design of numerical methods, one may need to differentiate between
cases for which

e ¢s(z) is a smooth, bounded function of  and y z,

e ¢s5(z) is a bounded function of & and y z but is not smooth, e.g. a
piecewise constant function,

e ¢s(z) is a singular but integrable function, e.g. ¢s(x,y) x 1/|ly — x|
with r < d ¢s(z) o< 1/|z|" with r < d.
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Table 2.1. Kernel functions ¢s(x,y) and the corresponding energy
spaces V(Q U Q).

Type Definition Energy space V(Q U Q)
Translation-invariant, integrable (2.19) LA (QuQgy)

Critical (220) <€ L3(QUQg)
Peridynamic (2.21) L2(QuQg,) for d = 2,3
Fractional (2.22) H*(QU Q)

A special case of translation-invariant kernel functions are radial kernel func-
tions for which ¢s(z) = ¢s(|z]).

‘Critical’ kernel functions. The kernel function satisfies
1

- 2.20
ly — x| (2.20)

b5 (ma y) X
We refer to this kernel as critical because it ‘just misses being integrable’,
that is, 1/|y — |7~ is integrable for any e > 0 and for any d, but is not
integrable for any d if ¢ = 0. For the other kernels in this list, the corres-
ponding energy space is precisely known; see Table 2.1. For critical kernels,
that is not the case; what is known is that energy space is a Hilbert space
and is a strict subspace of L?(Q U Qg,).

‘Peridynamic’ kernel functions. The kernel function satisfies
1

ly — x|

We refer to this kernel as peridynamic because it has the same singular

behaviour as one of the commonly used kernels in peridynamic models for

solid mechanics. Note that for d = 1 this kernel function is a member of

the critical class, whereas for d = 2 it is integrable and for d = 3 it is
square-integrable.

Ps(x,y) o (2.21)

Fractional kernel functions. The kernel function satisfies

1

m. (2.22)

¢5($7 y) X
We refer to this kernel as fractional because the singularity at y = « is that
of the kernel for the fractional Laplace operator. This kernel plays a central
role in Section 3.

Remark 2.4. We note that many square-integrable kernel functions of
the more general form ¢s(,y) also have V(Q U Qgz,) = L2(QU Q) as the
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energy space. We, however, do no consider this class of kernels in the later
sections.

Remark 2.5 (solution smoothness in nonlocal diffusion). For translation-
invariant integrable kernel functions such as (2.19), the two listed in Table 2.1,
the solution may not be is not smoother than the data. For example,
if g(x) = 0 and f(x) € L%*(Q), then generically, the solution u(x) =
(=Ls)" f € L*(QuUQg,). Because L?(f) includes, for example, func-
tions with jump discontinuities possibly over some co-dimension one in-
terfaces, this means that if the data f(x) has a jump discontinuity, so
may will the solution u(x). For the fractional kernel function, we could
have 2s derivatives of smoothing, that is, if the data f(x) € H~*(Q2), then
u(z) € H*(QUQz,), where H*(2 U Qz;) denotes a fractional Sobolev space
and H~*(Q) its dual space. Note that for s < 1/2, H*(Q U Qz,) also con-
tains functions having jump discontinuities. [

Remark 2.5 (boundedness and decay of kernels). All the kernel
functions listed above (and also many more) satisfy the requirement that
there exists a 0 < dipner < 0 such that

¢5(x,y) is bounded for y € Bs(x) \ Bs,,,.. (),

that is, away from the possible singular point y = «, the kernel functions are
bounded so that for § < oo, for example, the kernel functions are integrable
over Bs(x)\ Bs,...(x). If 6 = oo, then, of course, any kernel function choice
would be required to be integrable over R? \ Bs,. . ..(x). For example, if
6 = 00, this obviously rules out the use of constant kernel functions. [

Remark 2.6 (scaling constants and limit behaviour). Often kernel
functions take the form

ps(x,y) = Co(z,y),

where C' denotes a scaling constant that, depending on the specific instance,
may depend on § and also on other parameters appearing in the definition of
¢s(x,y). One approach towards defining the scaling constant C' is to choose
it so that in the limit 6 — 0, a nonlocal model and its solution reduce to
a local PDE model and its solution, respectively. Another approach is to
choose C' so that in the limit § — oo, the nonlocal model and its solution
reduce to a well-known model that is posed on R?. Below, we will have
occasion to follow both approaches. In any case, the scaling constant is a
modelling choice so that, for example, if neither type of limiting behaviour is
of interest, then the scaling constant should be chosen based on the physics
being modelled. [
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3. Fractional diffusion models

In this section we consider a widely used nonlocal diffusion model that in-
volves the fractional Laplace operator —(—A)® with s € (0,1). In a real
sense, fractional diffusion models can be thought of as being a special case
of the general nonlocal diffusion models discussed in Sections 1 and 2. After
all, fractional diffusion models are defined in terms of a specific choice for
the kernel function; see (2.22). On the other hand, the scope of fractional
diffusion models and the literature devoted to their analysis, approximation
and application hugely dwarf what is available for other nonlocal diffusion
models. Thus a more detailed consideration of fractional models is warran-
ted here.

The integral definition of the fractional Laplacian, for u(x): RY — R?
with d € N4, is given by

(—A)’u(x) = /Rd(u(ac) — u(y))vs(z,y)dy  for all z € R? (3.1)

with
Cq,
Vs(x,y) = m- (32)

Note that this is a case in which the integral in (3.1) should be interpreted
in the principal value sense. In (3.1), the constant Cy s is given by

o, 22551 (s + d/2)
s /2T (1 —5) '

where I' denotes the gamma function.

The integral representation of the fractional Laplacian given in (3.1) can
be viewed as a special case of the nonlocal Laplacian given by (1.6). It is also
equivalent to and can be directly derived from the Fourier representation
(Valdinoci 2009)

(3.3)

“AYulx) = L 2s ” e—iﬁm ei§~a:
(-8 u@) = o [P (e e ag

= F (g F{u}(€) (@), (3.4)

where F denotes the Fourier transform. If s = 1, the spectral operator
(3.4) coincides with the usual PDE Laplacian —A, whereas it reproduces
the identity operator when s = 0. In fact, it is well known that (—A)%u(x) —
u(z) as s — 01 and (—A)*u(x) - —Au(z) as s — 1~ for a regular function
u; see e.g. Stinga (2019, Theorems 3 and 4) and Di Nezza, Palatucci and
Valdinoci (2012, Proposition 4.4).

The fractional Laplacian (3.1) is often used to model superdiffusion for
which the mean-squared particle displacement grows faster than that for
PDE models of diffusion. At microscopic scales, in contrast to standard dif-
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fusion that is described by Brownian motion, superdiffusion can be described
by Lévy flights in which the length of particle jumps follows a heavy-tailed
distribution, reflecting the long-range interactions between particles. See
e.g. Metzler and Klafter (2000) and Sokolov, Klafter and Blumen (2002) for
discussions of the physical background and practical applications of anom-
alous diffusion.

3.1. Integral fractional Laplacian models for diffusion on bounded domains

Letting © ¢ R% denote a bounded Lipschitz domain, we define the integral
fractional Laplacian —(—A)® to be the restriction of the full-space operator
to functions satisfying a volume constraint on Q7 := R%\ Q, i.c. on the
interaction domain corresponding to €2. The fractional Poisson problem is
then given by

{(_A)Su =f foralaxeQ, (3.5)

u=g for all x € Qr__,

where we have a given source term f(x) and Dirichlet volume constraint
data g(x) defined for € Q and x € Q7__, respectively. Problem (3.5) is a
nonlocal analogue of the local Poisson problem for the PDE Laplacian A. It
is known (see e.g. Biccari and Hernandez-Santamaria 2018) that as s — 17,
the solution of integral fractional diffusion model (3.5) strongly converges
to the solution of the local diffusion problem in H!=¢(€2).

A related operator on Q is the regional fractional Laplacian (Bogdan,
Burdzy and Chen 2003, Chen and Kim 2002)

7(7A)reglonalu C / |y m|d+23 Y, (36>

which is used in one of several approaches for generalizing the PDE Poisson
problem with a homogeneous Neumann boundary condition to the fractional
Laplacian case (Dipierro, Ros-Oton and Valdinoci 2017). Note that in (3.5)
the operator has not changed, that is, the operator defined in (3.1) is used;
what has changed is that domain of the operator is changed from R¢ to the
bounded domain 2. On the other hand, in using the operator in (3.6), not
only is the domain changed in the same manner, but the operator itself has
changed, that is, (3.1) involves an integral over R? whereas (3.6) involves
an integral over ().

To discuss the variational form of the fractional Poisson problem (3.5),
we use the standard fractional Sobolev space H*(R?) defined via the Fourier
transform as

H3(RY) = {u e L*(RY): /Rd(l + [€]%%)| Fu(€) > d¢ < oo}.

If Q ¢ R? is a bounded domain, we define the Sobolev space H*(Q) as
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(McLean 2000)
H3(Q) := {u € L*(Q): [[wll sy < o0}
equipped with the norm
HUH%N(Q) = \Uﬁ{s(ﬂ) + HUH%Q(Q)

where we have the seminorm

2 (u(y) — u(x))?
U rs(q) = —————dydx.
’ |H () /Q/Q | ‘d+25

Moreover, when imposing a homogeneous Dirichlet volume constraints, e.g.
g =01n (3.5), we use the space

HE(Q):={uec H'RY: u=0forall z € Qz_}
that is equipped with the norm

2 2
[ullFrs () = lullirs may = 1ullF2g) + lulfs @ay-

For s > 1/2, HZ(Q2) coincides with the space H{(Q2) that is the closure of
C3° () with respect to the H*(Q)-norm, whereas for s < 1/2, H3(Q) is
identical to H*(€2). In the critical case s = 1/2, HZ(Q2) C H§(2). See e.g.
McLean (2000, Chapter 3) for a detailed discussion.

A variational form of (3.5) is derived starting from the integration-by-
parts formula (see Dipierro, Ros-Oton and Valdinoci 2017 and also e.g. the
nonlocal Green’s first identity (1.22))

5 [ ] ) = u@)ew) - v@)(a.y) dy da
R JR4
- [(arue@da+ [ (@) de,
Q Q7
where, as in (1.12), we have the nonlocal Neumann operator given by

Nsu(x) = /Rd(u(:n) —u(y))ys(x,y)dy for all x € Qz__.

An alternative definition of Ny has been presented in Dipierro, Ros-Oton
and Valdinoci 2017, corresponding to a nonlocal operator N that is defined
on ()5 as an integral over the domain € only, instead of QU {1z, as in the
case of (1.10). Substituting the volume constraint in (3.5) and v(z) = 0 on
Q7 , we then have the following weak formulation:

Find u(x) € H*(Q2) such that u(x) = g(x) for all x € Q7__ and
As(u,v) = (f,v)+(9,v)a,0, for all ve H(Q), (3.7)
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where
At =5 [ ] () = u(@) o)~ v(@)i(w.p) dy da
Aq,a(u,v)
+ [uen@ [ vy Y
PR
and

(9, V), = /Q o(x) /Q 9(¥)7s(z, ) dy de. (3.9)

The bilinear form A,( -, -) is H(£2)-coercive and continuous so that as long
as the right-hand side of (3.7) is bounded, the well-posedness of that prob-
lem follows from the Lax-Milgram theorem. In case that g = 0, As(-, -) is
identical to the bilinear form As(-, -) defined in (2.10) with 6 = co. Note
that the bilinear form Agq (-, -) can be seen to correspond to the regional
fractional Laplacian.

Note that
1
Ao, (u,v) =Cy, /u(a:)v(a:)(/ dy> de.
Too s 0 Qs ‘y B :l:|d+28
The identity
1 1 Yy—x
|y_w|d+28 - 2s Yy ‘y_m|d+2s

and Gauss’s theorem results in

_ Cu,s (Y —x)-ny
Ange ) = G2 [uen@) ([ BTy )

where n, denotes the unit outer normal to 02 at y. We then have that

As(u,v) = AQ,Q(U,U)—i—CQ‘ZS /qut(a:)v(a:)</ag2 Wdy) dx (3.10)

so that an integral over the unbounded domain 7. can be avoided in
any computation involving As(u,v). Of course, for a homogeneous volume
constraint g(x) = 0 on 7z, the right-hand side in (3.7) also only involves
integrals over €. For g(x) # 0, one does have to evaluate, for & € Q, the
data integral sz 9(y)7ys(x,y) dy that, in principle, can be approximated
using a quadratuolfe rule.

Above we have incorporated the inhomogeneous volume constraint dir-
ectly into the weak form. An alternative is to enforce that condition via
Lagrange multipliers (Acosta, Borthagaray and Heuer 2019).
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3.1.1. Truncated interaction domains

An alternative to the approach based on the bilinear form (3.10) is to trun-
cate the integration domain Q7 as is considered in D’Elia and Gunzburger
(2013). For § > diam(2), we pose the truncated problem

(3.11)

(=A)ju=f forallz e,
U=y for all © € Q;,

where

(~A)jule) = /Q () = uw)iep) dy.

D’Elia and Gunzburger (2013) and Burkovska and Gunzburger (2019b) have
shown that if us and us denote the solutions of (3.5) and (3.11), respect-
ively, then
C
|us — ool s (@) < 52 08 d — 00, (3.12)

where C depends on norms of f and g.

Remark 3.1. Clearly, (3.12) implies that the solution of (3.11) can be
viewed as an approximation of the solution of (3.5). However, (3.11) and
its solution are useful in their own right. In (3.5), the horizon ¢ is infinite,
but, in practice, although § may be large, it is not likely to be infinite. In
(3.11), ¢ is assumed large but finite so that it may provide a better model
for practical applications that feature large horizons. In this case one can
reverse roles and interpret the solution of (3.5) to be an approximation of
the solution of (3.11), with (3.12) now telling us something about the error
incurred by replacing the perhaps more useful model (3.11) with the much
more studied model (3.5). O

3.2. Spectral fractional Laplacian models for diffusion on bounded domains

An alternative definition of a fractional-order Laplacian on a bounded do-
main €2 makes use of spectral information about the PDE Laplacian. Here
we focus on the case of homogeneous constraints.

Let 0 < Ag < A1 < -+ and ¢g, 1, ... denote the eigenvalues and the
corresponding eigenfunctions of the PDE Laplacian —A with a homogeneous
Dirichlet boundary condition, that is, we have

—App(x) = Ampm(x) for all x € Q, (3.13)
©m(x) =0 for all £ € 99, '
where the orthogonal eigenfunctions are normalized so that ||| 2y = 1.

Then the eigenfunctions {¢n,}>°_, form a complete orthonormal basis for



NUMERICAL METHODS FOR NONLOCAL AND FRACTIONAL MODELS 25

L?(Q). As a result, any function v € L?(Q) can be expanded as

(e 9]
u= Z UmPm  With uy, = (u, ),

m=0

where (-, -) denotes the inner product of L?(2). We then have

(—A)u(z) = Z U A A m (),

m=0

and the spectral fractional Laplacian of order s € (0,1) with homogeneous
boundary condition is given by

(~Algo) u(@) = Y umAypm(@)-
m=0

As s — 0, the identity operator is recovered, whereas the integer order
Laplacian is recovered as s — 1.

For a given source term f, the spectral fractional Laplacian Poisson prob-
lem for u(x), € Q, is then given by

(—Algo)’u(z) = f(x) for all x € Q. (3.14)

Using the heat kernel pq o(x,y,t), the spectral fractional Laplacian can
be rewritten (see e.g. Abatangelo and Dupaigne 2017) in the form of the
nonlocal operator

(—Ale0) u(z) = /Qm,o;s(fv, Y)(u(y) — w(@)) dy + Ko o5 (@)u(e),

where b

s o 1
V0,05 (T, y) = m ) pﬂ,o(t,fﬂ,y)tlﬁ dt,

S o 1
()= —" 1-— t,z,y)dy | —— dt.

If Q = RY, the integral and the spectral definitions of the fractional Lapla-
cian coincide, but they are different for bounded domains (Servadei and
Valdinoci 2014). For example, in the particular case of Q = R, i.e. the
half-plane, the kernel of the spectral fractional Laplacian is given by

’7Rd+,0;s(m7 y) = 78(337 y) - ’Ys(wa _33) # 73(337 y) for all z,y € Rd—l-'

Note that the spectral definition can allow for the treatment of non-
homogeneous boundary conditions of various types; see e.g. Antil, Pfefferer
and Rogovs (2018) and Cusimano, del Teso, Gerardo-Giorda and Pagnini
(2018).
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3.3. Additional considerations about fractional Laplacian models

3.3.1. Other integral representations of the fractional Laplacian

The Dunford—Taylor integral is a powerful tool in the numerical analysis
of the fractional diffusion problem (Bonito and Pasciak 2015, Bonito and
Pasciak 2017, Bonito, Lei and Pasciak 2019). In particular, the solution
u of the Poisson problem (3.14) involving the spectral fractional Laplacian
can be given by the Dunford—Taylor representation

/Uoo p(p—A)7 fdp.

A combination of using a sinc quadrature rule and a finite element discret-
ization of the reaction—diffusion-type term in the integrand was explored by
Bonito and Pasciak (2015, 2017).

Using similar techniques, the bilinear form Ag(-,-) associated with the
integral fractional Laplacian can be rewritten as (Bonito et al. 2019)

[ [ (0 - i28) ) @) ola) ded
0 R4
(3.15)

sin(sm)

u=(~Alao) f =

™

A, ) = 2sin(7s)

™

for any u,v € HZ(Q).

3.3.2. Extension representations

An extension representation of the fractional Laplacian was introduced in
Mol¢anov and Ostrovskii (1969) and popularized by Caffarelli and Silvestre
(2007), who showed that the fractional Poisson problem (3.5) posed on R?
can be recast as a Neumann-to-Dirichlet mapping over the extended domain
R? x [0, 00), that is, we have

—V-2PVU(x,2) =0 for all (x,2) € R? x [0, 00),
ou _ 12 (1 —s) d (3.16)
W(.’B) =2 Wf(w) for all = S R y
where § =1 — 2s and
ou
V()= — i I
ovP (.’13 zl—l>%l+ z z (:13, 2)7

with the solution to (3.5) recovered by taking the trace of U on R

The spectral fractional Laplacian can be recovered, by restricting the
extension domain from R? x [0,00) to Q x [0,00) and imposing a homo-
geneous Dirichlet boundary condition on the lateral surface (Stinga and
Torrea 2010).

The apparent advantage of the extension problem is that the nonlocal
problem is replaced with a classical, integer-order local problem. This comes
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at the price of having to deal with a singular weight function and an addi-
tional spatial dimension.

3.8.8. Regularity of solutions

In the classical integer-order case, smoother domains and smoother right-
hand sides result in smoother solutions of the Poisson problem; see e.g.
Taylor (1996). A lifting property of this type does not hold for the fractional-
order Poisson problems (3.5) and (3.14). The typical solution behaviour of
(3.5) close to the boundary can be characterized (see Ros-Oton and Serra
2014) as

u(x) ~ dist(x, 00Q)°. (3.17)

The Sobolev regularity of the solution of (3.5) was studied in Acosta,
Bersetche and Borthagaray (2017) as a special case of a result in Grubb
(2015a). Suppose that 92 € C* and f € H"(Q2) for r > —s and let
u € HZ(Q) denote the solution of the fractional Poisson problem (3.7).
Then we obtain the regularity estimate

H?5t7(Q) fo<s+r<1/2,
u €
HoH1/2=5(Q) for alle >0 if 1/2 < s+

This result is extended to the case of non-homogeneous volume condition
in Acosta et al. (2019). Additional regularity results with respect to s and,
for the truncated fractional Laplacian, with respect to §, are derived in
Burkovska and Gunzburger (20195).

The solution of the spectral fractional Poisson problem (3.14) displays
different properties. Its behaviour close to the boundary is given by (see
Caffarelli and Stinga 2016)

u(x) ~ dist(z, 9Q)™ 281 g £ 172,

Grubb (2016) showed that if f € H] (), r > —s, then the weak solution of
the spectral fractional Poisson problem (3.14) satisfies u € H.725(Q).

More detailed regularity results for the spectral fractional Laplacian can
be found in Grubb (2016).

3.8.4. Analytic solutions in one and two dimensions
Closed-form solutions of the fractional Poisson problem (3.5) posed on the
unit ball are available; see Dyda, Kuznetsov and Kwasnicki (2017b) for
detailed derivations. These solutions are useful to have in hand, e.g. for
verifying numerical results.

In d = 1 dimension, for the source term

’1'76) _ 225F(1 + 3)2 <S + ks_ 1/2) (S —|S— k) PéS’_l/z)(2x2 _ 1)
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Figure 3.1. Analytic solutions u3] for s = 0.4 and u}5 for s = 0.6. The behaviour
(3.17) close to the boundary is apparent.

with k& > 0, the solution is given by

uph = P (222 — 1)(1 - 2?)3,

a\ I'(a+1)

b) TOB+1DI(a—b+1)
denotes a generalized binomial coefficient, P,ga’b) denote the Jacobi polyno-
mials, and a4 = max{0, a}. Moreover, for

fk D — 2231-\(1 + 8)2 (S +k+ 1/2> (S + k) xP’gs,l/2) (2562 _ 1)

where

S S

with k > 0, the solution is given by
ul) = 2PV (222 — 1)(1 - 2?)7.

Turning to d = 2 dimensions, for
+ k44 +k
H = 2%T(1 + s)? (8 s ) (S . )re COS(ZQD)P,ES’Z)(QTQ -1)

with ¢,k > 0 and (r, ¢) denoting polar coordinates, the solution is given by
w2l = rl cos(t) P (272 — 1)(1 — 72)s.
Two example solutions are shown in Figure 3.1. Observe that the solu-

tions contain a term that behaves like d(x)®, where §(x) is the distance from
x € (2 to the boundary.
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3.4. Inhomogeneous constitutive functions in fractional models

So far in this section we have only considered the fractional Laplacian and its
variants, which is analogous to considering local diffusion problems having
a diffusivity that is not only constant but equal to one. Of course, in the
local case, it is an easy matter to treat inhomogeneous diffusivities, that is,
we merely replace Au with V - (DVu), where D(x) generally denotes an
inhomogeneous constitutive tensor. Using the nonlocal vector calculus, it
almost as easy to define integral fractional models in which the constitutive
properties of the media considered are inhomogeneous even if the nonlocal
constitutive function is a tensor. Here we only consider generalizations of
the integral fractional Laplacian (3.1); generalizations of the other integral
operators discussed in this section follow immediately from that for (3.1).

The inhomogeneous fractional Laplacian is simply defined by choosing
the kernel in (3.1) to now be

Hs(way) d
’)/8(33, y) = Cd7sm for all T,y < R 5 (318)
where
y—x y—x
95 r,Y) = ———" (@5 xr,Yy ) 3.19
(@) ly — x| ( )Iy—w! (3.19)

with @g(x,y) denoting a constitutive tensor. Thus we have defined the
inhomogeneous integral fractional Poisson operator

(—A) /Cds ’( )_\‘“(25) dy for all z € RY.  (3.20)

Note that we could have arrived at (3.20) by defining

(~A)b, u(@) = 5 D(ODu),

where Dy and D} are defined by (1.13) and (1.15), respectively, with

Yy—x Cd,s
as(x,y) = ]y—az\” Py (3.21)

If Oy(x,y) = Os(ly — x|), i.e. Oy is a radial function, then (3.1) is a
model for a homogeneous medium, that is, in this case, (3.1) is a fractional
analogue of the PDE —V - (DVu) = f in which D is a constant tensor. If
in addition @y is a scalar tensor, then (3.1) is a fractional analogue of the
PDE —kAw = f in which k is a constant. Thus, to obtain an inhomogen-
eous integral fractional model, @4(x,y) cannot be a radial function. See
Remark 2.3.
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PART TWO
Numerical methods for nonlocal and fractional models

In this part we consider the approximation, via finite element, finite dif-
ference and spectral methods, of solutions of both weak and strong formu-
lations of both nonlocal and fractional diffusion models. In so doing, we
encounter, as we did in Part 1, problems posed on R? or on bounded do-
mains  C R?, and also encounter problems for which the horizon § = co
or diam(2) < § < oo or § < diam(€2).

4. Introductory remarks

In most cases we consider, two parameters will appear in the design of
discretization algorithms, namely the horizon § and a discretization para-
meter such as a grid size parameter h for finite element and finite difference
methods or the dimension IV of a basis for spectral methods. The limiting
behaviours of continuous and discretized models are thus of interest. Four
types of limits can arise: for continuous, i.e. un-discretized, models,

e the limits § — 0 and 6 — oo,

and for discretized problems,

e for fixed 4, the limit h — 0 or N — oo,
e for fixed h or N, the limits 6 — 0 and § — oo,

e simultaneous limits such as both § — 0 and h — 0.

For the first of these, one can find discussions on the local and global (frac-
tional) limits of nonlocal continuum models in, for example, (Mengesha and
Du 2015, Tian, Du and Gunzburger 2016, Du 2019). For the second of these,
one must be cognizant of how the constants appearing in error estimates
depend on 4, whereas for the third, the same can be said for the dependence
of constants on h or N.

It turns out that for some algorithms, the order in which limits are taken
matters, that is, the limits obtained are different if the limits are taken in
a different order, e.g. 6 — 0 and then h — 0, or h — 0 and then § — 0,
or if § and h are related in some way so that they simultaneously tend to
zero. Presumably, it is possible that for some algorithms at least one of the
limits is ‘wrong’ in some sense. Ideally, unless one is totally uninterested in
limiting behaviours, one would prefer the way in which limits are taken not
to affect the limit obtained. In the remainder of our introductory remarks,
we expand on this concept.
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Us h > UQ h

\J
us > UQ

Figure 4.1. An illustrative diagram for AC schemes.

4.1. Asymptotically compatible schemes

It is known in practice that to obtain consistency between nonlocal mod-
els and corresponding local PDE models, the mesh or quadrature point
spacing may have to be reduced at a faster pace than the reduction of the
horizon parameter (Bobaru et al. 2009, Bobaru and Duangpanya 2010, Chen
and Gunzburger 2011). Otherwise there could potentially be complications,
most notably inconsistent limiting solutions when the horizon parameter
is coupled proportionally to the discretization parameter (Tian 2017, Tian
and Du 2013, Tian and Du 2014, Tian and Du 2020). Asymptotically com-
patible (AC) schemes, motivated by the findings in Tian and Du (2013) and
formally introduced in Tian and Du (2014), are numerical discretizations of
nonlocal models that converge to nonlocal continuum models for a fixed ho-
rizon parameter and to the local discrete schemes as the horizon vanishes for
both discrete schemes with a fixed numerical resolution and for continuum
models with increasing numerical resolution.

Let h > 0 denote a grid size parameter (or particle spacing) and let
6 denote the horizon parameter or even a more generic model parameter.
Instead of h, we could use the dimension N of a spectral basis. The implic-
ations of the AC property are illustrated in Figure 4.1. There, us denotes
the solution of the continuous nonlocal problem with § > 0, ug the solu-
tion of the corresponding continuous local problem, usj the solution of the
discretized nonlocal problem, and ugj the solution of the discretized local
problem. Figure 4.1 is meant to illustrate the basic property of AC schemes,
namely that for such schemes it does not matter in which order the limits
are taken, or even if § and h are related in some way so that they simultan-
eously tend to zero. Note that figures similar to Figure 4.1 can be drawn
for N — oo and/or § — oc.

As seen from detailed studies given in Tian and Du (2013), some popular
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discretization schemes for nonlocal peridynamics fail to be AC. In particular,
if 0 is taken to be proportional to h, then as h — 0, piecewise constant
conforming finite element solutions actually converge to the incorrect limit,
similarly to those based on simple Riemann sum quadrature approximations
to nonlocal operators. Similar discussions can be found in Bobaru et al.
(2009) and Chen and Gunzburger (2011) for diffusion models and Seleson,
Du and Parks (2016) for systems of peridynamic equations.

Asymptotically compatible (AC) schemes, such as conforming Galerkin-
type approximations of weak forms (Chen and Gunzburger 2011, Tian and
Du 2014, Xu, Gunzburger, Burkardt and Du 2016b), nonconforming dis-
continuous Galerkin approximations (Du, Ju, Lu and Tian 2020a, Du, Ju
and Lu 20195, Du and Yin 2019) or collocation- or quadrature-based ap-
proximations of strong forms (Du and Tian 2014, Seleson et al. 2016, Du
et al. 2019¢, Zhang, Gunzburger and Ju 20164, Zhang, Gunzburger and
Ju 2016b), offer the potential to solve for approximations of a model of in-
terest with different choices of parameters to gain efficiency and to avoid
the pitfall of reaching inconsistent limits.

5. Finite element methods for nonlocal models

Given weak formulations of nonlocal models, it is natural to consider finite
element approximations (Chen and Gunzburger 2011, Tian and Du 2013,
Tian and Du 2014, Xu, Gunzburger and Burkardt 2016a, Xu et al. 20165,
Tian and Du 2020, Du 2019, Jha and Lipton 2020). To derive a finite
element discretization, one possible way is to follow the same recipe as that
used for the local PDE setting. We assume that Q C R is a polytope,
so the first step is to construct a regular subdivision of 2 U Qz; into finite
elements, e.g. triangles or quadrilaterals for d = 2. Based on the grid,
we then define a finite element space V"(Q U Qz,), usually consisting of
piecewise polynomial functions with respect to the grid, and then choose a
basis for that space containing functions whose support extends over a few
contiguous elements. We do not dwell on the construction of finite element
spaces because it is the same as that for the local PDE setting (Brenner and
Scott 1994, Ciarlet 2002, Ern and Guermond 2004), except perhaps that it is
prudent to have the grid contain a regular subdivision of € itself so that the
boundary of € is subdivided into (d — 1)-dimensional faces. For conforming
finite element methods, that is, the finite element space V"(Q U Qz,) is a
subset of the energy space V(2 U 7, ) for the continuous problem, we define
the constrained finite element space

VHQUQL,) = {v(x) € V(QUQL): v(x) =0 for all x € Qz,}.

Note that VM(QUQz,) € V.(QUQz,). We let gi(x) denote an approx-
imation to g(x), for example, gn(x) could be the interpolant of g(x) in
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VR(QUQg,) restricted to Qz,, or, if g(x) is not smooth enough to have
pointwise values, a least-squares approximation could be used instead. A
conforming finite element approximation wuy(z) € V*(Q U Qz,) of the solu-
tion of u(x) € V(22U Qgz,) of (2.9) is then determined by solving the follow-
ing problem:

Given 7s(x, y) defined in (1.17) and given f(x) € V4(Q),
find uy(z) € VH(Q U Qz;) such that

{A(s(uh,vh) (f,uon) forall v € VA(QUQZ,),

(x) (_ ) for all ® € Qg,, (5.1)

where g (x) is defined as discussed above. Because the bilinear form As(-, -)
is continuous and coercive with respect to V.(2U z,), it is likewise con-
tinuous and coercive with respect to V.*(Q U Qz,), so the well-posedness
of problem (5.1) follows immediately from the Lax—Milgram theorem. For
problems involving singular nonlocal interaction kernels such as the frac-
tional type given in Table 2.1, special numerical quadrature is needed for
the evaluation of stiffness matrices. We refer to Section 6.1 for related dis-
cussions.

Remark 5.1 (DG methods in the nonlocal setting). One of the major
differences between finite element methods for local PDEs and nonlocal
models occurs in the use of discontinuous Galerkin (DG) methods. For
elliptic PDEs, DG methods are not conforming, that is, a finite element
space containing functions with jump discontinuities cannot be a subspace of
the space H'(Q) in which the PDE is well-posed. As a result, the use of DG
methods requires an accounting for fluxes across element faces; otherwise,
elements would be uncoupled. On the other hand, for some kernel choices,
finite element functions with jump discontinuities belong to the energy space
V(Q U Qgz,) in which the nonlocal problem is well-posed. This is the case
for kernels that are both radial and integrable and for the fractional kernel
with s < 1/2, as listed in Table 2.1. For such kernels DG methods are
conforming, so that, at least for § > h, no explicit accounting for fluxes
across element faces is needed. The coupling between elements is taken care
of by nonlocality, that is, even though the basis functions live only on single
elements, any specific element is coupled to all other elements that contain
points that are within a distance § to some point in the specific element.
overlap with the balls of radius § centred at the vertices of the element.
For more singular kernels where DG methods are not conforming, e.g. the
fractional kernels with s > 1/2, we refer to the discussions in Section 5.2.
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5.1. Asymptotically compatible conforming finite element methods for
nonlocal diffusion

To delve deeper into finite element methods for nonlocal diffusion with a
finite range of interactions, we first specialize to a more specific setting for
which the local diffusion limit has been rigorously established. Consider the
model given by (2.9) with ¢ = 0. We also choose the kernel v5(x,y) as a
rescaled translation-invariant kernel, that is,

Vo, y) = (;chygw') (5.2)

for § € (0,1] and some kernel (| -|) that is assumed to be radial, non-
negative, compactly supported in Bj(0) (the unit ball centred at the origin),
and has a bounded second-order moment, that is,

F(1€D) = [€°7(I€]) € Lige(RT)  and / Y(1€]) € = d. (5.3)
B1(0)

For kernels satisfying these conditions, we refer to the discussions in Sec-
tion 2.2. For such kernels, the local § — 0 limit becomes the homogeneous
Dirichlet boundary value problem of the Poisson equation. Let us we now
denote the energy space V. 5(Q2UQz,) = V.(QUQz;) as defined in (2.4) to
highlight the dependence on §.

Now, for any fixed § € (0,1], we introduce conforming finite element
spaces {Vsn} C V. 5(2UQz,) associated with the triangulation 7, = {K}
of the domain QU Qz; (or Q U Qz, that contains the domain QU Qz, for
any 0 < 1). We set

Vs i ={v € Ves(QUQz): v|g € Pp(K) for all K € 73},

where P,(K') denotes the space of piecewise polynomials on K € 73, of degree
less than or equal to p. Again, for different 9, in order to have the finite
element functions defined on a common spatial domain, we also assume, as
for V. 5(2UQz,), that any element in Vj;, vanishes outside €.

As h — 0, we assume that {Vs,} is dense in V,5(2UQz,), that is, for
any v € V. 5(QUSQz,), there exists a sequence {vy, € Vj} such that, for a
given § > 0,

lvp, — UHV’C’&(QLJQI(S) -0 ash—0. (5.4)

These properties are easily satisfied by standard finite element spaces.
The Galerkin approximation is defined by replacing V. 5(2U €z,) with
Vsp in (2.9):

Find up s € Vs, such that As(ups,vs) = (f,vp) for all vy, € Vs, (5.5)

The analysis of Galerkin approximations of parametrized nonlocal vari-
ational problems can be formulated within the general framework of AC
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schemes (Tian and Du 2014). Other than the necessary properties of func-
tions and operators that guarantee us — ug as § — 0, where uy denotes
the solution of the corresponding PDE, and standard density properties
such as (5.4), one of the key ingredients for the asymptotic compatibility of
the scheme is the asymptotic density property of the finite element space.
Rather than a general definition, we provide a specific instance, adapted to
the models studied here, as follows. A family of finite-dimensional spaces
{Vsr € Ves(QUQg,), 6 € (0,1), h € (0,ho]} is asymptotically dense in
HE(Q), if, for all v € H (), there exists a sequence {vy, € Vs, h, b hn—0.6,—0
as n — oo such that

[v = vy — 0 asn— oco. (5.6)

Tian and Du (2014) have shown rigorously that, for scalar nonlocal dif-
fusion equations such as (2.9), all conforming Galerkin approximations of
the nonlocal models containing continuous piecewise linear functions are
automatically AC in any space dimension. This means that they can re-
cover the correct local limit as long as both d and h are decreasing, even if
the nonlocal parameter § is reduced at a much faster pace than the mesh
spacing h. Even though the analysis of the above AC property is highly
technical, an intuitive explanation is that even with h larger than &, the
nonlocal features that ensure the correct local limit are still encoded in the
stiffness matrices thanks to higher-order (than constant) basis functions. In
fact, even though, for the class of kernels we are considering, discontinuous
piecewise constant finite element spaces are conforming, they do not gen-
erally result in AC approximations. This was first noticed numerically by
Chen and Gunzburger (2011).

For general nonlocal systems in any dimension, Tian and Du (2014, 2020)
have shown that as long as the condition A = 0(d) is met as § — 0, then we
obtain the correct local limit even for discontinuous piecewise constant finite
element approximations when they are of the conforming type. Practically
speaking, this implies that a mild growth of the bandwidth in the finite
element stiffness matrix is needed as the mesh is refined in order to recover
the correct local limit for piecewise constant finite element schemes. In fact,
Tian and Du (2013, 2015) have shown that if a constant bandwidth is kept
as the mesh is refined, the approximations may converge to an incorrect
local limit.

Naturally, schemes using higher-order basis functions tend to provide
higher-order accuracy in the nonlocal setting as well, should the solutions
enjoy sufficient regularity. At the moment, the theory on AC schemes does
not offer any estimate of the order of convergence with respect to different
couplings of h and §. Preliminary numerical experiments in Tian and Du
(2014) offer some insight about the balance of modelling and discretization
errors, but additional theoretical analyses need to be carried out, except for
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the case of Fourier spectral approximations of nonlocal models with periodic
boundary conditions, for which precise error estimates can be found in Du
and Yang (2016, 2017) and Slevinsky, Montanelli and Du (2018).

5.2. Nonconforming and DG FEMs for nonlocal models with sufficiently
singular kernels

The framework of AC schemes is very general. For example, the theory also
guided the development of nonconforming discontinuous Galerkin approxim-
ations (Tian and Du 2015) for nonlocal diffusion and nonlocal peridynamic
models with sufficiently singular interaction kernels. Consider the scalar
model given by (2.9) with ¢ = 0. If the nonlocal interaction kernel satisfies

/ @ls () dz = 0o for all € € (0, e, (5.7)
|x|<e

then it may be the case that discontinuous finite element solutions do not
belong to the associated energy space and alternative formulations have to
be developed. For technical reasons, Tian and Du (2015) also assumed that

e—0

lim € (/m<€ |z |25 (||) dm>_1 =0. (5.8)

Note that for kernels s(r) that behave like 1/r92% as r — 0 with s €
(1/2,1), conditions (5.7) and (5.8) are satisfied.

Tian and Du (2015) introduced a nonconforming DG scheme based on the
removal of the singularity in the nonlocal interaction kernel in a sufficiently
small neighbourhood of the origin parametrized by a cut-off level n. In
other words, vs(r) in (2.9) is replaced with

n(r) — {75(7') if '76(74) <mn,

5.9
78 n if v5(r) > n. (5.9)

For nonlocal problems with the regularized kernel v (r), discontinuous ele-
ment spaces, such as conventional discontinuous finite element spaces, can
be used as conforming Galerkin approximations, leading to a discrete solu-
tion ups,. Naturally, there are other ways to define the cut-off. The es-
sential requirement is that the resulting modified kernel is both radial and
integrable (for a given n) and it converges pointwise to the original kernel.

The goal is then to demonstrate that uy s, converges to the solution us
of the original continuous nonlocal model with a singular kernel as n — oo
and h — 0. The convergence theory can be established by generalizing
the relevant compactness results given in Bourgain, Brezis and Mironescu
(2001) as n — oo for a given § > 0. Indeed, the following generalization is
made in Tian and Du (2015).
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Compactness results. Given the kernels 7§ and 75 and the corresponding en-
ergy spaces V'5(2U Qg;) and V. 5(€2U Qz,), assume that the energy norms
of {v, € V(U Qz,)} have the uniform bound

supp,, / / 2y — @) (vnly) — va(®))* dy de < Co.
Quoz, Jouaz,

Then {v,} is relatively compact in L?(Q2UQgz,) and any limit function v
belongs to V(22U Qz,) with

/ / v5(ly — ) (v(y) — v(x))* dz dy < Cp. (5.10)
QuQz, /U0,

The classical Bourgain—Brezis-Mironescu compactness result established
in Bourgain et al. (2001) can be seen as the local limit of the new compact-
ness result for nonlocal spaces in Tian and Du (2015) with a finite §. By
applying the framework of asymptotically compatible discretization (Tian
and Du 2014, Tian and Du 2020), reviewed earlier with respect to the mesh
parameter h and the cut-off level n, we can obtain the convergence of uy, s,
to us unconditionally as n — oo and h — 0 if the underlying finite ele-
ment space contains the continuous piecewise linear finite element space.
Moreover, in this case, if n — 0o, we expect that for any given § and h,
Upsn — Upgs as N — 00, where uy, s denotes the conforming finite element
approximation of u; in the space Vs, NV, 5(2U Q7).

If piecewise constant finite elements are used, a conditional convergence
theorem has been established in Tian and Du (2015), provided the definition
of the cut-off is suitably modified. For instance, consider a kernel of the type

*

gl g
mﬁ%ﬂm_y‘)ﬁm forxz, y e QUAOg, (5.11)

for some s € (1/2,1) and positive constants v, and *. Then one may let

nrn ) s(r) for r > 1/n,
() = {75(1/71) for 0 <r < 1/n. (5.12)

For the approximate solution uy, 5, defined as the Galerkin approximation
to the nonlocal problem with kernel 4§ using piecewise constants, we have
that ||upsn — usl|p2 = 0 if h =0(1/n) as n — oo.

We note that the nonconforming approximations discussed in Tian and
Du (2015) in the local limit do not yield a standard nonconforming finite
element approximation or a DG approximation to the local problem. One
may construct other alternative formulations that can give rise to the con-
ventional nonconforming and DG discretization of local PDEs; see e.g. Du
et al. (2020q) for a study based on the DG with penalty formulation.
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5.3. Adaptive mesh refinement for nonlocal models

Due to reduced sparsity, for instance, nonlocal models generally incur greater
computational costs than their local PDE-based counterparts. Thus, design-
ing effective adaptive methodologies is important, and it is an area worthy
of attention. So far the work has been limited to nonlocal models with a
finite range of interactions.

Du, Ju, Tian and Zhou (2013b) provided an a posteriori error analysis
of conforming finite element methods for solving linear nonlocal diffusion
and peridynamic models. The approach adopted is a residual-type error
estimator in the L?norm, e.g. of the form ||—Ls(usp) — f|/z2, which re-
mains well-defined and can be easily computed for kernel functions that are
both radial and integrable from element-wise contributions without worry-
ing about flux jumps across element boundaries. This is in sharp contrast
to the case of second-order elliptic PDEs. The theory of a posteriori error
analysis has been rigorously derived for nonlocal volume-constrained prob-
lems associated with scalar equations. The reliability and efficiency of the
estimators are proved, and relationships between nonlocal and classical local
a posteriori error estimates are also studied.

Du, Tian and Zhao (2013c¢) have also developed a convergent adaptive
finite element algorithm for the numerical solution of scalar nonlocal models.
For problems involving certain radial but non-integrable kernel functions,
the convergence of the adaptive algorithm is rigorously derived with the help
of several basic ingredients, such as an upper bound on the estimator, the
estimator reduction, and the orthogonality property. How these estimators
and methods work in the local limit and for general time-dependent and
nonlinear peridynamic models remains to be investigated.

For nonlocal problems having solutions with jump discontinuities, an
adaptive finite element method is given in Xu et al. (2016a). There, an
algorithm is developed that first detects the location of the discontinuity
and then refines the grid near the discontinuity. To preserve the h? accur-
acy possible with the use of piecewise linear elements even when the exact
solution contains jump discontinuities at unknown locations, the elements
surrounding the discontinuity should have thickness of O(h*) across the
discontinuity. This was already observed for the one-dimensional case in
Chen and Gunzburger (2011) and Xu et al. (2016b). In higher dimensions,
a naive refinement strategy that results in small, well-shaped elements in
the vicinity of a (d — 1)-dimensional surface can thus result in an excessive
number of degrees of freedom. The adaptive refinement strategy of (Xu
et al. 2016a) instead results in elongated elements having thickness O(h?)
across the discontinuity but length O(h) along the discontinuity, as illus-
trated in Figure 5.1. The presence of elongated elements is not harmful to
the error because of the anisotropic behaviour of the solution, that is, it is
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Figure 5.1. A coarse-grid illustration of a mesh resulting from the adaptive strategy
discussed in this section. The elongated yellow elements surround the discontinuity
in the solution.

smooth along the discontinuity but discontinuous across the discontinuity.
Whereas robust meshing algorithms for this type of anisotropic refinement
and accurate predictions of solution jump discontinuities remain computa-
tionally challenging in higher space dimensions, the numerical examples in
Xu et al. (2016a) illustrate that the adaptive strategy developed there does
indeed result in h? convergence, as is also the case for the one-dimensional
numerical results in Chen and Gunzburger (2011) and Xu et al. (2016b).

Another useful feature of the adaptive strategy developed in Xu et al.
(2016a) is that the transition between the elongated elements along discon-
tinuities and well-shaped elements with sides of length O(h) away from the
discontinuity can be abrupt, that is, there is no need to have a transition
zone in which elements gradually grow in size. This is also illustrated in
Figure 5.1. This feature is already present in the methods developed in
Chen and Gunzburger (2011) and Xu et al. (2016b) for the one-dimensional
case. The importance of this feature is that it also helps to keep down the
number of degrees of freedom.

The next means of savings in the number of degrees of freedom is to use
discontinuous basis functions only in the elongated elements, and continuous
basis functions in elements in which the exact solution is smooth. The
final means is to switch from the nonlocal model to the corresponding PDE
model in all elements that do not interact with the elongated elements that
surround the discontinuity, ¢.e. all elements whose vertices are at distance
greater than 0 from the vertices of the elongated elements.

The four degrees of freedom-saving features (i.e. elongated elements, ab-
rupt grid transitions, the use of discontinuous basis function only in the
elongated elements, and the switch to a local PDE model away from the
discontinuity), result in tremendous savings in the number of degrees of
freedom. In fact, the resulting number of degrees of freedom is comparable
to that for a local PDE model using a regular grid of elements having sides
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of O(h). Moreover, the relative savings become greater as the grid size is re-
duced and as the dimension d is increased. See Xu et al. (2016a) for several
numerical illustrations supporting these conclusions.

With regard to more general coupling strategies of local and nonlocal
models for computational effectiveness, relevant works are discussed in a
recent review on the subject (Du 2019). AC schemes have also been studied
in the context of multiscale problems modelled by local-nonlocal coupling
formulations with a spatially heterogeneous horizon (Du and Tian 2018, Tao,
Tian and Du 2019), based on a new trace theorem for nonlocal function
spaces that provides a stronger version of the classical local counterparts
(Tian and Du 2017).

5.4. Approzimations of fractional models as limit of nonlocal models with
a finite range of interactions

One of the key messages we want to get across is to show that many pop-
ularly studied fractional PDEs are either specialized nonlocal models or can
be treated as limiting cases.

Naturally, for fractional differential operators defined in integral form, by
truncating the fractional kernel in the fractional operators to a finite range
measured by the horizon parameter 6, we end up with a nonlocal model
parametrized by §. Hence we see from Section 3.1.1 that on the continuum
level, the fractional models may then be viewed as the infinite horizon limit
of nonlocal models with a finite §, after a suitable scaling of the kernel.

D’Elia and Gunzburger (2013) and Burkovska and Gunzburger (2019b)
have shown that as § — oo, the Galerkin approximations of the nonlocal
model with the parameter § can converge to the solution of the fractional
equations, provided h is taken to be sufficiently small. One can actually
apply the framework of the AC schemes to show that all conforming Galer-
kin approximations are AC in the limit 6 — 0 (Tian et al. 2016). That
is, the discretization of fractional equations associated with the fractional
Laplacian can be viewed as the global (with an infinite nonlocal horizon
parameter) limit of nonlocal models with properly scaled fractional-type
nonlocal interaction kernels (Tian et al. 2016). Moreover, the convergence
does not require the dependence of h on §.

Let us give an illustration of the work presented in Tian et al. (2016). Con-
sider the volume-constrained problems defined for the fractional Laplacian
in 2 with homogeneous Dirichlet condition in Q7 = R9\ Q. By truncations
of both the spatial domain and the range of nonlocal interactions, we may
end up with a class of parametrized problems

—Lsu(x) = =2 [pa(u(y) —u(x))ys(|ly —x)dy = f forallz € Q,
u=20 for all € Qg
(5.13)
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with

Cds6
%29y € Bj(w),
vy —z|) = { |y — o+ (5.14)

0 y € R4\ Bs(x).

Here, Cy 55 = Cqs is given as in (3.3) for the limiting case of 6 — oo so that
Lo = (=A)% as in (3.1). Note that in the limit of § — 0, we take a Cy s
to be a different scaling factor so that its local limit is Ly = —A.

Let h denote the discretization parameter associated with Galerkin ap-
proximations of (5.13). For example, h could be the mesh parameter for the
finite element discretization or the reciprocal of the number of basis func-
tions in spectral approximations. We can then apply the AC framework
to obtain the convergence of the Galerkin approximations of (5.13) to the
solution of the fractional equation as h — 0 and § — oo as long as the
finite-dimensional approximations spaces are subspaces of the underlying
energy space, that is, as long as we adopt conforming discretizations.

As pointed out in Tian et al. (2016) and Tian and Du (2020), analyses of
the fractional and local limits (§ — oo and & — 0 respectively) of nonlocal
models parametrized by a finite § and with fractional-type kernels demon-
strate that nonlocal models are more general than their fractional and local
counterparts and they also serve as a bridge between fractional and local
models; see Figure 5.2 and, again, Figure 4.1 and similar diagrams given
in Du (2019) and Tian and Du (2020). For AC schemes, the bridging roles
of nonlocal diffusion with a finite range of nonlocal interactions, presented
above at the continuum level, remain valid on the discrete level.

6. Finite element methods for the integral fractional
Laplacian

Henceforth, let Let €2 denote a polygon, and let 7, denote a family of shape-
regular and locally quasi-uniform triangulations of Q2 (Ciarlet 2002, Brenner
and Scott 1994, Ern and Guermond 2004)., and let

OTp := {edge e: 3K € T}, such that e C 0K N 0N}

denote the ‘trace’ of the interior mesh. Let Z; denote the set of vertices
of 7; and , let hx denote the diameter of the element K € 7, and let h,
denote the diameter of e € 97;. Moreover, let
h:= max hg, Amn:= min hg., hg:= max h
KeT, K min KeT,, K 0 cedT, e
Note that hy denotes the maximum size of all elements K whose patch
Sk touches the boundary. Let ¢; denote the usual piecewise linear Lagrange
basis function associated with a node z; € Zj,, satisfying ¢;(z;) = d;; for
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uo,n=0

Nonlocal

0«6
—Lo,nuo,n="bp | ¢—— —Ls.nus,n=">bn

Q

00

Uoo,h="0

Nonlocal Fractional

—Ls nus,n=>bn

7£:>o,hucx:,h,: bh

Q

Figure 5.2. Numerical solutions of partial differential equations (PDEs) as the local
limit with § — 0 (top) and numerical solutions of fractional PDEs (FPDEs) as the
global limit with § — oo (bottom) of numerical solutions of nonlocal models with
a finite range parametrized by §. Limits of numerical solutions of nonlocal models
with finite interaction radius ¢ as 6 — 0 (local limit, top) and as § — oo (fractional
limit, bottom).

zj € Zp, and let X}, = span{y;: z; € Z;}. The finite element subspace
Vi, C HE(Q) is given by Vi, = X}, when s < 1/2 and by

Vi ={vp € Xp: vp, =0 on 00} = span{p;: z; € 002}

when s > 1/2. The corresponding cardinality Nj, of V} is equal to the
number of nodes in Zj, when s < 1/2 and is otherwise the number of interior
nodes in €.

Now, let up denote the solution of the finite element discrete problem
given by

Find up, € Vj, such that Ag(u,v) = (f,v) for all v € V},,

where the bilinear form Ag(-,-) is defined in (3.8) as a special case of
the nonlocal bilinear form (2.10) with 6 = oo and kernel function of the
type (2.22) and right-hand side is defined in the usual manner. The fol-
lowing error estimates are derived in Acosta and Borthagaray (2017). If
u € HY(Q)N HE(Q), for t,0 € (1/2,2] and 0 < s < t < £, d.e. if u has
Sobolev regularity ¢ and interior regularity ¢, then

lu = unll s ) < C(n* ulge (@) + hyy * Jul e (o)- (6.1)
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In particular, if the family of triangulations 7 is globally quasi-uniform,
and if u € HY(Q) for t € (1/2,2] and if 0 < s < ¢, then

lu = unll sy < OB Jul e (q)- (6.2)

The estimate (6.3) implies that for u € H?(12), the expected rate of con-

vergence on a globally quasi-uniform mesh is A2~ = O(NV, 2872)/ d). Because
the solutions of (3.5) generally have limited regularity up to the boundary
(see Section 3.3.3), it is advisable to use a mesh that is more refined close
to the boundary with hg < h. Whereas using such a mesh can restore the

optimal rate of convergence O(N 15572)/ d) in d = 1 dimensions
If the family of triangulations 7j is globally quasi-uniform, and if u €
H'(Q) for t € (1/2,2] and if 0 < s < ¢, then

lu = unll s () < O™ ul e q)- (6.3)

The estimate (6.3) implies that for u € H?(12), the expected rate of con-

vergence on a globally quasi-uniform mesh is h?2=% = O(N ,(15_2)/ d). Because
the solutions of (3.5) generally have limited regularity up to the boundary
(see Section 3.3.3), it is advisable to use a mesh that is more refined close
to the boundary. While using such a mesh can restore the optimal rate of
convergence O(N }(LS_Q)/ d) in d = 1 dimensions , this does not hold for higher-
dimensional problems, where shape-regularity of the elements becomes the
limiting factor. Therefore we can expect no more than O(N, Y 2+€) rate of
convergence in d = 2 dimensions.

Whereas it may be possible to construct an appropriately graded mesh for
simple geometries, the general case will require adaptively refined meshes to
resolve the boundary singularity. A posteriori error estimators for the integ-
ral fractional Laplacian have been developed in Nochetto, von Petersdorff
and Zhang (2010), Faustmann, Melenk, Parvizi and Praetorius (2019) and
Ainsworth and Glusa (2017).

6.1. Quadrature rules
The fractional Poisson equation (3.5) leads to a dense linear algebraic system
Ay = f, (6.4)

in which the entries in the matrix A, = {As(pi,;)}i; involve singular
integrals. In order to compute these entries, we decompose the integrals
into contributions between pairs of elements K, K € 7T;, and between pairs
consisting of elements K € Tj, and external edges e € 97}, as follows:

Aslpirpi) = ZA?XIA{(%? o)+ > A (i, 09).
K & K e
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Figure 6.1. Classes of element pairs of configurations that need to be handled:
pairs of identical elements (red), element pairs with common edge (yellow), with
common vertex (blue) and separated element pairs (green).

The individual contributions AX*¥X and Af *¢ are given by

AR (g o) ﬁz(?f);ﬁjfi) - wj(y))’
AEXe(p d pi(z % )y‘d+-2(sw—y)

Contributions from non-disjoint pairs of elements (see Figure 6.1) are not
directly amenable to numerical quadrature, due to their singular nature.
Fortunately, these can be treated by adapting techniques used in the bound-
ary element method (BEM) literature to address similar issues arising from
singular kernels (Sauter and Schwab 2010).

However, the fractional Laplacian does pose new difficulties beyond those
addressed by the BEM literature, but which can be treated as described
by Ainsworth and Glusa (2018b) and Acosta et al. (2017). In particu-
lar, Ainsworth and Glusa (2017, 2018b) have developed non-uniform order
Gauss-type quadrature rules. Alternatively, one could take the approach
proposed by Chernov, von Petersdorff and Schwab (2011). It allows for
transforming quadrature rules given on the unit hypercube [0,1]?¢ to any
pair of elements K x K. Here, the singularity is taken into account through
the choice of the weight in the quadrature rules.

Ainsworth and Glusa (2017) gave the following result. Denote the quad-
rature approximation to the bilinear form A(-,-) by A$(-,-). Then, for
given 8 > 0, quadrature rules can be chosen such that the consistency error
due to quadrature is bounded by

[ A(,0) = AX(w,0)] < ON; Pl Ioll 2y for all w,v € Vi

Then, by using O(log N, ,%d) quadrature points per element pair K X K , the
consistency error due to quadrature ‘As(u, v) — .A5Q<u, v)| is dominated by

the discretization error.
A brief discussion about solvers and condition numbers for finite element
discretizations of the integral fractional Laplacian is given in Section 12.2.
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7. Finite element methods for the spectral fractional
Laplacian

The extension problem (3.16) has been extensively used to solve equations
involving the spectral fractional Laplacian. For a bounded domain, the
extension problem is posed on 2, = Q x [0,00) and takes the form

~V-2PVU(z,2) =0 for all (z,2) € Q.,

U(x,z) =0 for all (z, z) € 0L, (7.1)

SUB( ) —d,f(x) forallweq,

where ds is the constant given in (3.16) and where 9., := 99 x [0, 00)
denotes the lateral surface of the semi-infinite cylinder. The solution u to
the spectral fractional Poisson problem (3.14) is then recovered by taking
the trace on €, i.e. u = traceq U.

We define the solution space ’H;;(QZ) on the semi-infinite cylinder €2, as

%ﬁ( )—{VGH (Q) ‘/Y:()Onﬁszz}7
with norm HVHH; = |V]| Y, The weak form of the extension problem is

then as follows:

Find U € Hj(€2.) such that / PVU-VV =d, (f, trq V) (7.2)
for all V € ’H%(QZ)

In the literature, the fact that the domain is unbounded in the z-direction
has been handled in different ways. One class of methods exploits the fact
that truncation of the domain to Q. . = Q X [0, ztrun] can be shown to
be exponentially converging in z¢un, and then discretizes the domain €2,
using finite elements. A second class uses a hybrid approach and discretizes
using finite elements in the x-direction and a suitable spectral method in
the z-direction. We will describe both these methods below.

7.1. Truncation in the extended direction

The truncation approach was pioneered by Nochetto, Otarola and Salgado
(2015). A first result shows that truncation of the semi-infinite cylinder €,
only leads to an exponentially small error.

Let U € 7—[1 denote the solution of (7.2) and let U.

Ztrun

be the extension
by zero to (), of the solution to (7.2) posed on the truncated domain €2, .,

Ztran > 1, with a homogeneous Dirichlet condition enforced at z = zyyn.
Then

||U — UZtrun HH;(QZ) S Ceimztrlln/[i”f”H,s(Q)
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where A is the smallest eigenvalue of the integer-order Laplacian as given
by (3.13).

Now, let 7}, denote a quasi-uniform mesh of €2 with mesh size h and define
a graded mesh T, = of the interval [0, ztrun] by

zk:(k/M)’yztrun, kZO,...,M,

with M ~ h=! and v > 3/(1 — 3). Then define a mesh 7 on the extended
domain €, = as the tensor product of 75 and T, and let V}, denote the
space of piecewise linear Q; finite element functions on 7. Let N = dim V},
be the overall number of degrees of freedom and choose the truncation to
be zirun ~ |log N|. Then the following convergence result holds.

Let f € H75(Q), U € ’H;;(QZ) be the solution of (7.2), and let Uj, € Vj,
be the solution of the restriction of (7.2) to V3. Moreover, let u = traceq U
denote the solution to the spectral fractional-order Poisson problem (3.14),
and let uy, = traceq Uy, be its discrete approximation. Then

I = wnllisoy < CIU = Unllgyo
< Clogh|” b f|| g1+ )
< Cllog NI* N7V fl| s .

As observed by Nochetto et al. (2015), this shows that the result is op-
timal in terms of regularity but sub-optimal in terms of complexity. This
shortcoming can be addressed using sparse grids (Banjai et al. 2019) or
hp-finite elements (Meidner, Pfefferer, Schiirholz and Vexler 2018), (Banjai
et al. 2019). Using the latter, exponential convergence can be obtained,
including for cases with low regularity of the domain and incompatibility of
the forcing term (Banjai et al. 2019).

7.2. Spectral method in the extended direction

A different approach was taken by Ainsworth and Glusa (2018a). Instead
of truncating the domain, a spectral method is used for the extended dir-
ection, based on the observation that the eigenfunctions of the extension
problem (7.1) are given by

Om(X)Vm(2), meN,

where
Um(2) = cs(AY22) K (A 22), (7.3)

and where c; = 217%/T'(s), and (¢, Am) are the eigenpairs of (3.13) and
K, are the modified Bessel functions of the second kind.
This motivates the choices

Vi = {vp € HYQ): vk € PR(K) for all K € Ty},
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M-1
Vh,M = {Vh,M = Z Uhym(w)iﬂm(z)i Uhm € Vh} C Hé(QZ),

m=0

where
Um(2) 1= cs(AY22)° K (AL/22) (7.4)

are defined using suitable approximations /):m instead of the true eigen-
values A,

It turns out that using the asymptotic law for the eigenvalues of the
Laplacian and using a coarse finite element approximation gives sufficiently
good approximations \,,. Moreover, by decimation, only |log h|’ for some
p > 0 eigenvalue approximations is required. Overall, this results in the
following error estimate.

Let f € HI(Q), r > —s, let U € Hé(Qz) be the solution of (7.2) and
let Uy, € V}, be the solution of the restriction of (7.2) to V. Moreover,
let u = traceq U be the solution to the spectral fractional-order Poisson
problem (3.14) and let uj, = traceq U, be its discrete approximation. Then

lu = unllgy@) < CIU = Unprllggy o,

< C ’f’Hg(Q) hmin{k,?“+s} /\logh\
- C ’f’Hg(Q) N— min{k,r+s}/d llog N|P .

Remark 7.1 (solution of the linear system). Provided that the dis-
cretization of the extension problem (7.1) displays a tensor structure, the
solution of the arising linear system reduces to a sequence of discretized
integer-order reaction—diffusion-type problems. These problems are read-
ily solved using classical iterative linear solvers such as conjugate gradient
and multigrid; see e.g. Chen, Nochetto, Otarola and Salgado (2016a) and
Ainsworth and Glusa (2018a). O

8. Spectral-Galerkin methods for nonlocal diffusion

Compared with its fractional counterparts discussed in Section 9, algorithms
and numerical analyses of spectral method for nonlocal diffusion have been
much less studied. Here, we simply consider a Fourier spectral-Galerkin
method developed by Du and Yang (2016, 2017).

For simplicity, we focus on the one-dimensional periodic nonlocal diffusion
problem given by

—(Lsu)(x) = f(x) forall z € (—m, ) (8.1)

with periodic boundary condition, where we express the nonlocal operator
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L in the equivalent form

(Lsu)(x) = 2/ vs(2)(u(z + z) — u(x)) dz, (8.2)

EE

where f(z) € L2, [—m, 7], where L2 [, 7] denotes the space of periodic
functions in L2[—, 7] having zero mean. As always in the earlier sections,
0 denotes the horizon. Here, the kernel function 7s(z)= ~s5(|2|) is defined
by (5.2) and (5.3) with d = 1, which is a nonnegative, radial function such
that
'y(z):i 2] for all —6,6 8.3
52 = 12 forall z e [-50) (3.3)
where v = (&) denotes a nonnegative, non-increasing function having com-
pact support in [0, 1] and has a bounded second moment, that is,

1
2 _
2 /0 (E)Erde = 1. (8.4)

The scalings used in (8.3) ensures that as the horizon ¢ tends to zero, the
nonlocal operator Ls reduces to the PDE Laplacian, i.e. d2/dz? in one
dimension.

For any positive integer n, e
boundary conditions with the corresponding eigenvalues

+nz are eigenfunctions of — Lz under periodic

2

)
Ans = 4/0 v5(2)(1 — cos(nz)) dz. (8.5)

Let X]({[ = span{eiim}n:m,m,]\r and let

N
oy (x) = g Ve 40 _pe € XY

n=1

for any set of constants {¥,,}. Note that because, for any nonzero integer n,
e'™ has zero mean with respect to any interval of length 2, so does vy (x).
We have that

N
—Lson = Z Ans (ﬁneim—l—@,ne_im> for 6 > 0.
n=1

The Fourier spectral-Galerkin scheme of Du and Yang (2016, 2017) is as

2 Note that —d2/d9L’2 has the same eigenfunctions et as does —Ls, and has the
eigenvalues n”. Note that, in the limit § — 0, Ans = An,o := n?.
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follows:

Given f(z) € L2, [—m, @), seek up s(x) € XR such that

(—Lsuns,vn) = (f,ony) forall vy € XR,

or equivalently
N ~ . —~ .
ung = L5 Pxf =3 A} ( Freine f_ne*m“), (8.6)
n=1

where (-,-) denotes the standard L?(—m, ) inner product and Py denotes
the standard spectral Fourier projection onto Xy := span{eiim}nzo,17.,,, N
of an element in L2[—,7].

Du and Yang (2016, Lemma 1) proved that the numerical scheme (8.6) is
asymptotically compatible. In particular, they proved that

HuN,5 - U’N,0HL2(—7T,7F) < 052HPNfHL2(—7r,7r)7 (87)

where the constant C' is independent of N and §. Here, uy o denotes the
Fourier spectral solution in XR, of the local diffusion problem

—Lou(x) := —ugy(x) = f(x) forall z € (—m,m) (8.8)

with the periodic boundary condition. The proof of the estimate (8.7) fol-
lows from the error representation

s o (’fn\ +\f—n|)

N
HuN,5 - UN,O”%2(—7r,7r) = Z
n=1

and a careful analysis of the asymptotic behaviour of A, 5.

Let ug(x) denote the exact solution of the local problem (8.8). Then,
using standard error estimation theories for local models, it is easy to show
that upn o converges in the L? sense to ug at least quadratically with respect
to 1/N, provided that f € L?(—m, 7). As a result, we arrive at

lun.s = wollz2(—mm) < C (0% + NI fll 2(—r,m), (8.9)

with a generic constant C independent of d, N, f, up and ug, where ug
denotes the exact solution of (8.1). This estimate indicates that the Fourier
spectral method of Du and Yang (2016, 2017) is asymptotically compatible.
Moreover, we obtain a uniform error estimate in the sense that the estimates
hold for any sufficiently small § and any sufficiently large N without any
restriction on the relative sizes of § and N.

These one-dimensional results can be easily extended to higher-dimen-
sional nonlocal diffusion problems in rectangular and rectangular paral-
lelepiped domains with periodic boundary conditions. See Du and Yang
(2017) for discussions about two and three-dimensional problem. Further-



50 M. D’ELiA, Q. Du, C. GLusA, M. GUNZBURGER, X. TIAN AND Z. ZHOU

more, the analysis was extended to the nonlocal Allen-Cahn equations (Du
and Yang 2016, Section 4).

The eigenvalues ), ;5 defined by (8.5) cannot, in general, be determined
analytically. Thus, when implementing the scheme given in (8.6), those
eigenvalues A, s have to be estimated. The numerical evaluation of the
integral in (8.5) is challenging because cos(nz) is highly oscillatory for large
n. As an example, we focus on a kernel that is singular at the origin, namely,

C
v5(2) = W for all z € [-6,0) U (0,0] and for 5 € (0,3). (8.10)

Then, by Taylor expansion, we have that
1
Ans = —/ r~P(cos(nér) — 1) dr
0

_ 4G~ (=) na*
T ;(2k)!(2k+1—5)

_ 4G

=7
Therefore it suffices to compute K(nd) accurately. Du and Yang (2017)
have given a hybrid algorithm for computing K (nd). If nd is ‘small’ then
the series in (8.11) converges fast, so one may approximate K (nd) by using
a truncation of that series. On the other hand, for nd ‘large’, Du and Yang
(2017) observed that K (nd) is a solution of the ordinary differential equation

K (nd). (8.11)

z—1

K'(2) = . K(z) + cos(z) — 1

on (0, nd] (8.12)

evaluated at z = nd. For a starting condition, K (1) may be used; it can
be computed using a truncation of the series in (8.11). As a result, K(nd)
can be accurately evaluated for large nd by using, for example, a high-order
Runge-Kutta method.

Slevinsky et al. (2018) proposed a Fourier spectral method to solve non-
local diffusion models on the unit sphere S? C R3, where the nonlocal
Laplace-Beltrami operator is defined by

Culx) =2 /S (e +2) — u(@) (=) (), (8.13)

where v denotes the standard measure on S%. The basic idea is to apply
spherical harmonics (Atkinson and Han 2012):

Y™ (x) =Y (0, 0) = il/;ierm\/(l + ;) m%m(cos 0)

with [ > 0 and —I < m < [, for which it is shown that they are the
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eigenfunctions of the nonlocal Laplace-Beltrami operator. Here (6, ¢) are
the spherical coordinates of z € S? and P; denote the associated Legendre
polynomials. Specifically, there exists L5Y,"(x) = As(1)Y;™ () with

1
3o) = 4 [ (Po) = 1l(V2(T = 3)
To compute the eigenvalue As(1), one evaluates an integral which is highly
oscillatory due to the Legendre polynomials. Slevinsky et al. (2018) pro-
posed a numerical scheme by using a modified Clenshaw—Curtis quadrature
rule with the computation complexity O(I?) per eigenvalue A\s(l). For suffi-
ciently large [, they applied Szeg6’s asymptotic formula for Legendre poly-
nomials, which reduces the complexity to O(llogl) per eigenvalue. Then a
fast spherical harmonic transform (Slevinsky 2019) was applied to accelerate
synthesis and analysis of the series expansion in spherical harmonics.

Remark 8.1 (extension to phase field methods). The study of spec-
tral approximation to nonlocal problems has been extended to nonlinear
models such as phase field equations (Du and Yang 2016, Du, Ju, Li and
Qiao 2018b). while the Conventional phase field (diffuse interface) models
take on a free energy of the type (Du and Feng 2020)

E%u) = /Q<;|Vu(:1:)|2 + i(u(z) — 1)2> dz. (8.14)

The nonlocal version of the free energy can be written as (Du and Yang 2016)

€ u\xr S)—u\xr 2
E‘S(u):/g/ﬂ<275(|s|)( (z+ )2 (z)) ds+416(u(m)—1)2> dz, (8.15)

which recovers E° as its gamma limit for § — 0.

A nonlocal Allen-Cahn equation can be defined as the L? gradient flow
of the energy in (8.15). The convergence of AC spectral approximations
for problems defined on periodic domains has been established in Du and
Yang (2016). With the assumption on smooth minimizers, spectral accuracy
can be assured. When nonlocal interaction kernels do not have sufficiently
strong singularities, the minimizers of the nonlocal free energy (subject to
a total mass condition) may develop a discontinuous profile, in contrast to
the conventional diffuse interface models with smooth phase field functions.
However, the convergence of spectral approximations can be assured even for
such cases. We note that, historically, (8.14) is often derived from a nonlocal
form (8.15) via the Landau expansion; see the additional discussions on this
perspective given in Du (2019). Naturally, one may also consider the H 1
gradient flow of the nonlocal energy or gradient flows with respect to a
nonlocal space embedded between H~' and L?; some related numerical
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analysis can be found in Li, Qiao and Wang (2019) and Ainsworth and Mao
(2017). O

Remark 8.2. Nonlocal diffusion allows for singular solutions, which pose
new challenges in the design of numerical discretizations. Whereas spec-
tral methods are shown to possess many good properties such as asymp-
totic compatibility and are able to capture the discontinuities in solutions,
spurious Gibbs phenomena do appear. Given the development of spectral
methods in the context of PDEs that are effective in singularity detection
and in high-order recovery of solution information near and away from sin-
gularities (see e.g. Tadmor 2007), it is natural to pursue further studies of
how to adopt and extend those techniques to nonlocal models.
Furthermore, the algorithms introduced in this section focus on periodic
boundary conditions and allows for the derivation of uniform convergence
rates with respect to both § and N; see e.g. (8.9). The extension to other
types of boundary conditions, e.g. Dirichlet or Neumann volume constraints,
remains an open problem. The main difficulty stems from the lack of a closed
expression for the eigenvalues analogous to the expression given in (8.5).
Hence the difference )\;}5 — )\67 é is difficult to estimate. An investigation of
the AC property of spectral method in such settings is also warranted. [

9. Spectral-Galerkin methods for fractional diffusion

In this section we consider spectral methods for determining approximate
solutions of fractional diffusion problems. We first address the fractional
Poisson problem posed on ©Q = R?. In this case, the solution decays slowly
with algebraic rates as || — oo, even if the source term is compactly
supported. As a result, some traditional discretization strategies used for
the local PDE diffusion problem are not applicable here. Subsequently, we
consider fractional diffusion in a bounded domain 2 for which the solu-
tion possesses a weakly singular layer near the boundary 02, even if the
source term is smooth. This property engenders many challenges in the
development and analysis of numerical schemes. Compared to, say, finite
difference and finite element methods, spectral methods with specially con-
structed basis functions may approximate the solution of fractional diffusion
problems on bounded domains with higher accuracy.

9.1. Spectral-Galerkin methods in unbounded domains

For s € (0,1), we consider the fractional diffusion problem in Q = R?

given by

{(—A)su(m) + cu(x) = f(x) for all x € RY, (9.1)

u(x) -0 as |x| — oo,
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where ¢ denotes a given positive constant and f denotes a given source term.
A weak formulation of problem (9.1) is as follows:

Given a positive constant c and f € H~%(R?),
seek u € H*(R?) such that

Ag(u,v) = (f,v) for all v € H¥(R?), (9.2)
where, for all u,v € H® Rd)

(2))(v(y) — v(z))

'A ’y _ w‘d-‘r?s

dy dx + c(u, v)

Rd JRA
with Cg s is defined in (3.3). The well-posedness of problem (9.2) follows
directly from the Lax—Mllgram theorem.

Several successfully strategies have been developed for determining ap-
proximations of solutions of local PDE diffusion problems posed on R?: see
e.g. the survey paper by Shen and Wang (2009) and the references cited
therein. One way is to truncate the domain R%, provided that the solution
decays rapidly. However, it is known that solution of the fractional diffusion
equation decays slowly with a power law at infinity so that the naive trunca-
tion approach results in a relatively large error due to domain truncation.?
Another approach is to design an artificial boundary condition imposed on
the boundary of a truncated domain that results in the same solution within
a bounded region; the use of this approach remains largely an open question
in the fractional case. A third approach, which is the approach used here,
does not involve domain truncation, but instead approximates the solution
in terms of orthogonal functions that potentially can well approximate the
solution in the unbounded domain.

For simplicity, we restrict our discussion to the one-dimensional case, i.e.
d = 1; higher-dimensional cases can be treated in a similar manner by using
tensor products of one-dimensional orthogonal polynomials.

9.1.1. Approzimation by Hermite polynomials

The orthonormal Hermite polynomials {H,(z)} are defined by the three-
term recurrence relation (Abramowitz and Stegun 1972, Mao and Shen
2017)

( 7

Hpp1 =2y —— +1 Hn—l—l (r) forn=1,2,....

It is well known that those polynomials form an orthonormal basis in tl"ée
weighted space L2 (R), where the weight function is given by w(z) = e™%".

3 However, see Remark 3.1, where it is pointed out that truncated domains may be of
interest in their own right.
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Let V]\I,{ denote the space spanned by the Hermite polynomials of degree less
than or equal to N, and let

X = {v: Vw(x)u(z) for all u € Vi}.
We define the L2 (R)-projection operator Qi: L2 (R) — X1 by

/ u(x)oy(z)w(x) de = /(Q%u)(m)v]v(x)w(fv) dz for all vy € XH.
R R

We also define the modified operator @% LA(R) — X by
Qu = w'2QR(uw™?) for all u € L*(R).
Then we have the approximation property

QN = ull sy < CNE™2|u] g ) for all s € [0,m)], (9.3)

)

where ' > 0 does not depend on u or N and where the modified Sobolev
space H™(R) comes equipped with the norm and seminorm

fllmgy = > | (—i—x) ul
0<k<m

d m
|U|ﬁm(R) = H P +x u’
respectively.

The Hermite—Galerkin discretization of the fractional diffusion problem
(9.1) is then as follows:

2

L2(R)’

2

9

L2(R)

Given a positive constant c and f € H~%(R%),
seek uy(z) € XH such that

AS(UN,'UN) = (I]I\}rf, UN) for all VN € Xﬁ, (9.4)

where Il C(R) — X1 denotes the Gauss—Hermite interpolation operator
with respect to the Gauss—Hermite points (Shen, Tang and Wang 2011).
Then the standard energy estimate and the approximation property (9.3)
result in the error estimate

lu = unll s @y < CN*7"fu| gon gy + ONYO P ey (95)

(R)
provided that u € H™(R) and f € H’(R), where again C' > 0 does not de-
pend on u, f or N. This estimate indicates that the numerical solution fails
to converge exponentially, because either u and or f will decay algebraically
as r — 00; see Mao and Shen (2017, Section 5).

The Hermite—Galerkin discretization (9.4) is simple to implement because
the mass matrix is diagonal, whereas the stiffness matrix can be computed



NUMERICAL METHODS FOR NONLOCAL AND FRACTIONAL MODELS 59

efficiently using the Fourier transform. An implementation of the Hermite—
Galerkin method (9.4) using Fourier transforms is provided in Mao and Shen
(2017). See also Mao and Shen (2017) and Tang, Yuan and Zhou (2018) for
related Hermite collocation methods, whose error estimate also depend on
the Fourier transform of the solution u and the source term f.

9.1.2. Approximation by modified Gegenbauer polynomials
In Tang, Wang, Yuan and Zhou (2019), the approach taken in Section 9.1.1
is extended to approximations in which the basis is constructed by using
Gegenbauer polynomials that are modified using a nonlinear singular map-
ping. The resulting basis has proved to be better suited to approximating
functions with algebraic decay rates (see e.g. Boyd 1987, Boyd 2001) when
compared to classical bases of orthogonal polynomials such as Hermite or
Laguerre polynomials.

The Gegenbauer polynomials, denoted by G (¢) with ¢ € (—1,1) and scal-
ing parameter A\ > —1/2, are defined by the three-term recurrence relation

Go(t) =1, Gy(t) = 2Xt,
nGAt) = 2t(n+ X —1)G) (1) — (n 42X = 2)G)_5(t), n=2,3,....

The Gegenbauer polynomials are orthogonal with respect to the weight func-
tion wy (t) = (1—t?)*~1/2, and they are closely related to the hypergeometric
functions (Gradshteyn and Ryzhik 2007, page 1000) that are widely used
for the analysis of fractional differential equations; see e.g. Ervin, Heuer and
Roop (2018).

We seek approximate solutions in the space

X§ =span{R}(z): n=0,1,...,N},
where the mapped Gegenbauer functions R;\l($) are defined by

RMax) = (1+ xQ)_%G’\ (x> for all z € R
e "\V1+ 22 '

The L2(R)-orthogonal projection operator Q% : L2(R) — X§ is defined by
/ u(x)voy(z)de = / QSu(x)un(z)dz  for all vy € X§.
R R

Next, let BS(R) denote the weighted Sobolev space defined by the norm
and seminorm

1 Mm 3.d\F A4l
lulbam = H(1+x2)4 P <(1+x2)2d) ((1—1—372) 2 u)
0<k<m

i (@B ) (0 ad) )

|U|Bg(R) =
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respectively. Then, for any u € H*(R)NBS (R) with integer 1 < m < N+1,
s € (0,1) and A > —1/2, we have the approximation property

1QFu — ull go®) < ON*""|ul pg (m),

where C' > 0 does not depend on N and wu.
The mapped Gegenbauer—Galerkin discretization of the fractional diffu-
sion problem (9.1) is as follows:

Given a positive constant c and f € H*(R?),
seek uy(7) € X§ such that

As(un,on) = (IS f,vy) for all vy € X§,

where I]C\*;: C(R) — Xﬁ denotes the mapped Gegenbauer—Gauss interpol-
ation operator based on the Gegenbauer—Gauss quadrature points (Shen
et al. 2011, Chapter 3). Then, for any u € H*(R) N BS(R) and f € BY(R)
with integers 1 < m,¢ < N +1 and A > —1/2, we have the error estimate

lu = un o) < ON*""|ulpgw) + CN~*|fl 5o w)» (9.6)

where C' denotes a positive constant having value independent of N, u and
f. The proof relies on the standard energy estimate as well as the approxim-
ation properties of Q% and [ f, Compared to the Hermite—Galerkin spectral
method of Section 9.1.1, we have that (—A)*R)}(x) is not as compact as for
the Hermite polynomials, but can be easily approximated by a finite series
of hypergeometric functions.

9.1.8. Approzimation by modified Chebyshev polynomials
It is noteworthy that |£|?%, the symbol of the Fourier transform of the frac-
tional Laplacian, is non-separable so that direct extensions to higher di-
mensions of methods developed for the one-dimensional setting can be very
complicated. To overcome this computational difficulty, Sheng et al. (2019)
proposed a reformulation of the weak formulation (9.2) by the Dunford—
Taylor formula (see Theorem 4.1 of Bonito, Lei and Pasciak 2019, and also
Section 3.3.1), and constructed a spectral-Galerkin method having Fourier-
like bi-orthogonal mapped Chebyshev polynomials as basis functions. This
method leads to a diagonalized system that can be efficiently solved via the
fast Fourier transform (FFT), and the approach can be easily extended to
higher-dimensional problems via tensor products of the basis functions.
For any u,v € H*(R), by the Dunford-Taylor formula, we have (see
(3.15))

Cas / / (u(y) — u(z))(v(y) — v(z)) dy dz
R JR?

2 |y _ w’d+2$

_ m(m)/wtl—%/ (—A)(I = 2A) " u)(2) v(x) da dt,
™ 0 R4
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where I denotes the identity operator. Letting w(x) := (I — t2A) lu(x),
we can rewrite the weak formulation (9.2) as: seek u € H*(R?) such that
for all v € H*(R%)

_ 2sin(ns)

Ag(u,v) = ———= /OO t71725(u — w,v) dt 4 ¢ (u,v) = (f,v), (9.7)

T 0
where w = w(x;u,t) € H(R?) is, for any ¢ > 0, the solution of
t2(Vw, Vib) + (w, ) = (u,2p) for all ¢ € H*(RY). (9.8)

The spectral-Galerkin approximation to (9.7)—(9.8) is then given as fol-
lows: find uy € Xf, such that

2sin(ms)

As(un,vy) = / t_l_zs(uN —wy,vN) dt + c(un, vN)

™ 0

= (Inf,oy) forall vy € X§, (9.9)
where wy (x;un,t) € Xf, is, for any t > 0, the solution of

tQ(VwN,VwN) + (wn,¥N) = (un,¥n) for all Yy € X]% (9.10)

To solve the numerical scheme (9.9)-(9.10), Sheng et al. (2019) used a
basis of Fourier-like mapped Chebyshev polynomials. Recall that the clas-
sical Chebyshev polynomials are defined by, for n =0,1,...,

T,(y) = cos(narccos(y)) withy e (—1,1).
Then we define the mapped Chebyshev polynomials by

o 2\—1/2 €
Ry(x) = (1+2%)" /T, <m), z €R. (9.11)
It is well known that the mapped Chebyshev functions are orthonormal in
L?(R) but are not orthogonal in H'(R¢). Following the spirit of Shen and
Wang (2009), in Sheng et al. (2019) the approximation space is defined by
Xf, = span{R,,: n = 0,1,..., N} for which a Fourier-like basis that is bi-
orthogonal can be constructed, that is, the basis functions are orthogonal
with respect to both the L? and H' inner products. As a result, (9.10) is
diagonalizable, as is (9.9), and hence they can be efficiently solved by an
FFT related to Chebyshev polynomials.
The integration in terms of ¢ in (9.9) can be evaluated exactly by using
a sinc quadrature scheme (Bonito et al. 2019) whose computational cost is
negligible compared with that of an FFT. Furthermore, this fast algorithm
can be easily applied in higher-dimensional settings by using tensor products
of the one-dimensional basis functions. The resulting complexity of solving
(9.9) is then of O(N (log N)%), where N is the number of degrees of freedom.
The relevant error estimate is similar to that in (9.6) with A = 0.
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Remark 9.1. Although the solution to the fractional diffusion problem
(9.1) has a simple and closed form in the Fourier domain, all existing spec-
tral methods fail to achieve at an exponential convergence rate. This is
because the solution generally decays at an algebraic rate at infinity, even if
the source term is smooth and compactly supported. The proposed Hermite
and the mapped rational /Chebyshev polynomials can only approximate ex-
ponentially decaying functions with spectral accuracy. How one designs a
spectral method that accurately captures the algebraic decaying behaviour
of the solution to (9.1) remains a largely open problem.

All the estimates stated in this subsection are derived with respect to the
energy norm, e.g. H S(Rd). There is, of course, interest in obtaining higher
approximation rates with respect to the LQ(Rd)—norm. However, the ap-
proximation properties of orthogonal polynomials are derived in weighted
Sobolev spaces, so the usual duality arguments are not directly applicable
here. Thus optimal L?(R%)-norm error estimates are still not well under-
stood and warrant further investigation. [

9.2. Spectral-Galerkin methods in bounded domains

Now we turn to fractional diffusion in a bounded domain. Owing to the low
regularity of the solution of the underlying problems involving the fractional
Laplacian (see e.g. Ervin, Heuer and Roop 2018, Grubb 20155, Ros-Oton
and Serra 2014), classical spectral methods cannot approximate the solution
very well. In this section we focus on the particular fractional Poisson
problem (3.5) with g(«) = 0, that is, on the problem

(9.12)

(—A)Pu=f forallxeQ,
u=0 for all z € Q7 = R?\ Q,

where f() is a smooth function and 2 is a bounded domain with a smooth
boundary.

Mao, Chen and Shen (2016) considered the one-dimensional setting with
Q = (-1,1) and s € (1/2,1). In this case, the fractional Laplacian is
equivalent to the Riesz-fractional differential derivative that is defined by,
for u e C°(—1,1) and z € (0,1)

_ 2s L 1 d72 ' r — #1728y, = (=A)u(zx
D¥u(z) = 2COS(<1_S)7T)(W/_1| 250 (t) dt = (—A) u(z).

Then problem (9.12) is equivalent to the two-point boundary value problem:
find the function u satisfying

{—DQS’LL(SL') f(x) forall z € (—1,1),
0.

u(0) = u(l)_: (9.13)
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The discussion in Mao et al. (2016) is motivated by the observation that

s s ps,s _ F(23+n+1) S,8
(=A){(1 = 2®)3 Py*(2)} = TSV (), (9.14)

where P2 with a,b > —1 denotes the classical Jacobi polynomials that are
orthogonal with respect to the weight function w®®(z) = (1 — z)%(1 + z)°.
This implies that if the source term f(z) can be expanded in terms of
the Jacobi polynomials P,,*(x), then the solution of the fractional diffusion
problem (9.12) is a series in (1 — 22)5 Py*(x).

By choosing the test space Vy = span{P,;*(z): n = 0,..., N} and the
trial space Xy = span{(1 —2?)3 P;*(z): n=0,..., N}, a Petrov-Galerkin
spectral method is given as follows: find uy € Xy such that, for all vy €
VN?

1 1
/ (—=A)suy(z) vy (x)(1 — 2?)* do = / f(x)on(z)(1 — 2?)% da.
-1 -1

Using the relation (9.14) and the approximation property of Jacobi polyno-
mials (Shen et al. 2011, Theorem 3.35), the following error estimate in the
weighted L2-norm is derived in Mao et al. (2016, Theorem 5):

lun —ullpo < CN™27™|| f||gm for any integer m > 0,

where the norm || - || gy is defined by
mooel
2 . = ()12(1 = 22)3tA
lol3e = ZO/ pO(1 - 22+ da.
J:

If m is not an integer, the space BY' is defined by interpolation (Guo and
Wang 2004). The argument also applies to the case when s € (0,1/2] and
) is multi-interval (Acosta, Borthagaray, Bruno and Maas 2018).

The above estimate indicates the exponential convergence under the as-
sumption that the source term f is smooth. The results in Mao et al. (2016)
extend the studies of spectral methods for solving one-sided fractional equa-
tions found in Chen, Shen and Wang (2016b), Zayernouri and Karniadakis
(2014) and Zayernuri, Ainsworth and Karniadakis (2015b); see also Mao and
Karniadakis (2018) and Samiee, Zayernouri and Meerschaert (20194, 2019b)
for general two-sided fractional equations, Zayernouri, Ainsworth and Kar-
niadakis (2015a) for tempered fractional diffusion equations, and Deng,
Zhang and Zhao (2019) for the study of superconvergence points.

A similar analysis may be extended to higher-dimensional cases. Xu and
Darve (2018b) studied a spectral method for solving the fractional Poisson
problem (9.13) with Q = B;(0) c R%, d = 2,3, that is, the unit ball in two
or three dimensions. The basic idea is to construct a spectral basis by using
Jacobi polynomials and spherical harmonic polynomials (Dyda, Kuznetsov
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and Kwasnicki 2017a). In particular, spherical harmonic polynomials of
degree ¢ > 0 form a finite-dimensional space, having dimension

d+20—-2(d+/0—2
Md7g = —— .
d+¢—2 14
For each ¢ we fix a linear basis for this space, denoted by V;,, with m =
1,..., Mgy, that is orthonormal with respect to the surface measure on the

unit sphere. Then the functions

Gt (®) = Vo () P71 2] —1) with £> 0, n >0, 0 <m < My
form an orthogonal basis in L2(f) with respect to the weight function
w(zx) = (1 — |z/?)* (Dyda et al. 2017a). Analogous to (9.14), we have

2s S n . .
(80 ((1 = ) ) = R L

Xu and Darve (2018b) have developed and analysed fast and accurate spec-
tral methods based on this property and the approximation property of the
Jacobi polynomials.

Unfortunately, the above argument heavily relies on the relation (9.14)
so that, due to the singular behaviour of the solution near the boundary,
it cannot be directly applied to the fractional diffusion with lower-order
terms. Zhang (2019) studied the regularity of the one-dimensional fractional
diffusion—reaction model

{(—A)Su(a:) +cu(z) = f(z) forall z € (—1,1),
u(z) =0 for all z € R\ (—1,1)

(bé,m,n(w)'

(9.15)

with the constant s € (0,1) and ¢ > 0. In particular, Zhang proved that
(1—22)~%u belongs to B§25Am)+28 if f € BI". Moreover, the regularity index
could be slightly improved, that is,

(1—a2?)%u e BSTQA(HA‘S) provided that f € BI*, for large m.

The convergence rate of the spectral method certainly deteriorates accord-
ingly, due to a lack of sufficient solution regularity. See also Mao and Shen
(2018) for a spectral element method based on geometric meshes.

Remark 9.2. In one dimension, the fractional Poisson problem without
lower-order terms has been comprehensively studied. The analysis of the
regularity and numerical approximations relies crucially on the simple re-
lation (9.14), which indicates that the Jacobi polynomials are suitable to
approximate the solution. This is largely the main reason why problems
without lower-order terms dominate the study of spectral methods for frac-
tional diffusion. Thus it is of significant interest to develop proper techniques
for rigorously handling convection and reaction terms.
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The numerical analysis of higher-dimensional fractional problems is a non-
trivial endeavour. One reason is the difficulty of designing spectral methods
for irregular domains. Another is due to the unclear regularity theory of
(9.12) in higher-dimensional domains, even for convex polygonal domains.
Therefore it is of substantial interest to analyse spectral methods for solv-
ing fractional diffusion problems in bounded domains in higher dimensions.
Many theoretical questions, e.g. regularity in suitable spaces, appropriate
selection of basis functions and optimal convergence rates, remain largely
open problems. [

10. Finite difference methods for the strong form of
nonlocal diffusion

The AC property was first demonstrated for quadrature-based finite differ-
ence discretizations of nonlocal models in Tian and Du (2013). Additional
observations can be found in Du and Tian (2015). Du, Tao, Tian and Yang
(2016b) studied an AC quadrature difference discretization together with
superconvergent nonlocal gradient recovery. Du et al. (2019¢) considered
quadrature rules for scalar models in multidimensional spaces, resulting in
AC schemes. The key to obtaining AC non-variational methods in these
works is to guarantee the uniform truncation errors of the numerical schemes
independent of the parameter §. Numerical methods for the strong form of
nonlocal diffusion are analysed under the standard framework of truncation
error analysis and numerical stability. Quadrature-based finite difference
schemes for nonlocal diffusion equation are introduced in Du et al. (2019¢)
and Tian and Du (2013), and a reproducing kernel (RK) collocation method
is studied in Leng, Tian, Trask and Foster (2019). Note that although Trask,
You, Yu and Parks (2019) refer to an AC mesh-free scheme, their numerical
scheme converges only to the corresponding local solution but not to the
nonlocal solution with a fixed 6.
We denote a uniform Cartesian grid on R? as

T = {z; = hj: j € 2%}.

We can then rewrite the nonlocal diffusion operator at any node x; € T, N2
as

N ulztaq) —ul@s) oy
Coutn) =2 [ HEE S EOW (22

where W (z) is a weight function that is crucial to guaranteeing the AC prop-
erty. One-dimensional problems are considered in Tian and Du (2013) with
the weight function W(z) = |z| used for z € R. In the multi-dimensional
case considered in Du et al. (2019¢), the weight function W (z) = |z|?/|z|1
is chosen, where |- |; denotes the ¢1-norm in the d-dimensional vector space
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whereas |-| denotes the standard Euclidean norm. The finite difference
scheme on the Cartesian grid is then given by

Lspu(zi) = 2/

B

5, (M S a0z, 0
5(0) W(Z)

where Zj,( - ) denotes the piecewise d-multilinear interpolation operator in z
associated with the grid 7.

There are two major features of the finite difference scheme (10.1). The
first is a uniform consistency result. In this regard, the following result
about what we refer to as quadratic exactness is proved in Du et al. (2019¢);
it is a nonlocal analogue of its local counterpart. That is, the fact that
the centred difference approximation to the Laplacian is exact for quadratic
polynomials holds in the nonlocal case as well.

Quadratic exactness. For any quadratic polynomial in R? given as u(x) =
x®x : M, where M = (my;) denotes a constant matrix and @ denotes the
tensor product, we have

Lspu(x;) = Lou(mi) =Y myy, for all i. (10.2)
k

Quadratic exactness plays a vital role in the analysis of the AC property
of quadrature-based finite difference schemes. It leads to the uniform con-
sistency result, which says that (10.1) is an O(h?) approximation of the
nonlocal diffusion operator independent of the parameter §, which means
that the truncation error is independent of § for small §.

Uniform truncation error. Assume that v € C*(Qs). Then, for all z; €
Tn N, we have

[Conu(s) — Lou(@i)] < C|D*uloch?, (10.3)

where C denotes a constant independent of § and h.

With this observation, it then follows that usj; approximates ug at the
rate O(h? + 62), once numerical stability is established.

Another major feature of (10.1) is that it satisfies a discrete maximum
principle, thus it is a stable numerical scheme. In fact, (10.1) can be rewrit-
ten as

Lopu(ay) = Y aij(ulas) — u(ws)), (10.4)

T;EBs (x4)
where each a; ; is a nonnegative number given by

2 .
4 = TG o IV DA (109

with ¢; being the piecewise multilinear basis function centred at x; = hy;
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p; satisfies pj(x;) = 0 when 4 # j and pj(x;) = 1. The discrete maximum
principle of (10.4) can then be easily seen from the fact that a; ; > 0 for
each ¢z and j.

Equation (10.4) gives a second-order accurate AC finite difference scheme
on uniform Cartesian grids. Higher-order finite difference schemes may also
be constructed. However, the discrete maximum principle is not satisfied
for higher-order methods because a;j; could be negative for higher-order
interpolants. In this case, one needs new techniques to study the stabil-
ity of numerical schemes, which is still an open problem except for some
specialized kernels; see Leng et al. (2019).

We note that there have been other works concerning AC schemes for non-
local models based on the strong form. For example, Du, Zhang and Zheng
(2018d), You, Yu and Kamensky (2019) and Tao et al. (2019) have stud-
ied AC schemes for coupled local and nonlocal models. Du, Han, Zheng
and Zhang (2018a), Zhang, Yang, Zhang and Du (2017) and Du et al.
(2018d) presented implementation techniques and numerical experiments of
AC schemes for problems defined in infinite domains via the development
of nonlocal artificial boundary conditions. In these works, time-dependent
nonlocal models are considered. Similar studies have also been made for
models that are nonlocal in time and space (Chen, Du, Li and Zhou 2017),
which are generalizations of models developed in Du, Yang and Zhou (2017b)
and Du, Toniazzi and Zhou (20206). Du et al. (2017b) and (2020b) only con-
sidered nonlocal memory /history effects in time but the spatial interactions
remained local. Chen et al. (2017) also replaced the local spatial differential
operators with nonlocal operators.

AC difference approximations of nonlinear models have also been invest-
igated, including approximations of nonlocal hyperbolic conservation laws.
From a modelling perspective, one can argue that conservation laws in in-
tegral forms may be particularly more natural than their local counterpart,
especially in the presence of singular solution behaviours. Important phys-
ics might be lost in the local formulation, so additional assumptions such
as entropy conditions have to be re-introduced to maintain validity. On the
other hand, it is possible to introduce nonlocal conservation laws for which
appropriate entropy conditions are automatically satisfied (Du, Huang and
LeFloch 2017a), thus retaining important physical features in the modelling
process that are missing from local models. The model of Du et al. (2017a)
also improves the model studied by Du, Kamm, Lehoucq and Parks (2012b).
With AC discretization (Du and Huang 2017), the numerical convergence
has been demonstrated with or without singular solutions.

We also mention some other works concerning difference approximations
of nonlocal models. For example, Jha and Lipton (2019b) studied the dis-
cretization of peridynamic models involving bond-softening. Regarding the
consistency between the approximations of nonlocal models and their local
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limits, one can also find comparisons in Bobaru et al. (2009) and Seleson
et al. (2016).

Leng et al. (2019) discretized the strong form of nonlocal diffusion oper-
ators by using the reproducing kernel particle method (RKPM) (Liu, Jun
and Zhang 1995). The work shows the consistency and stability of the
linear RK collocation scheme on quasi-uniform Cartesian grids. Define a
quasi-uniform Cartesian grid on R? as

Th={zj =h0oj:jecL,

where h denotes a vector in R? and ® denotes component-wise multiplic-
ation of vectors. We also assume that h = hh, where h € R and h is a
fixed unit vector in R%, so that the convergence rate will again be given in
terms of h € R. RKPM provides a systematic means for generating basis
functions from scattered particles such that polynomials can be exactly rep-
resented up to a certain order. Here we assume that the RK basis functions
{V;(x)}jeza are generated with respect to the quasi-uniform Cartesian grid
Th- Then the RK interpolation of any continuous function u is defined as

(Rpu)(x Z Ui(
jezd

Leng et al. (2019) considered the RK basis functions given by

:f[ < ’“_wﬂ]’“>, (10.6)

where [z]; denotes the kth component of the vector & € R?. The vector
a € R? is assumed to satisfy a = mh with m > 0 being an even number.
The function ¢ is the cubic B-spline given by

2 1
S~ daf+ 4o’ 0< o] < 5,
_J) 4 1
p(x) = S la])? 5 <lel <1,
0 otherwise.

Those assumptions allow the RK approximation Rpu to represent multilin-
ear polynomials exactly, and a special synchronized convergence property is
satisfied (Li and Liu 1996).

Given the RK interpolation operator Ry, the RK collocation scheme is
then defined as

Lspu(x;) = Ls(Rpu)(x;), (10.7)

for any x; € T, N, One nice property about the interpolation operator Ry,
defined above is that although it only reproduces multilinear polynomials
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exactly, it shifts quadratic polynomials by a constant, so that Ls defined
in (10.7) actually satisfies the quadratic exactness result given earlier. This
property and the synchronized convergence property become the crucial
reasons that cause the scheme (10.7) to be AC. Indeed, Leng et al. (2019)
showed that the collocation scheme (10.7) satisfies the same uniform con-
sistency result presented above. The stability of the scheme, however, is
a more tricky issue. In fact, all RK collocation schemes fail to satisfy the
discrete maximum principle. But the linear RK basis function Wq given by
(10.6) has a special property that its Fourier transform, given by

d

d . 4
Toie) = Tial. - (la _ 17 lalk (sin((a]x[£]r/4)
o(©) = [Liae- aligl) = [1% (Frl ) o

is always nonnegative. This result is a key observation used by Leng et al.
(2019) to show that the strong form discretization (10.7) is comparable in
terms of Fourier symbols with the Galerkin approximation (5.5), with Vj
being the span of RK basis functions (10.6). This immediately implies the
stability of the scheme (10.7), because the standard Galerkin approximation
is naturally stable. Stability issues again prevent us from discussing higher-
order RK collocation methods because the higher-order RK basis functions
fail to have purely nonnegative Fourier transforms such as one shown in
(10.8). More careful investigations are needed for the stability analysis of
higher-order methods. As a last comment, we note that Leng, Tian, Trask
and Foster (2020) have extended the analysis of Leng et al. (2019) to the
peridynamics Navier system.

11. Numerical methods for the strong form of fractional
diffusion

In contrast to Sections 6, 7 and 9, in which we studied the discretization of a
weak formulation of a fractional diffusion model, in this section we consider
discretizations of a strong formulation. We consider three such approaches:
quadrature rule-based finite difference methods, Monte Carlo methods and
radial basis function methods.

11.1. Quadrature rule-based finite difference methods

The most used class of methods for discretizing fractional diffusion models in
bounded domains is quadrature rule-based finite difference methods, where
their popularity stems from their simplicity. These methods directly discret-
ize the integral fractional Laplacian that features a singular, non-integrable
integrand. A common approach to dealing with the difficulties that singu-
lar integrals pose is to split the integral into the sum of two integrals, one
isolating the singular part, for which some care should be exercised, and
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the other having a smooth integrand so that standard quadrature rules can
be used to obtain accurate approximations. This approach has been widely
used for solving the nonlocal diffusion models (Du et al. 2019¢, Tian and
Du 2013), as reported in Section 10. Sharing the same spirit, some variants
were also developed for fractional diffusion models.

We have the one-dimensional fractional equation and volume constraint

(—A)° = (1, / |’1+12:s+2) dz = f(x) for all z € Q,

u(z) = for all z € Qr__,
(11.1)

with s € (0,1), Q@ = (0, L) with L > 0, and Q7. = R\ Q. To discretize the
problem, we use the uniform Cartesian grid {z; = jh:j € Z} withh = L/N
for some integer N. In Huang and Oberman (2014), the fractional equation
in (11.1) is evaluated at the grid points 2; and then split into two integrals,
that is, for 7 = 0,..., N, we have

(~ayula;) = [

lyl<h

u(z;) —u(z; + 2)

2|28 dz

I

+CLS/ uleg) —ulzi2) g, (11.2)
jy]>h ||

~~

Iz

For smooth u the use of Taylor series and central difference scheme leads to

Crs (u(wjyr) — 2u(xj) +ulxj_q) _

I = - (B J =) + o). 11.3

L h2s + O ) (11.3)

The second term I3 in (11.2) has a regular integrand so that term can

be well approximated using standard quadrature rules. As an example, let

1 }’f denote the Lagrange interpolation operator for piecewise polynomials of
order less than or equal to k. Then, for smooth wu,

TF (u(x;) — u(z; + 2) os
I, =Cy /y|>h h( J|Z’1+2S J ) dz+0(hk+1 2 ). (11.4)

If u € Wk+L0(R), the truncation error Ry, (x;) can be bounded by

[ )y —) ~ula; =) |
ly|>h

‘Rh(ﬁUj)’ = Cl,s |y’1+25

< Oy allu — Trull gy / 712 dy
ly|>h

< 2 |y o0 () - (11.5)
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Then (11.3) and (11.4) result in a discrete approximation of the fractional
Laplacian:

(—A) u(x;) = Dyu(z;) + O(RMNEFHI=25), (11.6)
where the discrete operator Dy, is defined by

Cis —u(rj_1) +2u(r;) —u(zji1)

Iy (u(zy) — u(z; + 2))
+Cl,s/ B dz. (11.7)
ly|>h

As a result, the corresponding quadrature-based finite difference scheme is
given as follows: find Uj, j € A ={1,..., N — 1}, such that

DyU; = f(x;) with U; =0 for all j € Z\A. (11.8)

Similar to discussions given in Section 10, maximum principle for the above
scheme (and hence its stability) can be proved, see (Huang and Oberman
2014) for £ = 1 and 2, by using a barrier function method, and there-
fore the error estimate follows immediately. del Teso, Endal and Jakobsen
(2018, 2019) extended the aforementioned approach to higher-dimensional
problems, and improved the convergence rate by using adapted vanishing
viscosity approximation.

The extension of the above arguments to the multi-dimensional case is
non-trivial. Minden and Ying (2018) discussed the discretization in two
and three dimensions by applying the ‘window’ function w(z) := w(|z|)
such that 1 —w(z) = O(]z|P) as z — 0 for some positive integer p. Then the
following splitting is applied:

(—=A)%u(z))
u(@) —uly) + w(lz —yl) 31 g<5 Dulx)(y — )7/|8]!
= Clus /R ) — ;@ﬂ?g dy
w(lz = yl) Xi<jp<5 D ul@)(y — 2)7/18]!
- C’d,s/R 1_‘|£|:3y‘d+28 dy.

Note that the second term is regular and can thus be easily approxim-
ated by standard quadrature rules. On the other hand, by using a window
function, the first term can be evaluated by the trapezoidal rule. If the
grid is uniform, then the resulting scheme provides a discrete operator that
is translation-invariant and therefore an FFT can be used (Minden and
Ying 2018, Section 3) for an efficient solution.

Duo, van Wyk and Zhang (2018) and Duo and Zhang (2019) suggested
another splitting approach, namely

80D — (o ) (o) — )~ 1)
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for an appropriate parameter § € (2s,2). The first term is singular but can
be evaluated analytically, whereas the second term is regular so it can be
approximated using the trapezoidal rule, for example.

The discrete systems obtained by the quadrature-based finite difference
methods introduced above can be Toeplitz-like, which can be tackled by us-
ing an FFT, but only for shift-invariant discretizations that usually require
the use of uniform grids. As we mentioned in Section 3.3.3, the solution of
the fractional Poisson equation (11.1) is weakly singular near the bound-
ary, and hence graded meshes are preferred. In this case, discretization
results in dense and unstructured matrices, and hence the storage complex-
ity will be O(N?) whereas the computational complexity will be O(N3).
One promising strategy for efficiently solving the nonlocal problem (11.1)
with unstructured meshes is to apply hierarchical matrices so that only lin-
ear storage and computational complexity are required; see Xu and Darve
(2018a).

In one dimension, problem (11.1) is closely related to the fractional bound-
ary problem involving the Riemann-Liouville fractional derivative or Riesz
derivative (Podlubny 1999, Ortigueira 2006). For such problems, many finite
difference methods have been studied (Meerschaert and Tadjeran 2004, Tad-
jeran, Meerschaert and Scheffler 2006, Celik and Duman 2012, Meerschaert
and Tadjeran 2006, Chen and Deng 2014, Ding, Li and Chen 2015) and
fast algorithms (Pan, Ng and Wang 2016, Wang and Basu 2012, Wang and
Du 2013, Wang and Du 2014, Zhang, Sun and Pang 2015, Lei and Sun 2013).
See also the comprehensive survey by Li and Chen (2018) and the mono-
graph by Karniadakis (2019) for details about these kinds of models and
their numerical approximation.

11.2. Monte Carlo method by Feynman—Kac formula

Since its formulation in Kac (1949), the Feynman-Kac formula has been
a powerful tool for both theoretical reformulations and practical simula-
tions of local PDEs. The link it establishes between PDEs and related
stochastic processes can be exploited to develop Monte Carlo methods that
are effective, especially for the numerical simulation of high-dimensional
problems (Curtiss 1950, Muller 1956, Sabelfeld and Simonov 1994, Yan, Cai
and Zeng 2013).

Kyprianou, Osojnik and Shardlow (2018) have developed a Monte Carlo
algorithm for approximately solving the fractional Poisson problem with
inhomogeneous volume constraints given by

(11.9)

(—A)u(x) = f(x) forall x € Q,
u(x) = g(x) for all x € Qr__.
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The solution representation of (11.9) has been extensively studied from
both the analytical and probabilistic perspectives?; see e.g. Bogdan and
Byczkowski (1999), Bucur (2016), Ros-Oton (2016) and Kyprianou et al.
(2018). In particular, we assume that Q is bounded, that f € C?*7¢(Q) for
some € > 0, and that g is continuous function belonging to L (RY\ Q), for

example i.e.,
lg(z)|
———dx < o0.
/]Rd\Q 1+ ||t

Then the solution of the fractional Poisson problem (11.9) has the probab-
ilistic representation (Kyprianou et al. 2018, Theorem 6.1)

w(®@) = Eag(Xoo)] + Ea [/Om F(X0) ds], (11.10)

with Eg(-) denoting the expected value conditioned on Xy = « and where
X = (Xi,t > 0) is an isotropic a-stable Lévy process with index o = 2s and
oo =inf{t > 0: X; ¢ Q} is the first exit time of X; from €. In particular,
let B(0,1) C R? be a unit ball centred at the origin, and then for |y| > 1
we have (Blumenthal, Getoor and Ray 1961, Theorem A)

I'(d/2) sin(ra/2)
/241

Po(Xop, € dy) = 11— [y~ 2ly| " dy.  (11.11)
This gives the distribution of the stable process that begins from the origin
when it first exits the unit ball.

The formula (11.10) is a nonlocal analogue to the Feynman-Kac formula
of the classical Laplacian, but the role of d-dimensional Brownian motion
is replaced by an isotropic a-stable Lévy process in R?. One significant
difference to Brownian motion is that the a-stable Lévy process will exit
the domain by a jump rather than hitting the boundary.

Then the solution to (11.9) can be computed numerically by applying a
Monte Carlo sampling method, based on the Feynman-Kac formula (11.10).
That is to say, if (X},t < of) are independent and identically distributed
copies of (Xy,t < 0q) issued from x € Q, then by the law of large numbers,
we obtain

1 i % i
u(x) = nangO - ; <9(Xo§) + /0 f(X2) ds>, (11.12)

where sample paths of the stable process could be constructed by (11.11).

4 The connection between stochastic processes and fractional equations has been ex-
tensively investigated in, e.g., Meerschaert and Sikorskii (2012). In constrast, Burch,
D’Elia and Lehoucq (2014), Burch and Lehoucq (2015), and D’Elia, Du, Gunzburger
and Lehoucq (2017) discuss the connection between finite-range jump processes and
nonlocal (truncated) equations.
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However, the direct application of a Monte Carlo method based on the
Feynman—Kac formula is inefficient, because the evaluation of u(x) requires
the simulation of a very large number of paths of X;, beginning from the
single point @ € Q.

One way to speed things up is to apply the walk-on-spheres strategy
(WOS), that was first established in Muller (1956) for the Laplace equation
and then adopted in Kyprianou et al. (2018) for the fractional Laplace
equation. The WOS method does not require a complete simulation of
the entire path and takes advantage of the distributional symmetry of the
stochastic process X;. Next we briefly discuss the WOS method for solving
the fractional diffusion problem (11.9) within a convex domain  C R
d>2.

With an arbitrary € €, we let pp = « and define r; to be the radius
of the largest sphere inscribed in ) that is centred at pg. Then we set
By = {x € R%: |z — po| < 71} and select p; according to Xop, under
Ppy, which is known from (11.11). Repeating the argument, we construct
a sequence {py}n>1 inductively. The algorithm ends at the random index
N =min{n > 0: p, ¢ Q}. As a result, the Feynman-Kac formula (11.12)
can be replaced by (Kyprianou et al. 2018, Corollary 6.4)

u(z) = Ex[g(pn)] + Ez

N—1
> 7‘3/ f(pn +rny) V1(0, dy)] :
n=0 lyl<1

where V1 (0, dy) denotes the expected occupation measure of the stable pro-
cess prior to exiting a unit ball centred at the origin, which is given for
ly| < 1 by (Blumenthal et al. 1961, Corollary 4)

2

V1(0,dy) =27 /2 I'(d/2) y’2s—d (/|y| (u+ 1)—d/2us—1 du> dy.
I'(s)? 0

We refer interested readers to Kyprianou et al. (2018) for more details about

convergence analysis, discussion of nonconvex domain and implementation

of WOS.

A multilevel Monte Carlo method based on the WOS algorithm was pro-
posed by Shardlow (2019) for efficiently computing the solution for the entire
domain €. Shardlow (2019, Section 5) drew comparisons between the mul-
tilevel WOS Monte Carlo method and the adaptive finite element method
of Ainsworth and Glusa (2017).

11.3. Radial basis function methods

The development, analysis and implementation of mesh-free methods using
radial basis functions (RBFs) has been studied thoroughly for the integer
order (local) PDEs; see Buhmann (2000, 2003) and the references cited
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therein. Compared to finite difference methods, the RBF method is seem-
ingly easier to implement for approximately solving the nonlocal problem
(11.1), especially in high dimensions, because only minor modifications to
existing algorithms for local PDEs are needed.

However, studies of RBF methods for the fractional diffusion model are
fairly scarce. Rosenfeld, Rosenfeld and Dixon (2019) used RBF interpolants
to approximate the fractional Laplacian of a given function through a mesh-
free pseudo-spectral method. Specifically, they used the compactly suppor-
ted Wendland functions ®(x) = ¢4(|x|) defined in Wendland (1995, 2005),
where k is a smoothness parameter. With the collection of points X =
{x1,22..., 2y} C Q, the mesh size h of X is defined by

hx = sup min |z — ;2.
Then, for any function f € Ng(R?), where Ny (R?) denotes the native space
of the RBFs (Wendland 2005), the interpolant of f is defined by

Ixf(x) = ijfb(m —x;) such that Ix f(z) = f(2) for all z € X.
j=1

Suppose that ® € C?*(R?) is symmetric and strictly positive definite, and
f € Ng(R?) is compactly supported. Then, by estimating the inverse Four-
ier transform, the following interpolation error result is proved in Rosenfeld
et al. (2019, Proposition 3.2):

(=A)* (Ix f)(@) = (A f(@)] < (e || f |y, mey + B,

where the parameter 8 € N satisfies 26 < k and 23—2s > n. Here E denotes
the residual error that can be further bounded by applying a smooth cut-
off function (Rosenfeld et al. 2019, Theorem 3.1). Numerical experiments
showed no measurable difference in the resulting estimations when using
the cut-off function, compared to when the cut-off function is not used
(Rosenfeld et al. 2019, Section 4.1). However, the optimal convergence rate
of the method without cut-off functions remains an open question.

The above interpolation property inspires the future study of collocation
methods (or Galerkin methods) using RBFs for approximately solving the
fractional diffusion problem (11.1). Many interesting questions, for example
the selection of suitable RBFs, the stability of numerical methods, optimal
convergence rates and adaptive algorithms, are largely open and warrant
further investigation. In addition, for high-dimensional problems, an addi-
tional challenge stems from the computation of the fractional Laplacian of
the basis functions, which requires fast and accurate numerical approxim-
ation. See also Lehoucq and Rowe (2016) and Lehoucq, Narcowich, Rowe
and Ward (2018) for a Galerkin method using RBF's for solving nonlocal dif-
fusion with kernel functions that are both radial and integrable, and Pang,



72 M. D’Eria, Q. Du, C. GLUSA, M. GUNZBURGER, X. TIAN AND Z. ZHOU

Chen and Fu (2015) and Sun et al. (2017) for collocation methods using
RBFs for solving fractional diffusion with Riemann—Liouville-type fractional
derivatives.

12. Conditioning and fast solvers

The effectiveness of nonlocal modelling and simulations relies on the effective
solution of the algebraic systems resulting from the discretization of non-
local models. Thus a good theoretical understanding of the conditioning of
the stiffness matrices for nonlocal problems is important. Results in this dir-
ection have been provided, using the Fourier analysis of the point spectrum
for nonlocal operators, as given in Zhou and Du (2010); see also Aksoylu
and Mengesha (2010), Aksoylu and Parks (2011), Aksoylu and Unlu (2014),
Du et al. (2012a) and Seleson, Parks, Gunzburger and Lehoucq (2009) for
additional discussions.

It is well known that a typical local diffusion model yields a condition
number of O(h~2) for a discretization having a meshing parameter h. The
corresponding nonlocal models have condition numbers that depend, in gen-
eral, on both ¢ and h. For example, Du and Zhou (2017) give sharp lower
and upper bounds for the condition number of the stiffness matrix corres-
ponding to a finite element discretization of a nonlocal diffusion operator
based on a quasi-uniform regular triangulation. Typically, if a fractional-
type translation-invariant kernel such as those satisfying (5.11) is used to
describe nonlocal interactions, the condition number of the resulting dis-
cretized nonlocal diffusion model is of O(h~2%§25=2), where, as always, &
denotes the size of the horizon parameter. In practice, both A and § could
be small parameters, so the view that nonlocal models yield better con-
ditioned systems than their local counterparts should be taken with due
care. Additional detailed estimates on the conditioning of nonlocal stiffness
matrices can be found in Aksoylu and Unlu (2014).

For effective algebraic solvers of the resulting linear system, we refer to
studies of the use of Toeplitz (Wang and Tian 2012, Vollmann and Schulz
2019) and multigrid solvers (Du and Zhou 2017).

12.1. Fast algorithm for kernels with non-smooth truncation

Tian and Engquist (2019) have developed methods based on fast multipole
methods (FMMs) and hierarchical matrix techniques. Their key observa-
tion is that the non-smooth transition of the kernel function typically used
in peridynamics and nonlocal diffusion models can reduce the effectiveness
of many standard fast solvers that are based on the compression of far-field
interactions. A typical kernel v used in practice, shown in Figure 12.1(a),
has a singularity at origin and its nonlocal interaction is truncated at a fi-
nite distance. The kernel is then decomposed into two parts, v; and s, as
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Figure 12.1. The kernel y(z) (a) splits into v (x) (b) and v2(x) (c).

illustrated in Figure 12.1(b, c). The first part (71) is smooth away from the
origin, so fast solvers using FMMSs or hierarchical matrix techniques for the
compression of far-field interactions can be successfully applied. The second
part (2) is smooth inside the support. Tian and Engquist (2019) developed
an FMM-type algorithm for the fast evaluation of nonlocal operators with
such a kernel function. The key idea is to compress the nonlocal interaction
away from the boundary of the support. This idea is depicted in Figure 12.2,
where the the geometric boundary of the interaction kernel centred at a cer-
tain point is finely resolved by small boxes, whereas away from the boundary
large boxes are used because there the kernel function is smooth. Because
the number of small boxes needed to resolve co-dimension 1 surfaces in-
creases with dimension, the complexity of the algorithm also increases with
dimension. Tian and Engquist (2019) showed that the optimal complexity
O(Nlog N) can be achieved for N unknowns in one dimension. In higher
dimensions there is algebraic complexity O(N 2-1/ 4), where d is the spatial
dimension of the problem.

12.2. Conditioning and solvers for finite element discretizations of the
integral fractional Laplacian model

Ainsworth, McLean and Tran (1999) gave the following results for the stiff-
ness matrices resulting from finite element methods for the integral frac-
tional Laplacian model.

For s < d/2 and a family of shape-regular triangulations 75, with minimal
and maximal element size hyi, and h, the spectrum of the stiffness matrix
A, satisfies

N, AT < A < ChEET
and
eN, M1 < (D)2 A (D7) < o1,

where D?® denotes the diagonal part of A;. Moreover, the condition number
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Figure 12.2. The circular region represents the interaction region corresponding
to a point located at its centre. The decomposition of the circular region into
hierarchical boxes is illustrated, with plot (b) being a close-up of plot (a).

of the stiffness matrix satisfies

h d—2s s s
k(As) = C(hmin> N,f /4 and  k((DF)LA,) = C’Ni /4,

If an implicit time-stepping scheme is used for the fractional-order heat
equation (15.5), systems having matrices of the form

M+ AtA,

need to be solved, where M denotes the usual finite element mass mat-
rix. Ainsworth and Glusa (2017) have given the following result about the
condition number of M + AtA;,.

For a shape-regular and globally quasi-uniform family of triangulations
Trn and for a time step At < 1,

k(M+ AtA;) < C<1 + hA;;)

More generally, for a family of triangulations that is only locally quasi-
uniform and At < h?5_N 25/ d, we have

min

ho\* At
k(M+ AtA;) < C<hmin> (1 + h28> (12.1)
If DV is taken to be the diagonal part of the mass matrix and At < hQSN}fS/d,
then

H(D°) (M + AtA,)) < 0(1 + hf) (12.2)

min
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These results show that for small fractional order s, if the time step At is
chosen small enough with respect to the mesh size, the conjugate gradient
method with diagonal preconditioning will converge in a fixed number of
steps. For larger fractional orders or for the steady-state problem, the num-
ber of iterations depends on the problem size. It has been shown that by
applying a multigrid solver, one can restore a uniform bound on the num-
ber of iterations; see Sauter and Schwab (2010), Hackbusch (1985, 1994),
Ainsworth and McLean (2003) and Ainsworth and Glusa (2017, 2018b).

We also observe that the system matrix A, is entirely dense, owing to the
nonlocal interactions. This means that for the efficient solution, efficient
techniques for computing matrix—vector products with A, need to be used.
In the literature, fast transforms and matrix compression (Ainsworth and
Glusa 20185, Ainsworth and Glusa 2017) have been explored. The draw-
back of the former is their limitation to uniform meshes, whereas the latter
are more difficult to implement. Both approaches lead to quasi-optimal
complexity, i.e. O(Np, log Np,) operations to solve the system.

We note that a brief discussion about solvers for extended fractional
Laplacian problems is given in Remark 7.1.

PART THREE

Selected extensions

So far in the article we have mostly focused on steady-state nonlocal dif-
fusion models, including fractional models. In this part we provide brief
accounts of the extension of the models we have considered to other set-
tings, along with additional approaches for obtaining approximate solutions
of the models and a few applications of the models.

13. Weakly coercive, indefinite, and non-self-adjoint
problems

The discussion about discretization schemes given in Part 2 dealt with prob-
lems that fall into the category of what are known as Rayleigh—Ritz or
strongly coercive problems. As such, the Lax—Milgram theorem is a fun-
damental tool in proving well-posedness of both continuous and discrete
problems. In this section we consider more general settings involving in-
definite and non-self-adjoint problems, settings for which the Lax—Milgram
theorem cannot be applied.

13.1. Indefinite and non-self-adjoint problems

Instead of the symmetric and coercive bilinear form (2.10) (see also (21.2)),
we now consider bilinear forms that have neither of these properties. As
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such, the bilinear forms considered in this section can be used in many set-
tings that cannot be treated using the bilinear form (2.10). The discussion
here largely follows the formulations given in Tian and Du (2020) for a more
general class of parametrized problems.

The bilinear form Bs(-,-) is defined on a trial space V5 and test space W
and satisfies the following requirements.

(i) Bs is bounded: there exists a constant C, > 0 independent of § such
that

Bs(u,v) < Cyllully;|lv]lw; for all u € Vs, v € W.

(ii) Inf-sup condition: there exists a constant C. > 0 independent of ¢ such
that

B
inf sup M >C.>0.
ueVs vew; |[ullvs [vllws

(iii) If Bs(u,v) = 0 for all u € Vg, then v = 0.

These conditions, as first shown by Necas (1967, 2016), guarantee that the
problem

Find u(x) € Vs such that Bs(u,v) = (f,v) for all v € W; (13.1)

is well-posed, provided that the linear functional on the right-hand side is
bounded. Note that there are no symmetry or self-adjoint conditions placed
on the bilinear form in (13.1). Note also that the discrete inf-sup condition
is automatically satisfied in the case of coercive self-adjoint problems with
Vs = Wsp. Otherwise, it has to be verified for the chosen finite element
spaces and the problem under consideration. Problems such as (13.1) that
feature different test and trial spaces are often referred to as Petrov—Galerkin
formulations. If W5 = Vj, then (13.1) is often referred to as a weakly coercive
formulation.

Conforming discretizations are defined, as introduced in Tian and Du
(2020) for the parametrized setting under consideration here, by choosing
approximation subspaces Vs C Vs and W5, C W; satisfying the following
requirements.

(1) For a given § € (0,0p), the family {Ws,h € (0,ho]} of discrete sub-
spaces of Wy is dense in W5 as h — 0.

(2) Discrete inf-sup condition: there exists a constant 55 > 0, independent
of 4 and h, such that
85(u7 U) ~

inf  sup >C.>0.
u€Vsn veWs,, 1ullvslvliw;

These conditions, as first shown in Babuska (1971) and Babuska and Aziz
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(1972), guarantee that for a given § € (0,dp) the problem
Find u(x) € Vs, such that Bs(u,v) = (f,v) for all v € W, (13.2)

is well-posed. Note that the independence of the constants Cy, C. and C. on
the parameter § is not required if one is only interested in solving the prob-
lem for a fixed 4, as in the original theory of Babuska (1971) and Babuska
and Aziz (1972). It is imposed here for the study of asymptotic compatib-
ility discussed next in Section 13.2 (Tian and Du 2020).

Problem (13.1) includes several important settings such as nonlocal mixed
amnd operator-splitting formulations finite element methods (see Section 13.3),
and nonlocal convection—diffusion problems (see Section 14), nonlocal diffu-
sion models and bond-based peridynamic models involving both attractive
and repulsive interactions (Mengesha and Du 2013), and nonlocal systems
such as the nonlocal Stokes equation introduced in Du and Tian (2019) and
Lee and Du (2020).

13.2. Asymptotically compatible schemes

The discrete problem (13.2) involves the horizon parameter ¢ and the grid
size parameter h so that the asymptotic compatibility of particular choices of
finite element spaces should be questioned. A study of this question is given
in Tian and Du (2020) based on an extension of the original AC framework
presented in Tian and Du (2014). The latter deals with only symmetric and
coercive bilinear forms of the types similar to (2.10) and (21.2).

Concerning the discrete approximations, in addition to the requirements
(1) and (2) listed in Section 13.1, we impose the following requirement (Tian
and Du 2020).

(3) The family of discrete subspaces of {Ws} is asymptotically dense in
Wy as § — 0 and h — 0, in the sense of definition (5.6). Here W)
refers to the energy space for the original continuum local PDE problem
corresponding to (13.1) and (13.2).

Now any scheme that satisfies requirements (1), (2) and (3) is provably an
AC scheme (Tian and Du 2020).

13.8. Operator-splitting and mized formulations

PDE equations such as —V-(DVu)= f are often derived by first postulating
a balance law V - w = f and choosing a constitutive (Darcy, Fick, Fourier,
Ohm, etc.) law w = —DVu. In some settings there are advantages to
directly solving the two first-order equations instead of the single second-
order equation, perhaps the most important and useful being that well-
posedness can be proved for u € L?(Q) instead of H'(Q), as is the case
for the second-order equation. On the other hand, there are problems that
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are most often posed as a mixed formulation, the most common being the
Stokes equations for incompressible flows.

One can mimic the local setting by recasting problem (1.5) with Lsu =
—Ds - (Dju) in Q and with, say, u = 0 on {2z;, into the equivalent operator-
splitting mixed formulation

{D(gu(m,y) = f(x), for all x € Q,

% (13.3)
v(z,y) = Dju, for all z,y € QU Qg,,

along with u(x) = 0 for all € Q7,. A corresponding mixed weak formula-
tion is given by

(V(ma y))“’(m7y))L2([QUQI§}2) - (D(Sﬂ(m,y), u(m)) = 0,for all [,l,(ﬂf,’y) €Q,
(Dsv(z,y),v(x)) = (f(x),v(x)),for all v € Q,

(13.4)
along with u(x) = 0 for all € Qz,, where (-, ')L2([QUQI(S}2) and (-,-) denote
L? inner products on the respective domains and the pairs v, and u,v
belong to appropriate function spaces.

Problem (13.4) can be treated as an extension of problem (13.1) with the
bilinear form

Bs((v,u), (p,v)) = (v(z,y), u(x,y)) — (Dsp(z, y), u(x))
+ (Dsv(z,y),v(x)).

While one may attempt to adopt the general inf-sup theory in (Tian and
Du 2020) to study the mixed weak formulation, the mixed finite element
approximations, would require the discretization of v(x,y) and p(x,y) in
both  and y. On the other hand, finite element discretizations of non-
local models based on the mixed the operator-splitting formulation can be
found in Du, Ju and Lu (20194, 20190) for interaction kernels that are both
radial and integrable that recover the local discontinuous Galerkin (LDG)
discretization of the local PDE problem as § — 0.

The nonlocal Stokes model is another example that can be formulated as a
system in mixed form; see the discussions of Du and Tian (2019) and Lee and
Du (2020), who also analysed spectral and finite difference approximations
in a periodic boundary condition setting.

14. Nonlocal convection—diffusion problems

In this section we consider nonlocal analogues of the local convection—
diffusion (also referred to as advection—diffusion) problem

(14.1)

—V - (DVu)+V-(Uu)=f forall e,
u=20 for all € 012,
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where U (x) denotes a given velocity field and D(x) denotes a given symmet-
ric, positive definite matrix. The most common approach towards defining
a nonlocal convection—diffusion model is to replace the second-order diffu-
sion term in (14.1) with a nonlocal analogue —Lu but to keep the convection
term as it is in (14.1). Such classical convection-nonlocal diffusion problems
have been investigated for fractional models, including their connection to
Lévy jump processes; see e.g. Meerschaert and Sikorskii (2012).

However, we consider fully nonlocal analogues of (14.1) in which the con-
vection term in (14.1) is also replaced by a nonlocal analogue. As a result,
the nonlocal convection—diffusion models we consider feature non-symmetric
kernels ys(x, y), so they can also be viewed as modelling non-symmetric dif-
fusion. Among other descriptions of non-symmetric diffusion that are not
necessarily related to stochastic processes, we mention Baeumer and Meer-
schaert (2010), Meerschaert, Benson and Baumer (1999) and Meerschaert
and Sikorskii (2012) where the equations are set either in free space or in
bounded domains, Ervin and Roop (2007) who treat that treats the same
problem in a variational setting, Felsinger, Kassmann and Voigt (2015) who
analyse that analyzes a variational formulation of non-symmetric diffusion
for integrable kernels with square-integrable symmetric parts and for non-
integrable kernels, and Andreu, Mazén, Rossi and Toledo (2010) who con-
sider that considers the strong form of non-symmetric diffusion equations
for kernels that are positive, translation-invariant and integrable. ,positive
and translation-invariant kernels.

Based on D’Elia et al. (2017), we consider the most general form of a
nonlocal analogue of (14.1), treating the two nonlocal terms as separate
phenomena. Note that D’Elia et al. (2017) provide a generalization of Du,
Huang and Lehoucq (2014) to a more general class of kernels.

14.1. Non-symmetric kernels and nonlocal convection—diffusion operators
Let L4 denote the nonlocal convection—diffusion operator defined as
—Legsu(x) = Das,(ODg 5,u)(T) + Des, (pu)(x), (14.2)

where Dy s, and D5, are nonlocal divergence operators associated with
the anti-symmetric functions ay(x,y) and a.(z,y) and where p(z,y) =
p(y,x) is a given function. Note that we allow for different horizons and
different kernel functions for the diffusion and convection terms. We refer
to the second-order tensor @(x,y) as the nonlocal diffusion tensor (see
Section 1.1) and to the vector pu(x,y) as the nonlocal convection ‘velocity’.
Specifically, from (1.17), we have

Das,(OD} 5 u) ()

=2 [ (uly) - u(@))a(w,y) - (O(a. y)owa(, ) X, ) (4) dy
Rd



80 M. D’ELiA, Q. Du, C. GLusA, M. GUNZBURGER, X. TIAN AND Z. ZHOU

and similarly, from (1.13) with v(z,y) = p(x,y)u(x), we have

Des(uu)(a) = [ (e g)u(e) + ply.2)uw)) - ol 1), o (9) dy

= [ o)+ uw)ate. ) ol )X, o)) d.
Setting
’Vcd,(S(wv y) = 2ad(w’ y) ’ (@(ZB, y)ad(w’ y))XB(;d(z) (y)

symmetric part vq,s, (x,y)
_l‘l’(ma y) : ac(a:, y)XBgc (x) (y)a (143)

anti-symmetric part . s, (2,y)

we can rewrite (14.2) as

Leqsu(x) = /Rd(u(y)fycd’(;(y, x) — u(x)Veas(x,y))dy forall x € R,

(14.4)

In the case of integrable kernel functions and for a.(x,y) = ay(x,y) and

04 = ¢, this non-symmetric diffusion operator and the corresponding initial

value problem are analysed for a special class of kernels in Du et al. (2014).
Note that with § = max{dg, d.}, we have

Yeds(x,y) =0 for all y & Bs(x). (14.5)

Also note that although ay(x,y) and a.(x,y) are often radial functions,
in general ®(zx,y) and pu(x,y) are not, so that, also in general, v.q5(x,y)
is not radial or translationally invariant. See Remark 2.3.

Tian, Ju and Du (2015, 2017) and Lee and Du (2019) considered AC
discretizations of nonlocal convection-diffusion problems. Du et al. (2014)
considered a convection—diffusion operator in one dimension, which turns
out to be a special case of the general nonlocal convection—diffusion operator
(14.2) if we choose &4 = &, O(z,y) = k = constant, (ag(z,y))* = oas(ly —
z|), p(z,y) = U a constant, and a.(z,y) = (y — )ocs(|ly — z|), with o45(-)
and o 5(-) being even functions having unit second moments. The resulting
operator is given by

Leasu(w) = 2R/R(U(y) —u(z))oas(ly — x[) dy

~U [ o)+ u@) = 2)oeslly — ol) dy.
R

The local counterpart of this operator is Lou(x) = ku”(x) + Uu'(x). One
may also connect this nonlocal convection diffusion model with non-sym-
metric jump processes; see Du et al. (2014).
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Other nonlocal convection—diffusion models are presented in Tian, Ju and
Du (2017), including some that are reminiscent of state-based peridynamic
models. For example, a conservative formulation is defined by the nonlocal
convection—diffusion operator

Leqsu(x)

= /QUQ (A(J:) + A(?J))(U(y) - U(%))O’dﬂg(’y — x‘)(‘y —_ x’))(‘c(w’ y) dy

+ / (b(@)u(@) X, y) + bly)u(y) Xy, @) - (y — 2)ows(ly — 2|) dy,
QUQz;

where we have the indicator function

1 if|ly—x| <0 and b(x) - (y —x) >0,
0 otherwise,

Xe(z,y) = {

which is generically non-symmetric and is dependent on the velocity field
b(x). This operator can also be shown to be a special case of operator given
in (14.2). Its local counterpart is Lou(x) = V-(A(x)Vu(x))+V-(b(x)u(x)).

Although AC discretizations of the models using these operators have
been discussed by Tian, Ju and Du (2015, 2017) and Lee and Du (2019), the
attendant analyses are done using different techniques and for specialized
kernels. One may apply the general framework given in Tian and Du (2020)
to possibly offer a unified treatment of systems of non-self-adjoint problems.
Indeed, additional studies of asymptotically compatible schemes may also
shed new light on improving the robustness of numerical methods based on
various nonlocal smoothing approaches, that are in use for local PDE models
such as smoothed particle hydrodynamics, as well as the construction of
well-posed nonlocal models such as the nonlocal Stokes equation considered
in Du and Tian (2019) and Lee and Du (2019).

14.1.1. Steady-state nonlocal convection—diffusion problems
The nonlocal analogue of (14.1) is given by

{—Ecd75u =f xell (14.6)

u=20 QZGQLS.

Weak formulations corresponding to (14.6) can be defined in the usual way.
Simplifying some notation, for £ = d or £ = ¢, one can define the constrained
energy space

VP = {ve L} (QuUQg): |U|VZO < oo and v =0 on Qz, }
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for which the semi-norm
1
=y [ [ D)@y Py dyda
i QUQI& QUQI§

is a norm. We assume that the norm ]v|Vo satisfies the nonlocal Poincaré
inequality |vl|z2( (uor,) < € \U\Vo for all v € V) and that V) C V2 so
that |v|y0 < ]v|v§ The latter assumption implies that solution operators

for nonlocal diffusion problems under consideration effect greater smoothing
compared to those for nonlocal convection problems, as is the case for local
partial differential operators.

Let the bilinear form Acqs(-, ) be defined, for all u,v € Vdo, by

Acas(u,0) = / / D 5(u) () - (OD;0) (, y) dy d

QUQz, QUQZ,

—/Dcﬁ(uu)(w)v(sc) de, (14.7)
Q

and let the linear functional (f,v) be defined, for all v € Vd , by

/ f(z (14.8)

Then a weak formulation of (14.6) is given as follows: given f belonging to
the dual space of Vdo, find v € VC? that satisfies

Acds(u,v) = (f,v) for all v e V). (14.9)

D’Elia et al. (2017) proved the well-posedness of (14.9) using three different
approaches. Here we state results that mimic what is obtained for local
convection—diffusion problems. Specifically,

e if f(z) belongs to the dual space of V2,
e if ©(x,y) is such that there exist ¥, > 0 satisfying

0< ¥ < inf (min#;) and sup (max6;) <9 < oo, (14.10)
zeRd i zcRd ¢

where 6; denote the singular values of @,

e if p is such that CgHDCMHOO <29 and || |p|]|oo < T,

then problem (14.9) has a unique solution u € VJ. Furthermore, that
solution satisfies the a priori estimate

[ulvo < Cllfllvy, (14.11)
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where C' = 1/Ceoer and
1 2
C’coer = Q - §Cp HDCH'HOO

denotes the coercivity constant for the bilinear form A.q (-, ). Note that
the above analysis is effective for diffusion-dominated problems. For the
convection-dominated case one may use the formulation in Tian and Du
(2020), discussed in Section 13.1, to get results in more general cases.

15. Time-dependent nonlocal problems

Although we do not consider nonlocal time-dependent problems other than
in this subsection and briefly in some other sections, a brief discussion is
warranted. We do not delve into nonlocality in time, for which there is a
vast literature devoted to fractional time derivatives and other settings in
which memory effects are present.

Weak formulations of time-dependent problems can be defined in the
same manner as that for local PDE time-dependent problems, once one
knows how to treat steady-state problems. Likewise, for the discretization
of nonlocal time-dependent problems, spatial discretization can be effected
using any discretization method for the corresponding steady-state problem,
including those discussed in Part 2, and temporal discretization can be
effected using any discretization method for the corresponding local PDE
problem, e.g. the backward-Euler or Crank—Nicolson method for (15.1) or,
for (15.8), a leap-frog or other explicit method. Furthermore, the analysis of
weak formulations and discretizations of nonlocal time-dependent problems,
including the derivation of well-posedness results and error estimates, also
follows the same paths as those for the corresponding local PDE problems.

Here we only consider a small sample of the differences between time-
dependent local and nonlocal problems.

15.1. Time-dependent nonlocal diffusion

Using the notation used in (1.5), we have the nonlocal time-dependent dif-
fusion equation

p%:£5u+f(m,t) for all € Q x (0,77,
Vu = g(z, 1) for all z € Qz, x (0,7, (15.1)
u(x,0) = ug(x) for all x € Q,

where p(x) > 0 and up(x) are given functions defined on  and f(x,t) and
g(x,t) are given functions defined on © x (0, 7] and Qz, x [0, T'], respectively.
Using the nonlocal Green’s first identity, it is an easy matter to show, for
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f =0 and g = 0, that the nonlocal diffusion equation (15.1) implies that

1d
—— [ wPdx + / / Diu- (0sDsu)dy dx = 0,
2dt Jg QuQz, Jouez,

so that

/uQ(az,t) dwg/ ui(z)dx for all t > 0, (15.2)
Q Q

and for time-independent @

/ / Diu(,t) - (OsDiu(w, ) dy da (15.3)
QUQI5 QUQI(;

< / / Diu(x,0) - (@sDsu(x,0)dyde for all ¢ > 0.
QUQI& QUQIzS

These are decay characteristics of diffusive processes, for example, (15.2)
and the local version of (15.3) hold for parabolic PDEs. However, for kernel
functions that are both radial and integrable, although solutions of the
nonlocal diffusion equation (15.1) satisfy the decay properties (15.2) and
(15.3), unlike the case for parabolic PDEs, those solutions may not be much
smoother than the data. One can also consider various types of nonlocal-
in-time versions of nonlocal diffusion equations; see for example Chen et al.
(2017).
We note that the fractional heat equation (15.4)

ug+ (AP u=f forallzeQ, te (0,7),
u=g for all x € RY\ Q, t € (0,T), (15.4)
u(+,0) = up(x) for all z € Q.

is perhaps of even greater interest compared to the steady-state case. Sim-

ilarly, one can consider the fractional heat equation with the regional frac-
tional Laplacian; see Gal and Warma (2016).

O CAYu=F nQx[0,T],

ot

u=g in Qz_ x (0,77, (15.5)
u(0) = ug in Q

15.2. Time-dependent convection—diffusion problems

For T' > 0, we introduce the time-dependent function spaces
L2(0,T3V9) = {v(-1) € V1 [o(- Dl € L2(0,T)},
L2(0,T; V) = {f(-t) € Vg |If (- )llvy € L*(0, )}
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The time-dependent nonlocal convection-diffusion problem is then given by

u — Legsu=f forallx e, te (0,77,
u(x,t) =0 for all © € Q7Q7,, t € (0,77, (15.6)
u(x,0) = ug(x) for all x € Q,

where the operator L4 s is defined in (14.2). The corresponding weak formu-
lation is as follows: given f € L?(0,T;V}) and ug € V), findu € L*(0,T; V)
that satisfies u(z,0) = ug(x) and, for all v € V) and for almost every
t € (0,77,

(UtaU)Q +Acd,5(u7 U) = <f,U>, (157)

where (+,-)q denotes the L? inner product over 2. The coercivity and con-
tinuity of Acqs(-,-) and the continuity of (-,-) guarantee that the weak
formulation (15.7) is well-posed. However, as pointed out by D’Elia et al.
(2017), standard arguments of variational theory (Evans 1998) imply that
actually much weaker assumptions on g are required for well-posedness,
namely [|Despt|loo < 00, where pu(x,y) denotes the nonlocal convection ‘ve-
locity’ introduced in (14.3).

15.8. Nonlocal wave equations

One can also consider the nonlocal wave equation

2
p%zﬁ(gu—i—f(m,t) for all x € Q x (0,77,
Vu = g(x,t) for all € Qz; x (0,77,
(15.8)
u(x,0) = ug(x) for all € Q,
?;:(:13,0) = up () for all x € Q,

where p(x) > 0, ug(x), f(x,t) and g(x,t) are defined as for (15.1) and
u1(x) is a given function defined on €.
For (15.8) with f = 0 and g = 0, we have conservation of energy, that is,

d /1 / (du>2 1 / / . . )
— (= — | de+ = Disu-(Os5Dsu)dydx | =0,
dt <2 Q dt 2 QUQz; JQUQT ° ( ’ )

which is a characteristic of wave processes such as the PDE wave equa-
tion. One can find studies related to these nonlocal wave equations in Guan
and Gunzburger (2015), Du et al. (2018d) and Du, Lipton and Mengesha
(20164).

One of the stark differences between local and nonlocal models is in their
dispersion relations for wave equations. For the one-dimensional local PDE
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wave equation
Pu  ,0%u
o2t~ o
where c is a constant, by setting

u(l’,t) _ e—iwt—&—ikx,
we obtain the dispersion relation
w? = A2k2 (15.9)

In fact, this relation shows that there is no dispersion. The velocity of the
wave is w/k = £¢, which is independent of w and k.

Guan and Gunzburger (2015) showed that the one-dimensional nonlocal
wave equation

Pu  2-2s , /:”J”S u(y,t) —u(x,t)
x

dy, 0<s<1/2,

02t o225 © s |y —a[ites
has the dispersion relation
2 —2s 92 — 2cos(ky)
2 _ 2
W= s © / s W (15.10)

Observe that the wave velocity w/k is a nonlinear function of k. Guan and
Gunzburger (2015) also showed that as 6 — 0, w given by (15.10) converges
(quadratically with respect to ) to the local w of (15.9). Similar results are
obtained there for the two-dimensional case. Similar dispersion relations
have been discussed for nonlocal operators; see e.g. Zhou and Du (2010),
Du and Zhou (2011) and Du (2019).

16. Inverse problems

Among the many challenges faced when dealing with nonlocal problems, we
find, even more than for local PDE problems, that mathematical models are
not known with exactitude; for example, source terms, volume constraint
data, coefficients, and even the functional form of the kernel itself may be
unknown or subject to uncertainty. If there are experimental data or other
a priori information (that may be sparse and/or noisy) available about the
state of the system or about an output of interest that depends on the
state, one can then resort to control or optimization strategies to identify
the unknown entities and thus define a data-driven mathematical model
that is more faithful to the physics being considered.

Here we consider inverse problems for the nonlocal diffusion problem (1.5)
in which the boundary operator V could correspond to Dirichlet, Neumann
or Robin volume constraints. Let V(Q U Q7) denote a function space for
the state u(x) and let W denote a set of controls that could consist of
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function spaces or parameter vectors or a combination of both. Then a
general inverse problem for nonlocal diffusion is given as follows:

Seek u(x) € V(QUQ7) and p € W such that

E%JWMJWM+RW

subject to (1.5) being satisfied, where
T (u; p) = Qu; ) + R(p)- (16.1)

In (16.1), the first term Q(-; -) in the objective functional J(-; - ) denotes a
cost functional that depends on the state and control whereas R( - ) denotes
a regularization functional that serves to guarantee the well-posedness of
the problem. The control set W could contain data functions such as f,
g and O, and also parameters appearing in the model definition such as
the horizon ¢ or the fractional exponent s if (1.5) represents a fractional
Laplacian problem. The functions may be parametrized, in which case
W only contains a parameter vector. Additionally, the control set may
contain constraints on the control; constraints on the state may be also be
imposed. See Section 17 for an example of the latter. In some such cases, the
regularization term in (16.1) may not be needed because such constraints
may be sufficient to guarantee well-posedness.

The literature about the control and optimization of nonlocal problems is
still limited; however, interest in such topics in the setting of nonlocal dif-
fusion is quickly growing. Recent studies in this direction focus on the well-
posedness and stability of the minimization problem (16.1), the asymptotic
behaviour of its solution, and its numerical discretization. In particular,
with respect to the latter, numerical convergence analyses, error estimates,
and solver performance are of interest. In this section we provide brief re-
views of selected contributions devoted to the control and optimization of
nonlocal problems, including integral fractional models, treating both con-
trol and identification problems.

16.1. Inverse problems for nonlocal diffusion

In this section we focus on operators of the form of (1.6) with vs(x, y) given
in terms of the kernel function ¢s(x,y) and constitutive function 0s(x,y)
by (2.16), (2.17) and (2.18), that is, we have

Lsu(x) = Ds(OsD*u)(x)

_ / (u(y) — u))s(z, ) dy (16.2)
QUQ16

= —2/ Os5(x,y)(u(y) — u(x))ps(x,y)dy for all x € Q.
Bs(x)
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16.1.1. Distributed optimal control in nonlocal diffusion for a matching
functional

We consider the minimization problem (16.1) with the state space V(U

Q) = V(QUQgz,), the operator £ now given by (16.2), and with perhaps

the most commonly used cost functional and regularization term for both

PDE and nonlocal optimal control problems, namely

1 -
T ) = gl — ey + S IMO0IR (16.3)

where the first term is usually referred to as a matching functional, the
second term as Tikhonov regularization, and the given function u(x) for
x € Q as the target function. The operator M could be, for example,
a local derivative or a nonlocal operator such as Dj, that is chosen with
the purpose of keeping M(u) under control and to either guarantee well-
posedness or improve the conditioning of the problem. Furthermore, @ need
not belong to state space V(2 U Qz;) and, in (16.3), we have norms || - [|(q)
and ||-||w that are well-defined for u € U(Q2) and M(u) with p € W,
respectively. Often target functions are not regular, so a reasonable choice
is U(Q) = L*().

Perhaps D’Elia and Gunzburger (2014) were the first to analyse this prob-
lem for square-integrable and also non-integrable kernel functions ¢s(x, y),
albeit for 5 = 1 and Vu = wu, i.e. for Dirichlet volume constraints. Spe-
cifically, they considered the problem of finding the optimal forcing term f
such that the nonlocal solution w is as close as possible to a given target
function w, that is, we have that y = f, M is the identity operator, and
|- llw =1 llz2()- As a result, we have the functional

1 - B
J(w f) = 5llu - Ull72(q) + §HfH%2(Q)- (16.4)

There are no additional constraints on the solution, so the optimization is
solely constrained by the nonlocal diffusion equation. The well-posedness of
that equation is sufficient to guarantee the existence and uniqueness of an
optimal pair (u*, f*). Furthermore, D’Elia and Gunzburger (2014) showed
that in the limit of vanishing nonlocality, i.e. as § — 0, the optimal non-
local state and control converge to the optimal solution (uj, f;) of the local
counterpart of (16.1) given as follows:

Seek w(x) € H*(Q) and f; € L*(Q) such that

in T (s f)

—Au; = fi forall x € Q,

(16.5)
u =g for all € 092.

subject to {

For finite element discretizations of the state and control variables, D’Elia
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Figure 16.1. (a) The optimal nonlocal state u* for § = 272 and 27°, the target
function u, and the optimal local state u;. (b) The corresponding optimal source
terms.

and Gunzburger (2014) proved the convergence of both variables with re-
spect to § and the mesh size h, along with error estimates. Also, numerical
results for discontinuous target functions show that nonlocal models, for
which irregular solutions are admissible, allow one to match non-smooth
functions in a much better way compared to local models.

An example is provided in Figure 16.1 for the domains 2 = (0,1) and
Qz; = (—0,0) U (1,14 6), and for a target function having a jump discon-
tinuity at x = 0.5. Discontinuous piecewise linear finite element discretiz-
ations are used for both the state and control. For comparison purposes,
continuous piecewise linear finite element approximations of the local op-
timal control problem (16.5) are also computed. In Figure 16.1(a) we plot
the target function @, the optimal local state u; (the solution of (16.5)) and
nonlocal optimal state u* (for two values of ¢). Note that for a large hori-
zon ¢ the nonlocal solution perfectly matches the target, whereas for a small
horizon the nonlocal optimal solution is visually identical to the local one.
In Figure 16.1(b) we plot the corresponding optimal source terms f*. Here,
for a large horizon, the control has a smaller amplitude and a smaller L2-
norm (which can be viewed as indications of a smaller cost of control) even
though that control does a better job of matching the target function. As
explained in D’Elia and Gunzburger (2014), this behaviour can be justified
by the fact that the nonlocal model allows for discontinuous behaviour in
the optimal state, and thus the optimal control has an ‘easier time’ forcing
a match between the optimal state and the non-smooth target function.
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16.1.2. Coefficient identification

The identification of kernel parameters or of the kernel function itself is one
of the most important open problems in nonlocal modelling. In fact, in gen-
eral, the choice of kernel function and its parameters is based on intuition or
designed through heuristic techniques. Here we report on three approaches
that tackle the kernel identification problem using different objective cost
functionals.

Fuensanta and Mufioz (2015) considered the problem of identifying a
constitutive function in (16.2) having the form 65(x,y) = J(x) + J(y), that
is, to identify the parameter function p = ¥(x). In addition, Vu = u and
¢s(x,y) = k(z,y)ly — |2 with k(z,y) > Cly — 2> for s € (0,1)
and support(k(x)(x,y)) = Bs(x). The set of admissible ¥(x) is defined as

W = {¥(x) € [Imin, Ymax], ¥=0 on Q, / J(x) de = 9}
Q
for positive constants ¥ min, Ymax and 9. The objective functional in Fuensanta
and Munoz (2015) consists of a cost functional only and it is referred to as
a compliance functional; it is defined as

J(u) = /QUQI /QUQI F(x,y;u)dydz (16.6)

and is then minimized over ¥(x) € W. First, F' is chosen such that
J(u) = ||ul|?>, where ||-|| denotes the ‘energy’ norm corresponding to the
kernel function ¢(x,y) = k(x,y)|y — |~2. For this choice of F' and with
no other constraints applied on the state or control, the existence of a solu-
tion of the problem of minimizing the functional (16.6) is proved. Note
that a regularizing term is not included in this functional because the box
constraints on ¥(x) included in the admissibility set W already guarantee
the well-posedness of the minimization problem. Extensions to more gen-
eral functionals are then considered, including F' only being required to be
measurable with respect to u and lower semi-continuous with respect to x.
Furthermore, for the compliance case, the convergence of the optimal non-
local solution to its local counterpart (16.5) for y = ¢ is proved. In this
work, neither discretizations nor numerical tests are provided.

D’Elia and Gunzburger (2016) also considered the problem of identifying
the constitutive function 0s(x,y) in (16.2) for square-integrable and also
non-integrable kernel functions ¢s(x,y) — specifically, again Vu = u, and,
in the functional (16.3), 8 = 0 and |- [|y) = || - [l 2(n). The functional is
minimized over the set of admissible controls given by

W = {05 € W">°(QUQz,UQ U Q1,), 05 € [Fmin, Fmax)s [|0]]1,00 <OF™ < o0}

Again, the box constraints on s included in the admissibility set suffice to
prove that problem (16.1) has at least one solution. D’Elia and Gunzburger
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Figure 16.2. Optimal approximate coefficient functions for § = 272 (a) and 2% (b)
for different numbers of degrees of freedom Ny in the discretization of the coefficient
function 9¥(z) defined in (16.7).

(2016) developed a mixed finite element discretization of the state and con-
trol variable and proved the convergence of the discretization error as the
mesh size is refined. Numerical tests are also provided that show that the
approach taken there allows for the identification of both smooth and dis-
continuous diffusion coefficients for both square-integrable and (truncated)
fractional kernels. A sample result is shown in Figure 16.2. For that figure,
Q=(0,1), Qz; = (6,0) U (1,14+0), g(x) =0, f(x) =5, and the spatial grid
size used to discretize the state is 272, A surrogate for the target functional
u is a very fine-grid finite element approximation of the nonlocal diffusion
problem with the data just listed and with

1 forall z €(0,0.2),

) with ¥(z) = < 0.1 for all z € (0.2,0.6), (16.7)
1 forall z €(0.6,1).

r+y

Os(z,y) = 79(

Thus the goal of the minimization problem is to identify this constitutive
coefficient function. Figure 16.2 illustrates, for two values of the horizon ¢,
the convergence (with respect to the grid size 1/Ny used to approximate
the coefficient function ¥(2)) of the approximation.

We also mention the approach introduced in Pang, D’Elia, Parks and Kar-
niadakis (2019a), in which the task of parameter identification for truncated
diffusion operators of fractional type is pursued by including the nonlocal
diffusion equation in the objective functional, that is, we have

1 -~ B
I (u; p) = 5““ - UH%Q(Q) + 5” — Lu— f”%Q(Q)' (16.8)

Thus the state equations are only weakly prescribed through the minimiza-
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tion of the residual. Pang et al. (2019a) approximated the state and control
variables using fully connected neural networks. Numerical tests on ana-
lytic solutions and turbulence models show the ability of this technique to
recover kernel parameters such as the interaction radius J and the variable
fractional order s(x), that is, we have u = {0, s(x)}.

16.2. Inverse problems for fractional operators

In this section we focus on control and optimization problems for the frac-
tional Laplace operator. The formulations described in what follows can be
easily extended to more general fractional operators (see e.g. Meerschaert
and Sikorskii 2012), but at a cost of more complicated analyses.

16.2.1. Distributed optimal control in fractional diffusion for a matching
functional

The formulation presented in the previous section for distributed control can

be used for fractional operators with (almost) no modification. We mention

several works in the literature that analyse the theoretical and numerical

aspects of both the elliptic and parabolic fractional problems.

D’Elia, Glusa and Otérola (2019b) considered the same problem as that
introduced in Section 16.1.1. Specifically, for J(u; f) as in (16.4) and Vu =
u, they considered the problem of minimizing J (u; f) with respect to f €
W = {r € L*(Q): r € [rmin, "max]} Subject to

(16.9)

(—A)Pu=f forall x e,
u=g for all z € R?\ Q.

The well-posedness of the control problem is proved, optimality conditions
are derived, and regularity estimates for the optimal variables are also
proved. Furthermore, based on an a priori error analysis for the state equa-
tion, a semidiscrete scheme is constructed for which a priori error estimates
for the approximation of the control variable are derived. A fully discrete
scheme is also considered for which state and control error estimates are
derived. Several two-dimensional numerical illustrations of the theoretical
results are also provided.

Glusa and Otérola (2019), in a follow-up paper, considered the fractional
parabolic equation (15.4).

u+ (—AYu=f forallzeQ, te(0,T),

u=g for all x € RY\ Q, ¢t € (0,7T), (16.10)
u(+,0) = ug(x) for all € Q.
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The objective functional, similar to that in (16.4), now involves an integral
over time for both the cost and regularization terms, that is, we have

T

T f) = /<Hu—uuLz Bl dt. (16.11)

0

Further, the control variable f is now also time-dependent and belongs to the
admissibility set W(t) = {r(t) € L?(Q): r(t) € [Pmin(t), Tmax(t)] for all t €
(0,7]}. As in D’Elia et al. (2019b), the existence and uniqueness of optimal
solutions are proved, and first-order necessary and sufficient optimality con-
ditions are derived. Also derived are regularity estimates for the optimal
state and control. Then discrete stability results and a priori error estim-
ates are derived for the discretized problem resulting from the standard
backward Euler scheme for temporal discretization and a piecewise linear
finite element spatial discretization. The theoretical findings are illustrated
by one- and two-dimensional numerical experiments.

Antil, Khatri and Warma (2019a) and Antil, Verma and Warma (2019b)
chose the control as the data ¢ in the volume constraint for the steady-
state and time-dependent cases, respectively. In (16.1), nonlocal Dirichlet,
Neumann and Robin volume constraints are considered for the operator V.
As an example, in the Robin case we have

Vu = rknyNu+ kpu = g,

where N denotes the nonlocal Neumann operator N is defined as in (1.10)
with the appropriate changes made to reflect that here the interaction do-
main is 7 = R%\ Q. Even though the theory is presented for the general
functional

J(u; 9) =

L\D\Q

T
/ 91220, d (16.12)
0

with a convex cost functional Q(u), numerical experiments are performed
for a matching functional in the usual form; see e.g. (16.11) for the time-
dependent version. In the more general formulation, for the time-dependent
case, Antil et al. (2019b) mostly focus on nonlocal Dirichlet and Robin
optimal control problems. Well-posedness and regularity are discussed and
a discretization scheme is proposed. The theoretical results are illustrated
by two-dimensional numerical experiments. The main contribution of Antil
et al. (2019b) is to show the ability of nonlocal models to take advantage
of information outside the domain and not only on the boundary, which is
one of the limitations of control problems for PDEs.

Even if not entirely focused on operators such as that in (3.1), we mention
that Antil and Warma (2020) consider control problems for both a spec-
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tral fractional semilinear operator and for the integral fractional Laplacian.
They derive existence and regularity results for the spectral case (which is
not treated in this section). They also state that the results obtained for
the spectral case can be extended, after small modifications, to the integral
definition of the operator.

Remark 15.1 (kernel identification). For kernel identification in the
setting of fractional operators, we should mention that Pang, Lu and Kar-
niadakis (2019b) studied an algorithm for parameter identification based on
physics-informed neural networks. As such, this method is a special instance
of the algorithm presented in Pang et al. (2019a). Specifically, this work is
focused on the estimation of the fractional power of the integral fractional
Laplacian. Other works on the identification of kernel parameters, more

specifically, of the fractional power s, only deal with the spectral definition
of (—A)*u.

Remark 15.2 (control for the spectral fractional Laplacian). We
should also mention that control of equations involving the spectral defini-
tion of the fractional Laplacian has been analyzed, see, e.g., Antil, Otarola
and Salgado (2016, 2018), and Otarola and Salgado (2018).

17. Variational inequalities and obstacle problems

We consider the nonlocal obstacle problem

—Lu>f for all € Q,

u > P for all € , (17.1)
(—Lu— f)(lu—1)=0 forallx e Q,

u=20 for all x € Q7

where 1 (x) denotes the obstacle function. Nonlocal obstacle problems such
as this one are used in studying the deformation of elastic membranes, in
contact mechanics and in finance, for example the pricing of American put
options in Lévy jump-diffusion models. Clearly, (17.1) is a nonlocal analogue
of the local PDE obstacle problem

—Au>f for all € ,
u > P for all € €,
(—Au—f)(u—1) =0 forall xe,
u=20 for all © € 0Q.

The well-posedness analysis of nonlocal obstacle problems needs less smooth
obstacles than the corresponding local PDE obstacle problems. Moreover,
as is illustrated at the end of this section, the behaviours and properties of
solutions in the local and nonlocal setting can be quite different.
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There is an ever-growing literature on the analysis and approximation
of nonlocal obstacle problems, especially in the fractional setting. Here
we give a brief account of an approach used by Burkovska and Gunzbur-
ger (2019b), who considered regularity estimates, well-posedness analyses,
and finite element methods and their numerical analysis. Using a different
approach, Guan and Gunzburger (2017) established the well-posedness of
nonlocal obstacle problems and the convergence of the finite element approx-
imation for fractional Laplacian kernels and for kernels that are both radial
and integrable. With respect to other works about obstacle problems for
the fractional Laplacian, we mention Servadei and Valdinoci (2013), who
obtained Lewy—Stampacchia-type estimates similar to those obtained by
Burkovska and Gunzburger (2019b), but with restrictions on the fractional
exponent and requiring greater smoothness of the obstacle. The regularity
of the obstacle problem measured in Holder and Lipschitz spaces was studied
by Silvestre (2017) and Caffarelli, Ros-Oton and Serra (2017), for example.
Borthagaray, Nochetto and Salgado (2019) studied a finite element approx-
imation of the obstacle problem for the fractional Laplacian, and proved
error estimates. Regularity results for the solution are derived in weighted
Sobolev spaces under additional regularity assumptions on the right-hand
side (Holder continuity) and the obstacle. Bonito, Lei and Salgado (2020)
studied the regularity of the obstacle problem involving integro-differential
operators, with the fractional Laplacian as the nonlocal term, and proposed
and analysed a finite element-based discretization. In the purely nonlocal
case, the same regularity for the solution is proved as in Burkovska and
Gunzburger (2019b), but for more restricted cases. Other than Burkovska
and Gunzburger (2019b), none of these works on the obstacle problem for
the fractional Laplacian treat truncated kernels.

Burkovska and Gunzburger (2019b) obtained the well-posedness and reg-
ularity results for the nonlocal obstacle problem (17.1), and used the mixed
formulation

{A(u, v) — B\ v) = (f,v) foralveV, (17.2)

B(n—XAu—1)>0 forallme M C Vy

to define, analyse and apply finite element methods. In (17.2), A(-, -): V x
V' — R is the usual bilinear form corresponding to the nonlocal operator L,
V' is the energy space associated with that bilinear form and the homogen-
eous volume constraint, Vy is the dual space for V, B(-, -): Vg x V — R is
defined as B(n,v) = (n,v), and M denotes the closed convex dual cone

M :={neVg: (n,v) >0 for all v € V,v > 0}.

Of course, A( -, -) is continuous and coercive in V' x V| and Burkovska and
Gunzburger (2019b) showed that B(-, -) is continuous and inf-sup stable
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on V; x V', that is, we have

B
inf sup - DULY)
n€Vavev |Inllvyllvllv

So, the task at hand is to find, for f € Vyand ¢y € V,u eV and A € M
satisfying (17.2).

Under the assumptions f € L*(Q) and (—Ls) — )+l € L?(2), the
improved regularity results

Lsue LX), MNeL*(Q), A< (—Ls—f)s

are derived. For the fractional Laplacian obstacle problem, the improved
regularity results obtained are given by

AeL*(Q) and ue HS™(Q)

with 8 = min{s,1/2 — ¢}, ¢ > 0, s € (0,1). Note that these regularity
results hold for all s € (0,1).

Finite element approximations are defined for the space V* C V of piece-
wise linear continuous polynomials and the space th C Vg of discontinuous
linear polynomials for which locally bi-orthogonal basis functions can be
constructed, that is, for any basis functions &;(z) € VI and ¢, (z) € VP
and for any finite element K, we have

/K€j¢j' = 5jj’/K¢j > 0.

The inf-sup stability with respect to th x VP is proved, so the discrete
problem is well-posed.

An example numerical result is provided in Figure 17.1. Note the differ-
ences in the primal solution u(x) and in the Lagrange multiplier A obtained
using nonlocal and local models. In particular, note that for the nonlocal
case A € L?(12), whereas for the local case \ consists of Dirac delta functions.

> o > 0.

Note that all the results in Burkovska and Gunzburger (2019b) pertinent
to the fractional Laplacian were also proved for the truncated fractional
Laplacian kernel introduced in Section 3.1.1. Moreover, the convergence of
the solution of the obstacle problem with the truncated kernel is shown to
converge to the solution of (the un-truncated) fractional Laplacian obstacle
problem.

18. Reduced-order modelling

Reduced-order modelling (ROM) is the task of constructing a very low-dim-
ensional discretization for parametrized problems that, in order to achieve
a desired fidelity, are usually approximated by a high-dimensional discret-
ization (HDD). The construction of a ROM usually requires an off-line cost
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Figure 17.1. (a) Primal nonlocal solutions for three values of the fractional exponent
and the primal local solution. (b) The local Lagrange multiplier. (c,d) The nonlocal
Lagrange multiplier for s = 0.2 (¢) and s = 0.5 (b). Note the different ordinate
scales in the three Lagrange multiplier plots.

incurred by having to do runs of the HDD for relatively few parameter
choices. Once the ROM is constructed, it can be used on-line instead of the
HDD by, for example, doing additional simulations for many more para-
meter choices at much lower cost than if the HDD were used instead. For
example, in uncertainty quantification settings, one may need to obtain
many simulations in order to obtain good statistical information, so using
the ROM instead of the HHD can result in huge computational savings.
The huge body of literature on ROMs for PDEs attests to their usefulness.

PDE discretizations ubiquitously involve large, sparse linear or nonlinear
discrete systems. Analogous discretizations of nonlocal models usually in-
volve discrete systems of similar size but, due to nonlocality, having much
less sparsity. In some settings, such as those involving fractional Lapla-
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cians, the discrete systems may even be full. The double curse of high-
dimensionality and lack of sparsity of the discrete systems means that:

Reduced-order modelling is needed much more for nonlocal
models than for corresponding local PDE models.

The setting we use to discuss ROMs is parametrized nonlocal diffusion.
Thus we assume that the constitutive function 6s(x, y; pp) in (2.16) depends
on the components of a parameter vector py € I'y € R™?, and the kernel
function ¢s(x,y;py) in (2.16) depends on the components of a parameter
vector py € I'y C RNs. We refer to I'y and Iy as parameter domains. Then,
in the weak formulation (2.9) of the nonlocal diffusion problem, we have the
bilinear form

A’p ,U)

(u
- / / (v(@) — (@) (u(y) — w(@))és (@, ¥; ps)0s (@, u; po) dy de,
QuQz, J Bs()

where we have used (2.16), i.e. v5(x,y) = ¢s5(x, y; Py)0s5(x, Y; Po) X, (2) (Y)-
We also assume that we have in hand a finite element or other variational
discretization® of (2.9) with the bilinear form Ap(-, -), that is, we have the
nonlocal discrete problem for us () € VA(Q U Qz,) given by

Ap(usppvn) = (f,0") for all vy, € VH(QUQg,), (18.1)

where, for economy of exposition, we impose the homogeneous Dirichlet
volume constraint uspp(z) = 0 on Qz, and where V*(QU Qgz,) denotes
a subspace of V,(2Uz,), e.g. one generated via finite elements. Thus,
given any parameter vectors py € I'y and pg € I'p, (18.1) can be solved to
determine the approximation uué,hmu(g’h,p(w) of the exact solution usp(x)
of (2.9) with A(-,-) replaced by Ap(-,-). We let N}, denote the dimension
of VMQUQg,), i.e. of the HDD.

Assume we have a ROM basis Vi, .. ‘= {Vn.rom ()} consisting of Nyom
functions vy, yom(x) € VH(Q U Qz,). Then, for any p, € 'y and py € Ty, the
ROM-Galerkin approzimation uprom(x) € Vi, of the solution usp p(x) of

(18.1) is determined by solving the problem
Ap(tUprom,v) = (f,v) forallve Vy, . (18.2)

Thus the task at hand is to construct a ROM basis such that Ny, <
Ny, which results in ROM solutions up rom () that are acceptably accurate
approximations of usp p(x) for any py € I'y and py € 'y, or at least for
subsets of the parameter domains that are of interest.

Two examples of the use of reduced-order models for nonlocal diffusion are
given by Guan, Gunzburger, Webster and Zhang (2017), who use a greedy

® ROMs for discretizations of the strong form of nonlocal models are also of interest.
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reduced basis (GRB) approach, and Witman, Gunzburger and Peterson
(2017), who use a proper orthogonal decomposition (POD) approach.® Both
approaches involve only the parameter vector pg. The basis construction
and application processes for nonlocal and local models are the same, ex-
cepting of course that in the local case approximate solutions of PDEs are
involved whereas the nonlocal case involves approximate solutions of non-
local models such as (18.2). Thus, here, we simply refer to Guan et al.
(2017) and Witman et al. (2017) for detailed descriptions of the GRB and
POD approaches, respectively, in the context of nonlocal diffusion models.
Witman et al. (2017) considered a time-dependent problem. Guan et al.
(2017) considered random parameter vectors and compared the GRB sur-
rogates to sparse-grid surrogates. In addition to the analyses of the errors
incurred by the ROMs, Guan et al. (2017) and Witman et al. (2017) provide
numerical examples that illustrate the usefulness of the ROMs considered
therein.

Burkovska and Gunzburger (2019a) considered the construction and ana-
lysis of ROMs for nonlocal models parametrized by the horizon § and, for
fractional models, by the fractional exponent s, so that now the parameter
vector pg is present in the kernel function. The parameter domains for
both § and s are intervals bounded away from the origin and infinity, and
greedy algorithms are used to construct the reduced bases. Also provided
in Burkovska and Gunzburger (2019b) are illustrative numerical examples.

A very simple one-dimensional, time-dependent illustration of the effect-
iveness of ROM in the nonlocal setting is given in Figure 18.1. The kernel
function is proportional to 1/|y — x|, so it is singular and non-integrable. A
manufactured solution that has a jump discontinuity at all times is used to
set the data of the problem. A discontinuous finite element Galerkin method
is used both for generating the snapshots for the POD basis construction and
for comparison purposes. Plots for five time instants are provided. From
the figure, it is evident that a one-dimensional POD basis does a poor job of
approximating the HDD finite element solution whereas a six-dimensional
POD basis does an excellent job.

Remark 18.1. Asis the case for the local PDE setting, obtaining solutions
of nonlocal ROM models such as (18.2) incurs costs that depend only on
the dimension N,on of the ROM model, whereas the naive assembly of the
ROM models involves steps whose cost depends on the dimension IV, of the
HDD models used to generate the ROM bases. In the PDE setting, several

5 Although both ROMs we consider, like most others, involve a ‘reduced basis’, i.e. a
basis of lower dimension than that of the parent HDD model, reduced-basis methods
usually refer to ROMs in which the basis consists of solutions of (18.2). In contrast, a
POD basis consists of linear combinations of such solutions.
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Figure 18.1. Comparison at different times between a fine-grid discontinuous Galer-
kin finite element approximation (green line) and POD approximations (black line
with black dots) with one POD basis function (a) and six POD basis functions (b).

strategies have been developed to overcome this obstacle, all of which can
be applied to the nonlocal setting. [

19. Connections to stochastic processes
19.1. Connection of the fractional heat equation to Lévy processes

The fractional heat equation (15.5) (15.4) is associated with a class of
stochastic jump processes, namely Lévy jump processes; see e.g. Meers-
chaert and Sikorskii (2012, Example 6.24) and (Valdinoci 2009).
[Meerschaert and Sikorskii (2012) focuses on models involving “directional
fractional derivatives”, instead of what we are talking about. Only some
discussion about the differences in Page 157. We should use other refer-
ences. e.g., Valdinoci: “From the long jump random walk to the fractional
Laplacian.”]

[Zhi, the reference you gave talks about how to arrive at fractional Laplacian
from random walk. But I thought it’s standard to relate Levy process with
fractional heat equation?? Once we have the Levy-khintchine formula for
the characteristic function of any Levy process, then is it standard to relate
the that to a PDE/fPDE using Feymann-Kac formula? T thought Section
11.2 has these discussions (although it talks about time independent prob-
lem)]

[The discrete random walk proposed in Valdinoci’s paper is an approxima-
tion to the continuous Lévy process. I found that Meerschaert and Sikorskii
(2012, Example 6.24) talks about the modeling of fractional Laplacian from
the probabilistic point of view.]

[Meerschaert and Sikorskii (2012) shows how to obtain the Lévy process as
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a limit as well. Also, I agree that the connection between the fractional heat
equation and a-stable jump processes is a well-established result].
Yes, there is surely connection, but perhaps not equivalence. And
the question really is: what exactly does this connection (as a
limit) imply? For example, does the MSD relation hold in the
limit?
These are nonlocal counterparts of Brownian motion and, as such, they
feature discontinuous sample paths as opposed to continuous ones.
Specifically, let W; denote a jump process conditioned on Wy € € and
assume that such a process is absorbed whenever W; € €z,, where, for the
fractional case, 2z, = R™ \ Q. Also, let f =0, g = 0, and ug(x) denote a
nonnegative function such that

/ uo(x)de = 1. (19.1)
Q

Then, for T' = oo, the fractional system (15.5) (15.4) describes the evolution
of the probability density for the Lévy process W; and we refer to it as the
master equation for Wy; is this result rigorously proved somewhere?
the kernel ~ys5 ~vs in (3.1) represents the jump rate. Formally, we have that

P(W; € Q) = /~u(:1:,t~) de for Q C Q.
Q

The homogeneous volume constraint ensures that the process does not re-

enter the domain and condition (19.1) ensures that Wy € Q.

Burch and Lehoucq (2015) described the connection between nonlocal
symmetric diffusion equations and stochastic processes and presented a clas-
sification of the latter based on kernel properties. They classified the process
W4, introduced in this section, as an infinite-activity process because on any
compact time interval the number of jumps in the sample path is infinite.
This is a consequence of the fact that |&|~?~2 is a non-integrable function
on any bounded region containing the origin. These processes can be fur-
ther characterized by whether or not |z|~4T1=2% is an integrable function on
any bounded region containing the origin; if it is integrable (s < 0.5), the
process is of finite variation; otherwise (s > 0.5), the process is of infinite
variation (Burch and Lehoucq 2015).

Remark 19.1. Although the connection to stochastic processes is broadly
investigated in the context of fractional operators, more general nonlocal
diffusion operators as in (1.6) can also be associated with Markov jump
processes (Burch and Lehoucq 2015). When the kernel is of fractional type,
such processes are still classified as infinite-activity processes, whereas for
integrable kernels they are referred to as finite-activity processes, that is,
on any compact time interval the number of jumps in the sample path is
finite. The truncation of a kernel simply means that jumps are limited to
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a finite distance; as a consequence, such processes are classified as being
of finite range. In Section 15.219.2 we discuss the connection of nonlocal
convection—diffusion models to non-symmetric stochastic processes. [J

Remark 19.2 (exit-time problem). An extensively studied problem in
the context of Brownian motion is the estimation of the first passage time
of a stochastic process through the boundary 9€). Instead, due to its dis-
continuous nature, a Lévy Markov jump process jumps outside 2 without
crossing its boundary. The solution of the evolution equation (15.5) (15.4)
allows us to solve the first exit-time problem for jump processes. This prob-
lem was first studied in Burch and Lehoucq (2015) and further analysed in
Burch et al. (2014) and D’Elia et al. (2017).

We introduce the random variable 7 := inf{t > 0, W; € Qg,: Wy € Q},
which denotes the first exit time of W; from €. Its probability distribution
is given by

F.(t)=1- /Qu(m,t) de.

The expected exit time from € is given by the expected value of the ran-
dom variable 7: E(7) = [;° [ u(x,t)dxdt. Burch and Lehoucq (2015)
established that, for symmetrlc 1nﬁn1te and finite activity Lévy jump pro-
cesses, the expected exit time is finite as long as the initial condition wug is
square-integrable. [

19.2. Connection of nonlocal convection—diffusion to stochastic
non-symmetric jump processes

Whereas in general the kernel function v.q5(x,y) is allowed to take on
negative values, when the nonlocal convection—diffusion equation is asso-
ciated with a jump process, 7Yeq5(x,y) represents a jump rate and, as a
consequence, we assume Yeq5(x,y): R? x R? — [0, 00).

As in Section 19.1, we let W; denote a jump process conditioned on
Wy € 2 and assume that such a process is absorbed whenever W; € Qz;.
For f =0, up(x) satisfying (19.1), and T' = oo, the nonlocal system (15.6)
describes the evolution of the probability density for the process W; with
jump rate yeqs(x,y) > 0; we refer to (15.6) as the master equation for the
jump process Wy. As in the symmetric case, the homogeneous volume con-
straint ensures that the process does not re-enter the domain and condition
(19.1) ensures that Wy € Q. The difference in the rates v.q5(y, ) dx and
Yed,s(,y) dy gives the rate of change of the probability u(x,t)dx and the
assumption on f implies that at the steady state, these rates are equal.
Furthermore, standard probability arguments imply that W; is Markov; as
such, we refer to W; as a non-symmetric finite-range Markov jump pro-
cess. In addition, note that for processes governed by the master equation
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(15.6), the probability is conserved over 2 (D’Elia et al. 2017). On the other
hand, the effect of the nonlocal convection term is a drift of the mean of
the position; the latter becomes more and more pronounced as the extent
of the nonlocal interactions vanishes; in fact, the nonlocal convection term
converges to pure drift.

Remark 19.3 (exit-time problem for non-symmetric jump pro-
cesses). The problem described in Remark 19.2 for Lévy processes can be
generalized in a straightforward manner to the non-symmetric finite-range
Markov processes described in this section. In fact, following the arguments
of Burch and Lehoucq (2015) for the symmetric case, D’Elia et al. (2017)
have shown that the expected exit time is finite as long as the bilinear
form in (15.7) is coercive and the initial condition wug is square-integrable.
Furthermore, D’Elia et al. (2017) have proved that

E(r) < Crlluollz2(a)

where U only depends on the coercivity constant of the bilinear form A4 s.

20. A turbulent flow application

A fundamental problem of fluid flows is to ascertain information about
the paths taken by two initially closely positioned particles, in particular
what happens, over a long time period, to the separation between a pair
of particles. Such knowledge is crucial, for example, to predicting how pol-
lutants spread. Intuitively, over a long time period, for laminar flows one
expects that the separation between initially close particle pairs remains
‘small’ and, in fact, the mean-square separation is proportion to ¢. Also
intuitively, over a long time period, for turbulent flows one expects that at
least some initially close particle pairs may become widely separated. What
happens to the separation between pairs of particles in turbulent flows is
the issue addressed in the classic paper by Richardson (1926). This subject,
often referred to as Richardson pair dispersion, has remained of interest to
the present day. Reviews on the subject of Richardson pair dispersion are
provided in Salazar and Collins (2009) and Swaford (2001).

Using dimensional analysis arguments, Richardson predicted that the
mean-square separation in turbulent flows is proportional to ¢3. Although
it is generally accepted that the mean-square separation is not proportional
to t and that it grows faster than that, there is some controversy about the
exponent 3, referred to as the Richardson constant. For example, a t2 de-
pendence is advocated by Bourgoin et al. (2006). Dispersion faster than ¢ is
often referred to as superdiffusion. As discussed in Section 3, the fractional
Laplace operator, when substituted for the classical Laplacian, is known to
result in superdiffusive spread in ‘parabolic’ equations. Gunzburger, Jiang
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and Xu (2018) studied a modification of the Navier—Stokes equations intro-
duced in Chen (2006), where the modification is that a fractional Laplacian
viscous term is added to the standard Laplacian viscosity term.

The model considered is given by

{ut +(u-V)u—vAu+o(-A)y'u+Vp=f i (0,T] x €, (20.1)

Vou=0 in (0,7] x €,

where s € (0,1), Q C R? denotes a bounded, open domain, ¢ denotes a
constant and [0, 7] denotes a temporal interval of interest.

Gunzburger et al. (2018) have investigated the energy spectrum of the
modified Navier Stokes equations (20.1). They have shown that for the
special value of the fractional exponent s = 1/3, the corresponding power
law of the energy spectrum in the inertial range has a deviation from the
well-known Kolmogorov —5/3 scaling, that is, instead of a k=5/3 decay in the
spectrum, one has k~%/3%8 for a constant 8, where k denotes the frequency.
For other values of s € (0,1), the power law of the energy spectrum is
consistent with Kolmogorov’s theory.

The connection to Richardson dispersion is made by noting that the frac-
tional Laplacian is the generator of 2s-stable Lévy process. The special
value of s = 1/3 corresponds to the 2/3-stable Lévy process for which the
mean-square displacement is proportional to t3. Thus the fractional Lapla-
cian with s = 1/3 introduces the corresponding Lévy flight mechanism into
the system and represents Richardson pair dispersion.

An IMEX scheme can be used to discretize the system (20.1); a backward-
Euler scheme of that type is considered in Gunzburger et al. (2018) and
is proved to be unconditionally stable and first-order accurate. Both the
usual viscous term vAw and the added fractional viscous term o(—A)%u
are treated implicitly. Because of the implicit treatment of the fractional
Laplacian term, the scheme requires the solution of a dense linear system
at each time step. Having to also handle the standard Navier—Stokes terms
makes for an even greater computational challenge. Thus it is tempting to
lag the fractional term to the previous time step. Unfortunately, this leads
to serious stability issues, so that term has to be treated implicitly. To mit-
igate these challenges, the following two-stage operator splitting algorithm
is introduced in (Gunzburger et al. 2018).

Stage 1. Given u", find w"*! satisfying

n

w' T —
+ (un . V)wn+1 o VAwnJrl + vanrl — fnJrl o O_(_A)aun’

At
V- w"t =0.
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Stage 2. Given u" and w" !, find u" ™! satisfying
2Ato(—A)*(u" T — ™) 4 " — T =0,

The Stage 1 problem can be solved using a legacy Navier—Stokes code with
the only modification necessary being in the construction of the right-hand
side. In the second stage we solve a nonlocal Poisson problem for the frac-
tional Laplace operator which involves a symmetric, positive definite, albeit
dense linear system. This two-stage algorithm, although involving two lin-
ear system solves per time step, when compared to the algorithm in which
the two viscous terms are treated monolithically, requires much less coding
effort and introduces efficiencies not possible for the monolithic scheme.

Of course, we have glossed over the fact the the fractional Laplacian
involves an integral over all of R%. Moreover, we also have to choose a
spatial discretization scheme. For the first of these, we can, for example,
use the truncated approximation discussed in Section 3.1.1, whereas for the
latter we can use a finite element method based on the Taylor—-Hood finite
element pair (Girault and Raviart 1986), for example. Such fully discrete
schemes involving the two-stage time-stepping algorithm have proved to be
unconditionally stable and satisfy the error estimate

1 3
(") = sl < © 5+ + ).
where u(t") denotes the exact solution evaluated at time ¢t = t,, and with
no truncation of the fractional Laplace operator involved, uj s= denotes the
approximate solution, and h and At denote spatial and temporal grid size
parameters, respectively. Note that for s = 1/3 we have that 1/§2 = 1/§2/3.

Remark 20.1 (another fractional turbulence model). We point out
that a similar fractional model for turbulence has been introduced in (Song
and Karniadakis 2018); here, the authors identify a universal form of frac-
tional order that holds for any Reynolds number. The same model is further
investigated in (Pang et al. 2019a) in the context of fractional parameter
identification, see Section 16.1.

21. Peridynamics models for solid mechanics

In Sections 1-3 we considered nonlocal models for scalar-valued functions
that are appropriate for modelling anomalous nonlocal diffusion problems,
for example. To provide an example of a nonlocal model for vector-valued
functions, in this section we consider a peridynamics model for the vector-
valued” displacement function in solid mechanics. Peridynamics is a non-

” The most obvious nonlocal model involving a vector-valued function is the vector Lapla-
cian problem —Awu = f, where Aw is characterized in (1.27). This model can be studied
in much the same way as we have done in this article for the models of Section 1.
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local, continuum model that has been shown to provide an effective means
for nucleating and propagating defects such as fractures (Hu, Ha and Bobaru
2012, Lipton 2014, Lipton 2017, Bobaru and Zhang 2015, Du, Tao and
Tian 2018¢).

The particular model we consider is the linear state-based peridynamics
model for solid mechanics, introduced and analysed in Mengesha and Du
(2014), that is a nonlocal analogue of the classical Navier equations of linear
elasticity. The model of Mengesha and Du (2014) is a generalization of the
peridynamics model introduced in Silling et al. (2007) and Silling (2010)
when specialized to linear constitutive laws. The model of Mengesha and
Du (2014) is defined via an energy minimization principle for which the
corresponding Euler-Lagrange equation provides a weak formulation of the
problem. It should be noted that although the model of Mengesha and Du
(2014) generalizes the models in Silling et al. (2007) and Silling (2010), those
earlier models are ubiquitous in peridynamic computations. Additionally,
it should be noted that the models of Silling et al. (2007) and Silling (2010)
cannot be cast in terms of fractional kernels.

To define the model considered, we need to introduce the operators® D;
and Dy ,, which are respectively defined via their action on a vector-valued
function u(x) by

(D"w)(@, ) = —(uly) — u(@) @ — (2L.1)

and

(Dfu)(x) = /Q (D) (&, y)ws(e. ) dy,

where (we did not assume v5(x,y) = vs(|ly — x|))

ws(@, ) = — sy — 2y — |
ms(x)

and
ms(a) = [ 2s(ly — o)y — ol dy.
We define the energy space

Vs = {u € [LH(QUOL))": [|ully, , < o0, u |a, =0}

8 In (1.15), the operator D} is defined via its action on a scalar-valued function u(z),
resulting in Dju being a vector-valued function of @ and y. In (21.1), Dj is defined
via its action on a vector-valued function u(x), resulting in Dju being a tensor-valued
function of & and y. This is entirely analogous to the local case in which Vu is a vector
and Vu is a tensor.
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equipped with the norm
o= [ [ sy @D .y dy d,
auez, Jaues,

where Tr(-) denotes the trace operator acting on a tensor. Also, for func-
tions u(x) € V, 5 and v(x) € V5, we define the symmetric bilinear form

Patuno)i= [ (1= 20 1D ) ) oD o) @)

+ a/ vs(ly — |)Tr(D*u)(x, y) Tr(D*v)(x, y) dy) dx, (21.2)
Q

where k and o denote scalar constants related to the bulk and shear modulus
of the material.

With the notation established, the weak formulation of the peridynamics
problem considered is given as follows:

Seek u(x) € V), 5 such that u(x) = 0 on 7, and
Ps(u,v) = (f,v) forall v € V5
with v(x) = 0 on Qg,, (21.3)

where (-, -) denotes the [L?(Q)]¢ inner product. For simplicity, we have
imposed a homogeneous volume constraint on the displacement w. Non-
local traction constraints and inhomogeneous volume constraints can also
be treated.

Mengesha and Du (2014) established the coercivity and continuity of
the bilinear form Ps(-, -) with respect to the energy space Vs, so the
well-posedness of problem (21.3) can be rigorously established via the Lax—
Milgram theorem. Additional discussions, including studies with other types
of nonlocal constraints, can be found in Mengesha and Du (2015, 2016) and
Du (2019).

Remark 21.1. Some choices for the peridyamics kernel function v;5(|z|) are
those with bounded second moments, including those that are comparable
to |z|7972 in the sense that they have the same singular behaviour at the
origin as that of the fractional kernel (2.22). Of particular interest in the
peridynamics setting are kernel functions that are both radial and integrable
and also fractional kernels with s < 1/2 because the corresponding function
spaces in which the peridynamics model is well-posed admit functions with
jump discontinuities. As such, discontinuities in the displacement w(x)
can be viewed as fracture. Functions comparable to |z|~! are integrable
for d > 2 and are the ubiquitous choice made in peridynamics modelling,
starting with the works of Silling (2000), Silling et al. (2007) and Silling
(2010), in which peridynamics was first introduced. [

taken care of
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The strong formulation corresponding to the weak formulation (2.9) has
also been derived by Mengesha and Du (2014). In the local limit, i.e. as § —
0 and for sufficiently smooth wu(x), the weak solutions of the nonlocal state-
based peridynamic model with an appropriately chosen kernel converge to
that of the classical Navier—Cauchy equation of linear elasticity.

Remark 21.2 (bond breaking). There is more to peridynamics than just
the weak and strong formulations introduced above. Certainly, as discussed
in Remark 21.1, those models admit solutions having jump discontinuities
over co-dimension one interfaces. For example, for kernels 7s(z) that are
both radial and integrable o5(z),, solutions are no smoother than the data so
that, in general, discontinuities in the boundary data or in the source term
will result in discontinuities in the solution. However, in the time-dependent
setting, fracture and other defects can arise, for example due to large tensile
loads, even if the initial condition data and other data are smooth. Thus,
to model fracture nucleation, the peridynamics model equations, whether
in weak or strong form, have been supplemented by a bond-breaking rule in
some cases. Basically, such rules state that two points’ @ and y that are
initially bonded, ¢.e. within a distance ¢ from each other, become un-bonded
if at a later time those points become separated by a distance greater than
6. Bond-breaking rules and how they effect the nucleation of cracks are
more complicated than the simplistic description just given, but further
discussion is beyond the scope of this article. Detailed explanations may
be found in Silling (2000), Lipton (2014, 2017), Lipton, Lehoucq and Sha
(2018) and Du et al. (2018¢), for example. [

For additional detailed discussions about the material presented in this
section, see e.g. Du et al. (2012a), Mengesha and Du (2016) and Du (2019),
as well as Mengesha and Du (2014).

Numerical methods for both the strong and weak formulations of the
peridynamics model have been developed. For example, consider the finite
element methods discussed in Section 5. Let {V}, 54} C V} s denote a family
of finite element subspaces, where h characterizes the mesh size, and for any
v € Vs we have a family of elements {v;, € V}, 5} such that [|vy -y, ; —
0 as h — 0 for any fixed 6 > 0. For the finite element discretization of the
state-based linear peridynamic model (21.3), we merely replace V), s with
Vp,s,n in that equation to arrive at the following discrete problem:

Find usp € V55 such that Ps(usp, v) = (f,v)p2 for all v € V,, 5.
(21.4)

The analysis of solutions of this problem can be formulated within the gen-

 Note that peridynamics models, such as those associated with (21.3), are posed in a
Lagrangian framework.
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eral framework of the AC schemes originally presented in Tian and Du
(2014). Tt is rigorously shown in Tian and Du (2014) that, for linear mul-
tidimensional state-based peridynamic systems associated with (21.3), all
conforming Galerkin approximations of the nonlocal models containing con-
tinuous piecewise linear functions are automatically AC. This means that
they can recover the correct local limit as long as both § and A are dimin-
ishing, even if the nonlocality measure ¢§ is reduced at a much faster pace
than the mesh spacing h.

As was the case for the nonlocal diffusion case, if h = 0(d) as 6 — 0, then
we are able to obtain the correct local limit even for discontinuous piecewise
constant finite element approximations when they are of the conforming
type. Practically speaking, this implies that a mild growth of bandwidth
in the finite element stiffness matrix is needed as the mesh is refined, in
order to recover the correct local limit for Riemann sum-like quadratures or
piecewise constant finite element schemes. On the other hand, if a constant
bandwidth is kept as the mesh is refined, as is often advocated practiced in
the peridynamics community, approximations may converge to an incorrect
local limit.

22. Image denoising

We describe the use of nonlocal diffusion operators in a variational set-
ting for image denoising. In this context, by considering intensity patterns
in neighbourhoods of points surrounding a pixel, nonlocal filters allow for
simultaneous conservation of structures (patterns) and textures. Classical
methods, which use differential operators, do not necessarily guarantee fea-
ture preservation because, by definition, they only consider infinitesimal
neighbourhoods around points.

Even though nonlocal-type filters have been used for decades, we refer
to Buades, Coll and Morel (2010) as the first foundational work that can
be related to a nonlocal diffusion equation as presented in this article. In
that paper, the nonlocal-means (NL-means) filter for image denoising is
proposed. Given a blurred (or noisy) image f defined by its intensity in the
image domain 2, the NL-means filter is defined as

NL[f](x) = L / e Bl @ FW/D* £ dy forallwe Q  (22.1)

c(x)
where

do(f (), f(y)) = / Gul2)|f (2 + 2) — f(y +2) dz,
Q

with G4(z) a Gaussian with standard deviation a and with ¢(x) a normal-
izing factor. Note that the nonlocal filter is directly applied to the blurred
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image, that is, the nonlocal operator is not associated with a diffusion equa-
tion.

The variational interpretation of such a filter was introduced by Kinder-
mann, Osher and Jones (2005), who interpreted the NL-means and other
neighbourhood filters as regularizing functionals. Specifically, they for-
mulated the denoising problem as an unconstrained optimization problem
where the objective is to minimize the nonlocal functional

gun= [ [o(ME 1 o —yhay + ). 22
Q Q

where v is a symmetric window that determines the extent of the nonlocal
interactions and g determines the type of filtering. Here, F'(u, f) is a fidelity
term, usually a measure of the distance between the reconstructed and noisy
images. The outcome of the optimization is the reconstructed image u. For
NL-means filtering, (22.2) becomes

jm“://ﬁ—ewwwﬂwwﬁwm—mnm+FWJ> (22.3)
Q Q

Such a minimization problem cannot be directly related to the nonlocal dif-
fusion theory reported in this article because of the potential non-convexity
of the functionals. For the same reasons, Gilboa and Osher (2007) intro-
duced a modified convex functional (still based on nonlocal filters) that re-
sembles common functionals used in PDE-based imaging approaches such as
total variation functionals (Rudin, Osher and Fatemi 1992). In Section 22.1,
we describe methods based on this concept and highlight their connection
to the solution of nonlocal diffusion problems, including integral fractional
problems. In all the examples below, unless otherwise stated, the relation
between clean and noisy image is the additive noise model, i.e. f = u+n,
where u denotes the clean image, f the noisy image and 7 the noise.

22.1. Image deblurring via minimization of a nonlocal functional

Gilboa and Osher (2007) tackled the image deblurring problem by solving
an unconstrained optimization problem with objective functional

w

1
J(u; f) = §|U\%/C(Q) +5llu— Fl72(0y- (22.4)

where |- |y, denotes the energy seminorm defined in (2.5) associated with
an appropriate kernel 5, whose definition depends on the type of filtering
(either NL-means or other neighbourhood filters) and the fidelity term con-
trols the difference between the reconstructed image and the noisy image.
Note that the weight w € RT could be replaced by a spatially dependent
function that is included within the L?-norm.
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The Euler-Lagrange equation that determines the necessary conditions
for optimality is given by the nonlocal reaction—diffusion equation

—Lu+w(u— f) =0, (22.5)

whose well-posedness can be determined as described in Section 2.1 based
on the properties of the kernel ~s.

Figure 22.1, taken from Gilboa and Osher (2007), provides an example of
a nonlocal deblurring reconstruction and also a comparison with a classical
method local method, namely the total variation (TV) method of Rudin
et al. (1992). The clean and noisy images are given in Figure 22.1(a,b) and
the nonlocal and local reconstructions are given in Figure 22.1(c,d). These
results show the superior ability of nonlocal filters to capture high-contrast
features compared to classical methods.

Gilboa and Osher (2008), in a follow-up paper, provided additional in-
sights about the theoretical aspects of the method of Gilboa and Osher
(2007) and about other types of filters, and also provided comparisons with
other methods.

Remark 22.1. A very similar formulation can be used for image deconvo-
lution (Lou et al. 2010) where the relation between a clean and noisy image,
f = Ku+ n, involves a convolution operator IC. This renders the denoising
problem more complicated. In this setting, the objective cost functional of
the unconstrained optimization problem is given by

/ (k(x) * ulz) — f())? da

Q

w

1
Jo(u) = 5’“\%@(9) Ty

and the Euler-Lagrange equation is the nonlocal diffusion equation
—Lu=wkx(f —k*u),
where k denotes the adjoint of k. [J

Remark 22.2. Similar operators to those discussed in this section have
also been used for image segmentation (Gilboa and Osher 2007), filtering
(Darbon et al. 2008) and image and video recovery (Buades, Coll and Morel
2008). O

Remark 22.3. In the literature, denoising nonlocal operators are not ne-
cessarily associated with nonlocal filters such as NL-means, but can be de-
scribed by fractional operators, specifically by the spectral fractional Lapla-
cian; see e.g. Antil and Bartels (2017). O

22.1.1. Optimization of the denoising parameters
The quality of the reconstruction strongly depends on model parameters
(e.g. parameters in the kernel) and on the weight parameter w. However,
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(a) clean (b) noisy

(c¢) nonlocal method (d) local method (TV)

Figure 22.1. Clean, noisy, and nonlocal and local reconstructions of a noisy image
featuring high-contrast features.
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model parameters are often unknown (see Section 16) and the selection of
w is not a trivial task. D’Elia, De los Reyes and Trujillo (2019¢) considered
a bilevel optimization approach for the identification of kernel parameters
(for integrable kernels, including NL-means) and of the weight function
w: Q — RT. Because the estimation of kernel parameters is discussed in
Section 16, here we only consider the formulation for the identification of
w, in its simplest setting. R

Given a clean image and the corresponding blurred image, (4, f), the
bilevel optimization problem is formulated as

‘ A B
min (jw(u, w) = |lu— 72 + §|le§11(9>)

such that u = arg min (ju(u,w) = 1|u|%/ @) +/ w(u — f)? dm), (22.6)
ueVe 2 € Q

where the feasible set is W = {w € H(Q): 0 < w(x) < w}, for some
w<oo. Note that the constraint in (22.6) is equivalent to the diffusion—-
reaction equation in (22.5). The well-posedness of the bilevel optimization
problem has been proved by D’Elia et al. (2019¢). They also introduce a
second-order optimization algorithm for its solution, and give insights into
implementation aspects and numerical performance. Also, they illustrate
the theory and advantages of using nonlocal models via several numerical
tests on standard benchmark images.
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