
Sapling: Accelerating Suffix Array Queries with Learned Data Models
Melanie Kirsche1*, Arun Das1, Michael C. Schatz1,2,3

1Department of Computer Science, Johns Hopkins University, Baltimore, MD
2Department of Biology, Johns Hopkins University, Baltimore, MD
3Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

Abstract
Motivation: As genomic data becomes more abundant, efficient algorithms and data structures for
sequence alignment become increasingly important. The suffix array is a widely used data structure to
accelerate alignment, but the binary search algorithm used to query it requires widespread memory
accesses, causing a large number of cache misses on large datasets.

Results: Here we present Sapling, an algorithm for sequence alignment which uses a learned data
model to augment the suffix array and enable faster queries. We investigate different types of data
models, providing an analysis of different neural network models as well as providing an open-source
aligner with a compact, practical piecewise linear model. We show that Sapling outperforms both an
optimized binary search approach and multiple widely-used read aligners on a diverse collection of
genomes, including human, bacteria, and plants, speeding up the algorithm by more than a factor of
two while adding less than 1% to the suffix array’s memory footprint.

Availability and implementation: The source code and tutorial are available open-source at
https://github.com/mkirsche/sapling.

Contact: mkirsche@jhu.edu

Supplementary Information: Supplementary notes and figures are available online.

1. Introduction
Aligning sequencing reads to a reference genome or collection of genomes is a key component of
many genomic analysis pipelines, including variant calling [1], quantifying gene expression levels
(RNA-seq) [2], identifying DNA-protein binding sites (ChIP-seq) [3] and several others [4]. Many
techniques have been proposed to solve the read alignment problem in ways that are computationally
efficient and robust to sequencing errors and true biological differences. Since finding inexact
alignments is generally much slower than finding exact matches, a common approach is to use the
seed-and-extend heuristic [5]. When using this heuristic, small segments of the read are used as
seeds, and exact matches of these seeds are found using an algorithm for exact string matching. Then,
the exact matches are used as candidate alignment sites, and each is scored based on how well the
whole read aligns in the surrounding region. This heuristic has been shown to perform well in many
genomic applications, and is used by a large number of leading short and long reads aligners including
Star [6], Bowtie2 [7], BWA-MEM [8], NGMLR [9] and many others. It is also used as a core routine for
whole genome alignment [10] and many other applications [11].

The seed-and-extend heuristic relies on being able to quickly search for exact matches of seed
sequences in the reference genome. The problem of finding these matches, called the exact substring
search problem, has applications both within and outside of genomics [12]. A number of data structures
have been proposed to solve this problem by indexing the reference genome in such a way that the

1

https://github.com/mkirsche/sapling
https://paperpile.com/c/sck8hC/PrKP
https://paperpile.com/c/sck8hC/0yJ4
https://paperpile.com/c/sck8hC/JaZ7
https://paperpile.com/c/sck8hC/pbTd
https://paperpile.com/c/sck8hC/ztLu
https://paperpile.com/c/sck8hC/v9jX
https://paperpile.com/c/sck8hC/y4Xe
https://paperpile.com/c/sck8hC/zY16
https://paperpile.com/c/sck8hC/SoNt
https://paperpile.com/c/sck8hC/kPxj
https://paperpile.com/c/sck8hC/o2dm
https://paperpile.com/c/sck8hC/zQIO

exact substring search problem can be solved quickly. These include suffix arrays [13], suffix trees [14],
hash tables [15], and FM-indexes [16]. For genomic applications, suffix arrays are one of the key data
structures for seed-and-extend algorithms used by Star [6], BLASR [17], MUMMER4 [10] and others.
The suffix array consists of the lexicographically ordered list of suffixes present in a string, and once
constructed, a binary-search-like algorithm can be used to quickly locate exact matches of query strings
[13].

Learned index structures [18] are a technique for accelerating queries on a variety of data structures by
leveraging patterns present in the particular dataset being processed. While classical data structures
are asymptotically optimal, these runtime bounds are based on a worst-case analysis where it is
assumed that the dataset has no specific patterns that can be exploited. However, many real-world
datasets have learnable patterns, and learned index structures have been used in many different
applications such as B-trees and Hash-maps [18]. Additionally, learned index structures have previously
been considered for read alignment using a modified FM-index [19], although the source or
implementation are not available and it was only applied to a single dataset.

Here we present Sapling, an open-source algorithm which leverages learned index structures for
accelerated read mapping. At its core, it uses suffix arrays, which we augment with a model of the
particular genome that is being indexed. We evaluate two different types of data models - a neural
network trained on the suffix array, as well as a compact piecewise linear model. We find that by using
a data model, the core suffix array query time is reduced by more than a factor of two while only
increasing the size of the data structure by less than 1% across a variety of genome sequences. We
offer Sapling as both an open-source library for exact substring search and a standalone read aligner at
https://github.com/mkirsche/sapling.

2. Methods
2.1 Suffix Array Search
For a text T of length n, let T[i] be the character in the ith position of T, and define a substring of T, T[i..j],
where 0 ≤ i ≤ j < n, as a string of characters T[i], T[i+1], …, T[j]. We define the exact substring search
problem as follows: Given a text T of length n and a pattern P of length m, report all positions x in T
such that T[x..(x+m-1)] is equal to P. A naive algorithm that considers all possible values for P would
take O(n * m) operations, which is infeasible for large texts, especially when many queries each need to
be evaluated. In genomic applications where the text is a reference genome and the pattern is a
genomic read a few properties generally hold: 1) The text is much (multiple orders of magnitude) larger
than each query, and 2) The same text is used across multiple queries (typically many millions to
billions of sequencing reads for a single genome). In an attempt to exploit these properties, several
algorithms have been proposed which index the text on its own before any of the queries are
considered, and then this index is used to reduce the number of possible alignment positions for every
query.

One popular index is the suffix array. A suffix of T is defined as any substring T[i..n-1]; that is, any
substring which ends after the last character of T. Suffixes are related to substring search queries
because any occurrence of a length-m pattern P at some position x in T corresponds to a suffix of T,
T[x..n-1], whose first m characters are exactly the string P. When the suffixes are considered in

2

https://paperpile.com/c/sck8hC/gqAV
https://paperpile.com/c/sck8hC/jkYL
https://paperpile.com/c/sck8hC/Rumt
https://paperpile.com/c/sck8hC/4Rzr
https://paperpile.com/c/sck8hC/v9jX
https://paperpile.com/c/sck8hC/Lvmt
https://paperpile.com/c/sck8hC/kPxj
https://paperpile.com/c/sck8hC/gqAV
https://paperpile.com/c/sck8hC/in9z
https://paperpile.com/c/sck8hC/in9z
https://paperpile.com/c/sck8hC/TEFq
https://github.com/mkirsche/sapling

lexicographical order, all such suffixes starting with P will occur contiguously. This property of suffixes
serves as the intuition behind the use of suffix arrays for exact substring search queries.

The suffix array is defined as an array of positions corresponding to the lexicographical order of suffixes
in a given text. For a text T with n characters, we define the suffix array of T, SAT to be a permutation of
{0, .., n-1} such that SAT[i] is the start position in T of the ith suffix of T when the suffixes are sorted
lexicographically. For example, in the text T = “CAT”, the sorted order of suffixes is {“AT”, “CAT”, “T”}, so
SAT = {1, 0, 2}. For any pattern P, each occurrence of P in T will be the prefix of some suffix of T, and
since each such suffix starts with the characters in P, the start positions of the instances of P in T will
occur consecutively in SAT. This reduces the problem of exact substring search to that of finding the
range of suffix array positions [i, j] such that T[SAT[k]..(SAT[k]+m-1)] = P for all integers k in [i, j]. These
positions can be found using a binary search algorithm, which starts with an initial search space of [0,
n-1] and repeatedly bisects the search space, querying the middle suffix to decide whether the suffixes
starting with the characters in P occur in the first or second half, and recursively searching the
half-sized space. The naive binary search algorithm, for a pattern of length m, requires O(log(n) * m)
operations since each query requires a string comparison of up to m characters. However, a more
efficient binary search algorithm specialized for the suffix array has been proposed which requires
O(log(n) + m) operations. This exploits an auxiliary data structure called the longest common prefix
array (LCP array) that stores the number of shared characters between the prefixes of consecutive
suffixes [13]. Another important property of the suffix array is that it supports queries of any length using
a single index. This makes it more flexible and universal than other popular techniques, such as hash
tables.

2.2 A learned index structure for suffix arrays
When performing the binary search algorithm, each iteration requires checking the middle of the current
search space. For large genomes, this means that consecutive iterations at the start of the algorithm
correspond to distant array positions. Consequently, the algorithm has poor spatial locality and results
in many cache misses. While the number of iterations is relatively small (~32 for a mammalian-sized
genome), most of the memory accesses result in cache misses that are many times slower than
memory accesses with cache hits - e.g., approximately 4ns to access from L1 cache vs 100ns to
access from main memory on a modern Intel CPU [20–22]. Therefore, we propose a method which
uses a data model so that with a single memory lookup into the model and a small number of efficient
arithmetic operations, the initial search space for binary search is significantly reduced, and the cache
misses which occur at the beginning of the binary search algorithm can be mostly circumvented.

As described above, learned index structures have been used to replace or augment data structures
with a data model which models some properties of the particular data being stored. In the case of
suffix arrays, we define for a suffix array SAT a true mapping R(x) which maps a k-mer x to the set of
positions of the suffix array that correspond to suffixes starting with x. From the data, we learn a
function P(x), a low-memory and arithmetically efficient approximation of R. Then, for a query k-mer Q,
P(Q) gives an approximate position of where in the suffix array Q occurs. By performing this query on
every k-mer in T, we can obtain a global error bound E on the predictions, which has the property that
for any suffix in T, P(x) gives a position which is no more than E positions away from the nearest value
in R(x). For a given k-mer x, we can compute P(x), and if x is present in the suffix array, there will be
some suffix array position y in [P(x) - E, P(x) + E] such that the suffix starting at position SAT[y] starts

3

https://paperpile.com/c/sck8hC/gqAV
https://paperpile.com/c/sck8hC/Tm6z+pUGj+optO

with x, and this value of y can be computed using a binary search with an initial range of length 2E + 1
instead of length n (Figure 1). Therefore, we seek a model with three properties: the ability to perform
predictions quickly, a low memory footprint, and a small error bound across genomes.

Figure 1. The suffix array lookup can be considered a prediction problem by defining a mapping R(S)
which maps a k-mer S encoded as an integer K-mer value to each of the positions in the suffix array
corresponding to suffixes starting with S. Learned index structures can approximate this mapping with a
function P(S) mapping the k-mer value of each k-mer S to an estimated index, which is trained on the
suffix array for a particular dataset using the (S, R(S)) pairs. The maximum error E across all k-mers in
the string is computed so that when a particular k-mer Q is queried, if it is present in the string, then at
least one of its suffix array positions falls in the range [P(Q) - E, P(Q) + E]. This smaller range can be
used for the binary search lookup, resulting in better spatial locality.

2.3 Modeling with Artificial Neural Networks (ANNs)
The first method we explored for modeling the suffix array distribution was using an Artificial Neural
Network (ANN) [23] to learn the true mapping R(x). In this approach, we trained ANNs on (k-mer value,
suffix array position) pairs, with the goal of using the trained network to predict the approximate suffix
array position of a given k-mer (Figure 2a). To ensure that the function being learned is over numeric
values, Sapling encodes each k-mer as its k-mer value - an integer with 2k bits. In this conversion, two
bits are allocated for each of the k characters, with the two highest-order bits corresponding to the first
character and the two lowest-order bits corresponding to the last character. The two bits for a given
character are 00 if the character is “A”, 01 for “C”, 10 for “G”, and 11 for “T”. This encoding scheme
ensures that any k-mer which comes lexicographically before another will have a smaller integer value,
resulting in a simple, monotonically non-decreasing mapping.

For modeling, we first transform the suffix array positions into “residual values” - this detrending is
performed by considering a straight line from the first k-mer to the last k-mer (i.e. fitting a linear function
to the entire genome, such as plotted in Figure 2a), and then computing how each suffix array position
differs from this line. The residual values are more easily learned by the ANN since the function will
have a smaller range of values to consider. The input data is then unit scaled so that both the k-mers
and the suffix array positions are within [0, 1]. We divide the input data into B equal-sized intervals, and

4

https://paperpile.com/c/sck8hC/JPIr

an individual ANN is trained on each of them. For these neural nets, we used a basic “rectangular”
architecture consisting of L layers, each with N nodes (aside from the single input node in the first layer
and the single output node in the last layer). The networks were fully connected (each node in layer i
passed input into every node in layer i+1), with no drop out, with a ReLU activation function [24] applied
between layers.

The loss function used was mean squared error (the average of the square of the differences between
the predicted suffix array residual position and the true value). We trained the model to minimize this
loss function using the Adam optimizer with default PyTorch [25] hyper-parameters (learning rate 0.001,
betas = [0.9, 0.999] and epsilon = 1e-8). The training for these models proceeds in epochs, during
which the model’s ability to predict the input data is assessed and improved. During each epoch, the
current model (using the parameters it has learned up to that point) makes predictions on the input
data, and the mean squared error is computed. Based on this error, the parameters in the model are
updated through a process called back propagation. To speed up training, we used a batch size of 64
values; this means that the model makes predictions for 64 input values, the mean square error is
calculated across these 64 predictions, and the model’s parameters are updated accordingly, before the
next batch is loaded. The input data is shuffled at the start, so the batches do not contain consecutive
data points.

For training, we set the maximum number of training epochs to be 200. All models were trained for at
least 10 epochs, and after this initial period, if a reduction of 10% or more in the value of the loss
function was not achieved during the last 10 epochs, the training procedure was terminated to limit
wasted work. When the training for a particular neural network ended, the best model across all training
epochs was kept and used to predict the suffix array positions for all k-mers in the network’s
corresponding interval of k-mer values.

2.4 Modeling with Piecewise Linear Functions (PWL)
An alternative data model we explored is a piecewise (PWL) linear model. In this model, the space of
all 4k possible k-mers is subdivided into a fixed number b equally-sized intervals, where b is a power of
2 to allow fast calculation of which interval each k-mer falls into (Figure 2b). Then, for each interval, the
lexicographically earliest k-mer from the genome which is present in that interval is stored along with its
corresponding suffix array position. While this idea of “marker” k-mers to limit the range of the suffix
array to search has been used previously [6], Sapling improves upon this approach by interpolating the
exact suffix array position of the entire k-mer, giving an even smaller interval of candidate positions
without further increasing the memory footprint required. If Sapling recognizes that the interpolation
mis-predicts the true position of the query, Sapling will dynamically adjust the range to cover a larger
range so that the correct result is guaranteed to be computed with only a modest time penalty (see
PWL Implementation below).

In the algorithm used by Sapling, the prediction P(s) is computed as follows:
1. Calculate which interval x is in from its log2(b) highest-order bits.
2. Look up the pair (x1, y1) corresponding to the earliest k-mer in the same interval and the pair

(x2, y2) corresponding to the earliest k-mer in the next interval.
3. Consider a line segment between (x1, y1) and (x2, y2), and output the y-value which corresponds

to an x-value of s.

5

https://paperpile.com/c/sck8hC/0CEn
https://paperpile.com/c/sck8hC/BEYA
https://paperpile.com/c/sck8hC/v9jX

This simple model allows very efficient queries consisting of looking up two pairs which are adjacent in
memory followed by a small number of arithmetic operations. The memory footprint is parameterized on
the number of intervals, storing two 64-bit integers per interval, and we show that even with a relatively
small number of intervals, small error bounds can be achieved across different genomes. For these
reasons we use this data model in our implementation.

Figure 2. a) Schematic diagram of ANN architecture. An input k-mer encoded using a simple binary
encoding scheme is passed to a fully connected ANN with L layers, each with width W. The output
value from the ANN is the predicted residual value, which is then projected to the actual suffix array
position using a linear transformation. In practice, we use multiple ANNs that each learn the distribution
of a portion of the k-mer space (not shown). b) Schematic diagram of Piecewise Linear model. The
piecewise linear model divides the space of possible inputs (k-mers encoded as integers) into b
equal-sized intervals. It stores representative data points from each interval (those with the lowest
k-mer values) and connects points in consecutive intervals with line segments. Then, when estimating
the suffix array position for a particular k-mer, the linear function between that k-mer’s interval and the
following interval is used to estimate the suffix array position.

2.5 PWL Implementation
When dividing the space of possible k-mers into buckets (intervals), the partitioning is done in such a
way that each group has the same number of possible k-mers. However, in practice, due to varying
k-mer frequencies, it is possible for some buckets to have particularly small or large sections of the
suffix array contained in them. The buckets with many points, indicative of repetitive sequences in the
genome, often have particularly poor predictions, and this causes the maximum errors to be much
worse than the median errors or even the 95th percentile errors (see Results). To avoid binary
searching over a range which is almost always much larger than necessary, Sapling uses an additional
cutoff. Once the predictions have been made for every k-mer in the genome, in addition to storing the
maximum error in each direction, Sapling also stores the 95th percentiles of the errors in each direction.
Then, when searching for a particular k-mer given its predicted position, rather than immediately
executing the binary search algorithm, Sapling first checks the position corresponding to an error equal
to the 95th percentile in the appropriate direction. Then, in 95% of cases, the size of the search range
can be immediately reduced to the 95th percentile error, which is typically much smaller than the
maximum error, further improving performance.

6

When using Sapling, it is assumed that the size of k-mers used when constructing the index is equal to
the length of the k-mers being queried (k = 21 in our experiments). However, for some applications, the
index will be searched for queries of alternative or varying lengths (both smaller or larger values). The
suffix array prediction function can be evaluated with similar speed for such strings without rebuilding
the model as follows (Figure 4):
➢ If the query length q is less than the Sapling k-mer size k: Pad the end of the query with A’s (the

lexicographically smallest value). The k-mer value can be padded in this way quickly by
bit-shifting the k-mer value 2*(k-q) bits to the left.

➢ If the query length q is greater than the Sapling k-mer size k: Let the k-mer value of the length-k
prefix of the query be v. Then, set the k-mer value of the query as a floating-point value between
v and v+1 based on the remaining characters and evaluate the piecewise linear function at that
value.

Sapling is available as open-source software on Github (https://github.com/mkirsche/sapling), and
provides a succinct library for constructing the piecewise linear data model and using it to perform suffix
array lookups. We also implemented a simple seed-and-extend aligner as a proof-of-concept which
uses Sapling for seeding and the Striped-Smith-Waterman algorithm [26] for extending seeds into full
alignments. This aligner accepts fasta and fastq formatted files as input and outputs alignments in SAM
format [27].

3. Results
3.1 Suffix Array Distribution
We tested Sapling on six diverse reference genome sequences: E. coli, C. elegans, S. lycopersicum
(tomato), human (both chromosome 1 in isolation and the full human reference), and T. aestivum
(wheat) (Supplemental Table 1, Supplemental Figure 1). While the function we are trying to
approximate is monotonically non-decreasing, there are many potential functions that can emerge
based on the composition of the suffix array. While the suffix array for a random string will result in
approximately a straight line, repetitiveness and biological selection against certain sequences [28] can
drastically affect the nature of the function (Supplemental Figures 2-3). Therefore, we investigated the
true suffix array position functions for each of these genomes to ensure that the functions are learnable
across species. Figure 3 shows the true Suffix Array Distributions for each of the six reference
genomes listed above.

7

https://github.com/mkirsche/sapling
https://paperpile.com/c/sck8hC/QZz4
https://paperpile.com/c/sck8hC/UxWS
https://paperpile.com/c/sck8hC/f3Yg

Figure 3. Suffix Array Distribution for 6 genome sequences: E. coli, C. elegans (nematode), H. sapiens
(chr1), S. lycopersicum (tomato), H. sapiens (all of hg38), and T. aestivum (wheat).

3.2 Model Training and Accuracy
In testing the feasibility of different models, we measured the prediction accuracy of several potential
PWL and ANN models on human chromosome 1 (Supplemental Tables 2 & 3). Table 1 describes the
characteristics of a selection of model architectures as well as their memory footprints. For the ANN,
most bins are trained within 40-60 epochs, although a few particularly complex bins require up to 180
epochs until convergence requiring more than 1 day of training on an NVIDIA Quadro P5000 GPU
(Supplemental Figure 4). For each model, we calculated the prediction error for every k-mer present in
the genome, defined as the absolute difference between the predicted suffix array position and the
nearest position which corresponds to a suffix starting with the query. The mean, median, and
maximum errors were computed both within each bin and genome-wide. By studying each bin
individually, we were able to highlight cases where the learned function modelled the suffix array
position function particularly well or poorly (Supplemental Figures 5 & 6). In particular, for all of the
genomes we studied, the first and last bins had particularly high prediction errors caused by the high
relative frequencies of homopolymer A and T sequences in the genomes that challenged the PWL
model.

We found that increasing the width of the ANN used for each bin in the model resulted in improved
performance, without adding much overhead. However, we found that while increasing the depth
(number of layers) of each ANN in the model resulted in performance increases, it added significant
memory overhead. This leads us to conclude that utilizing shallower, wider nets is the most efficient
way to approach this problem. Overall, the PWL model had improved median and 95% percentile
accuracy compared to the ANN model, especially when considering the memory overhead involved,
although the ANN model had a lower maximum error.

8

Table 1. Summary of performance and model complexities for several PWL and ANN architectures
analyzing human chromosome 1 (length 230 Mbp). Memory overhead refers to the amount of space
required for the data model and is in addition to the requirements for a standard suffix array lookup (i.e.,
the genome, suffix array, and LCP array).

Model Type Piecewise
Linear

Piecewise
Linear

Piecewise
Linear

Neural
Network

Neural
Network

Neural
Network

Number of
Buckets

16k 256k 2m 1k 16k 16K

Width x
Depth

N/A N/A N/A 32 x 1 32 x 1 128 x 2

Median Error 899 68 14 900 131 56

95th
Percentile
Error

7,658 1,579 653 4,238 853 463

Maximum
Error

263,165 180,453 135,664 45,839 24,081 13,264

Memory
Overhead

256 KB 4 MB 32 MB 8 MB 131 MB 1245 MB

3.3 Runtime analysis
Based on the accuracy results above, along with the very fast numerical computations for the PWL, we
implemented Sapling to use the PWL data model to accelerate suffix array queries. We then compared
the performance of Sapling using different numbers of intervals to a number of existing alignment
algorithms (Figure 4, Supplemental Tables 4 & 5, Supplemental Note 1). For this, we implemented a
string-optimized binary search, the asymptotically optimal algorithm for searching a suffix array [13]. We
also ran the widely-used Bowtie [29] and Mummer4 [10] short read aligners in their exact-matching
modes to obtain a fair comparison to Sapling’s performance. For each aligner, we measured the
amount of time needed to perform 50 million queries on the human genome, where each query is a
random 21-mer which is known to occur in the genome, ignoring the time required for indexing. This
indexing time was 47 minutes for PWL, but is amortized across all queries and experiments which use
the index so can be effectively ignored. For consistency, all tools were run to only consider the forward
strand of the genome. See Supplemental Note 1 for the exact commands used, and Supplemental
Figures 7-8 for an in-depth comparison of Sapling to Bowtie with different sampling frequencies and
the memory usage of each tool.

For this analysis, we trained Sapling to also use 21-mers to focus the analysis on the advantages of the
data model without the interpolation across kmer lengths. For the runtime experiments, we used a
single core of an isolated 2.5 GHz Haswell node with 128 GB of RAM to minimize variation in runtime,
except for the experiments on the larger T. aestivum genome, which were run on a tmpfs ramdisk with 1
TB of RAM using a single core of an Intel(R) Xeon(R) CPU E7-8860 server at 2.20 GHz. As expected,
we see the runtime performance of Sapling improves as the number of intervals increases. In an ideal
case, with a perfect prediction function, the number of suffix arrays lookups would be decreased from

9

https://paperpile.com/c/sck8hC/gqAV
https://paperpile.com/c/sck8hC/GRrY
https://paperpile.com/c/sck8hC/kPxj

log2(n) - approximately 32 for the human genome - to a single lookup at the predicted position. Our
model is able to reduce the search range to a few thousand rows, reducing the number of lookups to
about 10 for most queries. This results in an algorithm which is more than 3 fold faster than the
string-optimized binary search and nearly 6.5 fold faster than bowtie when used with the largest number
of intervals.

Figure 4. Runtime of different methods to locate 50 million k-mers in the human genome. The queries
were sampled randomly from those which occur at least once in the human genome, and the same
queries were used for all methods. In addition to running Bowtie (exact matching only), Mummer4
(exact matching only), and a string-optimized binary search algorithm, Sapling was run with several
different settings, limiting the number of buckets (and therefore the memory overhead) to various
proportions of the size of the human genome. In (A), the size of the query k-mers was always set to 21.
In (B), the query length varied while the same model was used for Sapling (trained on 21-mers in the
human genome). This illustrates that Sapling performs well even on queries whose lengths differ from
that of the training set. Note that as the query length increases, the runtime of Bowtie scales
approximately linearly with length due to its use of an FM-index that processes the query one character
at a time, while Mummer grows faster due to the increasing uniqueness of longer queries.

In addition to measuring across model architectures and between different aligners, we also measured
how well the runtime of Sapling scales when the genome size is increased. To measure this, we ran
Sapling on six different reference genomes of different sizes, and for each genome measured the
amount of time required to query five million random k-mers which are present in the genome. We
performed a similar experiment for the string-optimized binary search. We find that as the genome size
increases, the reduction in runtime from using a data model increases substantially (Figure 5,
Supplemental Tables 6 & 7).

10

Figure 5. Runtime of Sapling and binary search across six different genomic sequences using 0.01%,
1% or 25% space overhead.

4. Discussion
In this paper, we presented Sapling, a novel algorithm for quickly performing suffix array lookups for use
within read alignment and genome alignment algorithms. Sapling uses learned index structures to
model the contents of the suffix array as a function rather than as a data structure, and uses a practical
piecewise linear model to efficiently approximate this function. Using this method shows significant
improvement in the runtime of querying many different genomes, demonstrating that even a simple
low-memory piecewise linear approximation of the suffix array position function is sufficient for
achieving several-fold improved performance compared to existing tools with modest space overhead.
As read and genome alignment is performed on even larger genomes and larger collections of
genomes, the need for efficient substring search algorithms becomes even more pressing, and Sapling
will be able to scale better to large reference sizes than existing query algorithms.

While this work demonstrates the potential for learned index structures in a very important and widely
used genomic application, there remain many possible avenues for future development. Presently, the
prototype read aligner uses a basic seed-and-extend implementation that requires additional
development to make it competitive with existing aligners for inexact alignment. There are also possible
avenues for improving the core algorithm of Sapling, such as by using a different prediction function or
non-uniform intervals for the piecewise linear function. In addition, Sapling could be used for modeling
other full text index data structures, especially sparse versions of the suffix array [30] or the FM-index,
or other data structures entirely. Finally, read alignment is just one of the many data-intensive problems
in genomics that requires the efficient use of large data structures. We are investigating other genomic
applications of the learned index structures paradigm, including optimized graph representations for
genome and pan-genome assembly, optimized variant databases, and other data intensive problems.

Acknowledgements
We would like to thank Alex Dobin and Benjamin Langmead for their helpful discussions. This research
project was conducted using computational resources at the Maryland Advanced Research Computing
Center (MARCC).

11

https://paperpile.com/c/sck8hC/Pjf8

Funding
This work was supported by the National Science Foundation [DBI-1350041, IOS-1445025,
IOS-1732253, and IOS-1758800 to MCS].

Conflict of Interest: none declared.

References

1. Nielsen R, Paul JS, Albrechtsen A, Song YS. Genotype and SNP calling from next-generation
sequencing data. Nat Rev Genet. 2011;12:443–51.

2. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet.
2009;10:57–63.

3. Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet.
2009;10:669–80.

4. Soon WW, Hariharan M, Snyder MP. High-throughput sequencing for biology and medicine. Mol Syst
Biol. 2013;9:640.

5. Baeza-Yates RA, Perleberg CH. Fast and practical approximate string matching. Inf Process Lett.
1996;59:21–7.

6. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal
RNA-seq aligner. Bioinformatics. 2013;29:15–21.

7. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

8. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM [Internet].
arXiv:1303.3997 [q-bio.GN]. 2013. Available from: http://arxiv.org/abs/1303.3997

9. Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, von Haeseler A, et al. Accurate
detection of complex structural variations using single-molecule sequencing. Nat Methods.
2018;15:461–8.

10. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. MUMmer4: A fast and
versatile genome alignment system. PLoS Comput Biol. 2018;14:e1005944.

11. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol.
1990;215:403–10.

12. Charras C, Lecroq T. Handbook of Exact String Matching Algorithms. King’s College; 2004.

13. Manber U, Myers G. Suffix Arrays: A New Method for On-Line String Searches. SIAM J Comput.
Society for Industrial and Applied Mathematics; 1993;22:935–48.

14. Weiner P. Linear pattern matching algorithms. 14th Annual Symposium on Switching and Automata
Theory (swat 1973). 1973. p. 1–11.

15. Karp RM, Rabin MO. Efficient randomized pattern-matching algorithms. IBM J Res Dev.
1987;31:249–60.

16. Ferragina P, Manzini G. Opportunistic data structures with applications. Proceedings 41st Annual

12

http://paperpile.com/b/sck8hC/PrKP
http://paperpile.com/b/sck8hC/PrKP
http://paperpile.com/b/sck8hC/0yJ4
http://paperpile.com/b/sck8hC/0yJ4
http://paperpile.com/b/sck8hC/JaZ7
http://paperpile.com/b/sck8hC/JaZ7
http://paperpile.com/b/sck8hC/pbTd
http://paperpile.com/b/sck8hC/pbTd
http://paperpile.com/b/sck8hC/ztLu
http://paperpile.com/b/sck8hC/ztLu
http://paperpile.com/b/sck8hC/v9jX
http://paperpile.com/b/sck8hC/v9jX
http://paperpile.com/b/sck8hC/y4Xe
http://paperpile.com/b/sck8hC/zY16
http://paperpile.com/b/sck8hC/zY16
http://arxiv.org/abs/1303.3997
http://paperpile.com/b/sck8hC/SoNt
http://paperpile.com/b/sck8hC/SoNt
http://paperpile.com/b/sck8hC/SoNt
http://paperpile.com/b/sck8hC/kPxj
http://paperpile.com/b/sck8hC/kPxj
http://paperpile.com/b/sck8hC/o2dm
http://paperpile.com/b/sck8hC/o2dm
http://paperpile.com/b/sck8hC/zQIO
http://paperpile.com/b/sck8hC/gqAV
http://paperpile.com/b/sck8hC/gqAV
http://paperpile.com/b/sck8hC/jkYL
http://paperpile.com/b/sck8hC/jkYL
http://paperpile.com/b/sck8hC/Rumt
http://paperpile.com/b/sck8hC/Rumt
http://paperpile.com/b/sck8hC/4Rzr

Symposium on Foundations of Computer Science. 2000. p. 390–8.

17. Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using basic local alignment with
successive refinement (BLASR): application and theory. BMC Bioinformatics. 2012;13:238.

18. Kraska T, Beutel A, Chi EH, Dean J, Polyzotis N. The Case for Learned Index Structures [Internet].
arXiv:1712.01208 [cs.DB]. 2017. Available from: http://arxiv.org/abs/1712.01208

19. Ho D, Ding J, Misra S, Tatbul N, Nathan V, Vasimuddin, et al. LISA: Towards Learned DNA
Sequence Search [Internet]. arXiv:1910.04728 [cs.DB]. 2019. Available from:
http://arxiv.org/abs/1910.04728

20. Brett B. Memory Performance in a Nutshell [Internet]. Intel. 2016 [cited 2020 Mar 20]. Available
from: https://software.intel.com/en-us/articles/memory-performance-in-a-nutshell

21. Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference Manual [Internet].
2016. Available from:
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimi
zation-manual.pdf

22. 7-Zip LZMA Benchmark [Internet]. [cited 2020 Mar 20]. Available from: https://www.7-cpu.com/

23. Cybenko G. Approximation by superpositions of a sigmoidal function. Math Control Signals
Systems. 1989;2:303–14.

24. Ramachandran P, Zoph B, Le QV. Searching for Activation Functions [Internet]. arXiv:1710.05941
[cs.NE]. 2017. Available from: http://arxiv.org/abs/1710.05941

25. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In: Wallach H, Larochelle H, Beygelzimer A,
d\textquotesingle Alché-Buc F, Fox E, Garnett R, editors. Advances in Neural Information Processing
Systems 32. Curran Associates, Inc.; 2019. p. 8024–35.

26. Zhao M, Lee W-P, Garrison EP, Marth GT. SSW library: an SIMD Smith-Waterman C/C++ library for
use in genomic applications. PLoS One. 2013;8:e82138.

27. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map
format and SAMtools. Bioinformatics. 2009;25:2078–9.

28. Herold J, Kurtz S, Giegerich R. Efficient computation of absent words in genomic sequences. BMC
Bioinformatics. 2008;9:167.

29. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short
DNA sequences to the human genome. Genome Biol. 2009;10:R25.

30. Vyverman M, De Baets B, Fack V, Dawyndt P. essaMEM: finding maximal exact matches using
enhanced sparse suffix arrays. Bioinformatics. 2013;29:802–4.

13

http://paperpile.com/b/sck8hC/4Rzr
http://paperpile.com/b/sck8hC/Lvmt
http://paperpile.com/b/sck8hC/Lvmt
http://paperpile.com/b/sck8hC/in9z
http://paperpile.com/b/sck8hC/in9z
http://arxiv.org/abs/1712.01208
http://paperpile.com/b/sck8hC/TEFq
http://paperpile.com/b/sck8hC/TEFq
http://arxiv.org/abs/1910.04728
http://paperpile.com/b/sck8hC/Tm6z
http://paperpile.com/b/sck8hC/Tm6z
https://software.intel.com/en-us/articles/memory-performance-in-a-nutshell
http://paperpile.com/b/sck8hC/pUGj
http://paperpile.com/b/sck8hC/pUGj
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://paperpile.com/b/sck8hC/optO
https://www.7-cpu.com/
http://paperpile.com/b/sck8hC/JPIr
http://paperpile.com/b/sck8hC/JPIr
http://paperpile.com/b/sck8hC/0CEn
http://paperpile.com/b/sck8hC/0CEn
http://arxiv.org/abs/1710.05941
http://paperpile.com/b/sck8hC/BEYA
http://paperpile.com/b/sck8hC/BEYA
http://paperpile.com/b/sck8hC/BEYA
http://paperpile.com/b/sck8hC/BEYA
http://paperpile.com/b/sck8hC/QZz4
http://paperpile.com/b/sck8hC/QZz4
http://paperpile.com/b/sck8hC/UxWS
http://paperpile.com/b/sck8hC/UxWS
http://paperpile.com/b/sck8hC/f3Yg
http://paperpile.com/b/sck8hC/f3Yg
http://paperpile.com/b/sck8hC/GRrY
http://paperpile.com/b/sck8hC/GRrY
http://paperpile.com/b/sck8hC/Pjf8
http://paperpile.com/b/sck8hC/Pjf8

Sapling: Accelerating Suffix Array Queries with Learned Data Models
Melanie Kirsche, Arun Das, Michael C. Schatz

Supplemental Materials
Supplemental Table 1. Genome sequences analyzed in this study. 1

Supplemental Table 2. Prediction errors for the piecewise linear data model. 2

Supplemental Table 3. Predictions errors for ANN modeling. 3

Supplemental Table 4. Runtime of different methods querying the human genome. 4

Supplemental Table 5. Runtime of Sapling on the human genome. 5

Supplemental Table 6. Runtime of binary search on six genomic sequences. 6

Supplemental Table 7. Runtime of Sapling on six genomic sequences. 7

Supplemental Table 8. Runtime of Sapling on variable length queries in human 8

Supplemental Table 9. Runtime of non-Sapling methods on variable length queries in human 9

Supplemental Figure 1. K-mer Uniqueness Ratios of Genomes. 10

Supplemental Figure 2. Suffix array distributions for simulated repetitive genomes. 11

Supplemental Figure 3. Suffix array distributions for simulated genomes with different
nucleotide compositions. 12

Supplemental Figure 4. Distribution of the number of epochs until convergence. 13

Supplemental Figure 5. Examples of PWL models for selected bins in human chr1. 14

Supplemental Figure 6. Examples of ANN performance for selected bins in human chr1. 15

Supplemental Figure 7. Runtime of Bowtie with different sampling frequencies 16

Supplemental Figure 8. Memory usage for querying the human genome 17

Supplemental Note 1. Commands used for running different aligners 18

Supplemental Note 2. Algorithm for encoding k-mers as integers 20

Supplemental Note 3. Algorithm for querying piecewise linear index 20

Supplemental Note 4: Algorithm for building piecewise linear index 21

Supplemental Note 5: Algorithm for querying Sapling 23

1

Supplemental Table 1. Genome sequences analyzed in this study.

Note that all ‘N’ characters were removed from the sequences prior to indexing.

Species Name Genome Size Accession

E. coli K-12 substr. MG1655 4,641,652 GCA_000005845.2

C. elegans 100,286,401 GCA_000002985.3

S. lycopersicium 782,475,302 SL4.0
(https://www.biorxiv.org/content/

10.1101/767764v1)

H. sapiens (hg38 chr1) 230,481,012 GCA_000001405.15

H. sapiens (hg38 whole genome) 2,934,876,451 GCA_000001405.15

T. aestivum 14,271,578,887 GCA_900519105.1

2

https://www.biorxiv.org/content/10.1101/767764v1
https://www.biorxiv.org/content/10.1101/767764v1

Supplemental Table 2. Prediction errors for the piecewise linear data model.

This table shows a number of error statistics for different numbers of bins when using the piecewise
linear model to predict the suffix array positions of all 21-mers in human chromosome 1.

Number of Bins Max Error 95th Percentile Median Error Mean Error Median of medians Max of medians

2^0 12,987,798 11,299,286 6,899,176 6,502,090 6,899,176 6,899,176

2^10 426,608 59,211 11,590 19,578 9,429 273,216

2^14 263,165 7,658 899 2,533 537 163,013

2^18 180,453 1,579 68 627 27 126,588

2^20 150,267 828 19 395 7 108,158

2^21 135,664 653 14 335 4 103,207

2^22 124,792 486 6 270 2 88,840

2^23 111,458 392 4 234 1 84,460

2^24 102,668 314 2 194 1 71,826

2^25 90,667 257 2 170 1 67,470

2^26 83,653 221 1 142 0.5 56,666

2^27 72,889 187 1 127 0 52,476

3

Supplemental Table 3. Predictions errors for ANN modeling.

This table shows a number of error statistics for different ANN architectures to predict the suffix array
positions of all 21-mers in human chromosome 1.

#
Buckets

#
Nodes

#
Layers

Median of
Means

95th %tile
of Means

Max of
Means

Median of
Medians

95th %tile
of Medians

Max of
Medians

Median
of Maxes

95th %tile
of Maxes

Max of
Maxes

Total Size
(MB)

2^10 8 1 3,082 9,259 27,850 2,432 8,425 26,627 10,709 26,532 91,606 8

32 1 1,194 2,559 11,042 892 1,792 4,752 5,434 13,088 45,839 8

128 1 713 1,879 10,165 520 1,102 4,065 3,775 12,551 50,428 9

8 2 1,888 5,353 235,792 1,406 4,433 229,429 7,611 19,372 523,256 9

32 2 683 1,674 9,174 492 1,082 3,977 3,799 12,120 38,627 13

128 2 435 1,318 8,868 308 696 3,677 3,257 12,144 36,495 76

8 4 1,197 4,904 106,727 835 4,190 102,676 5,730 21,838 250,781 10

32 4 435 1,318 8,868 308 696 3,677 3,257 12,143 36,495 22

128 4 332 1,336 9,790 208 622 4,976 3,217 12,332 51,049 204

2^14 8 1 302 1,228 3,494 245 1,116 3,516 967 3,394 34,965 131

32 1 164 757 3,458 128 494 3,452 603 2,699 24,081 131

128 1 105 641 3,463 29 334 3,452 432 2,475 22,944 147

256 1 92 625 3,491 70 325 3,452 394 2,453 9,079 180

512 1 86 630 3,817 66 370 3,813 373 2,439 23,573 229

8 2 211 987 35,024 163 826 34,404 736 3,002 67,349 147

32 2 113 586 3,456 85 324 3,453 467 2,341 8,687 212

128 2 71 505 3,448 52 252 3,452 325 2,224 13,264 1,245

8 4 154 1,015 43,595 115 808 47,065 597 3,111 83,259 163

32 4 72 463 3,460 53 205 3,452 349 2,199 7,218 360

128 4 70 390 3,453 30 183 3,452 221 1,937 7,061 3,342

2^18 128 1 128 129 223 2 18 220 61 127 642 2,359

4

Supplemental Table 4. Runtime of different methods querying the human genome.

Each method was used to locate 50 million 21-mers that are known to occur in the genome. Speed up
is computed relative to the suffix array binary search. Supplemental Table 5 displays additional results
for Sapling. All tools were tested using the forward strand only.

Tool Runtime (s) Speed up over binary search

Bowtie (exact match only) 558 .52x

Mummer4 (exact match only) 361 .80x

Suffix Array Binary Search 288 1x

Sapling
(0.01% memory overhead)

155 1.86x

Sapling
(1% memory overhead)

114 2.53

Sapling
(25% memory overhead)

84 3.43x

5

Supplemental Table 5. Runtime of Sapling on the human genome.

Each experiment was repeated 3 times to minimize the impact of contention on the server. The
minimum recorded value is highlighted in green. Each run evaluates the time required to query 50
million randomly selected 21-mers known to occur in the genome.

log2 (number of bins) Trial 1 Trial 2 Trial 3

6 316.336 272.504 323.805

7 271.494 296.254 316.643

8 304.494 283.534 300.19

9 195.717 225.044 222.746

10 214.702 213.098 213.15

11 204.405 212.146 199.751

12 196.17 193.502 194.178

13 190.024 190.223 190.647

14 178.008 178.424 180.041

15 213.982 208.957 223.68

16 214.863 193.096 250.618

17 266.878 208.551 193.263

18 155.578 156.305 155.422

19 152.37 152.434 152.319

20 132.156 144.372 132.068

21 192.875 174.58 162.492

22 153.798 161.847 120.197

23 144.868 155.88 116.291

24 132.176 150.189 113.859

25 145.011 136.265 106.215

26 171.781 129.758 99.927

27 131.532 95.7156 89.7132

28 136.927 91.2241 91.4228

29 106.476 84.4354 83.7056

6

Supplemental Table 6. Runtime of binary search on six genomic sequences.

Each experiment was repeated 3 times to minimize the impact of contention on the server. The
minimum recorded value is highlighted in green. Supplemental Table 7 shows the results for these
experiments with Sapling.

Genome Runtime Trial 1
(seconds)

Runtime Trial 2
(seconds)

Runtime Trial 3
(seconds)

E.coli 94.0599 93.9207 93.8439

C. elegans 173.31 174.973 174.904

H. sapiens (hg38, chr1) 198.168 192.317 196.619

S. lycopersicum 222.014 222.038 222.762

H. sapiens (hg38) 300.853 288.3 290.255

T. aestivum 369.465 384.347 372.748

7

Supplemental Table 7. Runtime of Sapling on six genomic sequences.

Each experiment was repeated 3 times to minimize the impact of contention on the server. The
minimum recorded value is highlighted in green.

Genome Sapling Overhead Runtime Trial 1
(seconds)

Runtime Trial 2
(seconds)

Runtime Trial 3
(seconds)

E. coli

0.01% 73.147 72.86 64.1779

1% 25.3867 24.7783 24.7871

10% 19.6079 19.5705 20.4445

25% 21.6279 19.0606 19.007

C. elegans

0.01% 115.703 114.843 118.653

1% 72.6475 72.6565 72.6055

10% 64.3481 53.6948 53.525

25% 48.9586 48.6434 48.772

H. sapiens
(hg38, chr1)

0.01% 122.171 122.2 116.667

1% 79.8895 74.3822 73.4093

10% 65.5379 60.7652 60.0477

25% 58.9982 58.8076 57.5504

S. lycopersicum

0.01% 146.421 138.54 131.352

1% 78.8507 77.2295 77.7648

10% 60.7451 60.2346 61.7996

25% 58.7461 61.1307 58.5787

H. sapiens
(hg38)

0.01% 155.578 156.305 155.422

1% 132.176 150.189 113.859

10% 136.927 91.2241 91.4228

25% 106.476 84.4354 83.7056

T. aestivum

0.01% 222.989 273.322 232.971

1% 179.87 187.326 281.909

10% 123.117 132.654 123.919

25% 136.917 181.883 115.208

8

Supplemental Table 8. Runtime of Sapling on variable length queries in human

Each experiment was repeated 3 times to minimize the impact of contention on the server. The
minimum recorded value is highlighted in green. Supplemental Table 9 shows the results for these
experiments with other methods.

Memory
Overhead

Query Length Training
Length

Runtime Trial
1 (seconds)

Runtime Trial
2 (Seconds)

Runtime Trial
3 (Seconds)

0.01% 11 21 49.4984 50.1662 50.3691

0.01% 21 21 155.966 142.324 135.788

0.01% 31 21 163.403 158.525 159.401

0.01% 41 21 162.852 162.508 162.19

0.01% 51 21 163.817 162.996 163.493

0.01% 101 21 167.868 166.339 166.227

0.01% 31 31 153.798 153.085 153.381

1% 31 31 118.959 119.075 120.235

25% 31 31 92.9942 93.4445 91.0275

1% 11 21 23.1026 22.0612 22.8821

1% 21 21 109.52 108.92 106.697

1% 31 21 113.088 114.4 114.152

1% 41 21 117.975 116.462 116.37

1% 51 21 116.881 118.691 114.941

1% 101 21 114.533 117.298 118.299

25% 11 21 25.8727 27.5915 29.9953

25% 21 21 82.1219 81.8653 81.9577

25% 31 21 91.8358 91.4418 91.242

25% 41 21 94.8901 94.8738 100.267

25% 51 21 97.1682 96.5893 99.3514

25% 101 21 102.804 100.689 100.62

9

Supplemental Table 9. Runtime of non-Sapling methods on variable length queries in human

Each experiment was repeated 3 times to minimize the impact of contention on the server. The
minimum recorded value is highlighted in green. Supplemental Table 8 shows the results for these
experiments with Sapling.

Software Query Length Runtime Trial
1 (seconds)

Runtime Trial
2 (Seconds)

Runtime Trial
3 (Seconds)

Bowtie 11 405 415 414

Bowtie 21 649 575 558

Bowtie 31 628 646 629

Bowtie 41 737 743 744

Bowtie 51 839 835 886

Bowtie 101 1351 1365 1347

Mummer 11 872.973 870.457 906.93

Mummer 21 377.273 369.436 360.728

Mummer 31 239.556 220.997 221.86

Mummer 41 166.536 136.299 126.001

Mummer 51 128.036 124.269 109.334

Mummer 101 123.418 121.913 99.256

Binary Search 11 103.214 98.23 97.93

Binary Search 21 300.853 288.3 290.255

Binary Search 31 298.761 301.723 301.78

Binary Search 41 307.782 308.138 306.561

Binary Search 51 310.951 309.613 311.527

Binary Search 101 315.675 299.606 317.609

10

Supplemental Figure 1. K-mer Uniqueness Ratios of Genomes.

For each of the genomes we used, we measured their repetitiveness by plotting how their k-mer
uniqueness ratio (proportion of k-mers on the forward strand which occur exactly once) changes as a
function of the k-mer length k. If the proportion of unique k-mers grows slowly as k increases, this
indicates the presence of long repeats.

11

Supplemental Figure 2. Suffix array distributions for simulated repetitive genomes.

To illustrate the effects of repetitive sequence on the suffix array distribution, we computed the suffix
array for a number of simulated sequences consisting entirely of repeats of varying length. Each
sequence consists of some repeat occurring consecutively for the entirety of the sequence length (set
to 100 kbp). a) A repeat of the sequence “CT”. b) A repeat of the sequence “CAT”. c) A repeat of the
sequence “ACGT”. d) A repeat of the sequence “ACTTCA”. e) A repeat of a random length-16
sequence. f) A repeat of a random length-50 sequence.

12

Supplemental Figure 3. Suffix array distributions for simulated genomes with different
nucleotide compositions.

To illustrate the effects of variation in sequence content, particularly GC-content, on the suffix array
distribution, we computed the suffix array for a number of simulated sequences. Each sequence
consists of 100k basepairs, with each basepair independently selected from a fixed probability
distribution. a) A sequence with 50% GC-content corresponding to an equal probability of each
basepair. b) A sequence with 60% GC-content. c) A sequence with 75% GC-content. d) A sequence
with 90% GC-content. e) A sequence with 100% GC-content. f) A sequence consisting of only C’s

.

13

Supplemental Figure 4. Distribution of the number of epochs until convergence.

This figure shows the distribution in the number of epochs until convergence for three ANN model
architectures for human chromosome 1.

a) 1024 chunks, 32Wx1L b) 16,384 chunks, 32Wx1L

c) 16,384 chunks, 128Wx2L

14

Supplemental Figure 5. Examples of PWL models for selected bins in human chr1.

This figure shows the functions learned by the piecewise linear data model within a few individual
segments of human chromosome 1. The total number of segments in this experiment was ~16 million.
Panels a) and b) show bins with the lowest mean error; Panels c) and d) show bins with average mean
error; and Panels e) and f) show bins with the highest mean error. Blue shows the actual suffix array
distribution and green shows the piecewise linear function for this bin.

15

Supplemental Figure 6. Examples of ANN performance for selected bins in human chr1.

This figure shows some of the functions learned by the ANN models within a few bins in human chr1.
The first row contains functions that are learned well (low mean error), the second row contains
functions that are learned poorly (high mean error). The results shown come from the three ANN
architectures highlighted in Table 1. Blue shows the actual suffix array distribution and green shows the
ANN prediction for this bin.

16

Supplemental Figure 7. Runtime of Bowtie with different sampling frequencies

This figure measures the runtime of Bowtie when different values for the suffix array sampling
frequency are used; the default value is 32 and the “o =” parameter controls the logarithm (base 2) of
this value. For each run we measured the time (not including indexing) required to search the human
genome for 50 million 21-mers.

17

Supplemental Figure 8. Memory usage for querying the human genome

This figure compares the peak memory usage of Sapling, Mummer, and Bowtie when querying the
human genome for 50 million 21-mers. For running Bowtie, we set the sampling frequency to 1 to
ensure that all tools were consistently using the entire suffix array.

18

Supplemental Note 1. Commands used for running different aligners

Sapling exact matching:
$ suffixarray/refToSuffixArray.sh human.fa
$ src/sapling_example human.fa k=21 saFn=human.fa.sa nb=26 nq=50000000

Bowtie exact matching:
$ bowtie-build human.fa human
$ bowtie --norc -v 0 -k 1 -t human queries.fastq

Mummer 4.0.0 exact matching:
$ mummer -threads 1 -save human.mummer -maxmatch -l 21 human.fa \
queries.fastq

$ time (mummer -threads 1 -load human.mummer -maxmatch -l 21 human.fa \
queries.fastq | tee mummer.sam)

19

Supplemental Note 2. Algorithm for encoding k-mers as integers

Algorithm 1: Encode Kmers

This function encodes k-mers as integers with 2*k bits such that the
numerical ordering of the outputs of the function is equivalent to the
lexicographical ordering of the input k-mers.

EncodeKmer(kmer):
Result = 0
K = kmer.length
For i = 0 to (K - 1):

Result = Result * 4
Char = kmer[i]
if(Char == ‘A’) Result += 0
else if(Char == ‘C’) Result += 1
else if(Char == ‘G’) Result += 2
else if(Char == ‘T’) Result += 3

Return Result

20

Supplemental Note 3. Algorithm for querying piecewise linear index

This algorithm queries a piecewise linear index for a particular X-value
given that the index divides the space of possible x-values into b
equal-sized intervals where FirstX and FirstY are the points with the
lowest x-value within each bucket.

QueryPiecewiseLinearIndex(FirstX, FirstY, X, b):
BucketIndex = X / b
PrevX = FirstX[BucketIndex]
PrevY = FirstY[BucketIndex]
NextX = FirstX[BucketIndex + 1]
NextY = FirstY[BucketIndex + 1]
Slope = (NextY - PrevY) / (NextX - PrevX)
Return RoundToInt(PrevY + Slope * (X - PrevX))

21

Supplemental Note 4: Algorithm for building piecewise linear index

This algorithm builds the piecewise linear index for a genome for a given
k-mer length and number of buckets to divide the k-mer space into. It
defines each k-mer as a point with x-coordinate equal to the encoded k-mer
and a y-coordinate equal to the suffix array position corresponding to the
start of that k-mer. It then finds the first point in each bucket (logic
for handling empty buckets is omitted here), and creates a piecewise
linear function by connecting those points. Finally, the maximum
over-prediction and under-prediction error are computed.

BuildPiecewiseLinearIndex(genome, k, buckets):
SA = BuildSuffixArray(genome)
N = genome.length
FirstX[buckets]
FirstY[buckets]
For i = 0 to (N - k + 1):

X = EncodeKmer(genome.substring(i, i + k))
Y = SA[i]
BucketIndex = X / buckets
If FirstX[BucketIndex] == null || FirstX[BucketIndex] > X:

FirstX[BucketIndex] = X
FirstY[BucketIndex] = Y

MaxOverError = 0
MaxUnderError = 0

For i = 0 to (N - k + 1):
X = EncodeKmer(genome.substring(i, i + k))
Y = SA[i]
PredictedY = QueryPiecewiseLinearIndex(X)
if(PredictedY > Y):

MaxOverError = max(MaxOverError, PredictedY - Y)
else:

MaxUnderError = max(MaxUnderError, Y - PredictedY)

Return new Sapling(FirstX, FirstY, buckets, MaxOverError, MaxUnderError)

22

Supplemental Note 5: Algorithm for querying Sapling

This algorithm finds the location of a query k-mer in a genome’s suffix
array given a Sapling piecewise linear index. The runtime of it is O(1)
or the Sapling prediction plus O(log([max overprediction] + [max
underprediction]) + k) in the worst case, compared to O(log(genome length)
+ k) in the case of a standard binary search algorithm. Here the standard
binary search algorithm is called as a subroutine of the Sapling query
with the function signature BinarySearch(suffix array, query string, start
of range, end of range).

QuerySapling(sapling, Query, SuffixArray, RevSuffixArray):
X = EncodeKmer(Query)
PredictedY = QueryPiecewiseLinearIndex(sapling.FirstX,

sapling.FirstY,
X, sapling.buckets)

MinSaPos = PredictedY - sapling.MaxUnderError
MaxSaPos = PredictedY + sapling.MaxOverError
SaPos = BinarySearch(SuffixArray, Query, MinSaPos, MaxSaPos)
If SaPos == -1:

Return “Query not Found”
Return SaPos

23

