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Abstract—This paper studies human decision making via a util-
ity based approach in a binary hypothesis testing framework that
includes the consideration of individual behavioral disparity. Un-
like rational decision makers who make decisions so as to maximize
their expected utility, humans tend to maximize their subjective
utilities, which are usually distorted due to cognitive biases. We
use the value function and the probability weighting function from
prospect theory to model human cognitive biases and obtain their
subjective utility function in decision making. First, we show that
the decision rule which maximizes the subjective utility function
reduces to a likelihood ratio test (LRT). Second, to capture the unre-
liable nature of human decision making behavior, we model the de-
cision threshold of a human as a Gaussian random variable, whose
mean is determined by his/her cognitive bias, and the variance
represents the uncertainty of the agent while making a decision.
This human decision making framework under behavioral biases
incorporates both cognitive biases and uncertainties. We consider
several decision fusion scenarios that include humans. Extensive
numerical results are provided throughout the paper to illustrate
the impact of human behavioral biases on the performance of the
decision making systems.

Index Terms—Utility based hypothesis testing, behavioral bias,
prospect theory, human decision making, information fusion,
decision fusion.

I. INTRODUCTION

D ISTRIBUTED sensor networks for information fusion
and inference have been studied quite extensively due

to their wide applications in security, defense, environmental
monitoring and in almost all intelligent systems [1]–[3]. Sensor
nodes can be programmed to take measurements regarding a
phenomenon of interest (PoI), and to transmit their quantized
and/or compressed sensing data to a fusion center (FC). In many
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situations, these nodes act as local decision makers that assist the
FC in making an inference regarding the state of the PoI. When
we have physical sensors serving as local decision makers, the
optimal decision rules for both the local decision makers and the
FC for different cases have been derived in the literature (see, for
e.g., [1], [2], [4], [5]). However, in many emerging applications,
such as crowdsourcing, humans have become an essential part
of the decision making process. In fact, in many applications
humans serve as ‘sensors’ who contribute information towards
an inference task. Examples of human sensors include members
of a committee or an organization, and scouts monitoring a
phenomenon to gather intelligence. In addition, posts on Twitter
and ratings on recommendation websites such as Yelp can
also be regarded as decisions made by human agents, which
can be aggregated for obtaining inferences. Unlike traditional
physical sensors that provide objective measurements towards a
distributed inference task, humans are subjective in expressing
their opinions or decisions.

The difficulty in modeling human decision making arises be-
cause of their cognitive biases as well as due to the uncertainties
exhibited by human decision makers. Cognitive biases are char-
acterized by diminishing marginal utility, risk seeking/aversion
behavior and loss aversion attitude; while the uncertainties in
decision making behavior of humans can arise from emotion,
time constraint, fatigue and operating environment [6]–[9]. The
purpose of this work is to develop a unified framework that
incorporates both cognitive biases and uncertainties in decision
making, which we call decision making under behavioral biases.
We begin our study with the discussion of cognitive biases
based on prospect theory (PT). This Nobel-prize-winning theory
proposed by Kahneman and Tversky [6] provides a theoretically
sound description of human cognitive biases through a value
function and a probability weighting function. Value function,
as the name suggests, acts on the values (gains and losses) to
reflect humans’ loss attitude, i.e., asymmetric valuation towards
gains and losses. From the cognitive psychology viewpoint,
people are usually loss averse in the sense that loss feels worse
than the gain of an equivalent amount feels good. Probability
weighting function, on the other hand, acts on the probability
that an event will occur. It represents the fact that in humans’
cognitive perception, they usually overweigh small probabilities
and underweigh large probabilities.

This paper considers human decision making behavior in the
context of hypothesis testing. As is well known, humans make
decisions in the framework of hypothesis testing and the decision
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is made by selecting the hypothesis that best supports the given
set of observations [10]. There have only been a few works that
incorporate PT into hypothesis testing to model human decision
making. In [11], Nadendla et al. applied prospect theory to
hypothesis testing and analyzed the behavior of optimists and
pessimists of different types. In their work, the definitions of
optimists and pessimists were limited in scope for modeling
general human behavior. As a result, the analysis cannot be
extended to the development of explicit decision rules for agents
with arbitrary prospect theoretic parameters. The optimality of
the likelihood ratio test (LRT), which is known to be the optimal
decision rule in minimizing the Bayesian risk, was investigated
in PT based hypothesis testing in [12]. The authors showed that
the LRT may or may not be optimal for behavioral decision
makers under the Neyman-Pearson criterion.

In addition to being subject to cognitive biases, human agents
may also exhibit uncertainties in decision making. There have
been some research efforts that explore uncertainties in hu-
man decision making. Since human participants have different
backgrounds and expertise regarding a PoI, the qualities of the
local decisions vary quite considerably. It was shown in [13]
that when there is no reliability information available for each
decision maker, the majority rule is often the choice that gives
better results in group decision making, compared to other
criteria such as the consensus rule. Budescu et al. [14] showed a
scenario where the FC gives more weight to the decisions made
by agents who have been more accurate in the past, while it
assigns less weight to the decisions made by unreliable agents.
In [15], the fusion of local decisions made by humans was
analyzed using signal detection techniques. The authors studied
how the quality variation of local decisions affects the decision
performance of the FC. Meanwhile, there have been research
efforts which attempt to model human decision uncertainties in
different contexts. The quantization of prior probabilities in a
Bayesian decision making framework was analyzed to model
categorization in human decision making [16]. Vempaty et al.
[17] constructed a Bayesian hierarchical structure to model
human decision making behavior at individual level, crowd
level and population level. In [18], Wimalajeewa et al. studied
collaborative human decision making and assumed that each
participating agent makes decisions using a random decision
threshold. The authors in [19] investigated the conditions under
which integration of human operators with physical sensors can
improve the performance in binary decision making. A novel
sequential paradigm for crowdsourced classification considering
limited knowledge of human worker’s reliability was presented
in [20].

In the above works that study cognitive biases in the context
of decision making [11], [12], the authors assume that humans
make decisions so as to minimize their behavioral Bayesian risk
under the Bayesian formulation. However, psychology studies
show that in practice, instead of employing the decision rule that
minimizes the behavioral Bayesian risk, people use utility based
approaches based on existing evidence and select the action
which results in the highest expected payoff over all possible
alternatives [21], [22]. To the best of our knowledge, the analysis
of human decision making from a utility based perspective while

considering cognitive biases under PT has not been addressed in
the previous literature. Besides, the existing work has not con-
sidered how the uncertainties differ from one human to another
in decision making, i.e., the individual level quantification of
human uncertainty. No prior work has discussed the combination
of both decision uncertainties and cognitive biases in affecting
the decision quality. Such a unified framework is crucial to the
design of efficient decision rules when we have humans-in-the-
loop, and is relevant in many areas such as situational awareness
in monitored civil and military systems, targeted advertising
and recommendation systems, portfolio management, insurance
policy design, as well as investment in financial markets.

The main objective of this work is to investigate the impact
of behavioral biases that include cognitive biases and decision
uncertainties on human decision making and, correspondingly,
on the decision fusion rule in multi-agent systems. Specifically,
our contributions are:
� We consider that a human perceives the utility of making

correct decisions to be gain and perceives the utility of
making wrong decisions to be loss.1 Value functions and
probability weighting functions based on PT are exploited
to construct the subjective utility function for humans in
a binary hypothesis testing problem. The optimal decision
rule for cognitively biased humans is determined in which
they choose the hypothesis that maximizes their subjective
expected utility.

� Next, we consider that humans use a threshold based
scheme to make decisions based on their observations [18],
[23]. The threshold of a human is treated as a random
variable where the threshold mean is determined by the
person‘s cognitive biases under PT, and the threshold
variance represents the person’s uncertainty in decision
making. We thoroughly study the impact of an individual’s
behavioral biases (cognitive biases and uncertainties) on
the performance of decision making systems that involve
human participation. In particular, three configurations are
investigated: (i) a human acts as an assistant to help a
rational FC make the final decision, (ii) the other scheme
considers the FC to be a behaviorally biased human who
makes the final decision with the help of a physical sensor,
and (iii) two-person decision fusion, where two human
agents independently provide their local decisions to the
FC.

� Finally, we investigate collaborative human decision mak-
ing and obtain the optimal decision fusion rule at the
FC. In our work, the FC is able to adjust its decision
making strategy when the human behavioral properties
change. This provides generality and flexibility compared
to existing group decision fusion schemes, such as those
developed in [13], [15], [24], [25], where the authors did
not consider the behavioral biases of human participants.

1When the humans make right decisions, there is a potential gain as they have
a better knowledge of the status of the environment and remedial actions can be
taken. On the other hand, when humans make wrong decisions in terms of false
alarms and miss detections, there is a loss as they have an inaccurate perception
regarding the PoI.
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Fig. 1. Illustration of the value function and the weight function in prospect
theory.

The rest of the paper is organized as follows. In Section II,
we provide some background of PT and introduce the utility
based hypothesis testing framework. Cognitive biases and un-
certainties are incorporated to model human decision making. In
Section III, three different decision making problems involving
human participation are investigated: humans act as agents in
assisting the FC to make the final decision, a human acts as
the FC and decision fusion of two human agents. We further
study collaborative human decision making in Section IV and
conclude our work in Section V.

II. UTILITY BASED HYPOTHESIS TESTING

In this section, we explore human decision making for binary
hypothesis testing problems using utility based decision theory,
starting with a brief introduction of prospect theory.

A. Prospect Theory Background

From a psychology viewpoint, people are said to be loss averse
in the sense that they feel more hurt when they lose something,
than they feel good when they gain something of equal value.
For example, the satisfaction a person gets when $100 is added
to his/her present value is less than the loss of satisfaction
when $100 is subtracted from the present value. In prospect
theory [6], the value function v(x) plotted in Fig. 1(a) character-
izes the loss aversion effect by assigning a subjective utility to an
outcome x:

v(x) =

{
xλ x ≥ 0
−β(−x)λ x < 0

(1)

where x is the actual gain (when it is positive) or loss (when it
is negative), and v(x) represents the human subjective valuation
of x. Utilities under PT are perceived as gains and losses with
respect to a reference point, which is a subjective value above
which utilities are perceived as gains and utilities blow which
are perceived as losses. With different reference points, the char-
acterization of human behavior even for the same experiment is
significantly different. In this work, for simplicity, we assume
the case where the gain and loss are perceived with respect to the
fixed reference point set at zero so that positive utilities humans
derive from deciding correctly correspond to gains and negative
utilities humans derive from deciding incorrectly correspond
to losses. β is the loss aversion coefficient, and v(x) reflects

people’s different loss aversion attitudes that are realized by the
variation of parameter β. When a person becomes more loss
averse, β increases and the subjective valuation of a fixed loss
appears to be more significant. λ characterizes the phenomenon
of diminishing marginal utility, which indicates that as the total
number of units of gain (or loss) increases, the utility of an
additional unit of gain (or loss) to a person decreases. This effect
can be seen in Fig. 1(a) as the curve saturates when it goes in
either direction (positive or negative).

On the other hand, the probability weighting function reflects
people’s four-fold pattern of risk attitudes, i.e., risk-seeking for
small-probabilistic gains and large-probabilistic losses, and risk-
aversion for small-probabilistic losses and large-probabilistic
gains. This phenomenon can be interpreted as people overweigh-
ing small probabilities and underweighing large probabilities.
For example, the certainty effect, which states that a sure gain
is favored over a probabilistic gain, indicates humans’ risk
aversion behavior for large probabilistic gains. Tversky and
Kahneman [6] illustrated the certainty effect by investigating
which of the following options do people prefer: (A) a sure
gain of $30; and (B) 80% chance to win $45 and 20% chance
to win nothing. In this case, most participants chose option A
and it demonstrates the typical risk-aversion phenomenon in
PT because the expected value of option B ($45× 0.8 = $36)
exceeds that of A by 20%. A detailed discussion of the four-fold
pattern of risk behavior can be found in [26].

As shown in Fig. 1(b), the probability weighting function in
PT is:

w(p) =
pα

(pα + (1− p)α)1/α
(2)

where p is the actual probability with which an event occurs.
w(p) gives the subjective probability distorted by the probabil-
ity distortion coefficient α. For behaviorally unbiased people,
α = 1, β = 1 and λ = 1. In a landmark study [26], the authors
conducted experiments by letting human subjects choose the
preference between a series of prospect pairs. Based on the
experimental data, the behavioral parameters α, β and λ of
each individual can be estimated using a nonlinear regression
procedure. According to their result, the medians of α, β and λ
are 0.69, 2.25 and 0.88, respectively.

B. Decision Making Model and Bayesian
Formulation Under PT

In hypothesis testing, an agent makes a decision on which
of the hypothesis H0 or H1 is true, based on an observation r
regarding a PoI. The observations under the two hypotheses are
H0 : r = s0 + w, H1 : r = s1 + w, where s0 and s1 are signal
amplitudes under H0 and H1, respectively, and w denotes the
observation noise. Assume that the signal and noise are indepen-
dent of each other and the probability density functions (PDFs)
of r under H0 and H1 are assumed to be known. We denote
them as f0(r) and f1(r), respectively. The prior probabilities of
H0 and H1 are π0 and π1, respectively. Let Cij be the cost of
declaring Hi when Hj is true for i, j ∈ {0, 1}. These costs are
assigned to reflect the the relative importance of the four courses
of actions [1], [27].
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Let R be the acceptance region of hypothesis H1, then the
decision maker employs the following decision rule:

d =

{
1; if r ∈ R
0; otherwise

(3)

When human cognitive biases are modeled by PT, i.e., the
costs and probabilities are affected by the value function and
the probability weighting function, respectively, the expected
behavioral risk under Bayesian formulation is:

b(R) =

1∑
i=0

1∑
j=0

w[Pr(Declare Hi|Hj is true)] · v(Cij).

The objective is to find the optimal acceptance region R∗ that
minimizes the behavioral risk:

R∗ = argmin
R∈R

b(R). (4)

Because of the nonlinearity of the value function (1) and the
probability weighting function (2), the Bayesian formulation of
the optimization problem (4) does not have an explicit solu-
tion [11], [12]. Under Bayesian formulation, the decision rule,
i.e., the acceptance region of hypothesis H1, is pre-determined
before any observation is received. Whenever an observation
comes in, a decision is made according to the same decision
rule. However, psychology studies suggest that humans make
decisions after observing some evidence, where the observation
provides some support for a hypothesis. Depending on whether
the observation confirms or refutes a hypothesis, human confi-
dence towards a hypothesis can vary continuously from 100%
certainty about its truth to 100% certainty about its falsity.
Correspondingly, when making a decision, a rational decision
maker calculates the expected utility of deciding each alternative
hypothesis based on observed evidences, and selects the one that
results in the highest expected utility [10], [21], [22]. This action
of the rational decision makers is called decision making under
the expected utility theory (EUT) framework [28]. We proceed
with the above utility based methods to model human decision
making and employ PT to incorporate human cognitive biases.
In fact, when a rational decision maker selects the hypothesis
from a set of alternative hypotheses that results in the maximum
expected payoff under EUT, it is equivalent to the decision rule
that minimizes the Bayesian cost [29], [30]. However, in the
following, we will show that this equivalence does not hold in
general when the decision maker is cognitively biased under PT.

C. Subjective Utility Based Hypothesis Testing

We begin with the analysis of utility based decision making
for binary hypothesis testing under EUT, where the decision
makers are assumed to be rational. Instead of minimizing the
Bayesian risk (4), the objective is to choose the hypothesis that
results in the highest expected utility. Let Uij denote the utility
of deciding Hi when the true hypothesis is Hj , for i, j ∈ {0, 1}.
Thus,U00 andU11 represent the utilities of correct decisions and
are usually positive, while U10 and U01 represent the utilities of
wrong decisions and are usually negative. Given an observation
r, a rational decision maker’s expected utility of declaring H0

and H1 are:

EU(Declare H0) = Pr(H0|r)U00 + Pr(H1|r)U01

EU(Declare H1) = Pr(H0|r)U10 + Pr(H1|r)U11, (5)

where Pr(Hi|r) denotes the probability that Hi is true given that
the observation is r, and

Pr(Hi|r) = f(r|Hi)πi

f(r)
=

fi(r)πi

f(r)
(6)

for i = 0, 1, respectively, where f(·) and fi(·) denote the ap-
propriate PDFs and πi is the prior probability of hypothesis Hi.
Given the observation r, the hypothesis H0 orH1 whichever has
a larger expected utility is declared to be true

EU(Declare H1)
H1

�
H0

EU(Declare H0). (7)

Substitute the expression of Pr(Hi|r) given in (6) into (5)

EU(Declare H0) =
f0(r)π0

f(r)
U00 +

f1(r)π1

f(r)
U01

EU(Declare H1) =
f0(r)π0

f(r)
U10 +

f1(r)π1

f(r)
U11

Next, we substitute the above equations into (7), and the utility
based decision rule reduces to the classical LRT:

f1(r)

f0(r)

H1

�
H0

π0(U00 − U10)

π1(U11 − U01)
� η. (8)

which is also the optimal decision rule that minimizes the
Bayesian cost.

In the statistical detection theory framework, the decision
making agent is assumed to be rational and the objective is to
maximize the expected utility. Under EUT, decision makers are
rational in the sense that they are able to calculate the expected
utility of each action without biases. For example, a typical
characteristic of rational decision makers is that they should
be indifferent between two alternative courses of action if their
expected utilities are the same. However, due to human cognitive
biases in perceiving the utilities and the probabilities, a human
usually prefers a sure gain over a probabilistic gain even if the
two alternatives have the same expected utility. In many settings
when the decisions are made by humans, certain behavioral
factors may cause the results to deviate from the outcomes
predicted by EUT. Unlike rational decision makers who choose
the hypothesis that maximizes their expected utilities, humans
act to maximize their subjective utilities under cognitive biases.
When calculating the subjective utility of declaring H0 and H1,
we employ PT by applying the value function v(·) defined in (1)
on the utilities and applying the probability weighting function
w(·) defined in (2) on the probabilities. Given observation r, the
subjective utilities of declaring H0 and H1 are:

SU(Declare H0)= w (Pr(H0|r)) v(U00)+w (Pr(H1|r)) v(U01)

SU(Declare H1)= w (Pr(H0|r)) v(U10)+w (Pr(H1|r)) v(U11).
(9)
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Without optimizing over all possible events in a Bayesian sense,
humans are known to select the alternative which has a higher
subjective utility after receiving observation r:

SU(Declare H1)
H1

�
H0

SU(Declare H0). (10)

Combining (9) and (10), the subjective utility based decision
rule becomes:

w (Pr(H1|r))
w (Pr(H0|r))

H1

�
H0

v(U00)−v(U10)

v(U11)−v(U01)
� V00−V10

V11−V01
, (11)

where V00, V01, V10, V11 are the subjective utilities when the
value function (1) acts on U00, U01, U10, U11, respectively.
Again, V00 and V11 are positive, while V01 and V10 are neg-
ative. Employing the expression of the weight function given
in (2) and the expression of Pr(Hi|r) given in (6), and not-
ing that Pr(H1|r) = 1− Pr(H0|r), we have w(Pr(H1|r))

w(Pr(H0|r)) =
Pr(H1|r)α
Pr(H0|r)α . It follows that the decision rule given in (11) becomes

f1(r)

f0(r)

H1

�
H0

(
V00 − V10

V11 − V01

) 1
α π0

π1
� ηp. (12)

Thus, the test reduces to a LRT with threshold ηp as stated in
the following theorem.

Theorem 1: Under prospect theoretic framework, the opti-
mal subjective utility based decision rule reduces to an LRT. The
threshold of the LRT, ηp, is a monotonous function of parameters
α and β.

Proof: See Appendix A. �
In many applications, the likelihood ratio λ(r) = f1(r)

f0(r)
is

strictly increasing or decreasing with respect to r. One example
is when f1(r) and f0(r) are Gaussian PDFs with different
means and the same variance.2 Gaussian distributions are very
commonly used as they characterize a large number of problems
in signal processing and communications. In this case, the
LRT reduces to a threshold based decision rule based on the
observation r and the optimal decision threshold t is monotone
with respect to α and β as well.

Proposition 1: When the likelihood ratio Λ(r) is strictly
increasing or decreasing, the LRT in (12) becomes a threshold
decision rule. The optimal decision threshold is monotone with
respect to behavioral parameters α and β, respectively.

Proof: Given the monotonicity of Λ(r), the likelihood ratio

test (12) is equivalent to r �H1

H0
t0 or r �H0

H1
t0, depending on

whetherΛ(r) is increasing or decreasing. The decision threshold
t0 is obtained by setting t0 = Λ−1(ηp), where Λ−1(·) is the
inverse function ofΛ(r). Because of the monotonicity ofΛ−1(·),
t0 is monotonous with respect to ηp. From Theorem 1, we know
that ηp is a monotonous function with respect to parameters α
and β, it follows that t0 is monotonous with respect to α and β
as well. �

2In case that f1(r) and f0(r) are Gaussian PDFs with means m1 and m0,

and variance σ2
s , Λ(r) = f1(r)

f0(r)
= e

2(m1−m0)r−(m2
1
−m2

0
)

2σ2
s , which is strictly

increasing if m1 > m0, and strictly decreasing if m1 < m0.

Fig. 2. Decision thresholds with respect to behavioral parameters.

In the remainder of this paper, we consider human decision
making for the binary hypothesis testing problem, and the obser-
vations under each hypothesis are assumed to follow a Gaussian
distribution:

H0 : r ∼ N (m0, σ
2
s)

H1 : r ∼ N (m1, σ
2
s) (13)

where the signal means under H0 and H1 are m0 and m1,
respectively. The signal variance under both hypotheses is σ2

s .
We assume that m0 < m1 and the diminishing marginal utility
parameter λ from PT is set equal to 0.88. We focus on analyzing
how behavioral parameters α and β affect the human decision
qualities.

For illustration, we conduct experiments on a hypothesis
testing problem with the following setting: π0 = 0.7, π1 =
0.3, U11 = U00 = 20, U01 = −80, U10 = −20,m0 = 0,m1 =
5, and σ2

s = 2.25. In Fig. 2, we plot the optimal decision
thresholds with respect to α, β under EUT and PT based
subjective utility approaches. We also provide the optimal
decision thresholds for PT based Bayesian formulation using
numerical methods. It can be observed that under EUT, the
decision threshold is a constant, without being affected by
humans’ behavioral properties. In this particular example, we
can see that the decision thresholds, under both PT utility based
methods and PT Bayesian methods, decrease as probability
distortion parameter α decreases and decrease as loss aversion
parameter β increases. An intuitive explanation for this is that
as α decreases, the human perceives less distinction between
the priors {π0, π1}. Therefore, the hypothesis with a smaller
prior probability, in this case, H1, is more likely to be declared
true and correspondingly, the decision threshold is decreasing.
When β increases, the human perceives the penalty for miss
detection U01 = −80 to be more significant than the penalty
for false alarm U10 = −20. Therefore, the decision threshold is
decreasing to avoid the possibility of miss detection.

In contrast to the fact that the Bayesian formulation is equiv-
alent to the utility based decision making under EUT, there
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exist disparities between these two approaches when PT is
incorporated. Results in Fig. 2 suggest that whenα is smaller and
β is larger, the decision threshold under PT Bayesian formulation
deviates more from the rational case than the decision threshold
under PT utility based approaches. Note that when α = β = 1
and λ = 1, i.e., the person is rational, the decision rule of both
approaches reduces to the classical LRT (8).

The above results have provided us with the basic insights
on how the parameters α and β from prospect theory affect
the decision threshold used by a cognitively biased person in
utility based decision making. We denote the cognitively biased
threshold t as t = F(α, β), where F is monotone with respect
to α and β.

D. Uncertainties in Human Decision Making

Unlike physical sensors, whose decision thresholds can be
programmed to be fixed values that do not change, there are
uncertainties in human decision making due to uncontrolled
factors like time constraint, mood, environment, location and
so on. Individual uncertainty (variability) is a prominent feature
in human behavior. Variability is observed in human percep-
tion and decision making even when the external conditions,
such as the sensory signals and the task environment, stay
the same [31]. This is also known as trial-to-trial variability
in psychology experiments, i.e., differences of responses are
noticeable when the same experiment is repeated using the
same human subject. From a psychology point of view, the
sources of the variability are: a) the initial condition of the
neural circuitry is likely to be different at the start of each
trial, and b) the noise permeating in every level of the nervous
system, from the perception of input observations to the stage
of decision making. These two sources cause uncertainties in
human decision making and are highly dependent on factors
such as time constraints, outside environment and human mood
[9], [32].

In the following, decision thresholds of humans are modeled
as random variables as in [13], [18], [19]. Specifically, we
model the threshold of a human to be τ = F(α, β) + v, where
v ∼ N (0, σ2

τ ). Here σ2
τ represents the variance associated with

an agent while making a decision due to uncertainty as discussed
above. From now on, we let τ denote the behaviorally biased
decision threshold used by the human agent. τ is assumed to
be a Gaussian random variable, whose mean is affected by the
average level of human cognitive biases and the variance σ2

τ

is due to decision uncertainties. A larger value of σ2
τ indicates

higher uncertainty of a person while making a decision. To mea-
sure the individual uncertainty in human decision threshold, one
may conduct the experiments as in [26] on the same human under
different environments, e.g., time pressure, change of location,
etc. In each experiment, the set of behavioral parameters α, β
and λ of the human can be estimated. Since the variability of
these parameters can be incorporated via the variability of the
decision threshold, we can obtain the variance of the decision
threshold by analyzing the statistics.

Lemma 1: In solving the hypothesis testing problem (13), if
a human employs a random decision threshold τ ∼ N (mτ , σ

2
τ ),

the probabilities of false alarm and detection are given by

PF = Q

(
mτ −m0√
σ2
s + σ2

τ

)
, PD = Q

(
mτ −m1√
σ2
s + σ2

τ

)
, (14)

where Q(x) is the probability that a standard normal
random variable takes a value larger than x: Q(x) =
1√
2π

∫∞
x exp (−u2

2 )du.
Proof: See Appendix B. �
Next, we want to study the impact of decision uncertainty

quantified in terms of σ2
τ on human decision making perfor-

mance. For a human agent who uses a random decision threshold
τ ∼ N (mτ , σ

2
τ ) to make a decision in the binary hypothesis

testing problem (13), we have the following theorem.
Theorem 2: There exists a pair of values {mτ ,mτ} where

mτ < mτ and both mτ and mτ satisfy:

e
2(m1−m0)mτ−(m2

1
−m2

0
)

2σ2
s ×

(
mτ −m1

mτ −m0

)
= η,

such that for humans with mτ ≤ mτ ≤ mτ , the expected utility
while making a decision monotonically decreases asσ2

τ becomes
larger, i.e., the expected utility while making a decision is
maximized for decision uncertainty σ2

t
∗
= 0. For humans with

mτ > mτ and mτ < mτ , the expected utility is unimodal, i.e,
first increases then decreases, as σ2

τ becomes larger. The optimal
decision uncertainty σ2

τ
∗ is greater than 0 and satisfies:

e
2(m1−m0)mτ−(m2

1
−m2

0
)

2(σ2
s+σ2

τ
∗
) ×

(
mτ −m1

mτ −m0

)
= η.

Proof: See Appendix C. �
Definition 1: Under the hypothesis testing framework dis-

cussed above, if for decision variance σ2
τ
∗
= 0, a human obtains

the maximum expected utility while making a decision and
the expected utility decreases monotonically as σ2

τ increases,
i.e, mτ ≤ mτ ≤ mτ , the person is called reasonable. If the
best decision in terms of expected utility is made for decision
variance σ2

τ
∗
> 0, i.e., mτ > mτ or mτ < mτ , the person is

called extremely biased.
Some simulation results are provided when a human em-

ploys the decision threshold N (mτ , σ
2
τ ) in the hypothesis test-

ing problem discussed before. In this case, we obtain that
mτ = −0.025 and mτ = 5.015. Correspondingly, the left side
extremely biased region, the reasonable region and the right
side extremely biased region in terms of mτ are (−∞,−0.025),
[−0.025, 5.015] and (5.015,∞), respectively. In Fig. 3, we plot
the expected utility of a human while making a decision with
respect to the uncertainty of decision threshold σ2

τ . It can be
observed that the expected utility of a reasonable human is
monotonically decreasing with respect to σ2

τ . For extremely
biased human agents, there exists an optimal value of decision
uncertainty σ2

τ
∗ at which they achieve the maximum expected

utility. Note that in this hypothesis testing problem, left side
extremely biased humans whose decision threshold is on the far
left typically perform better than a right side extremely biased
humans agent whose decision threshold is on the far right. This
is because the penalty of miss detection (U01 = −80) dominates
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Fig. 3. Expected utility of a human agent as decision uncertaintyσ2
τ increases.

Fig. 4. Human participating in decision making as an assistant.

the penalty of false alarm (U10 = −20) in this particular prob-
lem. Right side extremely biased humans with higher biased
decision thresholds are more probable to suffer miss detection
and their performance is significantly deteriorated. Moreover,
it is observed in Fig. 3 that a left side extremely biased human
outperforms a reasonable human after a certain value of σ2

τ is
reached. The reason is that as the decision threshold variance σ2

τ

increases, a reasonable human agent is more likely to employ
higher biased decision thresholds than a left side extremely
biased human, while degrading the performance due to higher
cost of miss detection.

Remark: Extremely biased humans have their decision mak-
ing performance enhanced in the presence of decision uncer-
tainty up to a certain point before it begins to deteriorate. This
is analogous to noise-enhanced signal processing [33] where
the performance of a suboptimal detector can sometimes be
enhanced by adding noise. This phenomenon is also known as
stochastic resonance in the literature [34]–[36].

III. DECISION FUSION INVOLVING HUMAN PARTICIPATION

In this section, we analyze how the biased decision threshold
τ employed by humans affects the performance of the decision
making system in three different scenarios.

A. Human Participates in Decision Making as an Assistant,
FC Is Rational

First, as shown in Fig. 4, we consider the scenario where a
human agent assists the FC in making the final decision with the
FC being rational (unbiased).

We assume that the FC observes r0 and agent A observes ra
via orthogonal observation channels. The observation channels
of both the FC and agent A are assumed to be corrupted by
additive Gaussian noises, which are independent of each other
but have the same PDF. The observations at the FC and agent
A are denoted by r0 and ra to emphasize the fact that they are
observed over two independent channels. Specifically, agent A
is a human who makes a decision on which hypothesis is true
by comparing ra with a threshold ta:

da =

{
1 if ra ≥ ta
0 if ra < ta

For simplicity of exposition, we first consider ta to be a fixed
decision threshold determined by the PT parameters αa and βa,
ta = F(αa, βa). Decision making uncertainty of agent A will
be incorporated later in this subsection. After agent A sends
its decision da = j ∈ {0, 1} to the FC, the FC makes the final
decision d0 based on da and its own observation r0. Given da
and r0, the expected utilities for the FC to declare H0 and H1

are:

EU(Declare H0) = Pr(H0|r0, da = j)

U00 + Pr(H1|r0, da = j)U01

EU(Declare H1) = Pr(H0|r0, da = j)

U10 + Pr(H1|r0, da = j)U11,

respectively. Choosing the hypothesis that has the larger ex-
pected utility yields the decision rule as:

Pr(H1|r0, da = j)

Pr(H0|r0, da = j)

H1

�
H0

U10 − U00

U01 − U11
,

where Pr(Hi|r0, da = j) represents the probability that Hi is
true given observation r0 and da = j. We have

Pr(Hi|r0, da=j) =
πiPr(da=j|Hi)f(r0|Hi)

f(r0, da = j)

for i, j ∈ {0, 1}. Note that Pr(da = 1|H0) = P a
F , and Pr(da =

1|H1) = P a
D, which are the probabilities of false alarm and

detection of agent A, respectively. After simplification, the
decision rule at the FC becomes:

f1(r0)

f0(r0)

H1

�
H0

1− P a
F

1− P a
D

π0(U10 − U00)

π1(U01 − U11)
=

1− P a
F

1− P a
D

η, if da = 0,

(15)

f1(r0)

f0(r0)

H1

�
H0

P a
F

P a
D

π0(U10 − U00)

π1(U01 − U11)
=

P a
F

P a
D

η, if da = 1. (16)

By setting f1(r0)
f0(r0)

=
1−Pa

F

1−Pa
D
η for da = 0, and f1(r0)

f0(r0)
=

Pa
F

Pa
D
η for

da = 1, we obtain the decision thresholds applicable to obser-
vation r0 at the FC, denoted by t0 and t1, respectively. When
observations under both hypotheses follow Gaussian distribu-
tions (13), we have P a

F = Q( ta−m0

σs
) and P a

D = Q( ta−m1

σs
).

Considering the two scenarios together where da = {0, 1}, the
probability of false alarm and the probability of detection at the
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Fig. 5. Expected utility as a function of threshold ta used by agent A.

FC can be expressed as:

pf =

1∑
j=0

Pr(d0 = 1|da = j,H0)Pr(da = j|H0)

= P a
FQ

(
t1 −m0

σs

)
+ (1− P a

F )Q

(
t0 −m0

σs

)
,

pd =
1∑

j=0

Pr(d0 = 1|da = j,H1)Pr(da = j|H1)

= P a
DQ

(
t1 −m1

σs

)
+ (1− P a

D)Q

(
t0 −m1

σs

)
,

respectively. Then, the expected utility at the FC is:

U=π0(1− pf )U00+π0pfU10+π1(1− pd)U01+π1pdU11.
(17)

We conduct simulations for the same hypothesis testing prob-
lem as described in Section II-C. In Fig. 5, when agent A’s
decision threshold ta varies, i.e., the cognitive bias of the human
varies, we present the expected utilities of agent A by itself
and that of the FC. Note that the thresholds used at agent A
that yield the maximum expected utility for agent A by itself
and that at the fusion center are different. In other words, a
rationally behaving person who acts to maximize his/her EU
(with decision threshold equal to 2.28 indicated by the red dot)
does not necessarily provide the best performance for the FC.
In this particular example, a person behaving with some biases
(with decision threshold equal to 2.41 indicated by the blue dot)
results in a larger expected utility for the FC. How to choose the
properly biased person is dependent on the specific setup of the
hypothesis testing problem. After knowing the effect of agent
A‘s decision threshold on the FC’s performance, we are able
to determine a particular type of cognitively biased person, in
terms of α, β, to be chosen to undertake the task.

Next, to incorporate decision making uncertainty, the decision
threshold employed by agent A is considered to be a Gaussian
random variable τa ∼ N (mτa , σ

2
τa
). In this case, P a

F and P a
D

can be calculated through (14), and the optimal decision rule
at the FC can be obtained in a manner similar to the previous
discussions. The FC’s expected utility can be correspondingly

Fig. 6. Expected utility of the FC as a function of the mean threshold of
agent A.

derived. In the following, we focus on studying the FC‘s decision
making performance when the uncertainty of agent A’s decision
threshold changes.

With the earlier setup of the hypothesis testing problem,
Fig. 6 shows the expected utility at the FC with respect to the
mean decision threshold of agent A. In the red, green and blue
curves, the variances of agent A’s decision threshold areσ2

τa
= 0,

σ2
τa

= 1 andσ2
τa

= 4, respectively. It is not surprising that the red
curve with smallest decision making uncertainty performs better
than the other two curves in the middle range of mτa , namely
when the human agents are reasonable. Thus, it is preferable to
have human agents who are reasonable in that they are more
predictable in the presence of decision making uncertainty and
their performance degrades in a graceful manner. On the far
left or far right of the graph, i.e., when the behavioral threshold
is extremely biased, a larger variance surprisingly gives better
performance at the FC. Intuitively, for extremely biased agents
whose behavioral thresholds are far from being rational, a large
variance is more likely to ‘rectify’ their thresholds to be close
to optimal thresholds. However, for rational agents whose be-
havioral thresholds are already close to the optimal, a large
variance is more likely to deviate their thresholds away from
their optimal values. For this reason, a large variance helps
increase the FC’s utility when the agent is extremely biased,
while it hurts when the agent is already behaving rationally.
This phenomenon is consistent with our previous analysis about
the effect of uncertainty on the quality of a single human agent’s
decision shown in Fig. 3.

Also notice that in Fig. 5, in order for the FC to derive
maximum expected utility, agent A employed the fixed decision
threshold ta = 2.41. When we introduce uncertainty in the
decision threshold of agent A by increasing the variance in
Fig. 6, the optimal mean of A’s decision threshold while assisting
FC to derive the largest expected utility, changes to mτa = 2.2
when σ2

τa
= 1, and mτa = 1.98 when σ2

τa
= 4. This is because

with the same mean threshold mτa , different variances result
in different values of probability of false alarm and detection
for agent A (as shown in (14)), which in turn leads to different
decision thresholds used by the FC (calculated using (15) and
(16)). Thus, the utility of the FC correspondingly changes. For
this reason, we should also take the variance of the agent into
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consideration when deciding the agent’s optimal mean threshold
while assisting the FC.

B. Human Is the Decision Maker at the FC, FC Is Biased

For the system shown in Fig. 4, next consider that A is a
physical sensor with fixed decision threshold ta. The FC is a
biased human with behavioral parameters α, β and decision
making uncertainty σ2

FC . Again, physical sensor A sends its
decisionsda = j ∈ {0, 1} to help the FC make the final decision.
If the FC is biased, we need to apply v(·) and w(·) when
calculating the FC’s subjective utility of declaring either H0

or H1 being true, when agent A sends its decision da = j:

SU(Declare H0)

=w (Pr(H0|r0, da=j))V00+w (Pr(H1|r0, da=j))V01

(18)

and

SU(Declare H1))

=w (Pr(H0|r0, da=j))V10+w (Pr(H1|r0, da=j))V11.
(19)

The FC makes its decision by selecting the hypothesis which
results in a higher subjective utility. Since the FC observes r0 and
agent A makes its decision independently, the likelihood ratio
at the FC can be shown to be strictly increasing or decreasing
with respect to observation r0. Hence, the FC uses a threshold
based decision rule and the mean of the decision threshold mj

FC

is obtained by setting (18) equal to (19) for j = 0, 1. Finally,
we model the decision threshold that the FC uses as a Gaussian
random variable τ0 = N (mj

FC , σ
2
FC) to make the final decision,

after it observes the decision made by agent A, da = j.
The probability of false alarm and probability of detection at

the FC are:

pf =
1∑

j=0

Pr(d0 = 1|da = j,H0)Pr(da = j|H0)

=Q

(
ta−m0

σs

)
Q

(
m1

FC −m0√
σ2
s+σ2

FC

)

+

(
1−Q

(
ta−m0

σs

))
Q

(
m0

FC −m0√
σ2
s+σ2

FC

)

and

pd =
1∑

j=0

Pr(d0 = 1|da = j,H1)Pr(da = j|H1)

= Q

(
ta−m1

σs

)
Q

(
m1

FC −m1√
σ2
s+σ2

FC

)

+

(
1−Q

(
ta−m1

σs

))
Q

(
m0

FC −m1√
σ2
s+σ2

FC

)
,

Fig. 7. Expected utility of FC as a function of the decision threshold of agent
A, when FC has behavioral biases.

where Pr(d0 = 1|da = j,Hi) = Q(
mj

FC−mi√
σ2
s+σ

2
FC

) for i, j = {0, 1}
follows directly from the result of Lemma 1. Again, the expected
utility of FC can be calculated using (17).

Fig. 7 shows the expected utility of the FC with respect to the
decision threshold ta used by the physical sensor A. In Fig. 7(a),
the red curve represents the scenario where the FC is rational,
and in the green and blue curves the FC is behaviorally biased
with β = 1.5 and β = 2, respectively. When the FC is biased,
we set the FC’s probability distortion parameter to be α = 0.72.
It is observed that the FC achieves higher expected utility when
it acts rationally. On the other hand, the peak points on these
curves (denoted by the red, green and blue dots) suggest that for
FCs with different behavioral properties, the optimal decision
threshold of A in helping the FC achieve the best utility differs.
In such a decision making system where we are dealing with
humans that do not provide an opportunity for parameter tuning
while they make decisions, the best we can do is to acknowledge
the fact that humans have cognitive biases and are subject to
uncertainties and try to develop efficient approaches to optimize
the system performance. In the problem considered here, we are
tuning the threshold of the physical sensor A so as to help the
FC/human optimize the decision quality.

Another interesting fact is that in this decision making config-
uration, a more biased behaving FC (indicated by the blue curve
which has a larger β) outperforms a less biased FC (indicated by
the green curve which has a smaller β) for the entire range of A’s
decision threshold. The reason is that under the joint influence of
behavioral parametersα, β and γ, the threshold of the likelihood
ratio test used by a biased FC deviates from the threshold used by
a rational FC. In our case, a larger β counteracts the effect of α
and γ, making the threshold used by the biased FC closer to that
of a rational FC. In Fig. 7(b), we set the loss aversion parameter
β = 2 and plot the expected utility of the FC with respect to ta as
α varies. Similarly to the phenomenon in Fig. 7(a), it can be seen
that a more biased value of α = 0.6 helps the FC make better
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Fig. 8. Fusion of decisions made by two human agents.

decisions than α = 0.8 when β = 2. In general, it is not wise to
judge the decision making performance of a human based on the
comparison of one single behavioral parameter, instead all the
parameters should be treated together in a more holistic manner.

C. Fusion of Decisions Made by Two Human Agents

Now, consider the decision fusion scheme shown in Fig. 8,
where A and B are two human agents that make local deci-
sions da and db, which are transmitted to an unbiased FC to
make the final decision. Let the decision threshold of A be
τa ∼ N (mτa , σ

2
τa
), and the decision threshold of B be τb ∼

N (mτb , σ
2
τb
). Suppose the FC receives the decision da = i ∈

{0, 1} from agent A, and decision db = j ∈ {0, 1} from agent
B. The expected utility of declaring H1 and H0 for a rational
FC are:

EU(Declare H0)

= Pr(H0|da = i, db = j)U00 + Pr(H1|da = i, db = j)U01

EU(Declare H1)

= Pr(H0|da = i, db = j)U10 + Pr(H1|da = i, db = j)U11.

The decision rule that declares the hypothesis which has the
larger expected utility to be true, is

d0(da= i, db=j)=I

(
Pr(da= i, db=j|H1)

Pr(da= i, db=j|H0)
≥ η

)
,

where I(·) is the indicator function which equals 1 if the state-
ment inside the parentheses is true, and it equals 0 otherwise.
The optimal decision rule of the FC requires the calculation of
the probabilities of local decisions under hypothesesH1 andH0,
which depends on the decision thresholds used by the two human
agents. Further, the probability of false alarm and detection at
the FC are:

pf =
1∑

i=0

1∑
j=0

Pr(d0 = 1|da = i, db = j)Pr(da = i, db = j|H0)

pd =
1∑

i=0

1∑
j=0

Pr(d0 = 1|da = i, db = j)Pr(da = i, db = j|H1).

Fig. 9. Expected utility of the FC when fusing decisions of two human agents.

Fig. 10. FC’s expected utility with respect tomτb for different values ofmτa.

Finally, the expected utility of the FC can be calculated using
(17).

In Fig. 9, we plot the expected utility of the FC with respect
to the mean values of the decision thresholds used by agents
A and B, namely mτa and mτb. In the red smooth surface,
both agents have decision uncertainty σ2

τ = 0.2, and in the blue
meshed surface, both agents have decision uncertaintyσ2

τ = 0.7.
In the graph, there are two local maximum points where the
FC achieves locally optimal utilities. When the means of the
decision thresholds deviate from their local maxima points,
the utility drops significantly. We can also see that the agents
with less decision making uncertainty (red curve) help the FC
perform better than the agents with larger uncertainty do (blue
curve) in the ‘center’ region of the graph. In the ‘leaf’ regions
where humans are extremely biased, larger uncertainties produce
higher utilities for the FC. For better visualization of the system
performance, we present the cross section curves of Fig. 9 in
Fig. 10, where we plot the FC’s utility with respect to mτb for
different values of mτa. Fig. 10(a) and (b) correspond to the
cross section plots yielding the two maximum utility points,
respectively. Note that for both of the local maximal points, the
mean value of the decision threshold of agent A is equal to that of
agent B. In subplots Fig. 10(a) and (b) where the values of mτa

are close to optimal, we observe that FC performs better when
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the value ofσ2
τ is smaller. However, in subplots Fig. 10(c) and (d)

where the values of mτa and mτb are both extremely biased, the
blue curve with a larger decision uncertainty σ2

τ = 0.7 outper-
forms red curve with a smaller decision uncertainty σ2

τ = 0.2.
This phenomenon coincides with what we observed in Fig. 6
when there was only one human participating.

IV. COLLABORATIVE DECISION MAKING

In this section, we consider the scenario where multiple
human agents (n > 2) participate in the collaborative deci-
sion making process. Each agent independently makes a de-
cision di ∈ {0, 1} using a random decision threshold τi ∼
N (mτi , σ

2
τi
), for i = 1, . . . , n. The FC receives a vector of deci-

sionsD = {d1, . . . , dn} and makes a final decision d0 regarding
the hypothesis present. As the number of agents becomes larger,
the likelihood ratio test derived in the previous sections becomes
complicated and intractable. However, if we know the behavioral
property of each agent, we can derive the decision thresholds and
calculate the probability of false alarm PFi

and probability of
detection PDi

for each agent. The optimal fusion rule at the FC
in this situation can be obtained by calculating the log likelihood
ratio according to the Chair-Varshney rule [4] given as follows:

log
Pr(H1|D)

Pr(H0|D)
= log

π1

π0
+
∑
s+

log
PDi

PFi

+
∑
s−

log
1− PDi

1− PFi

,

where s+ represents the agents whose local decisions are 1 and
s− are agents with local decisions 0. Decisions are made based
on:

log
Pr(H1|D)

Pr(H0|D)

H1

�
H0

log η.

Another fusion rule that is widely used is the majority rule
due to its simplicity even though it is not necessarily optimal.
When the FC receives the decision vectors D, it calculates the
sum of local decisions: Γ =

∑n
i=1 di. In the majority rule, the

statistic Γ is compared to a preset threshold k = 	n/2
. If Γ ≥
k, the FC decides that H1 is true, otherwise the FC decides
that H0 to be true, i.e., Γ �H1

H0
k. In this case, di ∈ {0, 1} is a

Bernoulli random variable with probability Pr(di = 1) = PDi

under H1 and Pr(di = 1) = PFi
under H0. Thus, Γ is a Poisson

Binomial distributed random variable. Under H0, for example,
the probability mass function (PMF) of Γ is:

Pr(Γ = γ) =
∑
A∈Fγ

∏
i∈A

PFi

∏
j∈Ac

(1− PFi
),

where Fγ is the set that contains all possible combinations of γ
agents out of a total of n agents. The cardinality of Fγ is

(
n
γ

)
,

so the computation becomes more complicated when n is large.
In the following, we use the Binomial approximation as well as
the normal approximation to estimate the statistics of Γ.

A. Approximations of pd and pf at the FC

Considering that the FC uses the majority rule, this subsection
presents two approximation methods that allow us to compute

Fig. 11. Expected utility as a function of the group size.

the probabilities of false alarm and detection in a simpler and
faster way.
� Binomial approximation: It can be seen that Pr(Γ) = γ

approximately follows a Binomial PMF B(n, p̃f )
under H0, where p̃f = 1

n

∑n
i PFi

, and it follows
B(n, p̃d) under H1, where p̃d = 1

n

∑n
i PDi

. Thus,
the probability of false alarm and the probability
of detection at the FC can be appproximated by
pf = Pr(d0 = 1|H0) ≈

∑n
γ=k

(
n
γ

)
p̃γf (1− p̃f )

n−γ and

pd = Pr(d0 = 1|H1) ≈
∑n

γ=k

(
n
γ

)
p̃γd(1− p̃d)

n−γ ,
respectively.

� Normal approximation: Since dis are independent, while
not identically distributed Bernoulli random variables,
we cannot use the central limit theorem (CLT) directly
to approximate Γ to be Gaussian distributed when
n is large. However, CLT can be generalized to be
applied to independent but non-identically distributed
random variables when the Lyapunov condition is
satisfied: limn→∞ 1

s2+δ
n

∑n
i=1 E[|di − μi|2+δ] = 0,

where sn =
∑n

i=1 σ
2
i , μi and σi are the mean and

standard deviation of each random variable. It is
easy to verify that the Bernoulli random variables
satisfy the Lyapunov condition. Therefore, when
n is large, Γ can be approximated by a Gaussian
random variable with mean mf =

∑n
i=1 PFi

and
variance σ2

f =
∑n

i=1 PFi
(1− PFi

) under H0; and mean
md =

∑n
i=1 PDi

and variance σ2
d =

∑n
i=1 PDi

(1− PDi
)

under H1. Thus, the probabilities of false alarm and
detection at the FC are approximated by pf =Pr(d0 =

1|H0)≈
∫∞
T

1√
2πσ2

f

exp (− (x−mf )
2

2σ2
f

)dx=Q(
T−mf

σf
),

pd=Pr(d0 = 1|H1)≈
∫∞
T

1√
2πσ2

d

exp (− (x−md)
2

2σ2
d

)dx=

Q(T−md

σd
), respectively.

With approximate values of pf and pd, the expected utility of
the FC can be calculated via (17). Fig. 11 shows the expected
utility of the FC as a function of group size when applying the
Chair-Varshney decision rule, the majority rule, the Binomial
and Gaussian approximations of the majority rule, respectively.
In our simulation, the parameters of the hypothesis testing
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problem are chosen to be the same as before, and each agent
in the group has behavioral parameters α = 0.72, β is drawn
from a Gaussian distribution N (mβ , σ

2
β), where mβ = 1.5 and

σ2
β = 0.2. The variance of human decision threshold is set equal

to σ2
τ = 0.25. Results are obtained through 5000 Monte Carlo

trials. It is observed that the optimal Chair-Varshney decision
rule outperforms the majority fusion rule. The expected utility
of the FC under the majority rule goes up when the group size
increases, and convergence occurs fairly fast. When the group
size goes up to around 10, the performance reaches its saturation.
We also observe that the binomial approximation method gives
quite a good approximation to the majority rule and the Gaussian
approximation starts to perform well when n becomes large as
expected.

B. Optimal Decision Rule at the FC

In our previous analysis, the majority rule was used for
decision fusion where the statistic Γ is compared to a threshold
k = 	n/2
. The majority rule is a special case of the k out of n
rule and is optimal only in certain scenarios. This rule is not
necessarily optimal if the (binary) problem has non-uniform
priors, non-uniform costs of false alarm and miss detection,
non-identical local decision makers, etc. Here, we employ the
more general k out ofn rule, where d0 = 1 is declared when k or
more out of n people vote in favor of H1. The goal is to find the
optimal value of k∗ for the k out of n rule so that the Bayesian
utility at the FC is maximized. To characterize the local decision
qualities, we use population-level averages of the probabilities
of detection and false alarm, P̂D and P̂F , for each of the human
agent.

Given that the sum of the local decisions is l, i.e., Γ = l, the
expected utilities for the FC to declare H0 and H1 are:

EU(Declare H0) = Pr(H0|Γ = l)U00 + Pr(H1|Γ = l)U01

EU(Declare H1) = Pr(H0|Γ = l)U10 + Pr(H1|Γ = l)U11,

respectively, where Pr(Hi|Γ = l) = πiPr(Γ=l|Hi)
Pr(Γ=l) for i = {0, 1},

and

Pr(Γ = l|H0) =

(
n

l

)
P̂ l
F (1− P̂F )

n−l

Pr(Γ = l|H1) =

(
n

l

)
P̂ l
D(1− P̂D)n−l

respectively. The FC decides that hypothesis to be true which
has a higher expected utility. After simplification, we obtain the
optimal decision rule at the FC:

(
P̂D

P̂F

)l (
1− P̂D

1− P̂F

)n−l
H1

�
H0

η (20)

where η is defined in (8). We make the reasonable assumption
that P̂D > P̂F [1], [27], so that the left hand side of (20) is an
increasing function of l and the optimal decision rule reduces to

l �H1

H0
l∗, where the optimal threshold at the FC k = l∗ is the

smallest integer l that satisfies ( P̂D

P̂F
)l( 1−P̂D

1−P̂F
)n−l ≥ η.

Fig. 12. Optimal threshold at the FC for different behavioral parameters of
the group.

For a group size ofn = 20, we calculate the optimal threshold
l∗ for the k out of n rule when the behavioral properties of the
people in the group change. In simulations, we set the group
members’ probability weight parameter α equal to 0.72, and let
the loss aversion parameter β follow the Gaussian distribution
N (mβ , σ

2
β), wheremβ and σ2

β could change. We employ Monte

Carlo methods to obtain the P̂D and P̂F of the agents numerically
and calculate the optimal threshold l∗. In the left subplot of
Fig. 12, we observe that with σ2

β fixed to be 0.25, the optimal
threshold decreases when mβ increases. In the right subplot we
set mβ = 2, and it shows that the optimal threshold decreases as
well whenσ2

β becomes larger. Thus, it is important to understand
the behavioral properties of the population in order to set the best
threshold for the k out of n rule at the FC.

V. CONCLUSION

In this paper, we have explored the use of utility theory based
hypothesis testing in human decision making. When humans are
treated as rational agents who maximize their expected utilities,
the results derived at the FC are not likely to be accurate.
Humans have cognitive biases and make decisions so as to
maximize their subjective utilities. The use of PT allows us to
capture the non-rationality of humans. Specifically, we derived
the subjective utility based decision rule for cognitively biased
human agents modeled by PT. Three decision making systems
involving humans’ participation were explored, and we studied
the impact of human behavioral biases on the quality of the
final decisions. We also analyzed collaborative decision making
and investigated the optimal k out of n rule at the FC while
considering the behavioral biases of the participants.

This work is able to reveal fundamental features of human
decision making under behavioral biases, as well as the sig-
nificant differences between decision fusion involving human
participants and information fusion with only physics-based
sensors. Through the simple decision making systems discussed
in this paper, we provided insights into the optimum design and
task allocation of collaborative human-machine networks, as
well as the development of more complicated human-centric
intelligent systems. It will be worthwhile to study the optimal
decision making architecture for particular applications in future
work. We also plan to study the correlation among parameters
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that represent different aspects of behavioral biases, and design
applicable strategies to help human rectify the behavioral biases
so as to make higher quality decisions.

APPENDIX A

We have already shown that the perceived utility decision
rule under PT reduces to a LRT. To show that the threshold
of the LRT, ηp, is monotone with respect to α, we take the
derivative of the expression of ηp given in (12) with respect toα:
d
dαηp=

−1
α2

π0

π1
(V00−V10

V11−V01
)

1
α ln(V00−V10

V11−V01
). Since −1

α2
π0

π1
(V00−V10

V11−V01
)

1
α

is strictly negative, d
dαηp is always non-positive or non-negative

depending on the sign of ln(V00−V10

V11−V01
).

Similarly, differentiating ηp with respect to β, we get d
dβ ηp=

π0

απ1
(V00−V10

V11−V01
)

1
α−1 Uλ11(−U10)

λ−Uλ00(−U01)
λ

(Uλ11+β(−U01)λ)2
, which is non-positive

or non-negative depending on the sign of Uλ
11(−U10)

λ −
Uλ
00(−U01)

λ, since all other terms are strictly positive. Thus,
the likelihood ratio is monotone with respect to parameters α
and β.

In the special case of V00 − V10 = V11 − V01, ηp does not
change when α varies; and in the special case of U11U10 =
U00U10, ηp remains constant when β varies.

APPENDIX B

We write

PD =

∫ ∞

−∞
Pr(r ≥ x|H1)fτ (x)dx

=

∫ ∞

−∞
Q

(
x−m1

σs

)
1√
2πσ2

τ

e

(
− (x−mτ )2

2σ2
τ

)
dx (21)

Construct two independent random variables X ∼ N (mτ , σ
2
τ )

andY ∼ N (0, σ2
s). SinceX + Y ∼ N (mτ , σ

2
s + σ2

τ ), which is
the same as the distribution of Z +mτ , where Z ∼ N (0, σ2

s +
σ2
τ ). Thus,

Pr(X + Y ≤ m1) = Pr(Z ≤ m1 −mτ )

= 1−Q

(
m1 −mτ√
σ2
s + σ2

τ

)
= Q

(
mτ −m1√
σ2
s + σ2

τ

)
. (22)

where we use the fact that 1−Q(x) = Q(−x). On the other
hand, by the law of total probability (conditioning on X), we
have:

Pr(X + Y ≤ m1)

=

∫ ∞

−∞
Pr(Y ≤ m1 − x)

1√
2πσ2

τ

e

(
− (x−mτ )2

2σ2
τ

)
dx

=

∫ ∞

−∞
Q

(
x−m1)

σs

)
1√
2πσ2

τ

e

(
− (x−mτ )2

2σ2
τ

)
dx. (23)

Observing that (23) is the same as the expression of pd in
(21), which in turn is equal to the expression in (22), it is
easy to conclude that PD = Q( mτ−m1√

σ2
s+σ2

τ

). Following a similar

procedure, PF = Q( mτ−m0√
σ2
s+σ2

τ

) can be proved straightforwardly.

APPENDIX C

Following (17), we express the human’s expected utility while
making a decision:

U = π0U00 + π1U01 + π1(U11 − U01)PD − π0(U00 − U10)PF

� APD −BPF + C, (24)

where A = π1(U11 − U01), B = π0(U00 − U10) are positive
constants and C = π0U00 + π1U01. PD and PF represent the
detection and false alarm probabilities of humans as given
in (14).

When m0 < mτ < m1, from the expression in (14) we can
see that PF increases and PD decreases as σ2

τ becomes larger.
Thus, the expected utilityU is a decreasing function with respect
to σ2

τ .
Next, we consider mτ ≥ m1. In this case, both PF and PD

increase with respect to σ2
τ . We substitute the expression of PD

and PF in (14) in (24) and take the derivative with respect to σ2
τ :

∂U

∂σ2
τ

=
1

2
√
2π(σ2

s + σ2
τ )

3

×
(
e
− (mτ−m1)2

2(σ2
s+σ2

τ ) (mτ−m1)A−e
− (mτ−m0)2

2(σ2
s+σ2

τ ) (mτ−m0)B

)
.

It follows that ∂U
∂σ2

τ
≥ 0 if and only if

g � e
2(m1−m0)mτ−(m2

1
−m2

0
)

2(σ2
s+σ2

τ ) ×
(
mτ −m1

mτ −m0

)
≥ B

A
,

where g is a function that decreases with respect to σ2
τ .

When g|σ2
τ=0 ≤ B

A , we have ∂U
∂σ2

τ
≤ 0 for all σ2

τ ≥ 0, which

suggests that U is a decreasing function with respect to σ2
τ .

When g|σ2
τ=0 > B

A , there exists a pointσ2
τ
∗ such that g|σ2

τ<σ2
τ
∗ >

B
A , i.e., ∂U

∂σ2
τ
> 0; and g|σ2

τ<σ2
τ
∗ ≤ B

A , i.e., ∂U
∂σ2

τ
≤ 0. In other

words, U first increases and then decreases as σ2
τ becomes

larger. The threshold σ2
τ
∗ is obtained by solving the equation

e
2(m1−m0)mτ−(m2

1
−m2

0
)

2(σ2
s+σ2

τ
∗
) × (mτ−m1

mτ−m0
) = B

A .
On the other hand, g is an increasing function with respect

to mτ . Note that g|mτ=m1
= 0 and g|mτ=∞ = ∞. Therefore,

there exists a mτ > m1 such that g|σ2
τ=0,mτ≤mτ

≤ B
A and

g|σ2
τ=0,mτ>mτ

> B
A . In other words, when m1 ≤ mτ ≤ mτ , U

is a decreasing function with respect to σ2
τ and when mτ > mτ ,

U is unimodal with respect to σ2
τ . mτ is obtained by solving mτ

in the equation e
2(m1−m0)mτ−(m2

1
−m2

0
)

2σ2
s × (mτ−m1

mτ−m0
) = B

A = η.
The analysis of the case mτ < m0 is similar to the

above derivations. There exists a mτ < m0 such that U
is a decreasing function with respect to σ2

τ when mτ ≤
mτ ≤ m0, and U is unimodal with respect to σ2

τ when
mτ < mτ . mτ is obtained by solving mτ in the equation

e
−2(m1−m0)mτ+(m2

1
−m2

0
)

2σ2
s × (mτ−m0

mτ−m1
) = A

B = 1
η , which is equiv-

alent to e
2(m1−m0)mτ−(m2

1
−m2

0
)

2σ2
s × (mτ−m1

mτ−m0
) = η.
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