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Abstract. Nonlocal models provide exceptional simulation fidelity for a broad spectrum of
scientific and engineering applications. However, wider deployment of nonlocal models is hindered
by several modeling and numerical challenges. Among those, we focus on the nontrivial prescription of
nonlocal boundary conditions, or volume constraints, that must be provided on a layer surrounding
the domain where the nonlocal equations are posed. The challenge arises from the fact that, in
general, data are provided on surfaces (as opposed to volumes) in the form of force or pressure
data. In this paper we introduce an efficient, flexible, and physically consistent technique for an
automatic conversion of surface (local) data into volumetric data that does not have any constraints
on the geometry of the domain or on the regularity of the nonlocal solution and that is not tied to
any discretization. We show that our formulation is well-posed and that the limit of the nonlocal
solution, as the nonlocality vanishes, is the local solution corresponding to the available surface data.
Quadratic convergence rates are proved for the strong energy and L? convergence. We illustrate
the theory with one-dimensional numerical tests whose results provide the groundwork for realistic
simulations.
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1. Introduction and motivation. Nonlocal models employ integral rather
than differential operators which allows them to relax the regularity constraints of
partial differential equations (PDEs) and to capture effects arising from long-range
forces at the microscale and mesoscale and that are not accounted for by PDEs. Conse-
quently, nonlocal models provide exceptional simulation fidelity for a broad spectrum
of applications, such as fracture mechanics [17, 18, 26], anomalous subsurface trans-
port [5, 24, 25], phase transitions [4, 8, 14], image processing [1, 15, 16, 19], multiscale
and multiphysics systems [2, 3], magnetohydrodynamics [23], and stochastic processes
[6, 9, 20, 22].
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The main difference between PDE models and the nonlocal models we consider is
that, in the former case, interactions between two domains only occur due to contact,
whereas in the latter case, interactions can occur at a distance. In this work, for sim-
plicity of the exposition and without loss of generality (see Remark 3.1), we consider
the nonlocal counterpart of elliptic differential operators. In its simplest form, the
action of a nonlocal diffusion operator on a scalar function u : R® — R is given by

Lu@)=C [ (uly) ~u(@) y(wy)dy, @R,
where the kernel function ~y, usually with bounded support, is related to the specific
application and determines the smoothing properties of £. The integral form above
allows us to catch long-range interactions so that every point in a domain interacts
with a neighborhood of points. Also, such a form reduces the regularity requirements
for the solution, which is able to describe discontinuous (for, e.g., fracture mechanics)
or anomalous (for, e.g., subsurface dispersion) behaviors.

However, the increased accuracy of nonlocal models comes at a price: several
modeling and numerical challenges arise. These include the nontrivial prescription of
“nonlocal” boundary conditions, the often prohibitively expensive numerical solution,
and the definition of model parameters (such as 7y), often unknown or subject to
uncertainty. All of these (open) problems can hinder wider deployment of nonlocal
models and are the subject of current research in the fast-growing nonlocal community.
In this work we focus on the first challenge.

Because of nonlocal interactions, when solving a nonlocal problem in a bounded
domain, the prescription of classical boundary conditions does not guarantee the well-
posedness of the equations [11]; in fact, in general, nonlocal boundary conditions, or,
more properly, volume constraints, must be defined on a layer surrounding the do-
main. However, it is often the case that such information is not available, whereas it
is easy to measure surface (local) data. Consequently, one of the biggest challenges to
be addressed before nonlocal models can be widely applied in realistic contexts is the
conversion of local boundary conditions, defined on surfaces, into volume constraints,
defined on volumes. We stress that this is an ill-posed problem as there are infinitely
many nonlocal solutions corresponding to the same local condition; the “true” non-
local volume constraint is, indeed, unknown. What we propose is a method based on
a specific concept of consistency: the convergence of the nonlocal solution to its local
counterpart at the limit of vanishing nonlocality.

Previous attempts to tackle the conversion are either too expensive (solving an
optimization problem) or too restrictive (requiring conditions on geometry or dimen-
sionality).

The first approach is an optimization-based coupling method that mimics gen-
eralized overlapping domain-decomposition formulations [10]. The main idea is to
decompose the domain into local and nonlocal subdomains where the former is placed
in a neighborhood of the part of the boundary where only surface data are available.
This choice allows both the local and nonlocal problems to be well-posed and cir-
cumvents the prescription of volume constraints when not available. On the other
hand, this method requires the solution of a nonlocal minimization problem whose
algorithm may require several computations of the nonlocal solutions, dramatically
increasing the computational effort.

Paper [7] is the first to interpret the nonlocal Neumann boundary condition as
a body force acting on the boundary layer of the domain, where L' convergence of
nonlocal solutions to the corresponding local ones is shown. Later, in [28] a careful
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modification of the body force in a one-dimensional setting is found that leads to a
second order uniform convergence of solutions as the nonlocal interaction vanishes.
The second order convergence result is then extended to two dimensions in [31], where
the curvature of the computational domain plays an important role in the definition of
the modified body force. Recently, [13] achieved the second order uniform convergence
in one dimension with another approach. To the best of our knowledge, no work has
yet discussed second order nonlocal approximations to the local Neumann boundary
value problems in space dimension higher than two. The complexity of geometric
bodies to be dealt with in high dimension is an obvious hindrance.

We propose a computationally cheap, flexible, and physically consistent method
for an efficient conversion that has no constraints on dimensionality, geometry, and
regularity of the nonlocal solution and that is not tied to any discretization. Our main
and most promising approach consists of three simple steps:

(A) Solution of a computationally cheap local model using available surface data.

(B) Derivation, from (A), of traction forces corresponding to the local solution in

the thick nonlocal layer.

(C) Solution of the nonlocal model using the forces derived in (B).

Note that the forces computed in (B) are equivalent to nonlocal Neumann data, which
are used as volume constraints in (C) for the solution of the nonlocal problem. Also
note that local and nonlocal problems are completely uncoupled; this feature becomes
very powerful when dealing with large-scale problems (as is often the case in engineer-
ing applications); in fact, local and nonlocal solvers can be used as black boxes, and
the overall cost of the proposed method is the same as that of a nonlocal problem,
for given nonlocal boundary data. This is due to the fact that the cost of solving
the local problem is negligible compared to that of the nonlocal problem. Note that
the uncoupling of local and nonlocal equations allows for completely independent dis-
cretizations of the local and nonlocal equations.! In fact, application of the nonlocal
operator to the discretized local solution in step (B) only requires projection of the
latter onto the nonlocal discretization space. Furthermore, this approach is such that
the nonlocal solution computed in (C) reduces to the solution computed in (A) as
the nonlocal interactions vanish, with a quadratic rate of convergence for both the
(nonlocal) energy and L? norms with respect to the characteristic interaction length.

A few considerations are in order. Even though we do not require additional
regularity of the nonlocal solution, we do assume that the given surface data are such
that the corresponding local problem computed in (A) is well-posed (e.g., the classical
Poisson equation square integrability over the boundary of the force/pressure data is
enough to guarantee the existence and uniqueness of the local solution). We also
mention that in the analysis of the asymptotic behavior of the nonlocal solution for
vanishing nonlocality, we assume that the local solution belongs to C*. However, this
additional regularity is not required in practice.

We expect the proposed strategy to advance the state of the art for predictive
nonlocal modeling by providing an efficient in-demand tool that will impact a broad
class of applications and unlock the full potential of nonlocal models.

Note that we also introduce an alternative, more straightforward strategy that
has exactly the same properties of the approach described in (A)—(C) but delivers
solutions whose behavior is closer to the local one.

The paper is organized as follows. In the following section we introduce the

L As an example, one can use a mesh-free discretization for the nonlocal models and a mesh-based
one for the local model.

© 2020 National Technology & Engineering Solutions of Sandia, LLC
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notation and recall relevant results of the nonlocal vector calculus, a theory developed
in the last decade by Du et al. [12] that allows one to study nonlocal diffusion problems
in a very similar way as PDEs by framing nonlocal equations in a variational setting.
In section 3 we introduce two alternative strategies to the conversion problem, discuss
their properties, and provide a qualitative comparison. In section 4 we study the
convergence to the local limit of the nonlocal solution for the most promising strategy
and show quadratic strong convergence in both the nonlocal energy norm and L?
norm. In section 5 we illustrate the theoretical results in a one-dimensional setting.

2. Preliminaries. In this section we introduce the nonlocal vector calculus and
recall results relevant to this paper. Let ©Q be a bounded open domain in R?, d =
1,2,3, with Lipschitz-continuous boundary 952, and let a(x,y): R? x R? — R? be an
antisymmetric function, i.e., a(y,x) = —a(x,y). For the functions u(x): R — R
and v(z,y): R? x R? — R? we define the nonlocal divergence D: RY — R of v(zx,y)
as

@) W@ [ ey +re) @yl ocR.
and the nonlocal gradient G: R? x R? — RY of u(z) as

(2.2) G(u)(z,y) = (u(y) — u(x))a(z,y), x,y € RY

It is shown in [12] that the adjoint D* = —G. Next, we define the nonlocal diffusion
L: R% — R of u(x) as a composition of the nonlocal divergence and gradient operators,
ie.,

(2.3) Lu(x) := D(Gu)(z) = Z/Rd (u(y) — u(z)) v(x,y) dy, x € RY,

where v(z, y) := a(z,y) - a(z,y) is a nonnegative symmetric kernel.? Note that this
is the same operator introduced in section 1. We define the interaction domain of an
open bounded region Q € R? as

Qr={yeRI\Q: y(x,y) #0, zcQ}

and set Q = QU Q;. This domain contains all points outside of © that interact with
points inside of €2; as such, ; is the volume where nonlocal boundary conditions
must be prescribed to guarantee the well-posedness of nonlocal equations (see section
2.1). We make the following assumptions: for x € Q

{ v(@,y) >0  VyeB.(x),
Vz,y) =0 VyeQ\B(n),
where B.(z) = {y € Q: |z —y|| <& = € Q}, and ¢ is the interaction radius

or horizon. For such kernels the interaction domain is a layer of thickness e that
surrounds €2, i.e.,

(2.4) U ={yeR\Q: |y—=| <e, z e}

2There are more general representations of the nonlocal diffusion operator; these are associated
with nonsymmetric and not necessarily positive kernel functions. In such cases, £ may define a model
for nonsymmetric diffusion phenomena; we mention, e.g., nonsymmetric jump processes [9].

© 2020 National Technology & Engineering Solutions of Sandia, LLC
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I'y

I'p

F1G. 1. Left: the domain Q, the support of v at a point © € Q, Bs(x), and the induced
interaction domain Qy. Right: two-dimensional configuration. Here, Qn UQp = Qr, QU Q = Q,
and Ty Ul'p =T

We refer the reader to Figure 1 (left) for an illustration of a two-dimensional do-
main, the support of =, and the induced interaction domain. Corresponding to the
divergence operator D(v), we introduce a nonlocal interaction operator,

(2.5) N(@v)(z) = —/S vz y) +v(y,z) oz, y)dy, xeQ

]

The integral [, N(v)dz generalizes the notion of a flux [, q-ndA through the
boundary of a domain, with A (v) playing the role of a flux density q - n. The
key difference between (2.5) and a conventional flux is that in the former the flux
is a volume integral, whereas in the latter it is a boundary integral. Nonetheless,
the nonlocal divergence and interaction operators satisfy a nonlocal Gauss theorem
JoD(v)dx = [, N(v)dz. We refer the reader to [12] for additional nonlocal vector
calculus results, including generalized nonlocal Green’s identities.

We respectively introduce the nonlocal energy seminorm, nonlocal energy space,
and nonlocal volume-constrained energy space,

1
el =5 [ [ (Gv? dyde.
QJQ

(2.6) V(Q):={ve L*(Q) : [[]vlllg < o},

Ve(@):={veV(Q) : v=00nQp} for Qp C Q.

We also define the volume-trace space V,(Q) := {v]a, : v € V(Q)} and the dual
spaces V'(Q) and V/(Q) with respect to L2-duality pairings.

We consider kernels such that the corresponding energy norm satisfies a Poincaré-
like inequality, i.e., [[v]lo g < Cpnll|v[|] for all v € V.(Q), where Cp,, is referred to as
the nonlocal Poincaré constant. Kernels satisfying this property can be found in
[11, section 4.2]; for such kernels,® in [21] it is shown that the Poincaré constant is
independent of ¢ if € € (0,e0] with a certain fixed number &o.

A popular example is the class of integrable kernels* for which V() and V.(Q)
are equivalent to L2(Q2) and L2(Q); in this case, the operator £ is such that £ :

L3(Q) — L*(Q) [11].

3The nonlocal Poincaré inequality holds for an even more general class of properly scaled, non-
increasing, kernel functions; see [21].

4Specifically, we are referring to kernels for which there exist positive constants 1 and 72 such
that 1 < fﬁﬂBE(m) v(z,y) dy and [~ (z,y) dy < 73 for all = € Q.
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2.1. Volume-constrained nonlocal diffusion problems. We refer the reader
to the simplified configuration in Figure 1 (right); here we let I' = 9Q), Q; = Qn U p

such that Qxy NQ2p =0, and T' = I'y UT'p such that Ty NT'p = (. For s € V/(Q),
gn € V'(Qy), and v, € V,(Q), we want to solve

—Lu, = s, x € Q,
(27) 7N(gun) =0gn, TCE QNa
Up = Un, z € Qp,

where (2.7)2 and (2.7)3 are the nonlocal counterparts of Neumann and Dirichlet
boundary conditions, referred to as Neumann and Dirichlet volume constraints, re-
spectively. More specifically, by composition of the nonlocal interaction and gradient
operators, we have that (2.7)s corresponds to

(2.8) ﬁw@w»@>:z;gum@wﬂmw»wayMy:%LvmenN

As for local equations, the weak form of (2.7) is obtained by multiplying both sides
by a test function z € V. and integrating over (2, i.e.,

(2.9) f/ﬁunzda::/szdm Vz e V().
Q Q

Using nonlocal integration by parts [12] and the Neumann constraint, we see that
(2.9) is equivalent to
(2.10)
/ Gu,Gzdydxr = — N(Guy)z dx +/ szdx
= Jo

QN Q

Q
= [ [n(@) )@ - e dyda = |

Gnz dx + / szdx
Qn Q

= a(u,z) = F(2),

where the bilinear form and the linear functional are defined as a(u,z) = (u,z)y,

c

and F(v) = [, gnzdx + [, szdz. It can be easily shown [11] that for every (")

satisfying the Poincaré inequality, a(-,) is coercive and continuous in V,(£2) x V.(£2),

and that F'(-) is continuous in V,(€2). Thus, by the Lax—Milgram theorem, problem
(2.10) is well-posed.

3. Proposed strategies. In engineering applications it is often the case that
data are only available on the boundary I' and not in 2;; in particular, most of the
time we are given force or pressure data (i.e., a local Neumann boundary condition)
on parts of I'. As shown in [11] and as recalled above, this is not enough for the
well-posedness of problem (2.10).

We make the following assumptions.

(A1) The kernel function - is such that the limit of the nonlocal diffusion operator
is the classical Laplacian, i.e.,

(3.1) Lw(x) —» Aw(x) as e —0.

© 2020 National Technology & Engineering Solutions of Sandia, LLC
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This is obtained by scaling v using some appropriate constant proportional to a power
of e. Thus, there exists a local (differential) operator that approximates well enough
the nonlocal one when the solution does not feature a nonlocal behavior, i.e., does
not exhibit irregularities. We refer to such a local model (i.e., the classical Laplacian)
as the surrogate local model.

(A2) Only the following data are available:

1. g1 € L*(Ty): local Neumann boundary data on T'y;

2. v, € ‘Z(ﬁ) on Qp: nonlocal Dirichlet data;

3. s € V/(Q): forcing term over Q.
Once again, these do not guarantee existence and uniqueness of a nonlocal solution.

Remark 3.1. We point out that our strategy is readily applicable to a much
broader class of nonlocal operators as long as (A2) holds. As an example, this ap-
proach could be applied to a linear nonlocal elasticity model (specifically, the linear
peridynamic solid model [27]) for which the corresponding surrogate local model is
the classical Navier—Cauchy equation of linear elasticity, as the latter is the local limit
of the former.

Our goal is to design a strategy to automatically convert g; into a nonlocal volume
constraint (of either Neumann or Dirichlet type) on Q. In the following sections we
introduce two conversion approaches and present qualitative comparison results. Note
that the conversion problem is an ill-posed inverse problem, as there exists an infinite
number of nonlocal data corresponding to g; for which the associated nonlocal problem
is well-posed. However, among all possible choices, we look for a strategy such that
the corresponding nonlocal solution, say ,, satisfies

(3.2) U, —u as € —» 0 in V(Q) and L*(Q),

where u; is the solution of the following (surrogate) Poisson equation:

—Au; = s, x €,
(3.3) —Vu,-n=gq, xely,
U = VUpy, x €l'p,

i.e., the solution of the local problem with boundary data as in (A2). Here, by
prescribing the Dirichlet condition on I'p we are assuming that v, |r, exists and is
such that v,|p, € H2(I'p).5

3.1. Neumann strategy. This is our main and most promising strategy. The
key idea is to use the available data in (A2) to solve the surrogate problem in  and
utilize the local solution u; to compute the corresponding force, say g,, over Qn. It
is clear from the right-hand side in (2.10) that the nonlocal Neumann data are indeed
a forcing term acting on Qy; thus, g, will be used as an approximation of g, to solve
(2.7). We proceed step by step.

(IN) Solve the surrogate local problem (3.3).

(2N) Compute the forces on Q2 associated with ;. This is achieved by applying
the nonlocal Neumann operator N (G -) to uy, i.e., =N (Gu;)(x) = gn(x), for T € Qy.
This represents an approximation of the nonlocal Neumann data g,. Note that, for

5Note that even though this is a regularity requirement (not desirable in nonlocal contexts), we
are not assuming v, € H! () but only that vy, has a well-defined trace on I'p.

© 2020 National Technology & Engineering Solutions of Sandia, LLC
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the same reasons as for the operator £, the Neumann operator A/ (G-) also maps V
into V’. This implies that

(34) gn € V/(QN)

(3N) Compute an approximation of the nonlocal solution w,,, say ., using g, as
Neumann data, i.e., solve

—Lu, = s, x €,
(3.5) —N(Guy,) = gn, =€ Qn,
Up, = Un, x € Qp.

Because of (3.4), problem (3.5) is well-posed.

3.2. Dirichlet strategy. We present an alternative, and more straightforward,
approach that consists of using u; computed as in (1N) as the Dirichlet volume con-
straint for the nonlocal problem in Q5. Thus, we have the following procedure.

(1D) Solve the surrogate local problem (3.3).

(2D) Solve the following nonlocal problem:

_Ean,D =S8, xTc Q7
(3.6) ﬂn,p = Uy, T € QN,
fin,D:vm x € Qp.

Because of its regularity, u; € IN/(Q), and thus problem (3.6), is well-posed.

This approach clearly delivers a solution that is unable to catch nonlocal behaviors
in a neighborhood of the Neumann boundary. This effect is not as strong in the
previous approach because instead of prescribing a local constraint on the solution
itself, the Neumann approach only prescribes an equivalence of forces allowing the
solution to feature a nonlocal behavior. In other words, the locality constraint is
weaker.

This is confirmed by one-dimensional numerical results. We consider Q = (0, 1),

Q = (—¢,1+¢), and Qn = (—¢,0). For the sake of completeness and to show that

the method works for both homogeneous and nonhomogeneous Neumann conditions,
we consider the following problem settings:

(A) s = —122% — 6/5¢2, g; = —4e3, and v,, = z%; and

(B) s = —1222% — 6/5¢2, g; = 2/5¢2(8 — 13¢), and v,, = 2% + 2z + 3/5¢2 (2% + 22—

3 —4de —¢e?),

where dependence of the data on € is only for testing purposes. We do not specify
discretization details, as they are not relevant right now. In Figure 2 we report
Un, Un,p, and u; for (A) (left) and (B) (right) in a region around the Neumann
boundary. Results show that in both cases, the solutions obtained with the Neumann
and Dirichlet approaches are significantly different in the zoomed area; in fact, while
Un,p is, by construction, on top of w;, U, only reproduces its normal derivative. Note
that when the data are such that local and nonlocal models are equivalent,® the
two approaches coincide, and we have that 4, p = 4, = w;. This is confirmed by
numerical experiments in section 5.

SFor the operators under considerations, we have equivalence for polynomials up to the third

order; see the numerical experiments in section 5 for an illustration.
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-0.2 0 T 02 0.4 -0.2 Tr o 0.2

F1G. 2. Comparison of solutions obtained with Neumann (turn) and Dirichlet (un p) strategies
for cases (A) (left) and (B) (right) around the Neumann boundary.

4. Convergence to the local limit. In this section we study the limiting
behavior of the solution as the nonlocal interactions vanish, i.e., as ¢ — 0. We
introduce the errors

(4.1) ep = ||[tn —wl|| and ey = [un —wllogq-

The following theorem provides a bound for eg for the Neumann approach.
THEOREM 4.1. Leteg € (0,00), and letU := {u; € C*(Q) : u; solves (3.3) fore €
(0,e0]} be a family of solutions of (3.5). Then, for all u; € Uy,

(4.2) ep < C2| DWy|

00,0

where C'is a positive constant independent of ¢ and u;, and DY indicates the fourth
derivative operator.

Proof. Recall that, by definition, u,, and u; satisfy

—Lu, = s = —Auy, x €,
(4.3) —N(Qﬁn) = ﬁn = —N(gul), T € QN,
an = Up, x € Qp.

We introduce the following nonlocal auxiliary problem for the local solution w;:

—Lu; =8, = — /ﬁ(ul(y) —w(x))v(z,y)dy, xe€Q,

(44) *N(gul) = gn, xr € QN,
Uy = v, x <€ Qp.

Here, v; is the value of the local solution of (3.3) in Qp; as such, v; = u;. In order
to estimate er we first consider the pointwise difference s(x)—s;(x). By Taylor’s
expansion,

(4.5)  [s(x) —si(z)] = /ﬁ(w(y) —w(@))y(@,y) dy — Auy| < C*[DWuy| 5,

© 2020 National Technology & Engineering Solutions of Sandia, LLC
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where C is a positive constant independent of € and w;, and D™ indicates the fourth
derivative operator. Next, we consider the weak forms of (4.3) and (4.4) for the same
test function z € V,; we have

(4.6) /ﬁ /ﬁ (T () — T (¥)) ((2) — 2())1(@, ) dy das = /

§nzdw+/ szdex,
Qn Q

(4.7) /ﬁ/ﬁ(ul(x) —w(y))(z(x) — z2(y))y(x,y) dy de = /QN gnzdac+/gslzd:c.

Subtraction yields
[ int@) = @) = ) + ) (@) — (@)@ w) dy e = [ (5= 0) 2
By taking z = u,, — u; € V., we have

[|[in —wl|* < /Q(S = 1) (tn — w) dee < |[s = sif|o,e|un — wllo0

< C2?| DD gl — il

where we omitted the higher order terms because they are not relevant, and where
the last inequality follows from the Poincaré inequality. Then, the main statement
follows by dividing both sides by |||@, — w/||. O

Remark 4.2. Theorem 4.1 implies that the convergence rate for the L? norm of
the difference between local and nonlocal solutions, i.e., eg, is at least quadratic. In
fact, by the Poincaré inequality [21], we have

(4.8) eo = [[tn — uillyg < Cuplllin —wlll < C*IDW ] 5.

Remark 4.3. A simple modification of the proof of Theorem 4.1 yields the same
convergence result for the Dirichlet strategy.” The same convergence rate is inherited
by the L? norm as described in Remark 4.2.

Remark 4.4. Theorem 4.1 implies that when the data g;, s, and v,, are smooth
enough to have Lu; = Awy, then u, = u;. We use this observation to conduct a
consistency test for the proposed conversion method.

5. Numerical tests. With the purpose of illustrating the theoretical results,
in this section we report the results of one-dimensional numerical tests. Although
preliminary, these results are promising and provide the ground work for realistic
simulations.

We consider the one-dimensional configuration in Figure 3; we let a = 0, b = 1,
I'yv={x=—e},Tp={r=1+¢}, and

(51) Yy = 5 Xl -yl <o)

This integrable kernel is such that Lw — Aw as ¢ — 0. In all of our tests, we
discretize the nonlocal equation with the finite element method (FEM) and utilize

7Simply extend the Dirichlet condition to the whole interaction domain and disregard the term

on Qp in the weak forms.
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nonlocal interaction domain nonlocal domain nonlocal inEefaction domain
Neumann Dirichlet
® Pe ® ®
@ \ 4 L 4 o
a-¢ a b b+e

F1a. 3. One-dimensional configuration.

piecewise linear finite elements. The domain € is partitioned in intervals of the same
size h. We denote the FEM solutions by u" and 172 p and introduce the discrete
counterparts of the ep and eg, i.e.,

emn = ||lw" —wll| and o = " —wl,

where w" is either 4" or u” ,,. We test both the consistency and the convergence to

local limits.

Remark 5.1. As mentioned in the introduction, our conversion method is not
tied to any discretization; in fact, both mesh-free and mesh-based methods can be
employed. FEM is, in general, quite expensive for large-scale nonlocal simulations but
affordable in a one-dimensional setting. An advantage of using the piecewise linear
FEM is the asymptotic compatibility, a property studied in [29, 30] on the robustness
of numerical schemes under change of ¢.

Remark 5.2. Note that since we use manufactured solutions for which the local
solution can be computed explicitly, we do not approximate the local problem.

5.1. Consistency. We consider local solutions u; such that Lu; = Awu;. Ac-
cording to Remark 4.4 and the discussion in section 3.2, the approximate nonlocal
solutions u,, and @, p are such that %, = @, p = u;. Thus, we consider the following
problem settings:

A)uy=z,g=1,v,=1+4¢,and s =0.

(B) wy =123, g, = 3¢%, v, = (1 + €)3, and s = —6.

Note that for both (A) and (B) we have that s = —Lu; = —Aw;. For the sake
of comparison and to illustrate our theory we consider both the Neumann approach
described in section 3.1 and the Dirichlet approach described in section 3.2. As
mentioned above, we expect the two approaches to be equivalent when the local and
nonlocal operators are equivalent. Additionally, in case (A) we expect Uy, = Un,p = U
and the FEM solution to be e-machine accurate (i.e., as accurate as the machine
used for the simulations can be) because the exact solution belongs to the space of
discretized solutions; in case (B) we also expect U, = U, p = w and eg) to be
independent of €. Numerical tests confirm that for both Neumann and Dirichlet
approaches in case (A), egp = €, and in case (B), eg ) = 9e — 5, for a grid of size
h =276 and for several values of . In Figure 4 we illustrate the numerical solutions
for both tests cases; we observe that u,,, u,p, and u; are superimposed.

5.2. Convergence to local limits. We perform numerical tests on the conver-
gence of u, and U, p to the local limit.

We consider the data g; = 2 + 5¢*, v, = x(2 + 2%), and s = —20z3; the corre-
sponding local solution is given by u; = z(2 + z%).

With the purpose of “hiding” the discretization error, we compute the nonlocal
solution on a very fine grid, i.e., h = 27'2; for decreasing values of &, we report
results in Tables 1 and 2 for the Neumann and Dirichlet strategies, respectively. The
observed rates for eg ; and egp are in alignment with Theorem 4.1 and Remark 4.3.
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Fi1G. 4. Nonlocal solutions obtained with the Neumann and Dirichlet strategies, and local solu-
tions for linear (left) and cubic (right) tests. Up to discretization error, the solutions coincide.

TABLE 1
Neumann approach: energy and L? norm of the difference between local and discretized nonlocal
solutions for h = 2712 and decreasing values of €.

€E.h Rate | egn Rate
21 9.99e-02 - 7.50e-02 -
31 2.29e-02 212 | 1.55e-02 2.27
—4 | 5.48e-03 2.06 | 3.50e-03 2.15
51 1.34e-03 2.03 | 8.28¢-04 2.08

TABLE 2
Dirichlet approach: energy and L? norm of the difference between local and discretized nonlocal
solutions for h = 2712 and decreasing values of €.

€E,h Rate | egn Rate
2 16.95¢-02 - 2.48e¢-02 -
3 1 1.56e-02 2.15 | 5.19¢-03  2.26
-4 | 3.70e-03 2.08 | 1.18e-03 2.13
51 8.99-04 2.04 | 2.82e-04 2.07

Next, for simultaneously decreasing values of ¢, we test the asymptotic compati-
bility [29, 30] of our scheme; results are reported in Tables 3 and 4 for the Neumann
and Dirichlet strategies, respectively. Also in this case, we have a second order con-
vergence rate. Note that we consider pairs (h,e) = (£2,¢); this choice is motivated by
the fact that, for piecewise linear finite element approximations, a linear dependence
between h and € would compromise the convergence rate of the energy norm due to
the influence of the discretization error on the local-limit error. The choice of i makes
the discretization error negligible so that the only contribution to the errors is given
by the interaction length. As a confirmation, in Table 5 we report the same results for
the pairs (h,e) = (¢/4,¢); we consider the Neumann approach only. While the conver-
gence of e j, is still quadratic, the convergence rate of e, asymptotically deteriorates
(an additional pair with respect to previous tables is added to show deterioration).

Finally, note that, as expected, the errors obtained with the Dirichlet approach
are lower that those obtained with the Neumann.

6. Conclusion. We introduced a flexible, physically consistent, and efficient
strategy for the conversion of surface local data into volumetric data in the context of
nonlocal modeling and simulation. Our technique does not have regularity constraints
on the nonlocal solution, can be applied in any dimension, and converges to the
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TABLE 3

Neumann approach: energy and L? norm of the difference between local and discretized nonlocal

solutions for simultaneously decreasing values of € and h such that (h,e) = (2,¢).

€E.h Rate | eo.n Rate
2 11.02e-01 - 8.39¢-02 -
3 1 230e-02 215 | 1.60e-02 2.39
—4 | 5.49e-03 2.07 | 3.52e-03 2.18
5| 1.34e-03  2.03 | 8.30e-04 2.09

TABLE 4
Dirichlet approach: energy and L? norm of the difference between local and discretized nonlocal
solutions for simultaneously decreasing values of € and h such that (h,e) = (€2,¢).

€E.h Rate | eg,n Rate
21 7.32-02 - 2.96e-02 -
3 1 1.58e-02 2.22 | 5.42e-03 2.45
—4 | 3.70e-03 2.09 | 1.20e-03 2.18
51 8.99e-04 2.04 | 2.83e-04 2.08

|
-
o

TABLE 5
Neumann approach: energy and L? norm of the difference between local and discretized nonlocal
solutions for simultaneously decreasing values of € and h such that (h,e) = (¢/4,¢€).

h 5 €E,h Rate | egn Rate
2=% 2721 1.02e-01 - 8.39e-2 -

275 273 | 241e-02 2.08 | 1.74e-2 2.27
276 274 1 6.33e-03 1.93 | 3.92¢-3 2.15
277 275 | 1.98-03 1.68 | 9.29¢-4  2.08
2-8 276 | 7.75e-04 1.35 | 2.26e-4 2.05

solution of the corresponding local problem as the nonlocality vanishes.

Specifically, we achieve second order convergence of the energy norm as the nonlo-
cal interactions vanish in any dimension and only requires the local solution to belong
to C* (which can be obtained when the boundary of the domain, the boundary data,
and the source term are smooth enough).

Furthermore, even if numerical results are only in one dimension, the implementa-
tion of this approach in two and three dimensions is straightforward and only requires
PDE and nonlocal solvers that can be used as black boxes; i.e., the proposed method
does not require any implementation effort. Also, the computational cost is the same
as that required by a single nonlocal simulation.

Acknowledgment. The authors would like to thank Dr. D. Littlewood (Sandia
National Laboratories, NM) for useful discussions and insights.
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