
Reduced-cost supercell approach for computing accurate phonon density of states in

organic crystals

Cameron Cook1 and Gregory J. O. Beran1, a)

Department of Chemistry, University of California, Riverside, California 92521,

United States

(Dated: 13 November 2020)

Phonon contributions to organic crystal structures and thermochemical properties

can be significant, but computing a well-converged phonon density of states with lat-

tice dynamics and periodic density functional theory (DFT) is often computationally

expensive due to the need for large supercells. Using semi-empirical methods like den-

sity functional tight binding (DFTB) instead of DFT can reduce the computational

costs dramatically, albeit with noticeable reductions in accuracy. This work pro-

poses approximating the phonon density of states via a relatively inexpensive DFTB

supercell treatment of the phonon dispersion that is then corrected by shifting the

individual phonon modes according to the difference between the DFT and DFTB

phonon frequencies at the Γ-point. The acoustic modes are then computed at the

DFT level from the elastic constants. In several small-molecule crystal test cases, this

combined approach reproduces DFT thermochemistry with kJ/mol accuracy and 1–2

orders of magnitude less computational effort. Finally, this approach is applied to

computing the free energy differences between the five crystal polymorphs of oxalyl

dihydrazide.

a)Electronic mail: gregory.beran@ucr.edu
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I. INTRODUCTION

Organic molecular crystals are prevalent in pharmaceuticals, organic semiconductors, en-

ergetic materials, and many other organic materials. Different crystal packings of a given

molecule, known as polymorphs, can exhibit distinct physical properties, such as stability,

solubility or charge-carrier mobility. Knowledge of the different possible polymorphs and

their relative stabilities, called the crystal energy landscape, can be valuable for designing

new materials with specific properties. However, reliable prediction of crystal energy land-

scapes is hindered by the small, few kJ/mol or less free energy differences that often separate

different polymorphs.1–3 Further complications arise from how those relative thermochemi-

cal stabilities can vary with temperature and pressure.4 Accurate computational models are

often required to map out these solid form landscapes correctly.5–9

Polymorph free energies are dominated by the electronic lattice energy contribution.

Indeed, lattice energy rankings have long been the primary metric employed when ranking

predicted crystal structures.5,10,11 However, it is also clear that the vibrational contributions

to the free energy can be important. Surveys suggest that Fvib contributions are sufficiently

large to reverse the lattice energy stability orderings in 10–20% of polymorphic systems at

room temperature.1,12 Phonon contributions are crucial to understanding why aspirin form

I is thermodynamically preferred over form II,13 and they have proved necessary to predict

the thermodynamically most stable polymorphs correctly for several molecules in the blind

tests of crystal structure prediction.6,7

More elaborate quasi-harmonic phonon treatments describe how the crystal structure and

phonon frequencies change with temperature and pressure. Accounting for these changes is

important for predicting properties including lattice parameters/molar volumes,14–16 thermo-

chemical properties,14,15,17–21 mechanical properties,22,23 vibrational spectra,24,25 and nuclear

magnetic resonance chemical shifts.26 Capturing those pressure- and temperature-dependent

changes in thermochemical properties proved essential to predicting the phase diagram of

methanol, for example.20 Beyond harmonic or quasi-harmonic treatments, there is increas-

ing evidence that dynamics plays an important role in the structures and thermochemical

stabilities of molecular crystals.27–30

Unfortunately, even within the harmonic approximation, computing a well-converged

phonon density of states for a chemically interesting organic crystal can be very computation-
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ally demanding. The most straightforward approach to computing harmonic phonon modes

relies on lattice dynamical calculations performed in large supercells to capture phonon

dispersion.31 Typically, the supercell should extend 10–15 Å in each direction,32,33 and it

will often contain hundreds of atoms. Density functional perturbation theory avoids the

need for supercells and can compute the phonons at lower cost,34 but the calculations re-

main computationally demanding.

One means of reducing the computational costs associated with evaluating the harmonic

phonon density of states (pDOS) and the vibrational partition functions is to compute the

phonons at a lower level of theory. For example, the use of DFT-optimized geometries

and phonon frequencies together with single-point energies computed via correlated wave

function methods has proved effective.35

Alternatively, some researchers have explored the use of computationally inexpensive

density functional tight binding (DFTB) models for predicting the structures and phonons.

DFTB is a semi-empirical quantum mechanical method that is based off of the generalized

gradient approximation (GGA) of DFT.36,37 It expresses the electronic energy as a Taylor

expansion about a reference DFT electron density ρ0. The present work focuses on DFTB3,

which includes terms through third-order in the expansion.38 For systems like molecular

crystals in which non-covalent interactions are important, DFTB3 must be paired with a

dispersion correction, such as Grimme’s D3 model.39 Hydrogen bonding corrections can pro-

vide further improvements.40 The combination of a minimal basis set of Slater-type orbitals

and semi-empirical parameterization speeds DFTB by up to three orders of magnitude over

ab initio DFT.

In the context of molecular crystals, DFTB has proved effective for optimizing crys-

tal structures,41 and it predicts the thermal expansion in carbamazepine accurately.42 It

can provide useful intermediate rankings of crystal structures in a multi-step, hierarchical

crystal structure prediction,43 and it can provide good embedding environment for DFT.44

On the other hand, existing DFTB approximations and parameterizations appear insuffi-

ciently accurate for the final ranking stages of crystal structure prediction.43,45–48 On the

X23 benchmark set of molecular crystals, for example, it exhibits a mean absolute deviation

in the lattice energies of 10 kJ/mol, compared to 5–6 kJ/mol for many dispersion-corrected

GGA density functionals.45,46 As the data presented below will demonstrate, DFTB perfor-

mance is often noticeably worse than DFT for computing the phonon density of states and
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the thermochemical properties derived from it.

Here, we propose a strategy for computing the harmonic pDOS that combines the compu-

tational efficiency of DFTB with the greater accuracy of DFT. In this approach, a supercell

harmonic phonon calculation is performed at the dispersion-corrected DFTB3 level to cap-

ture the phonon dispersion, which is far more affordable than GGA DFT. However, the

limitations of DFTB semi-empirical parameterizations mean that there will often be sizable

errors in the phonon frequencies. Therefore, an additional Γ-point harmonic phonon fre-

quency calculation is performed on the crystallographic unit cell with DFT. By matching

the Γ-point modes between DFT and DFTB, we determine an additive offset for each indi-

vidual DFTB phonon frequency that enables shifting of the DFTB dispersion curves such

that they agree exactly with DFT at the Γ point. This simple shift improves the agreement

between the low-cost DFTB and full DFT pDOS considerably. This corrected DFTB pDOS

can be computed at least 1–2 orders of magnitude faster than the full supercell DFT calcula-

tion while sacrificing only modest accuracy in the final predicted thermochemical properties.

Although the present study focuses purely on a harmonic phonon description, the general-

ization of the ideas here to a quasi-harmonic treatment for the more reliable treatment of

temperature-dependent effects would be straightforward.

II. THEORY

A. Approximating the phonon density of states

The principal finite-temperature contributions to the Gibbs free energy of a crystal arise

from the Helmholtz vibrational energy, Fvib(T ). From statistical thermodynamics and the

harmonic approximation, one obtains,

Fvib(T ) = 3nNAkBT

∫ ∞
0

ln

[
2 sinh

(
~ω

2kBT

)]
g(ω)dω (1)

where n is the number of atoms in the unit cell, NA is Avogadro’s number, g(ω) is the phonon

density of states as a function of frequency ω, ~ is Planck’s constant, kB is the Boltzman

constant, and T is temperature.49 The density of states g(ω) is normalized to unity (hence

the factor of 3n in Eq 1) and is expressed as a kernel density estimate (KDE) of the overall

frequency distribution for all phonon modes ωi and all k by placing primitive Gaussian
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functions of width 5 cm−1 at each discrete phonon mode about each sampled k-point. Use

of the KDE improves the convergence of thermodynamic properties with respect to phonon

sampling.12

To evaluate the phonon dispersion in reciprocal space that contributes to the phonon den-

sity of states, it is necessary to generate a supercell consisting of multiple crystallographic

unit cells in order to describe how the phonon frequency changes with respect to its interac-

tion with neighboring cells. Doing so often dramatically increases the size of the system to

be modeled and can make the computational cost prohibitive with DFT or other ab initio

methods. The complexity introduced by phonon dispersion is often circumvented by simply

evaluating the frequencies at the Γ-point (zone center, k = 0) of the unit cell, which can be

accomplished without supercell expansion. However, this Γ-point-only approximation omits

potentially important contributions to the pDOS from the acoustic modes and dispersion of

the optical modes away from the zone center.

Before describing the proposed efficient approach for computing the pDOS, the theory

of lattice dynamics will be reviewed briefly. Within the harmonic approximation, the crys-

tal potential can be approximated via the second term of the Taylor expansion of overall

potential with respect to atomic displacements,

V = V0 +
∑
l,α

V l
αu

l
α +

1

2

∑
l,l′,α,β

V ll′

αβu
l
αu

l′

β + · · · (2)

V ll′

αβ =
∂2V

∂ulα∂u
l′
β

(3)

where V is crystal potential and ulα is the displacement of atom l in direction α. V l
α represents

the nuclear gradient of the potential with respect to the displacement of atom l, which equals

zero when the structure has been optimized to a stationary point. V ll′

αβ is the matrix of force

constants describing the forces felt by atom l in the central unit cell after the displacement

of atom l′. Mass weighting and transforming the coordinates into reciprocal space yields the

dynamical matrix Dαβ, which can be diagonalized according to:

ω2uα =
∑
β

Dαβuβ where Dαβ =
1

√
mlml′

∑
n

V l,l′

α,β exp(−ik · rn) (4)

This dynamical matrix equation relates atomic displacement, force response, and result-

ing vibrational frequencies ω. The normal mode eigenvectors uα are normalized vectors

describing the collective movement of the atoms that result in the frequency of that mode.
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The hybrid approach proposed here seeks to benefit from the low-computational cost of

DFTB while mitigating its comparatively lower accuracy. In particular, we capture phonon

dispersion via large supercell DFTB calculations. The low-cost of DFTB makes it more

feasible to converge the pDOS with respect to supercell size.46,50 To address the accuracy

limitations of the DFTB pDOS, an additive correction is applied to the frequencies associated

with each DFTB phonon mode. This shift is computed separately for each mode i as the

difference between the DFT and DFTB frequencies at the Γ-point,

ωfinali (k) ≈ ωDFTBi (k) +
(
ωDFTi (Γ)− ωDFTBi (Γ)

)
(5)

Performing this frequency shift does require computing the DFT frequencies at the Γ point,

which is far more expensive than computing them with DFTB for the same unit cell. On

the other hand, the cost of the DFT Γ-point calculation can be orders of magnitude cheaper

than computing the DFT frequencies in a large supercell. Overall, this simple correction

approximates the DFT phonon density of states well at a fraction of the usual computational

cost.

The approximation in Eq 5 assumes that the dispersion in individual phonon bands is

similar regardless of whether they are computed with DFT or DFTB, and that the simple

additive correction is sufficient to improve the DFTB bands. That assumption is imperfect—

our own anecdotal examinations of the pDOS for a few systems suggest that the DFTB3-

D3(BJ) bands with the 3ob-3-1 parameter set51 tend to exhibit greater frequency dispersion

across the Brillouin zone compared to their B86bPBE-XDM DFT counterparts. Neverthe-

less, these discrepancies in individual phonon bands partially cancel in the total pDOS,

and the correction improves the overall phonon density of states considerably compared to

the target DFT calculations. Note too that this Γ-point shift does not work for the three

acoustic modes, since those phonon frequencies equal zero at k = 0, regardless of the elec-

tronic structure treatment. The acoustic modes will be handled separately, as described in

Section II B.

Employing this proposed hybrid pDOS calculation strategy requires addressing a few

practical issues. First, the harmonic approximation requires that the crystal structure has

been relaxed to an energy minimum at the same level of theory as the lattice dynamics calcu-

lation. Accordingly, the crystal geometry is first optimized with DFT for the Γ-point phonon

calculation. The DFT-optimized unit cell is then relaxed with DFTB for the supercell lattice
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dynamics calculation.

Second, applying Eq 5 requires identifying which DFT phonon modes correspond to

which DFTB modes. Due to differences in the optimized structures and the electronic

structure models, the phonon frequencies will differ both in magnitude and the ordering

obtained from the eigenvalue solver. The normal mode eigenvectors obtained from diago-

nalizing the Γ-point dynamical matrix (Eq 4) at each level of theory will also likely differ

quantitatively, though they should still correspond to qualitatively similar atomic motions.

Therefore, to match phonon normal modes between the two levels of theory, the overlap

matrix 〈uDFTBα (Γ)|uDFTβ (Γ)〉 is computed as the set of all possible inner products between

the DFT and DFTB normal modes at the Γ-point. The optimal mode match for each DFT

normal mode is then assigned based on the single largest overlapping DFTB normal mode

eigenvector (with each DFTB mode being allowed to match only one DFT mode).

Figure 1 plots a sample overlap matrix for the DFT (B86bPBE-XDM) and DFTB3-

D3(BJ) normal mode eigenvectors of phase I carbon dioxide at the Γ-point (see Section III

for computational details). With only 12 atoms in the unit cell and 33 normal modes

(excluding the acoustic modes), the overlap matrix can be visualized easily. For the vast

majority of modes, there exists a single, clear match between the two levels of theory.

The degree of the overlap can be smaller for degenerate modes, since the corresponding

eigenvectors are not unique. However, this does not present a problem in practice as long

as the correct subspaces are identified, since individual assignments within the subspace are

arbitrary. Once the DFTB bands have been fully assigned, they can be shifted according to

Eq 5 to construct the final approximate pDOS.

The overlap-based mode assignment has proved straightforward for all systems studied

thus far. It is conceivable that one might find a system for which the simpler DFTB model

performs poorly and for which assigning the modes becomes more difficult. As the DFTB

models and parameterizations are continually improved, however, the likelihood of such

difficulties will hopefully decrease even further.

B. Treatment of the acoustic modes

As noted above, the Γ-point shift cannot be applied to the three acoustic modes, since

those frequencies equal zero at the Γ point by definition, regardless of the model chemistry
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FIG. 1. Sample normal mode overlap matrix computed between the DFTB3-D3(BJ) and DFT

(B86bPBE-XDM) normal mode eigenvectors for phase I CO2. Darker green corresponds to a

larger-magnitude overlap.

employed. Moreover, very large supercells are required to converge the acoustic modes,

which can become computationally expensive even with DFTB. Finally, it is unclear how

well DFTB will model the soft acoustic vibrations in molecular crystals, given that such

interactions were not a focus of the parameterization.

Instead, the acoustic modes here are solved for separately with DFT via the stress-strain

relationships from the theory of elasticity,52,53

T = λE (6)

where T and E are the stress and strain tensors respectively, and λ is the matrix of elastic

constants describing the stress-strain relationship.

Acoustic sound velocities ν are related to the elastic constants using the 3× 3 Christoffel

matrices Γik for each unique direction in the Brillouin zone. The eigenvalues of these matrices

describe the velocity of sound propagating through the crystal, which is associated with the

frequency of the acoustic phonons.

det |Γik − ρν2δik| = 0 (7)

Within the long wave approximation,52 the eigenvalues ρνi can be related to the spring

constant βi via the lattice constant a,

ρν2i = βiaj (8)
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FIG. 2. Comparison of the acoustic phonon mode dispersion curves for crystalline carbon dioxide

as computed directly from lattice dynamics (green)versus those derived from the elastic constants

(red).

After averaging over the 13 unique Brillouin zone directions,54 the final acoustic mode dis-

persion curves are computed as,

ω = 2

√
β̄i
m

sin

(
kai
2

)
(9)

where m is the mass of the unit cell and kai represents the position along a reciprocal space

path. Once the acoustic mode dispersion has been evaluated, it is substituted in lieu of the

DFTB acoustic modes in the final density of states.

Figure 2 plots the acoustic modes for phase I carbon dioxide as computed directly from

DFT in a 3× 3× 3 supercell and from the elastic constant approach described above. Even

in this 16.9 Å dimension supercell, the DFT acoustic modes retain significant imaginary

components away from the Γ point. The elastic constant approach eliminates the imaginary

components and broadly captures the k-point dependence of these modes, though the elastic

constant model underestimates the frequencies by up to ∼10–15 cm−1 and exhibits reduced

dispersion across the Brillouin zone. Nevertheless, the room-temperature Helmholtz vibra-

tional free energies obtained from the acoustic mode contributions to the phonon density of

states differ by only 0.2 kJ/mol between the two models.
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FIG. 3. The five species whose crystals are modeled here.

III. COMPUTATIONAL METHODS

The atomic positions and lattice parameters of all crystals were fully relaxed starting from

experimental crystal structures. The structure of carbon dioxide phase I was obtained from

Ref. 55, while crystal structures of acetic acid (ACETAC01),56 imidazole (IMAZOL06),57

acetaminophen (HXACAN01),58 and the five polymorphs of oxalyl dihydrazide (VIPKIO01–

VIPKIO05)59 were taken from the Cambridge Structural Database using the reference codes

indicated in parentheses above. Molecular structures of these species are shown in Figure 3

The DFT geometry optimizations and finite displacements for the phonon calculations

were performed using the B86bPBE density functional and the XDM dispersion correction,

as implemented in Quantum Espresso v6.4.1.60 The calculations employed a 40 Ry (acetic

acid, due to the large supercell), 50 Ry (carbon dioxide, imidazole, and acetaminophen),

or 60 Ry cutoff (oxalyl dihydrazide). Core electrons were treated according to the projec-

tor augmented wave (PAW) approach using PAW potentials for H, C, N, and O produced

with A. Dal Corso’s Atomic code v6.1. The DFTB3-D3 calculations were performed us-

ing the DFTB+ program61,62 and the 3ob-3-1 Slater-Koster file parameter set.51 Hubbard

derivatives and empirical dispersion coefficients were set to the values recommended in the

documentation.

For assessing the approximations proposed here, the specific choice of density functional

and DFTB parameterization used to approximate the pDOS are somewhat arbitrary. The

B86bPBE-XDM functional used here has performed well in many earlier molecular crystal

studies.6,63–65 Similarly, the dispersion-corrected DFTB3-D3(BJ) parameterization should

also perform well for organic species like those studied here.51 One might further improve
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TABLE I. Supercell sizes used in the phonon calculations. Cells were chosen to achieve ∼15 Å

or more in each direction, while also ensuring the supercell DFT calculations were feasible for the

smaller molecules.

Crystal Supercell

Carbon Dioxide 3×3×3

Acetic Acid 2×4×3

Imidazole 2×3×2

α Oxalyl Dihydrazide 4×3×2

β Oxalyl Dihydrazide 5×2×3

γ Oxalyl Dihydrazide 4×2×3

δ Oxalyl Dihydrazide 5×2×3

ε Oxalyl Dihydrazide 3×4×2

Acetaminophen 2×2×3

the quality of these models by switching to a hybrid density functional7,66 or by including

hydrogen bonding corrections in DFTB, for example.40 Nevertheless, the results here focus

primarily on how well the shifted DFTB pDOS reproduces the target DFT one and the

impact of this on computed thermochemical properties, rather than carefully examining

how well these particular DFT results reproduce experiment.

The harmonic phonon calculations were performed with Phonopy v1.13.2,67 which gen-

erates a series of finite displacements in accord with the supercell/frozen phonon method.

The DFT Γ-point calculations employ the relaxed crystallographic unit cell, while the DFTB

phonon dispersion calculations employ a supercell constructed by replicating the unit cell

after DFTB relaxation. To ensure good convergence of the force constants,50 supercells were

chosen to achieve dimensions of 15 Å or greater along each lattice vector. Table I lists the

specific supercell sizes used. The dynamical matrix can then be diagonalized at various wave

vectors k. The Γ-point DFTB phonon frequencies used to match normal modes between

DFT and DFTB are obtained at k = 0 from the supercell phonon calculation, while the

remaining values at k 6= 0 provide the raw DFTB3-D3(BJ) pDOS. High-symmetry k paths

were assigned according to the schemes in Ref 68.

The matching of the phonon normal modes between DFT and DFTB and the elastic
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constant solver algorithm were performed using in-house Python3 code. Elastic constants

were solved in a similar manner to how they are implemented in Thermo PW module of

the Quantum Espresso suite.69 Thermo PW evaluates the elastic properties of a crystal by

calculating the stress response for a series of strained conformations. Various magnitudes of

each unique strain are applied, and the corresponding elastic constant is determined through

a quadratic fit. Six unique stress/strain relationships are typically required to construct the

elastic constant matrix, though this can often be simplified by exploiting crystal symmetry.

The stress/strain relationships were calculated via DFT. Test calculations found that

DFTB3-D3(BJ) with the 3ob-3-1 parameterization gave elastic constants that differed con-

siderably from the DFT ones. Performing these calculations with DFT instead of DFTB

does not significantly increase the overall cost. The number of stress-strain relationships

is independent of unit cell size, and evaluating each of the six stress-strain relationships

involves four fixed-cell geometry optimizations of a slightly distorted crystallographic unit

cell (rather than a supercell). All benchmark DFT phonon calculations here include the

acoustic mode correction. To analyze how much this correction contributes, some DFTB

results below include it, while others do not (as specified below).

IV. RESULTS AND DISCUSSION

To begin, Figure 4 compares the B86bPBE-XDM phonon density of states for the α

polymorph of oxalyl dihydrazide against the DFTB3-D3(BJ) 3ob-3-1 ones before and after

applying the Γ-point correction in Eq 5. These two models are referred to as “DFT” and

“DFTB” for the remainder of the paper. For computational simplicity, the DFT and DFTB

phonon dispersion calculations in this illustrative example employed only a 4×1×1 supercell

(4×3×2 would be more appropriate for quantitative accuracy). As can be seen in Figure 4a,

the raw DFTB pDOS differs noticeably from the DFT one. The discrepancies are most ob-

vious in the intramolecular bends and stretches in the ∼500-3500 cm−1 range. For example,

a number of the DFTB bending modes in the 540-595 cm−1 range occur at 870–900 cm−1 in

the DFT pDOS. Considering all DFT phonon modes above 500 cm−1, the mean and mean

absolute difference between DFT and DFTB are 54 and 84 cm−1, respectively. In other

words, the DFTB model is systematically underestimating the bending and stretching fre-

quencies on average. Discrepancies in higher-frequency intramolecular modes will primarily
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FIG. 4. Comparison of the DFTB3-D3(BJ) phonon density of states for the α polymorph of

oxalyl dihydrazide (a) before and (b) after the phonon shifting procedure against a supercell DFT

(B86bPBE-XDM) calculation. The reference DFT pDOS is plotted in red, while the DFTB one is

in black. All results except the unshifted DFTB pDOS in (a) include the corrected acoustic modes

derived from DFT elastic constants.

impact the enthalpy and free energy via the zero-point vibrational energy. Close inspection

of the pDOS in the low-frequency region also reveals discrepancies between the two models

that will primarily impact the entropy as well as the temperature dependence of the en-

thalpy. In the region below 500 cm−1, DFTB underestimates the DFT phonon frequencies

by 22 cm−1 on average, or 26 cm−1 in mean absolute error.

Figure 4b shows how the pDOS is dramatically improved after shifting the DFTB phonon

modes according to Eq 5 and correcting the acoustic modes. A few minor discrepancies

do remain: for example, the shifted DFTB peaks near 500 cm−1 should be broader and

less intense, while the opposite is true for several peaks in the ∼750–1750 cm−1 range.

Nevertheless, the shifted DFTB band positions and intensities as a whole exhibit far better

agreement with the target DFT ones.

For more insight into the performance of the shifted DFT frequencies, Figure 5 plots

the phonon frequencies for four modes in the 440–500 cm−1 range for acetic acid. It shows

how the additive shift, which ranges from 10–25 cm−1 for these particular modes, brings
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FIG. 5. A narrow region of the acetic acid phonon band structure (left) and density of states

(right) as evaluated by DFT and DFTB after frequency shifting.

the DFTB phonon frequencies into perfect agreement with DFT at the Γ-point. However,

the level of agreement between the two models is moderately reduced elsewhere in the

Brillouin zone due to differences in the dispersion predicted by the two models. Nevertheless,

the shifted DFTB pDOS still mimics the target DFT one fairly well, and it represents a

noticeable improvement over the original, unshifted DFTB pDOS.

Next, we compare the performance of the approximate strategies for computing the room-

temperature Helmholtz vibrational free energy against the DFT results obtained for acetic

acid. Figure 6 plots the errors in the vibrational free energy per molecule relative what one

obtains with supercell DFT (including elastic constant treatment of the acoustic modes).

DFT Γ-point frequencies underestimate the target vibrational free energy by 2.5 kJ/mol

compared to the supercell result. Given that the net vibrational free energy contribution to

polymorph energy differences is often 1–2 kJ/mol,1,12 this error is potentially significant.

DFTB Γ-point frequencies perform even worse, underestimating the target vibrational

free energy by 6.8 kJ/mol. Including phonon dispersion via a supercell DFTB calculation

further reduces the error by about a third, to 4.4 kJ/mol. Once the DFT-derived phonon fre-

quency shift (Eq 5) is applied, however, the free energy error drops to 2.0 kJ/mol. Adding the

appropriate acoustic modes (Eq 9) computed from the elastic constants brings the Helmholtz
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FIG. 6. Errors in the room-temperature Helmholtz vibrational free energies per molecule

(Fvib(300K)) computed with various approximate models relative to the full DFT supercell evalu-

ation.

vibrational free energy to within 0.5 kJ/mol of the target supercell DFT treatment (which

includes the same acoustic mode contributions).

Figure 7 plots the errors in the DFTB vibrational enthalpy, entropy (multiplied by tem-

perature), and Helmholtz free energies for acetic acid as a function of temperature before and

after applying the frequency shift and acoustic mode correction. Note that the pressure-

volume work contribution to the enthalpy is negligible for a crystal at ambient pressure,

which means that the Helmholtz and Gibbs free energies are essentially identical. Figure 7

highlights how the errors in the uncorrected DFTB model relative to the target DFT result

vary considerably with temperature. For example, the errors in Fvib computed purely with

DFTB range from -2.5 kJ/mol at 0 K to -4.3 kJ/mol at 300 K. The vibrational enthalpy

error decreases with increasing temperature, from -2.5 kJ/mol to -1.8 kJ/mol, but this is

more than compensated for by the growth of the error in the entropic contribution to the

free energy. In contrast, after shifting the phonon frequencies and correcting the acoustic

modes, the errors become much smaller and vary by only half a kJ/mol between 0 K and

room temperature. The largest error in Fvib is only 0.5 kJ/mol, a nine-fold reduction from

the uncorrected value.

For further insight, Table II examines the predicted thermochemical properties for five

different crystals: carbon dioxide, acetic acid, imidazole, the α polymorph of oxalyl dihy-
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FIG. 7. Temperature-dependence of the errors in the predicted enthalpy (blue), entropic (green),

and free energy (red) energies for crystalline acetic acid. Errors are computed relative to supercell

DFT with the acoustic mode correction. Dotted lines correspond to the raw DFTB results, while

solid lines indicate DFTB after shifting the frequencies and applying the acoustic mode fix.

drazide, and acetaminophen form I. Benchmark supercell DFT phonon calculations with

acoustic mode corrections were performed for the three smaller crystals. Supercell DFT

phonon calculations were not performed for oxalyl dihydrazide and acetaminophen due to

computational expense.

For the first three crystals which have benchmark supercell DFT results, uncorrected

DFTB exhibits modest mean absolute errors (MAD) in the vibrational enthalpy of 1.4

kJ/mol at 0 K and 1.2 kJ/mol at 300 K. In contrast, the frequency-shifted DFT models

(with or without corrected acoustic modes) perform far better for the enthalpies, with a

MAD of 0.1 kJ/mol. This MAD reflects a 0.4 kJ/mol error for carbon dioxide and essentially

zero error for the other two crystals. Because the enthalpy is dominated by the zero-point

contribution and exhibits modest temperature dependence, the frequency shift alone corrects

most of the deficiencies of DFTB.

The vibrational entropy is more sensitive to the low-frequency phonon modes and shows

greater variation across the different models. Raw DFTB performs poorly, with MAD of 4.7

kJ/mol in TSvib at 300 K. This error reduces substantially to 1.3 kJ/mol upon shifting the
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TABLE II. Predicted vibrational thermochemical contributions (excluding the electronic en-

ergy) for several molecular crystals, in kJ/mol per molecule, as computed with supercell DFTB,

frequency-shifted supercell DFTB, frequency-shifted supercell DFTB with corrected acoustic modes

(AM), and supercell DFT with corrected acoustic modes.

DFTB DFTB DFTB DFT

+∆ω +∆ω+AM + AM

Carbon Dioxide

Hvib(0K) 30.4 32.4 32.5 32.0

Hvib(300K) 42.4 43.3 43.3 43.1

TSvib(300K) 32.7 25.1 25.5 26.5

Fvib(300K) 9.5 17.5 17.8 16.5

Acetic Acid

Hvib(0K) 160.7 163.2 163.2 163.2

Hvib(300K) 175.5 177.3 177.3 177.3

TSvib(300K) 31.4 30.0 29.3 28.8

Fvib(300K) 144.1 147.3 148.0 148.4

Imidazole

Hvib(0K) 186.3 186.2 186.2 186.2

Hvib(300K) 200.9 199.8 199.8 199.8

TSvib(300K) 34.5 30.5 30.0 29.2

Fvib(300K) 166.3 169.2 169.7 170.6

α-Oxalyl Dihydrazide

Hvib(0K) 274.7 285.0 285.0 –

Hvib(300K) 300.6 307.7 307.8 –

TSvib(300K) 52.2 45.5 43.5 –

Fvib(300K) 248.4 262.2 264.3 –

Acetaminophen Form I

Hvib(0K) 411.4 414.7 414.7 –

Hvib(300K) 442.0 444.3 444.3 –

TSvib(300K) 64.9 60.4 60.2 –

Fvib(300K) 377.1 383.6 384.0 –

frequencies and further down to 0.8 kJ/mol after correcting the acoustic modes. Because the

errors for the two corrected DFTB models are dominated by the entropies, the errors in Fvib

are similar. The final MAD error in the room-temperature free energies is 0.9 kJ/mol once

the DFTB frequencies have been shifted and the acoustic modes corrected. Overall, the ∼1

kJ/mol errors in the absolute vibrational free energies represent a several-fold improvement
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over raw DFTB, and they are promising for organic crystal polymorphism problems for

which some error cancellation often occurs when computing relative polymorph stabilities.

The issue of error cancellation in relative polymorph free energies will be revisited below.

While benchmark DFT values were not obtained for oxalyl dihydrazide and acetaminophen,

the data in Table II shows similar convergence behaviors of the different thermochemical

quantities at the DFTB level. The frequency shift alters the DFTB enthalpies by up to 10

kJ/mol, while the acoustic mode correction has little impact. In contrast, both the frequency

shift and acoustic mode corrections are important for the entropic contribution of oxalyl

dihydrazide (and acetaminophen to a lesser extent). The final corrected free energies differ

from the raw, uncorrected DFTB values by about 16 kJ/mol for oxalyl dihydrazide and 7

kJ/mol for acetaminophen. These errors are considerably larger than those found for the

smaller three molecules discussed earlier, suggesting that the proposed DFTB corrections

may become increasingly large as molecular complexity increases.

Next, we apply the pDOS approximation approach to the five polymorphs of oxalyl dihy-

drazide. This system is representative of polymorph problems where one might be interested

in understanding how free energy contributions alter the relative polymorph stabilities. Oxa-

lyl dihydrazide has five known polymorphs at ambient pressure, which are denoted α, β, γ, δ,

and ε.59 Additional high-pressure forms have been reported, though they have not been fully

characterized.70 The five ambient-pressure forms differ in their hydrogen bonding networks,

including differences in whether they form intra- or intermolecular hydrogen bonds. The β

polymorph is metastable and hard to crystallize; it is believed to be the least stable poly-

morph. The γ form is the second least stable. The α, δ, and ε forms are more stable than

the other two, though the precise stability ordering among those three is unclear. Oxa-

lyl dihydrazide has become a notable test case for electronic structure models due to its

difficulty.5,8,71–73 The current consensus points to the following stability ordering (from most

to least stable): ) α < ε < δ < γ < β, and this ordering will be taken as the correct one

here.

Figure 8 compares the relative oxalyl dihydrazide polymorph stabilities as computed from

pure B86bPBE-XDM electronic lattice energies (Uel) and from several different Helmholtz

vibrational free energy approximations. While the DFT electronic energy alone predicts

the correct stability ordering, the 12 kJ/mol range is moderately larger than the 10 kJ/mol

energy window that typically separates experimentally observed polymorphs.1–3 The DFT Γ-
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FIG. 8. Relative stabilities of the five oxalyl dihydrazide polymorphs. The first column presents

relative DFT electronic lattice energies, while the subsequent ones correspond to free energies as

computed from Γ-point DFT frequencies, supercell DFTB, and supercell DFTB corrected with the

frequency shift and acoustic modes.

point approximation to the free energy narrows this range somewhat, stabilizing the γ form

most noticeably. Using the raw DFTB supercell phonon treatment alters the stabilities

considerably, and it incorrectly suggests that the γ form is less stable than the β one. Not

until both the Γ-point frequency shift and the acoustic mode correction are included do

the free energies predict a stability ordering that is consistent with experiment. Without

further experimental information, it is not possible to assess the quantitative accuracy of

these stabilities, but it is reassuring to see that the proposed approximations for the phonon

density of states does produce the qualitatively correct polymorph rankings in this difficult

system.

It is also worth noting how the differences in the relative polymorph free energies vary by

only a few kJ/mol between models, while the absolute Fvib values in for α oxalyl dihydrazide

in Table II differ by 16 kJ/mol between the corrected and uncorrected DFTB results. In

other words, considerable error cancellation occurs in the relative polymorph free energies.

Despite the error cancellation, the uncorrected DFTB results predict qualitatively incorrect

relative free energies. This emphasizes the importance of the DFTB correction for capturing

the small energy differences associated with polymorphism.
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TABLE III. Computational cost associated with computing the different phonon density of states

approximations for acetic acid, computed relative to the cost of a DFT Γ-point frequency evalua-

tion. The relative costs were derived from processor hours, rather than wall time.

Model Relative Cost

DFT Γ 1.0

DFTB Γ 0.02

DFTB Supercell 18.6

Shifted DFTB Supercell 19.6

Shifted DFTB Supercell + Acoustic Modes 22.9

DFT Supercell 614.6

DFT Supercell + Acoustic Modes 617.8

Finally, we examine the computational savings associated with the approximate pDOS

treatment explored here. Table III summarizes the relative computational costs associated

with evaluating the acetic acid pDOS. The 2×4×3 supercell used here contains 24 replicas

of the crystallographic unit cell, for a total of 768 atoms. The cost of the DFTB supercell

phonon calculation is about 19 times that of a DFT Γ-point one. On the other hand,

that is far cheaper than the supercell DFT calculation, which costs 615 times that of the

DFT Γ-point one. The fixed-cell geometry optimizations required to evaluate the elastic

constants and acoustic modes have an effective cost of about three times the DFT Γ-point

frequency calculation for this system. In other words, the additional calculations required to

perform the pDOS correction comprise only a small fraction of the DFTB supercell phonon

calculation. Combining the DFT Γ-point calculation, the DFTB supercell one, and acoustic

mode correction brings the total computational cost to 22.9 times that of the DFT Γ-point

alone. This is 27 times faster than the supercell DFT calculation (including the acoustic

mode correction), with only 0.4 kJ/mol loss in accuracy in the vibrational free energy at

room temperature (cf Table II).

20



V. CONCLUSIONS

Despite its computational efficiency advantages, the phonon density of states computed

from DFTB3-D3(BJ) with the 3ob-3-1 parameterization exhibits appreciable errors relative

to a DFT GGA treatment. In the systems examined here, these discrepancies introduce

errors ranging from a few kJ/mol to more than ten kJ/mol. Even with the error cancellations

that can occur in relative energies, it seems likely that thermochemical properties predicted

from this DFTB model will be unable to provide the kJ/mol accuracy often required for

problems in organic polymorphism and crystal structure prediction.

This study demonstrated how a simple additive shift to the DFTB phonon frequencies and

careful treatment of the acoustic modes leads to a model that performs far better with only

moderate increase in computational cost. Unsurprisingly, the biggest improvements from

the corrections manifest in the entropic contribution to the free energy, since that term is

particularly sensitive to the low-frequency phonon modes. However, sizable corrections were

found for the absolute vibrational enthalpies as well, arising primarily from the zero-point

contribution.

The correction proposed in this study is independent from the particular DFTB approx-

imation or density functional used here. The same ideas could be applied to any pair of

“high” and “low” level models. Improvements to existing DFTB models and parameteri-

zations that are actively being pursued by the community could be useful in this context,

including extensions to hybrid and/or range-separated functionals and better descriptions of

non-covalent interactions.62 Alternatively, semi-empirical composite models have found suc-

cess in non-covalent interactions and certain aspects of crystal structure prediction45,47,74–76

and could potentially be suitable here too. The most important criteria in selecting the

appropriate pair of models will be the accuracy of the high-level method, the computa-

tional cost of the two methods, and the fidelity with which the low-level method reproduces

the shapes of the phonon dispersion curves. In the future, it will be interesting to employ

this approach more widely. Beyond basic harmonic free energy contributions, the approach

could readily be combined with quasi-harmonic calculations of phase diagrams, spectroscopic

properties, mechanical properties, etc.

21



ACKNOWLEDGMENTS

Funding for this work from the National Science Foundation (CHE-1955554) and super-

computer time from XSEDE (TG-CHE110064) are gratefully acknowledged.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding

author upon reasonable request.

REFERENCES

1J. Nyman and G. M. Day, CrystEngComm 17, 5154 (2015).

2A. J. Cruz-Cabeza, S. M. Reutzel-Edens, and J. Bernstein, Chem. Soc. Rev. 44, 8619

(2015).

3A. Burger and R. Ramberger, Mikrochim. Acta 72, 273 (1979).

4G. J. O. Beran, J. D. Hartman, and Y. N. Heit, Acc. Chem. Res. 49, 2501 (2016).

5G. J. O. Beran, Chem. Rev. 116, 5567 (2016).

6S. R. Whittleton, A. Otero-de-la Roza, and E. R. Johnson, J. Chem. Theory Comput.

13, 441 (2017).

7J. Hoja, H.-Y. Ko, M. A. Neumann, R. Car, R. A. DiStasio, and A. Tkatchenko, Science

Adv. 5, eaau3338 (2019).

8C. Greenwell, J. L. McKinley, P. Zhang, Q. Zeng, G. Sun, B. Li, S. Wen, and G. J. O.

Beran, Chem. Sci. 11, 2200 (2020).

9C. Greenwell and G. J. O. Beran, Cryst. Growth Des. 20, 4875 (2020).

10A. Gavezzotti and G. Filippini, Journal of the American Chemical Society 117, 12299

(1995).

11S. L. Price, Chem. Soc. Rev. 43, 2098 (2014).

12J. Nyman and G. M. Day, Phys. Chem. Chem. Phys. 18, 31132 (2016).

13A. M. Reilly and A. Tkatchenko, Phys. Rev. Lett. 113, 055701 (2014).

14A. Erba, J. Maul, and B. Civalleri, Chem. Commun. 52, 1820 (2016).

15Y. N. Heit and G. J. O. Beran, Acta Cryst. B 72, 514 (2016).

16J. Hoja, A. M. Reilly, and A. Tkatchenko, WIREs Comput. Mol. Sci. 7, e1294 (2017).

22
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19C. Červinka and G. J. O. Beran, Phys. Chem. Chem. Phys. 19, 29940 (2017).
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