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A PHYSICALLY CONSISTENT, FLEXIBLE, AND EFFICIENT
STRATEGY TO CONVERT LOCAL BOUNDARY CONDITIONS

INTO NONLOCAL VOLUME CONSTRAINTS\ast 

MARTA D'ELIA\dagger , XIAOCHUAN TIAN\ddagger , AND YUE YU\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Nonlocal models provide exceptional simulation fidelity for a broad spectrum of
scientific and engineering applications. However, wider deployment of nonlocal models is hindered
by several modeling and numerical challenges. Among those, we focus on the nontrivial prescription of
nonlocal boundary conditions, or volume constraints, that must be provided on a layer surrounding
the domain where the nonlocal equations are posed. The challenge arises from the fact that, in
general, data are provided on surfaces (as opposed to volumes) in the form of force or pressure
data. In this paper we introduce an efficient, flexible, and physically consistent technique for an
automatic conversion of surface (local) data into volumetric data that does not have any constraints
on the geometry of the domain or on the regularity of the nonlocal solution and that is not tied to
any discretization. We show that our formulation is well-posed and that the limit of the nonlocal
solution, as the nonlocality vanishes, is the local solution corresponding to the available surface data.
Quadratic convergence rates are proved for the strong energy and L2 convergence. We illustrate
the theory with one-dimensional numerical tests whose results provide the groundwork for realistic
simulations.
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1. Introduction and motivation. Nonlocal models employ integral rather
than differential operators which allows them to relax the regularity constraints of
partial differential equations (PDEs) and to capture effects arising from long-range
forces at the microscale and mesoscale and that are not accounted for by PDEs. Conse-
quently, nonlocal models provide exceptional simulation fidelity for a broad spectrum
of applications, such as fracture mechanics [17, 18, 26], anomalous subsurface trans-
port [5, 24, 25], phase transitions [4, 8, 14], image processing [1, 15, 16, 19], multiscale
and multiphysics systems [2, 3], magnetohydrodynamics [23], and stochastic processes
[6, 9, 20, 22].
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The main difference between PDE models and the nonlocal models we consider is
that, in the former case, interactions between two domains only occur due to contact,
whereas in the latter case, interactions can occur at a distance. In this work, for sim-
plicity of the exposition and without loss of generality (see Remark 3.1), we consider
the nonlocal counterpart of elliptic differential operators. In its simplest form, the
action of a nonlocal diffusion operator on a scalar function u : \BbbR n \rightarrow \BbbR is given by

\scrL u(\bfitx ) = C

\int 
\BbbR d

\bigl( 
u(\bfity ) - u(\bfitx )

\bigr) 
\gamma (\bfitx ,\bfity ) d\bfity , \bfitx \in \BbbR d,

where the kernel function \gamma , usually with bounded support, is related to the specific
application and determines the smoothing properties of \scrL . The integral form above
allows us to catch long-range interactions so that every point in a domain interacts
with a neighborhood of points. Also, such a form reduces the regularity requirements
for the solution, which is able to describe discontinuous (for, e.g., fracture mechanics)
or anomalous (for, e.g., subsurface dispersion) behaviors.

However, the increased accuracy of nonlocal models comes at a price: several
modeling and numerical challenges arise. These include the nontrivial prescription of
``nonlocal"" boundary conditions, the often prohibitively expensive numerical solution,
and the definition of model parameters (such as \gamma ), often unknown or subject to
uncertainty. All of these (open) problems can hinder wider deployment of nonlocal
models and are the subject of current research in the fast-growing nonlocal community.
In this work we focus on the first challenge.

Because of nonlocal interactions, when solving a nonlocal problem in a bounded
domain, the prescription of classical boundary conditions does not guarantee the well-
posedness of the equations [11]; in fact, in general, nonlocal boundary conditions, or,
more properly, volume constraints, must be defined on a layer surrounding the do-
main. However, it is often the case that such information is not available, whereas it
is easy to measure surface (local) data. Consequently, one of the biggest challenges to
be addressed before nonlocal models can be widely applied in realistic contexts is the
conversion of local boundary conditions, defined on surfaces, into volume constraints,
defined on volumes. We stress that this is an ill-posed problem as there are infinitely
many nonlocal solutions corresponding to the same local condition; the ``true"" non-
local volume constraint is, indeed, unknown. What we propose is a method based on
a specific concept of consistency: the convergence of the nonlocal solution to its local
counterpart at the limit of vanishing nonlocality.

Previous attempts to tackle the conversion are either too expensive (solving an
optimization problem) or too restrictive (requiring conditions on geometry or dimen-
sionality).

The first approach is an optimization-based coupling method that mimics gen-
eralized overlapping domain-decomposition formulations [10]. The main idea is to
decompose the domain into local and nonlocal subdomains where the former is placed
in a neighborhood of the part of the boundary where only surface data are available.
This choice allows both the local and nonlocal problems to be well-posed and cir-
cumvents the prescription of volume constraints when not available. On the other
hand, this method requires the solution of a nonlocal minimization problem whose
algorithm may require several computations of the nonlocal solutions, dramatically
increasing the computational effort.

Paper [7] is the first to interpret the nonlocal Neumann boundary condition as
a body force acting on the boundary layer of the domain, where L1 convergence of
nonlocal solutions to the corresponding local ones is shown. Later, in [28] a careful
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modification of the body force in a one-dimensional setting is found that leads to a
second order uniform convergence of solutions as the nonlocal interaction vanishes.
The second order convergence result is then extended to two dimensions in [31], where
the curvature of the computational domain plays an important role in the definition of
the modified body force. Recently, [13] achieved the second order uniform convergence
in one dimension with another approach. To the best of our knowledge, no work has
yet discussed second order nonlocal approximations to the local Neumann boundary
value problems in space dimension higher than two. The complexity of geometric
bodies to be dealt with in high dimension is an obvious hindrance.

We propose a computationally cheap, flexible, and physically consistent method
for an efficient conversion that has no constraints on dimensionality, geometry, and
regularity of the nonlocal solution and that is not tied to any discretization. Our main
and most promising approach consists of three simple steps:

(A) Solution of a computationally cheap local model using available surface data.
(B) Derivation, from (A), of traction forces corresponding to the local solution in

the thick nonlocal layer.
(C) Solution of the nonlocal model using the forces derived in (B).

Note that the forces computed in (B) are equivalent to nonlocal Neumann data, which
are used as volume constraints in (C) for the solution of the nonlocal problem. Also
note that local and nonlocal problems are completely uncoupled; this feature becomes
very powerful when dealing with large-scale problems (as is often the case in engineer-
ing applications); in fact, local and nonlocal solvers can be used as black boxes, and
the overall cost of the proposed method is the same as that of a nonlocal problem,
for given nonlocal boundary data. This is due to the fact that the cost of solving
the local problem is negligible compared to that of the nonlocal problem. Note that
the uncoupling of local and nonlocal equations allows for completely independent dis-
cretizations of the local and nonlocal equations.1 In fact, application of the nonlocal
operator to the discretized local solution in step (B) only requires projection of the
latter onto the nonlocal discretization space. Furthermore, this approach is such that
the nonlocal solution computed in (C) reduces to the solution computed in (A) as
the nonlocal interactions vanish, with a quadratic rate of convergence for both the
(nonlocal) energy and L2 norms with respect to the characteristic interaction length.

A few considerations are in order. Even though we do not require additional
regularity of the nonlocal solution, we do assume that the given surface data are such
that the corresponding local problem computed in (A) is well-posed (e.g., the classical
Poisson equation square integrability over the boundary of the force/pressure data is
enough to guarantee the existence and uniqueness of the local solution). We also
mention that in the analysis of the asymptotic behavior of the nonlocal solution for
vanishing nonlocality, we assume that the local solution belongs to C4. However, this
additional regularity is not required in practice.

We expect the proposed strategy to advance the state of the art for predictive
nonlocal modeling by providing an efficient in-demand tool that will impact a broad
class of applications and unlock the full potential of nonlocal models.

Note that we also introduce an alternative, more straightforward strategy that
has exactly the same properties of the approach described in (A)--(C) but delivers
solutions whose behavior is closer to the local one.

The paper is organized as follows. In the following section we introduce the

1As an example, one can use a mesh-free discretization for the nonlocal models and a mesh-based
one for the local model.
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notation and recall relevant results of the nonlocal vector calculus, a theory developed
in the last decade by Du et al. [12] that allows one to study nonlocal diffusion problems
in a very similar way as PDEs by framing nonlocal equations in a variational setting.
In section 3 we introduce two alternative strategies to the conversion problem, discuss
their properties, and provide a qualitative comparison. In section 4 we study the
convergence to the local limit of the nonlocal solution for the most promising strategy
and show quadratic strong convergence in both the nonlocal energy norm and L2

norm. In section 5 we illustrate the theoretical results in a one-dimensional setting.

2. Preliminaries. In this section we introduce the nonlocal vector calculus and
recall results relevant to this paper. Let \Omega be a bounded open domain in \BbbR d, d =
1, 2, 3, with Lipschitz-continuous boundary \partial \Omega , and let \bfitalpha (\bfitx ,\bfity ) : \BbbR d\times \BbbR d \rightarrow \BbbR d be an
antisymmetric function, i.e., \bfitalpha (\bfity ,\bfitx ) =  - \bfitalpha (\bfitx ,\bfity ). For the functions u(\bfitx ) : \BbbR d \rightarrow \BbbR 
and \bfitnu (\bfitx ,\bfity ) : \BbbR d \times \BbbR d \rightarrow \BbbR d we define the nonlocal divergence \scrD : \BbbR d \rightarrow \BbbR of \bfitnu (\bfitx ,\bfity )
as

(2.1) \scrD 
\bigl( 
\bfitnu 
\bigr) 
(\bfitx ) :=

\int 
\BbbR d

\bigl( 
\bfitnu (\bfitx ,\bfity ) + \bfitnu (\bfity ,\bfitx )

\bigr) 
\cdot \bfitalpha (\bfitx ,\bfity ) d\bfity , \bfitx \in \BbbR d,

and the nonlocal gradient \scrG : \BbbR d \times \BbbR d \rightarrow \BbbR d of u(\bfitx ) as

(2.2) \scrG 
\bigl( 
u
\bigr) 
(\bfitx ,\bfity ) :=

\bigl( 
u(\bfity ) - u(\bfitx )

\bigr) 
\bfitalpha (\bfitx ,\bfity ), \bfitx ,\bfity \in \BbbR d.

It is shown in [12] that the adjoint \scrD \ast =  - \scrG . Next, we define the nonlocal diffusion
\scrL : \BbbR d \rightarrow \BbbR of u(\bfitx ) as a composition of the nonlocal divergence and gradient operators,
i.e.,

(2.3) \scrL u(\bfitx ) := \scrD 
\bigl( 
\scrG u

\bigr) 
(\bfitx ) = 2

\int 
\BbbR d

\bigl( 
u(\bfity ) - u(\bfitx )

\bigr) 
\gamma (\bfitx ,\bfity ) d\bfity , \bfitx \in \BbbR d,

where \gamma (\bfitx ,\bfity ) := \bfitalpha (\bfitx ,\bfity ) \cdot \bfitalpha (\bfitx ,\bfity ) is a nonnegative symmetric kernel.2 Note that this
is the same operator introduced in section 1. We define the interaction domain of an
open bounded region \Omega \in \BbbR d as

\Omega I = \{ \bfity \in \BbbR d \setminus \Omega : \gamma (\bfitx ,\bfity ) \not = 0, \bfitx \in \Omega \} 

and set \Omega = \Omega \cup \Omega I . This domain contains all points outside of \Omega that interact with
points inside of \Omega ; as such, \Omega I is the volume where nonlocal boundary conditions
must be prescribed to guarantee the well-posedness of nonlocal equations (see section
2.1). We make the following assumptions: for \bfitx \in \Omega \Biggl\{ 

\gamma (\bfitx ,\bfity ) > 0 \forall \bfity \in B\varepsilon (\bfitx ),

\gamma (\bfitx ,\bfity ) = 0 \forall \bfity \in \Omega \setminus B\varepsilon (\bfitx ),

where B\varepsilon (\bfitx ) = \{ \bfity \in \Omega : \| \bfitx  - \bfity \| < \varepsilon , \bfitx \in \Omega \} , and \varepsilon is the interaction radius
or horizon. For such kernels the interaction domain is a layer of thickness \varepsilon that
surrounds \Omega , i.e.,

(2.4) \Omega I = \{ \bfity \in \BbbR d \setminus \Omega : \| \bfity  - \bfitx \| < \varepsilon , \bfitx \in \Omega \} .

2There are more general representations of the nonlocal diffusion operator; these are associated
with nonsymmetric and not necessarily positive kernel functions. In such cases, \scrL may define a model
for nonsymmetric diffusion phenomena; we mention, e.g., nonsymmetric jump processes [9].
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I

  

Fig. 1. Left: the domain \Omega , the support of \gamma at a point \bfitx \in \Omega , B\delta (\bfitx ), and the induced
interaction domain \Omega I . Right: two-dimensional configuration. Here, \Omega N \cup \Omega D = \Omega I , \Omega \cup \Omega I = \Omega ,
and \Gamma N \cup \Gamma D = \Gamma .

We refer the reader to Figure 1 (left) for an illustration of a two-dimensional do-
main, the support of \gamma , and the induced interaction domain. Corresponding to the
divergence operator \scrD (\bfitnu ), we introduce a nonlocal interaction operator,

(2.5) \scrN (\bfitnu )(\bfitx ) =  - 
\int 
\Omega 

(\bfitnu (\bfitx ,\bfity ) + \bfitnu (\bfity ,\bfitx ))\bfitalpha (\bfitx ,\bfity ) d\bfity , \bfitx \in \Omega I .

The integral
\int 
\Omega I

\scrN (\bfitnu ) d\bfitx generalizes the notion of a flux
\int 
\partial \Omega 

q \cdot n dA through the

boundary of a domain, with \scrN (\bfitnu ) playing the role of a flux density q \cdot n. The
key difference between (2.5) and a conventional flux is that in the former the flux
is a volume integral, whereas in the latter it is a boundary integral. Nonetheless,
the nonlocal divergence and interaction operators satisfy a nonlocal Gauss theorem\int 
\Omega 
\scrD (\bfitnu ) d\bfitx =

\int 
\Omega I

\scrN (\bfitnu ) d\bfitx . We refer the reader to [12] for additional nonlocal vector
calculus results, including generalized nonlocal Green's identities.

We respectively introduce the nonlocal energy seminorm, nonlocal energy space,
and nonlocal volume-constrained energy space,

(2.6)

| | | v| | | 2 :=
1

2

\int 
\Omega 

\int 
\Omega 

(\scrG v)2 d\bfity d\bfitx ,

V (\Omega ) :=
\bigl\{ 
v \in L2(\Omega ) : | | | v| | | \Omega < \infty 

\bigr\} 
,

Vc(\Omega ) :=
\bigl\{ 
v \in V (\Omega ) : v = 0 on \Omega D

\bigr\} 
for \Omega D \subseteq \Omega I .

We also define the volume-trace space \widetilde Vc(\Omega ) := \{ v| \Omega D
: v \in V (\Omega )\} and the dual

spaces V \prime (\Omega ) and V \prime 
c (\Omega ) with respect to L2-duality pairings.

We consider kernels such that the corresponding energy norm satisfies a Poincar\'e-
like inequality, i.e., \| v\| 0,\Omega \leq Cpn| | | v| | | for all v \in Vc(\Omega ), where Cpn is referred to as
the nonlocal Poincar\'e constant. Kernels satisfying this property can be found in
[11, section 4.2]; for such kernels,3 in [21] it is shown that the Poincar\'e constant is
independent of \varepsilon if \varepsilon \in (0, \varepsilon 0] with a certain fixed number \varepsilon 0.

A popular example is the class of integrable kernels4 for which V (\Omega ) and Vc(\Omega )
are equivalent to L2(\Omega ) and L2

c(\Omega ); in this case, the operator \scrL is such that \scrL :
L2(\Omega ) \rightarrow L2(\Omega ) [11].

3The nonlocal Poincar\'e inequality holds for an even more general class of properly scaled, non-
increasing, kernel functions; see [21].

4Specifically, we are referring to kernels for which there exist positive constants \gamma 1 and \gamma 2 such
that \gamma 1 \leq 

\int 
\Omega \cap B\varepsilon (\bfitx ) \gamma (\bfitx ,\bfity ) d\bfity and

\int 
\Omega \gamma 2(\bfitx ,\bfity ) d\bfity \leq \gamma 2

2 for all \bfitx \in \Omega .
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2.1. Volume-constrained nonlocal diffusion problems. We refer the reader
to the simplified configuration in Figure 1 (right); here we let \Gamma = \partial \Omega , \Omega I = \Omega N \cup \Omega D

such that \Omega N \cap \Omega D = \emptyset , and \Gamma = \Gamma N \cup \Gamma D such that \Gamma N \cap \Gamma D = \emptyset . For s \in V \prime 
c (\Omega ),

gn \in V \prime (\Omega N ), and vn \in \widetilde Vc(\Omega ), we want to solve

(2.7)

\left\{         
 - \scrL un = s, \bfitx \in \Omega ,

 - \scrN (\scrG un) = gn, \bfitx \in \Omega N ,

un = vn, \bfitx \in \Omega D,

where (2.7)2 and (2.7)3 are the nonlocal counterparts of Neumann and Dirichlet
boundary conditions, referred to as Neumann and Dirichlet volume constraints, re-
spectively. More specifically, by composition of the nonlocal interaction and gradient
operators, we have that (2.7)2 corresponds to

(2.8)  - \scrN (\scrG un)(\bfitx ) =

\int 
\Omega \cup \Omega I

(un(\bfitx ) - un(\bfity ))\gamma (\bfitx ,\bfity ) d\bfity = gn \forall \bfitx \in \Omega N .

As for local equations, the weak form of (2.7) is obtained by multiplying both sides
by a test function z \in Vc and integrating over \Omega , i.e.,

(2.9)  - 
\int 
\Omega 

\scrL unz d\bfitx =

\int 
\Omega 

sz d\bfitx \forall z \in Vc(\Omega ).

Using nonlocal integration by parts [12] and the Neumann constraint, we see that
(2.9) is equivalent to
(2.10)\int 

\Omega 

\int 
\Omega 

\scrG un\scrG z d\bfity d\bfitx =  - 
\int 
\Omega N

\scrN (\scrG un)z d\bfitx +

\int 
\Omega 

sz d\bfitx 

\Rightarrow 
\int 
\Omega 

\int 
\Omega 

(un(\bfitx ) - un(\bfity ))(z(\bfitx ) - z(\bfity ))\gamma (\bfitx ,\bfity ) d\bfity d\bfitx =

\int 
\Omega N

gnz d\bfitx +

\int 
\Omega 

sz d\bfitx 

\Rightarrow a(u, z) = F (z),

where the bilinear form and the linear functional are defined as a(u, z) = \langle u, z\rangle Vc

and F (v) =
\int 
\Omega N

gnz d\bfitx +
\int 
\Omega 
sz d\bfitx . It can be easily shown [11] that for every \gamma (\cdot , \cdot )

satisfying the Poincar\'e inequality, a(\cdot , \cdot ) is coercive and continuous in Vc(\Omega )\times Vc(\Omega ),
and that F (\cdot ) is continuous in Vc(\Omega ). Thus, by the Lax--Milgram theorem, problem
(2.10) is well-posed.

3. Proposed strategies. In engineering applications it is often the case that
data are only available on the boundary \Gamma and not in \Omega I ; in particular, most of the
time we are given force or pressure data (i.e., a local Neumann boundary condition)
on parts of \Gamma . As shown in [11] and as recalled above, this is not enough for the
well-posedness of problem (2.10).

We make the following assumptions.
(A1) The kernel function \gamma is such that the limit of the nonlocal diffusion operator

is the classical Laplacian, i.e.,

(3.1) \scrL w(\bfitx ) \rightarrow \Delta w(\bfitx ) as \varepsilon \rightarrow 0.
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This is obtained by scaling \gamma using some appropriate constant proportional to a power
of \varepsilon . Thus, there exists a local (differential) operator that approximates well enough
the nonlocal one when the solution does not feature a nonlocal behavior, i.e., does
not exhibit irregularities. We refer to such a local model (i.e., the classical Laplacian)
as the surrogate local model.

(A2) Only the following data are available:
1. gl \in L2(\Gamma N ): local Neumann boundary data on \Gamma N ;

2. vn \in \widetilde Vc(\Omega ) on \Omega D: nonlocal Dirichlet data;
3. s \in V \prime 

c (\Omega ): forcing term over \Omega .
Once again, these do not guarantee existence and uniqueness of a nonlocal solution.

Remark 3.1. We point out that our strategy is readily applicable to a much
broader class of nonlocal operators as long as (A2) holds. As an example, this ap-
proach could be applied to a linear nonlocal elasticity model (specifically, the linear
peridynamic solid model [27]) for which the corresponding surrogate local model is
the classical Navier--Cauchy equation of linear elasticity, as the latter is the local limit
of the former.

Our goal is to design a strategy to automatically convert gl into a nonlocal volume
constraint (of either Neumann or Dirichlet type) on \Omega N . In the following sections we
introduce two conversion approaches and present qualitative comparison results. Note
that the conversion problem is an ill-posed inverse problem, as there exists an infinite
number of nonlocal data corresponding to gl for which the associated nonlocal problem
is well-posed. However, among all possible choices, we look for a strategy such that
the corresponding nonlocal solution, say \widetilde un, satisfies

(3.2) \widetilde un \rightarrow ul as \varepsilon \rightarrow 0 in V (\Omega ) and L2(\Omega ),

where ul is the solution of the following (surrogate) Poisson equation:

(3.3)

\left\{         
 - \Delta ul = s, \bfitx \in \Omega ,

 - \nabla ul \cdot n = gl, \bfitx \in \Gamma N ,

ul = vn, \bfitx \in \Gamma D,

i.e., the solution of the local problem with boundary data as in (A2). Here, by
prescribing the Dirichlet condition on \Gamma D we are assuming that vn| \Gamma D

exists and is

such that vn| \Gamma D
\in H

1
2 (\Gamma D).5

3.1. Neumann strategy. This is our main and most promising strategy. The
key idea is to use the available data in (A2) to solve the surrogate problem in \Omega and
utilize the local solution ul to compute the corresponding force, say \widetilde gn, over \Omega N . It
is clear from the right-hand side in (2.10) that the nonlocal Neumann data are indeed
a forcing term acting on \Omega N ; thus, \widetilde gn will be used as an approximation of gn to solve
(2.7). We proceed step by step.

(1N) Solve the surrogate local problem (3.3).
(2N) Compute the forces on \Omega N associated with ul. This is achieved by applying

the nonlocal Neumann operator \scrN (\scrG \cdot ) to ul, i.e.,  - \scrN (\scrG ul)(\bfitx ) = \widetilde gn(\bfitx ), for \bfitx \in \Omega N .
This represents an approximation of the nonlocal Neumann data gn. Note that, for

5Note that even though this is a regularity requirement (not desirable in nonlocal contexts), we
are not assuming vn \in H1(\Omega N ) but only that vn has a well-defined trace on \Gamma D.
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the same reasons as for the operator \scrL , the Neumann operator \scrN (\scrG \cdot ) also maps V
into V \prime . This implies that

(3.4) \widetilde gn \in V \prime (\Omega N ).

(3N) Compute an approximation of the nonlocal solution un, say \widetilde un, using \widetilde gn as
Neumann data, i.e., solve

(3.5)

\left\{         
 - \scrL \widetilde un = s, \bfitx \in \Omega ,

 - \scrN (\scrG \widetilde un) = \widetilde gn, \bfitx \in \Omega N ,

\widetilde un = vn, \bfitx \in \Omega D.

Because of (3.4), problem (3.5) is well-posed.

3.2. Dirichlet strategy. We present an alternative, and more straightforward,
approach that consists of using ul computed as in (1N) as the Dirichlet volume con-
straint for the nonlocal problem in \Omega N . Thus, we have the following procedure.

(1D) Solve the surrogate local problem (3.3).
(2D) Solve the following nonlocal problem:

(3.6)

\left\{         
 - \scrL \widetilde un,D = s, \bfitx \in \Omega ,

\widetilde un,D = ul, \bfitx \in \Omega N ,

\widetilde un,D = vn, \bfitx \in \Omega D.

Because of its regularity, ul \in \widetilde V (\Omega ), and thus problem (3.6), is well-posed.
This approach clearly delivers a solution that is unable to catch nonlocal behaviors

in a neighborhood of the Neumann boundary. This effect is not as strong in the
previous approach because instead of prescribing a local constraint on the solution
itself, the Neumann approach only prescribes an equivalence of forces allowing the
solution to feature a nonlocal behavior. In other words, the locality constraint is
weaker.

This is confirmed by one-dimensional numerical results. We consider \Omega = (0, 1),
\Omega = ( - \varepsilon , 1 + \varepsilon ), and \Omega N = ( - \varepsilon , 0). For the sake of completeness and to show that
the method works for both homogeneous and nonhomogeneous Neumann conditions,
we consider the following problem settings:

(A) s =  - 12x2  - 6/5\varepsilon 2, gl =  - 4\varepsilon 3, and vn = x4; and
(B) s =  - 12x2  - 6/5\varepsilon 2, gl = 2/5\varepsilon 2(8 - 13\varepsilon ), and vn = x4 + 2x+ 3/5\varepsilon 2(x2 + 2x - 

3 - 4\varepsilon  - \varepsilon 2),
where dependence of the data on \varepsilon is only for testing purposes. We do not specify
discretization details, as they are not relevant right now. In Figure 2 we report\widetilde un, \widetilde un,D, and ul for (A) (left) and (B) (right) in a region around the Neumann
boundary. Results show that in both cases, the solutions obtained with the Neumann
and Dirichlet approaches are significantly different in the zoomed area; in fact, while\widetilde un,D is, by construction, on top of ul, \widetilde un only reproduces its normal derivative. Note
that when the data are such that local and nonlocal models are equivalent,6 the
two approaches coincide, and we have that \widetilde un,D = \widetilde un = ul. This is confirmed by
numerical experiments in section 5.

6For the operators under considerations, we have equivalence for polynomials up to the third
order; see the numerical experiments in section 5 for an illustration.
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Fig. 2. Comparison of solutions obtained with Neumann (\widetilde un) and Dirichlet (\widetilde un,D) strategies
for cases (A) (left) and (B) (right) around the Neumann boundary.

4. Convergence to the local limit. In this section we study the limiting
behavior of the solution as the nonlocal interactions vanish, i.e., as \varepsilon \rightarrow 0. We
introduce the errors

(4.1) eE = | | | \widetilde un  - ul| | | and e0 = \| \widetilde un  - ul\| 0,\Omega .

The following theorem provides a bound for eE for the Neumann approach.

Theorem 4.1. Let \varepsilon 0 \in (0,\infty ), and let \scrU l := \{ ul \in C4(\Omega ) : ul solves (3.3) for \varepsilon \in 
(0, \varepsilon 0]\} be a family of solutions of (3.5). Then, for all ul \in \scrU l,

(4.2) eE \leq C\varepsilon 2\| D(4)ul\| \infty ,\Omega ,

where C is a positive constant independent of \varepsilon and ul, and D(4) indicates the fourth
derivative operator.

Proof. Recall that, by definition, \widetilde un and ul satisfy

(4.3)

\left\{         
 - \scrL \widetilde un = s =  - \Delta ul, \bfitx \in \Omega ,

 - \scrN (\scrG \widetilde un) = \widetilde gn =  - \scrN (\scrG ul), \bfitx \in \Omega N ,

\widetilde un = vn, \bfitx \in \Omega D.

We introduce the following nonlocal auxiliary problem for the local solution ul:

(4.4)

\left\{         
 - \scrL ul = sl =  - 

\int 
\Omega 

(ul(\bfity ) - ul(\bfitx ))\gamma (\bfitx ,\bfity ) d\bfity , \bfitx \in \Omega ,

 - \scrN (\scrG ul) = \widetilde gn, \bfitx \in \Omega N ,

ul = vl, \bfitx \in \Omega D.

Here, vl is the value of the local solution of (3.3) in \Omega D; as such, vl = ul. In order
to estimate eE we first consider the pointwise difference s(\bfitx ) - sl(\bfitx ). By Taylor's
expansion,

(4.5) | s(\bfitx ) - sl(\bfitx )| =
\bigm| \bigm| \bigm| \bigm| \int 

\Omega 

(ul(\bfity ) - ul(\bfitx ))\gamma (\bfitx ,\bfity ) d\bfity  - \Delta ul

\bigm| \bigm| \bigm| \bigm| \leq \widetilde C\varepsilon 2| D(4)ul| \infty ,\Omega ,
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where \widetilde C is a positive constant independent of \varepsilon and ul, and D(4) indicates the fourth
derivative operator. Next, we consider the weak forms of (4.3) and (4.4) for the same
test function z \in Vc; we have

(4.6)

\int 
\Omega 

\int 
\Omega 

(\widetilde un(\bfitx ) - \widetilde un(\bfity ))(z(\bfitx ) - z(\bfity ))\gamma (\bfitx ,\bfity ) d\bfity d\bfitx =

\int 
\Omega N

\widetilde gn z d\bfitx +

\int 
\Omega 

s z d\bfitx ,

(4.7)

\int 
\Omega 

\int 
\Omega 

(ul(\bfitx ) - ul(\bfity ))(z(\bfitx ) - z(\bfity ))\gamma (\bfitx ,\bfity ) d\bfity d\bfitx =

\int 
\Omega N

gn z d\bfitx +

\int 
\Omega 

sl z d\bfitx .

Subtraction yields\int 
\Omega 

\int 
\Omega 

(\widetilde un(\bfitx ) - ul(\bfitx ) - \widetilde un(\bfity ) + ul(\bfity ))(z(\bfitx ) - z(\bfity ))\gamma (\bfitx ,\bfity ) d\bfity d\bfitx =

\int 
\Omega 

(s - sl) z d\bfitx .

By taking z = \widetilde un  - ul \in Vc, we have

| | | \widetilde un  - ul| | | 2 \leq 
\int 
\Omega 

(s - sl) (\widetilde un  - ul) d\bfitx \leq \| s - sl\| 0,\Omega \| \widetilde un  - ul\| 0,\Omega 

\leq C\varepsilon 2\| D(4)ul\| \infty ,\Omega | | | \widetilde un  - ul| | | ,

where we omitted the higher order terms because they are not relevant, and where
the last inequality follows from the Poincar\'e inequality. Then, the main statement
follows by dividing both sides by | | | \widetilde un  - ul| | | .

Remark 4.2. Theorem 4.1 implies that the convergence rate for the L2 norm of
the difference between local and nonlocal solutions, i.e., e0, is at least quadratic. In
fact, by the Poincar\'e inequality [21], we have

(4.8) e0 = \| \widetilde un  - ul\| 0,\Omega \leq Cn,p| | | \widetilde un  - ul| | | \leq \widehat C\varepsilon 2\| D(4)ul\| \infty ,\Omega .

Remark 4.3. A simple modification of the proof of Theorem 4.1 yields the same
convergence result for the Dirichlet strategy.7 The same convergence rate is inherited
by the L2 norm as described in Remark 4.2.

Remark 4.4. Theorem 4.1 implies that when the data gl, s, and vn are smooth
enough to have \scrL ul = \Delta ul, then \widetilde un = ul. We use this observation to conduct a
consistency test for the proposed conversion method.

5. Numerical tests. With the purpose of illustrating the theoretical results,
in this section we report the results of one-dimensional numerical tests. Although
preliminary, these results are promising and provide the ground work for realistic
simulations.

We consider the one-dimensional configuration in Figure 3; we let a = 0, b = 1,
\Gamma N = \{ x =  - \varepsilon \} , \Gamma D = \{ x = 1 + \varepsilon \} , and

(5.1) \gamma (x, y) =
3

\varepsilon 3
\scrX (| x - y| < \varepsilon ).

This integrable kernel is such that \scrL w \rightarrow \Delta w as \varepsilon \rightarrow 0. In all of our tests, we
discretize the nonlocal equation with the finite element method (FEM) and utilize

7Simply extend the Dirichlet condition to the whole interaction domain and disregard the term
on \Omega N in the weak forms.
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  a–ε a b b+ε

nonlocal domainnonlocal interaction domain
Neumann

nonlocal interaction domain
Dirichlet

Fig. 3. One-dimensional configuration.

piecewise linear finite elements. The domain \Omega is partitioned in intervals of the same
size h. We denote the FEM solutions by \widetilde uh

n and \widetilde uh
n,D and introduce the discrete

counterparts of the eE and e0, i.e.,

eE,h = | | | wh  - ul| | | and e0,h = \| wh  - ul\| ,

where wh is either \widetilde uh
n or \widetilde uh

n,D. We test both the consistency and the convergence to
local limits.

Remark 5.1. As mentioned in the introduction, our conversion method is not
tied to any discretization; in fact, both mesh-free and mesh-based methods can be
employed. FEM is, in general, quite expensive for large-scale nonlocal simulations but
affordable in a one-dimensional setting. An advantage of using the piecewise linear
FEM is the asymptotic compatibility, a property studied in [29, 30] on the robustness
of numerical schemes under change of \varepsilon .

Remark 5.2. Note that since we use manufactured solutions for which the local
solution can be computed explicitly, we do not approximate the local problem.

5.1. Consistency. We consider local solutions ul such that \scrL ul = \Delta ul. Ac-
cording to Remark 4.4 and the discussion in section 3.2, the approximate nonlocal
solutions \widetilde un and \widetilde un,D are such that \widetilde un = \widetilde un,D = ul. Thus, we consider the following
problem settings:

(A) ul = x, gl = 1, vn = 1 + \varepsilon , and s = 0.
(B) ul = x3, gl = 3\varepsilon 2, vn = (1 + \varepsilon )3, and s =  - 6x.

Note that for both (A) and (B) we have that s =  - \scrL ul =  - \Delta ul. For the sake
of comparison and to illustrate our theory we consider both the Neumann approach
described in section 3.1 and the Dirichlet approach described in section 3.2. As
mentioned above, we expect the two approaches to be equivalent when the local and
nonlocal operators are equivalent. Additionally, in case (A) we expect \widetilde un = \widetilde un,D = ul

and the FEM solution to be \epsilon -machine accurate (i.e., as accurate as the machine
used for the simulations can be) because the exact solution belongs to the space of
discretized solutions; in case (B) we also expect \widetilde un = \widetilde un,D = ul and eE,h to be
independent of \varepsilon . Numerical tests confirm that for both Neumann and Dirichlet
approaches in case (A), eE,h = \epsilon , and in case (B), eE,h

\sim = 9e  - 5, for a grid of size
h = 2 - 6 and for several values of \varepsilon . In Figure 4 we illustrate the numerical solutions
for both tests cases; we observe that \widetilde un, \widetilde unD, and ul are superimposed.

5.2. Convergence to local limits. We perform numerical tests on the conver-
gence of \widetilde un and \widetilde un,D to the local limit.

We consider the data gl = 2 + 5\varepsilon 4, vn = x(2 + x4), and s =  - 20x3; the corre-
sponding local solution is given by ul = x(2 + x4).

With the purpose of ``hiding"" the discretization error, we compute the nonlocal
solution on a very fine grid, i.e., h = 2 - 12; for decreasing values of \varepsilon , we report
results in Tables 1 and 2 for the Neumann and Dirichlet strategies, respectively. The
observed rates for eE,h and e0,h are in alignment with Theorem 4.1 and Remark 4.3.
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Fig. 4. Nonlocal solutions obtained with the Neumann and Dirichlet strategies, and local solu-
tions for linear (left) and cubic (right) tests. Up to discretization error, the solutions coincide.

Table 1
Neumann approach: energy and L2 norm of the difference between local and discretized nonlocal

solutions for h = 2 - 12 and decreasing values of \varepsilon .

\varepsilon eE,h Rate e0,h Rate
2 - 2 9.99e-02 - 7.50e-02 -
2 - 3 2.29e-02 2.12 1.55e-02 2.27
2 - 4 5.48e-03 2.06 3.50e-03 2.15
2 - 5 1.34e-03 2.03 8.28e-04 2.08

Table 2
Dirichlet approach: energy and L2 norm of the difference between local and discretized nonlocal

solutions for h = 2 - 12 and decreasing values of \varepsilon .

\varepsilon eE,h Rate e0,h Rate
2 - 2 6.95e-02 - 2.48e-02 -
2 - 3 1.56e-02 2.15 5.19e-03 2.26
2 - 4 3.70e-03 2.08 1.18e-03 2.13
2 - 5 8.99e-04 2.04 2.82e-04 2.07

Next, for simultaneously decreasing values of \varepsilon , we test the asymptotic compati-
bility [29, 30] of our scheme; results are reported in Tables 3 and 4 for the Neumann
and Dirichlet strategies, respectively. Also in this case, we have a second order con-
vergence rate. Note that we consider pairs (h, \varepsilon ) = (\varepsilon 2, \varepsilon ); this choice is motivated by
the fact that, for piecewise linear finite element approximations, a linear dependence
between h and \varepsilon would compromise the convergence rate of the energy norm due to
the influence of the discretization error on the local-limit error. The choice of h makes
the discretization error negligible so that the only contribution to the errors is given
by the interaction length. As a confirmation, in Table 5 we report the same results for
the pairs (h, \varepsilon ) = (\varepsilon /4, \varepsilon ); we consider the Neumann approach only. While the conver-
gence of e0,h is still quadratic, the convergence rate of eE,h asymptotically deteriorates
(an additional pair with respect to previous tables is added to show deterioration).

Finally, note that, as expected, the errors obtained with the Dirichlet approach
are lower that those obtained with the Neumann.

6. Conclusion. We introduced a flexible, physically consistent, and efficient
strategy for the conversion of surface local data into volumetric data in the context of
nonlocal modeling and simulation. Our technique does not have regularity constraints
on the nonlocal solution, can be applied in any dimension, and converges to the
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Table 3
Neumann approach: energy and L2 norm of the difference between local and discretized nonlocal

solutions for simultaneously decreasing values of \varepsilon and h such that (h, \varepsilon ) = (\varepsilon 2, \varepsilon ).

h \varepsilon eE,h Rate e0,h Rate
2 - 4 2 - 2 1.02e-01 - 8.39e-02 -
2 - 6 2 - 3 2.30e-02 2.15 1.60e-02 2.39
2 - 8 2 - 4 5.49e-03 2.07 3.52e-03 2.18
2 - 10 2 - 5 1.34e-03 2.03 8.30e-04 2.09

Table 4
Dirichlet approach: energy and L2 norm of the difference between local and discretized nonlocal

solutions for simultaneously decreasing values of \varepsilon and h such that (h, \varepsilon ) = (\varepsilon 2, \varepsilon ).

h \varepsilon eE,h Rate e0,h Rate
2 - 4 2 - 2 7.32e-02 - 2.96e-02 -
2 - 6 2 - 3 1.58e-02 2.22 5.42e-03 2.45
2 - 8 2 - 4 3.70e-03 2.09 1.20e-03 2.18
2 - 10 2 - 5 8.99e-04 2.04 2.83e-04 2.08

Table 5
Neumann approach: energy and L2 norm of the difference between local and discretized nonlocal

solutions for simultaneously decreasing values of \varepsilon and h such that (h, \varepsilon ) = (\varepsilon /4, \varepsilon ).

h \varepsilon eE,h Rate e0,h Rate
2 - 4 2 - 2 1.02e-01 - 8.39e-2 -
2 - 5 2 - 3 2.41e-02 2.08 1.74e-2 2.27
2 - 6 2 - 4 6.33e-03 1.93 3.92e-3 2.15
2 - 7 2 - 5 1.98e-03 1.68 9.29e-4 2.08
2 - 8 2 - 6 7.75e-04 1.35 2.26e-4 2.05

solution of the corresponding local problem as the nonlocality vanishes.
Specifically, we achieve second order convergence of the energy norm as the nonlo-

cal interactions vanish in any dimension and only requires the local solution to belong
to C4 (which can be obtained when the boundary of the domain, the boundary data,
and the source term are smooth enough).

Furthermore, even if numerical results are only in one dimension, the implementa-
tion of this approach in two and three dimensions is straightforward and only requires
PDE and nonlocal solvers that can be used as black boxes; i.e., the proposed method
does not require any implementation effort. Also, the computational cost is the same
as that required by a single nonlocal simulation.

Acknowledgment. The authors would like to thank Dr. D. Littlewood (Sandia
National Laboratories, NM) for useful discussions and insights.
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