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ABSTRACT: Historical estimates of ocean heat content (OHC) are important for understanding the climate sensitivity of

the Earth system and for tracking changes in Earth’s energy balance over time. Prior to 2004, these estimates rely primarily

on temperature measurements from mechanical and expendable bathythermograph (BT) instruments that were deployed

on large scales by naval vessels and ships of opportunity. These BT temperature measurements are subject to well-

documented biases, but even the best calibration methods still exhibit residual biases when compared with high-quality

temperature datasets. Here, we use a new approach to reduce biases in historical BT data after binning them to a regular grid

such as would be used for estimating OHC. Our method consists of an ensemble of artificial neural networks that corrects

biases with respect to depth, year, and water temperature in the top 10m. A global correction and corrections optimized to

specific BT probe types are presented for the top 1800m. Our approach differs from most prior studies by accounting for

multiple sources of error in a single correction instead of separating the bias into several independent components. These

new global and probe-specific corrections perform on par with widely used calibration methods on a series of metrics that

examine the residual temperature biases with respect to a high-quality reference dataset. However, distinct patterns emerge

across these various calibration methods when they are extrapolated to BT data that are not included in our cross-

instrument comparison, contributing to uncertainty that will ultimately impact estimates of OHC.
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1. Introduction
The oceans play an enormous role in Earth’s energy budget,

having gained roughly 10 times as much heat over the past half

century as all other parts of the Earth system combined

(Church et al. 2011). Reconstructing past changes in ocean heat

content is therefore critical to understanding Earth’s climate

sensitivity and energy balance (Hansen 2005; Trenberth et al.

2014;Meehl et al. 2005). Reconstructions of ocean heat content

prior to roughly year 2005 are hampered by data sparsity and

persistent instrumental biases. Recent studies have demon-

strated that issues related to the choice of calibration applied to

instrumental biases in the historical ocean temperature record

contribute to significant uncertainty in ocean heat content

(OHC) reconstructions (Lyman et al. 2010; Boyer et al. 2016;

Cheng et al. 2016, 2018;Wang et al. 2018). It is crucial to correct

these biases and further constrain the instrument calibration

methods, as better constraints on past ocean temperature

changes will impact projections of future warming.

The most widely used instruments for measuring ocean tem-

perature prior to the Argo era (2005–present, when autonomous

profiling floats provide global data coverage) were the expend-

able bathythermograph (XBT) and its predecessor the mechan-

ical bathythermograph (MBT). Excluding profiling floats, during

the period 1945–present these instruments accounted for roughly

60%–70% of the raw temperature casts in a given calendar year

(Fig. 1). Additionally, because of their widespread use by the

U.S. Navy and ships of opportunity, these instruments provide

the community with vastly greater spatial sampling coverage

(twice as much as other instruments on a 18 grid) in the historical

ocean temperature record than would otherwise be afforded by

scientific cruises alone. These instrument casts are therefore es-

sential to numerous studies of historical ocean and climate

trends, including assessments of OHC (Domingues et al. 2008;

Ishii and Kimoto 2009; Levitus et al. 2012; Cheng et al. 2017).

TheMBT probe was designed to reach nominal depths (60,

150, or 275m depending on the model) and relied on being

lowered on a winch at near free-fall speeds (Couper and

LaFond 1970). It contained instruments to measure temper-

ature and pressure, which it continuously recorded on either a

smoked or film-coated plate. This setup required that the

probe be retrieved after every deployment, reducing the

conditions under which it could be safely deployed. The XBT

probe was designed to overcome this limitation by being ex-

pendable, with temperature recordings transmitted through a

copper wire to a chart recorder on deck (Abraham et al.

2013). After playing out the entire spool of wire the con-

nection severs, and the probe sinks to the bottom of the

ocean. Several different probe types were designed over the
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long and continued period of use of the XBT, with most de-

signs able to reach depths of roughly 400–700m and a small

subset able to reach depths up to 2000m.

However, it is well understood that both XBT and MBT

observations contain global systematic biases on the order of

0.18C, significantly impacting the estimation of OHC, which is

highly sensitive to small temperature changes. Additionally, as

first identified by Gouretski and Koltermann (2007), the biases

of the XBT/MBT instruments vary over time, leading to ad-

ditional uncertainty about the rate of ocean warming on sub-

decadal time scales. The community has therefore undertaken

a concerted effort to examine and address the causes of these

biases. However, uncertainties across an ensemble of prior bias

corrections are of the same magnitude as natural intradecadal

variations (Lyman et al. 2010; Cheng et al. 2014, hereinafter

CH14), making these corrections one of the leading sources of

uncertainty in estimates of OHC (Lyman et al. 2010; Boyer

et al. 2016) and limiting the reliability of any single calibration

method on shorter time scales.

Because the XBT instrument did not directly measure depth

but relied on a fall-rate equation (FRE), this is an obvious source

of systematic bias.After careful examination of a subset of probe

deployments, Hanawa et al. (1995, hereinafter H95) proposed a

modified FRE with new coefficients to correct for this depth

bias. Against the warning of H95 that this new FRE should not

be introduced into original XBT data archives, the new equation

was quickly adopted by the probe manufacturers, leading to

XBT probes with a mixture of the old and new FRE being de-

ployed in subsequent years (Abraham et al. 2013). In addition,

after applying the H95 depth correction to historical XBT data,

Gouretski and Koltermann (2007) identified that a previously

documented warm period in the XBT record could not be rec-

tified with known climate patterns and was instead related to a

residual time-variable bias in the XBT data themselves, indi-

cating that other sources of error exist. This finding triggered

extensive interest in investigating the causes of this time-variable

bias and generated numerous approaches to correct it (e.g.,

Wijffels et al. 2008; Ishii and Kimoto 2009; Gouretski and

Reseghetti 2010, hereinafter GR10; Good 2011; Gouretski

2012; Hamon et al. 2012; Cowley et al. 2013; CH14).

Earlier studies corrected for the time-varying bias by using

a FRE that varied based on the year of probe deployment

(Wijffels et al. 2008; Ishii and Kimoto 2009). However, other

studies indicated that the bias was also dependent on near-

surface water temperature. GR10 found that the error could be

further reduced by separating the bias into a depth-dependent

component and another they considered the ‘‘pure thermal’’

bias. Subsequently, Cowley et al. (2013) assembled thousands

of side-by-side XBT and conductivity–temperature–depth (CTD)

casts to look at cross-instrumental error, finding that there is a

pure thermal bias that varies with both time and temperature

but that is independent of depth, and also a depth error that

varies not only with depth but also with time and perhaps with

temperature.

The side-by-side comparisons of Cowley et al. (2013) relied

on relatively ideal conditions where a CTD could be lowered

from a stationary research vessel alongside an XBT probe

deployment. This contrasts with normal operating conditions

for the XBT, which was designed specifically so that it could be

deployed from naval and merchant ships with minimal ad-

justments to the vessels’ courses or speeds. Nevertheless, these

findings were corroborated by CH14 with a much larger global

XBT dataset composed of probes deployed under more typical

conditions. In addition, CH14 sorted the XBT casts into groups

of major probe types, confirming that differences in probe

design not only led to different fall rates but also distinct time-

varying bias histories.

The residual time-dependent biases that remain after the

H95 depth correction, or subsequent depth corrections that

accounted for the effects of near-surface temperature on the

probe fall rate (Cheng et al. 2011) and the effect of probe de-

sign (CH14), are likely due to multiple sources of error such as

variability in sea state, weather, and other deployment condi-

tions, as well as technological developments that led to a shift

in ship speeds, increasing deck heights, and a transition from

analog to digital recorders. It has also been speculated that

changes to probe manufacturing, such as the move by Sippican

(one of two major XBT vendors) of operations from the

United States toMexico, could cause rapid shifts in the bias for

certain XBT probe types (Wijffels et al. 2008). These factors

FIG. 1. The relative annual sampling coverage of individual instrument casts for (a) total

discrete samples after linearly interpolating to 350 standard depths (zstandard) and (b) percentage

of total samples from a particular temperature instrument.
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cannot be easily quantified for the global dataset without suf-

ficient metadata. Unfortunately, in the global XBT dataset

roughly half of the casts do not even contain the necessary

metadata to assign them to a specific probe type. Because of this,

developing a truly mechanistic model, one which accounts for

errors using a purely physical explanation, remains difficult.

Therefore,methods have been developed to account for only the

most persistent biases, which evolve over multiyear time scales.

Prior attempts to correct BT biases generally used one of

two approaches. The first approach uses an empirical model,

informed by the physics of the system, while also making

necessary simplifying assumptions to estimate unknown model

parameters. These approaches include methods that modify

the original XBT probe FRE using time-variable parameters

(Wijffels et al. 2008; Ishii and Kimoto 2009; Cowley et al. 2013;

CH14) instead of parameters that are constant with time (as

with H95). The other approach uses statistical methods to re-

move biases, producing a single correction for the total bias,

which is the approach taken by Levitus et al. (2009, hereinafter

L09) and the current study. Arguments can be made for or

against either approach, but both approaches can lead to sig-

nificant reductions in the observed XBT/MBT biases.

Here, we propose a new approach to correcting historical BT

biases that sorts measurements from individual BT casts into

categories based on the year of deployment, the temperature of

the near-surface ocean, and the depth at which the measure-

ment was taken, then uses an ensemble artificial neural net-

work (EANN) to smooth and extrapolate the total BT bias to

all times and locations for which BT data exist (section 2). This

method is a statistical approach that does not attempt to sep-

arate components of the time-dependent bias, aside from

considering the impact of different XBT probe types on the

bias. While some of the underlying factors that contribute to

the time-varying bias are likely independent of each other, our

ability to disentangle these are limited by the completeness of

available metadata. Therefore, for simplicity, our method

considers the total bias to be an inseparable and nonlinear

combination of the major sources of error identified in prior

studies (Gouretski and Koltermann 2007; L09; GR10; CH14).

We apply our correction to both XBT and MBT datasets, with

an option to either apply one global correction (what we call

EANN-G) to each instrumental dataset or, for theXBT, to apply

corrections to the individual probe types (EANN-P) (section 3).

Using the metrics from Cheng et al. (2018) we demonstrate that

we can favorably reduce the XBT/MBT bias with respect to an

independent validation dataset, with our calibration performing

as well as or better than several widely used existing methods

(section 3). We close by summarizing our main findings and

highlighting unresolved issues in correcting BT biases that

should be addressed by the community (section 4).

2. Data and methods

a. Constructing a correction grid
We used individual casts of temperature data taken from the

WorldOceanDatabase (WOD) 2018 (Boyer et al. 2018) (https://

www.nodc.noaa.gov/OC5/SELECT/dbsearch/dbsearch.html;

accessed 30 September 2019). These are provided as separate

datasets for the different instrument types, which in our case

are the two bathythermograph datasets (XBT and MBT) that

will be corrected, and the ocean station data (OSD) and CTD

which we use as reference data (Fig. 2, step 1). Before quality

control there are roughly 2.3 million XBT casts and 2.4 million

MBT casts.

The XBT data we obtain are modified to have the original

manufacturer FRE (MFR FRE hereinafter) applied for the

period after 1995. Without such a modification, there is a rapid

transition in the bias simply due to instrument manufacturers

adopting the H95 FRE in the late 1990s (see section 1 for

further details). To modify individual casts from the 1990s

onward that have been flagged by the WOD as having the H95

FRE applied, we multiply their sample depths by the factor

0.9675, following GR10, which approximates the depths that

would be given by using the original manufacturer FRE.

Other studies such as L09 and CH14 have instead opted to use

the H95 FRE as a starting point, but some studies (Thadathil

et al. 2002; GR10) have indicated that the H95 FRE may

increase the time-dependent thermal bias relative to collo-

cated CTD/OSD data as compared with using the MFR FRE.

In addition, we exclude data in casts that have been flagged

by the WOD for quality control issues with any flag other than

zero, as well as unrealistic values that fall outside a temperature

range from238 to 368C, because seawater does not normally fall

outside this temperature range except for geographically isolated

areas (e.g., hydrothermal vents) that are not relevant to our global

study. Additionally, a cast must contain at least four temperature

measurements as well as a measurement in the top 100m to be

included. After applying this quality control (Fig. 2, step 2),

there are approximately 2.1 million XBT casts and 2.2 million

MBT casts.

Following CH14, each XBT probe is sorted into one of nine

groups based on manufacturer, similarity in probe design, or

terminal depth for probes of unknown type. These groups

(their approximate terminal depths are in parentheses) are

1) T7/DB (760m), 2) DX (760m), 3) T4/T6 (450m), 4) SX

(450m), 5) T10 (200m), 6) T5 (1820m), 7) TSK-T4/T6 (450m), 8)

TSK-T5 (1820m), and 9) TSK-T7/DB (760m). Probe groups 1, 3,

5, and 6 are manufactured by Sippican, groups 7–9 are manufac-

tured by TSK, and groups 2 and 4 are of unknown manufacturer/

type and are only differentiated by their greatest reported depth.

CH14 noted that operators have generally considered XBT

probes to be able to reach depths that are roughly 20% greater

than their listed terminal depths with minimal loss in accuracy.

However, because of the sparsity of data below these terminal

depths and some apparently spurious observations, we chose to

omit these data from the training of our model. In the end,

these data will still receive a calibration.

Next, we interpolated individual casts for each instrument

(XBT, MBT, OSD, and CTD) to the standard depth levels

used by Cheng et al. (2018) (Fig. 2, step 3). These depth levels

are spaced 1 m apart in the top 100m, 5 m apart from 105 to

700m, and 10m apart from 710 to 2000m, for a total of

350 depth levels. We then separately identified casts from the

CTD and OSD datasets that were sampled within 18 of latitude
and longitude and within the same 30-day window as a cast from

either the XBT or MBT datasets (Fig. 2, step 4). Since multiple
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CTD and OSD casts could be associated with the same BT cast,

the median of these ‘‘collocated casts’’ was computed separately

for both the CTD and OSD datasets. Each respective BT cast

could then have up to two reference casts. Keeping the two

reference datasets separate, instead of taking themedian of both

CTD and OSD casts, was done so that our correction would not

overly depend on a particular dataset, since the CTD and OSD

data have different spatiotemporal sampling histories and ver-

tical resolutions (Cheng and Zhu 2014).

After interpolation of the BT data to standard depth levels,

we set aside 50% of the OSD and CTD data in order to use

them for validating our calibration method. Because of the

vastly different number of casts in each XBT probe category,

removing a random 50% of data without consideration for

probe type would leave some probe types with dispropor-

tionate amounts of training data versus validation data, so one-

half of all reference CTD casts and one-half of all reference

OSD casts are removed for each of the nine categories of XBT

probes. The CTD/OSD data that we set aside for validation are

then concatenated and averaged. We refer to this dataset as

RefVAL and use it only for validation of our calibration scheme,

to ensure that our bias corrections extrapolate well to inde-

pendent high-quality data (see section 3). One caveat to note is

that some of the XBT/MBT data were collected by ships of

opportunity from areas of the ocean that are far from any

contemporaneous CTD/OSD data, so the validation dataset

RefVAL has a different spatiotemporal distribution than the

full XBT dataset. This ultimately contributes additional un-

certainty to the extrapolated bias corrections employed by

various calibrations.

We use the remaining collocated casts, RefTR, to calculate

the biases (bCAST) in the individual XBT and MBT casts, de-

fined as

b
CAST

(cast, z
standard

)5BT(cast, z
standard

) –Ref
TR

(cast, z
standard

).

(1)

Because the cast level data are spatially biased toward regions,

such as coasts, where significant repeat sampling occurred, we

further bin the bCAST data to a regular grid so that various

geographic regions are more equally represented (Fig. 2, step

5). Our chosen grid, the World Ocean Atlas 2013 (WOA13)

grid, has 18 3 18 resolution and 67 depth layers for 0–2000m

(Locarnini et al. 2013). When binning vertically, we use the

depth layer whose value is closest to the observation’s sampling

depth (e.g., the first depth layer has a value of 0m, the second of

5m, and the third of 10m, so all raw temperature values sampled

between 0 and 2.5m fall in the 0-mbin; between 2.5 and 7.5m they

fall in the 5-m bin). A point that lies exactly at the midpoint be-

tween depth intervals is binned to the shallower interval.

We opted to bin using the median of bCAST instead of the

mean, as it is more robust to noise caused by natural variability

and instrumental errors. At subannual time scales the time-

varying biases appear to be dominated by changes in water

temperature due to the seasonal cycle (GR10) and not by other

factors such as changes to probe design that occurred over

multiple years (CH14). Given this, we assume short-term

changes to the temporal biases are purely a function of water

temperature and are not specific to a particular time or loca-

tion.We can then bin bCAST to theWOA13 grid annually based

on the year of sampling, yielding bWOA:

b
CAST

(cast, z
standard

)/median-binned to WOA13 grid

/b
WOA

(lon, lat, z
WOA

, yr). (2)

In the next step, biases on the WOA13 annual grid (bWOA)

are sorted into categories using the variables on which theXBT

FIG. 2. Schematic of this study’s data flow and quality control, as well as the application of an EANN to calibrate bathythermograph

data. Steps 6–9 are repeated 30 times to create an ensemble of bias corrections. See the text for additional details on quality control,

binning, and network architecture.
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andMBT biases depend, namely, year, depth, and temperature

(Fig. 2, step 6). This forms the basis of our ‘‘correction grid.’’

The dimensions of this grid are 52 years for the XBT and

65 years for the MBT data (at 1-yr increments) by 67 depths

(with depth increments coinciding with the WOA13) by 79

temperatures (from238 to 368C at 0.58C increments) for a total

of 275 236 elements in the correction grid for the XBT and

344 045 elements for the MBT. For temperature binning, we

use the 10-m temperature from the WOA climatology at the

measurement location (lon, lat), since it can be used as a proxy

for a spatial component of the bias, which varies with latitude

and has been proposed to be dependent on near-surface ocean

temperature (Kizu et al. 2005; Reverdin et al. 2009). CH14

used the 0–100-m average temperature taken from the cast

itself, but some of these near-surface data contain errors that

cannot easily be accounted for by standard quality control

procedures. Additionally, many casts do not contain mea-

surements for the full 0–100-m depth interval, in which case a

climatological value would need to be substituted.

Biases whose absolute values exceed 58C are omitted (fol-

lowing Cheng et al. 2018), as these extremes are likely due to

insufficient sampling coverage for that particular grid cell in-

stead of a systematic bias. The binning of biases to the cor-

rection grid follows the same median-binning procedure that

we use to bin bCAST to the WOA grid. After binning to the

correction grid, there are 150 thousand bias data points for the

XBT data, and 80 thousand for the MBT data. Step 6 (Fig. 2)

thus yields the value of the bathythermograph instrumental

bias on the correction grid, which we refer to as bCOR,

b
WOA

(lon, lat, z
WOA

, yr)/median-binned to correction grid

/ b
COR

(z
WOA

, T
10m

, yr).

(3)

We produced separate correction grids for the XBT andMBT

datasets. For the XBT data, we consider the years 1967–2018 in

our correction, and for MBT we consider the years 1940–2004.

Although certain data exist in both datasets prior to these time

intervals, they are insufficiently sampled, leading to large ap-

parent biases with respect to the CTD/OSD data and therefore

are not considered in this study. Nine additional correction grids

are generated for probe-specific calibrations of the XBT data.

b. Creating an ensemble of artificial neural networks
The correction grids that result from the steps described

above (Fig. 2, steps 1–6) are noisy and contain holes where

there are no collocated data that satisfy the requirements of

that grid cell.We employ an artificial neural network (ANN) to

smooth out the result and fill in the gaps (Fig. 2, step 7), so the

correction can be extrapolated to all of the data in theXBT and

MBT instrumental datasets, including for testing on our in-

ternal validation sets (Fig. 2, step 8).

Our feedforward ANN is a machine learning approach that

seeks to reduce cross-instrumental biases by minimizing the

following ‘‘cost function’’:

cost5�
z
�
T10m

�
yr

[b
COR

(z
WOA

, T
10m

, yr)2C(z
WOA

,T
10m

, yr)]2. (4)

As such, the ANN is trained to produce a final correction C

(Fig. 2, step 9) that replicates the bias bCOR as closely as pos-

sible while extrapolating to areas without bias data.

Given that the fall rate of a probe may be partially depen-

dent on water temperature (Thadathil et al. 2002; Kizu et al.

2005; Reverdin et al. 2009; Cowley et al. 2013; CH14), the

vertical temperature structure likely has an impact on the re-

sulting depth bias. For this reason, we also use the vertical

temperature gradient derived from the annual WOA clima-

tology as an additional input to our ANN (Fig. 2, step 7), which

indirectly gives us spatial information about different water

masses as well as their average vertical structure. Including the

vertical temperature gradient improves the reconstructed bias

in the shallow subsurface in our model.

We use a fully connected network that consists of two hidden

layers, with 10 nodes each (Fig. 2, step 7). This architecture

keeps the ratio of free parameters (151 total weights) versus

training samples (;10 000–150 000 depending on probe type)

below 2%, thus reducing the chance of overfitting the training

data. The value of each node is partially dependent on the

transfer function used to propagate information from one layer

to the next. Initially we opted for a network with only a single

hidden layer and the hyperbolic tangent as the transfer func-

tion, but the use of this particular transfer function introduced

artificial structure to the extrapolated correction that was in-

consistent with the raw correction grid. Once we opted to go

beyond a single hidden layer, the obvious candidate for the

transfer function was the rectified linear unit. This has become

the default for deep networks because it has fewer problems

with vanishing gradients (Glorot et al. 2011).

For the back-propagation algorithm in our ANN, which it-

eratively updates the values of the weights, we chose the

Levenberg–Marquardt algorithm (Marquardt 1963) due to its

improved performance at achieving a lower mean squared

error between predicted and expected values for the targets,

versus other common algorithms such as gradient descent

(Hagan and Menhaj 1994). There is a danger of overfitting the

model, which occurs when the neural network is overtrained

on a dataset so that it cannot extrapolate well when presented

with new data. This becomes more difficult to avoid with more

nodes in a hidden layer or more layers in the network

(Weigend et al. 1990). To counteract this, we incorporate

Bayesian regularization (MacKay 1992; Foresee and Hagan

1997) directly into the back-propagation algorithm to optimize

the regularization procedure that prevents overfitting by pe-

nalizing large weights in the network. Additionally, we employ

early stopping (Prechelt 1998) using our internal validation set,

which stops training when performance extrapolating to the

internal validation set begins to degrade.

As mentioned in section 2a, we create an independent val-

idation set by omitting half of the CTD/OSD data before cal-

culating the biases from the concatenated CTD/OSD datasets

that are then binned to the WOA and correction grids (Fig. 2,

steps 5–6). This independent validation dataset is not ever

‘‘seen’’ by the ANN or used to tune it in any way.We therefore

also create an internal validation set bINT by randomly drop-

ping 50%of the data in the correction grid. The remaining 50%

of the data are used for training. Utilizing random validation
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sets helps ensure that the individual ANN generalizes well for

the systematic biases that are independent of choice of refer-

ence dataset. For the ANN to be accepted, it must produce a

correction C that reduces the sum of squared errors of the in-

ternal validation set (Fig. 2, step 8):

�
z
�
T10m

�
yr
(b

INT
2C)2 ,�

z
�
T10m

�
yr
b2
INT . (5)

Steps 6–9 (Fig. 2) are repeated until 30 validated ANNs are

produced, and these 30 ANNs are combined to produce the

EANN. About 10% of models fail to fulfill the validation cri-

terion set by Eq. (5) and are discarded.

There are several advantages to using an ensemble of ANNs

rather than a singleANN.As a result of the random initialization

of weights in the ANNs and differences in training sets across

members, it is possible for many different networks to achieve

similar performance on a validation set while extrapolating to

areas with no data coverage differently. This randomization is

a form of data subsampling similar to bootstrap aggregating

(Breiman 1996), which by averaging the solution across ensem-

ble members affords better performance on the validation sets

compared to an individualmember. This ensemble averaging has

been demonstrated to improve the robustness of the extrapola-

tion in areas without data coverage (Hansen and Salamon 1990;

Lincoln and Skrzypek 1990). The ensemble range also provides a

measure of the uncertainty of our corrections.

Steps 6–9 are again repeated using data binned to correction

grids for individual probe-specific bias corrections. The result is

10 ensembles of corrections for the XBT and an additional one

for the MBT. These ensembles consist of one global correction,

which can be applied to all of an instrument’s data, as well as cor-

rections for the nine XBT probe types that are applied individually

to each category of probes. Data from depths greater than the

terminal depths of each probe type (see section 2a) are also cor-

rected, as our EANN extrapolates the correction down to 2000m.

Our correction grid organizes BT bias corrections into cat-

egories based on sample depth, year, and temperature in the

top 10m. Because our correction grid has the depth levels of

theWOA13 grid, we linearly interpolate the correction grid to

the 350 depth levels of our cast data. XBT/MBT casts are

corrected by identifying the grid cell in the interpolated

correction grid that corresponds to each measurement in the

XBT/MBT cast (based on standard depth level, year, and 10-m

temperature), and applying the corresponding correction. The

end result is 60 and 30 different corrected datasets of individual

XBT and MBT casts, respectively, obtained by combining the

two different correction schemes (global vs probe type) with

the 30 ensemble members of the EANN.

We compare the XBT/MBT casts calibrated with the EANN

ensemble with the independent validation set RefVAL (Fig. 2,

step 10) as a final test of our method’s ability to correct ‘‘never

before seen’’ BT biases.

3. Results
To compare the performances of multiple existing XBT

calibrations, Cheng et al. (2018) proposed a set of metrics that

can be used to gauge the residual biases with regard to depth,

probe type, year, and latitude, variables on which the bias has

been demonstrated to depend (Gouretski and Koltermann

2007; L09; GR10; CH14).We have used four of thesemetrics to

assess our own method’s performance when compared to the

two top performing calibrations, L09 and CH14, as determined

by Cheng et al. (2018).

These previous calibrations are dissimilar from this current

study as well as from each other in their approach. L09 calcu-

lated the total bias as the difference between XBT data and a

combined reference dataset of both OSD and CTD data after

each dataset had been binned to a regular grid. Next, they took

the global median of the bias for each depth level and year as

their correction after smoothing with a 5-yr moving average

filter. CH14 applied independent depth and pure thermal bias

corrections while taking into account the various probe types

with respect to a reference set of CTD casts (later updated

with a reference set ofOSD, CTD, and PFL casts). Ourmethod

uses correction grids (section 2a) that have been smoothed and

filled using ensembles of artificial neural networks to reduce

biases with respect to year, depth, water temperature in the top

10m, and probe types.

We use four metrics adapted from Cheng et al. (2018), as

well as a new metric of our own, to compare the residual biases

of these disparate methods with respect to the same reference

dataset of CTD/OSD data (RefVAL) after the residual biases of

the individual casts are binned to theWOA13 grid (section 3a).

Additionally, given the uncertainty across different ocean heat

content estimates on basin scales (Wang et al. 2018), we

compare how these methods perform and extrapolate in the

various ocean basins (section 3b). We also consider differences

in how these methods extrapolate to locations where there are

no collocated reference data (section 3c). Similarly, we con-

sider both the residual biases and extrapolated biases for the

MBT dataset using our calibration method as well as those of

L09 and GR10 (section 3d). Our main analysis and figures use

the global (EANN-G) and probe-specific (EANN-P) correc-

tions to XBT data that use the MFR FRE, but we also provide

metrics for EANN methods that have been applied to XBT

data that use the H95 FRE (see Tables 1 and 2, which will be

described in more detail below).

a. Assessing global XBT bias correction
The World Ocean Database 2018 provides XBT data that

have been precalibrated using some of the most popular XBT

corrections including the CH14 and L09 corrections we con-

sider here. We opted to use these precalibrated XBT data in

our comparison, as we could download, quality control, and

process them exactly in the same way as the uncorrected data

(section 2a). As with the uncorrected data, XBT data from the

WOD 2018 corrected with the CH14 and L09 methods were

interpolated to the 350 standard depth levels used in Cheng

et al. (2018). The residual biases for the uncorrected XBT

data, as well as the CH14, L09, and EANN corrections were

then calculated by subtracting our reference validation set of

CTD/OSD data (RefVAL) from the interpolated XBT casts.

Next, these biases were binned to theWOA13 grid using the

same procedure discussed in section 2a. Calculating these re-

sidual biases on the individual casts and then binning them to a
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regular grid preserves information gained from the higher

vertical resolution of the individual casts while also ensuring

more frequently sampled regions, such as coastal areas, are not

disproportionately represented in the metrics that follow.

Additionally, this method of comparison provides a reasonable

compromise given that L09 biases were originally calculated

on a regular grid, while the CH14 biases were calculated

on interpolated casts at a much higher vertical resolution.

Performance of the calibrations on a regular grid is the most

relevant for studies of OHC, since studies of OHC rely on

gridded temperature anomalies.

The five metrics that follow for assessing the original and

residual XBT biases rely on taking a global median of the bias

(represented as an overbar in the equations) on this regular

grid [bWOA in Eq. (3)] to sort them into relevant bins that

isolate components such as the temporal and depth biases.

The first metric we consider measures the reduction in the

temporal bias, with a good method having minimal time vari-

ance in the residuals. As in Cheng et al. (2018), we too use a

5-yr moving filter when compositing our biases to annual

temporal bins; however, we opt to bin using the global median

instead of themean, as this has proven to bemore robust. Thus,

the first metric measures the standard deviation of the tem-

poral component of the bias after aggregating the total XBT

bias to annual bins using a 5-yr moving filter:

Metric 15s[b
WOA

(yr)] . (6)

Figure 3a shows the global median extrapolated temporal bias

(uncorrected XBT–corrected) of the various calibration

schemes for 0–700m. In our analysis, negative or positive bias

respectively implies that the uncorrected XBT data are too

cold or too warm relative to the corrected data. All extrapo-

lations from these different methods follow the same general

temporal pattern with a few exceptions. CH14 and L09 show an

earlier peak in the bias during the 1970s, occurring prior to

1975, while EANN-G and EANN-P peak after 1975. All

methods show minimal bias in the late 1980s, with small biases

persisting through the 1990s. The CH14 and EANN methods

are in general agreement throughout the 1990s, whereas the

L09 method indicates that the bias becomes negative in the

1990s (Fig. 3a). All methods agree that a positive bias re-

appears in the 2000s, although the magnitude and temporal

pattern of the bias differs between the various corrections by

as much as 0.058C or more. Both EANN-G and EANN-P

exhibit a smooth leveling off in their extrapolated bias, whereas

CH14 and L09 exhibit an oscillatory pattern (Fig. 3a). The choice

of FRE also impacts the extrapolated bias of individual XBT

probes (Fig. S1a in the online supplemental material). While at

high latitudes (.308) the difference is negligible, at low latitudes

(308S – 308N) the extrapolated bias for theEANNPmethod using

the H95 FRE is colder than the same method using the MFR

FRE after 1970. Not only is the difference in the extrapolations

due to the choice of FRE nonlinear, it also results in the ex-

trapolations having the opposite sign after 2005 (Fig. S1a).

All four methods reduce the temporal bias against our in-

dependent validation dataset to within 0.058C for the entire

period 1967–2018, as shown in Fig. 3b. However, CH14 and the

EANN methods appear to underestimate the positive bias in

the XBT data for the period after 2010, when data become

sparser. Prior to the minimum in the uncorrected XBT bias in

1987, the L09 method has a slight cold bias against the vali-

dation dataset, while the EANN methods have a slight warm

bias (Fig. 3b). The residual biases for all methods, including the

uncorrected XBT bias, converge at the 1987 minimum and

diverge again afterward. The L09 residual bias transitions from

positive in the early 1990s to negative in the early 2000s. The

CH14 method is in broad agreement with the two EANN

methods after 1990, except for a few years in the late 1990s

FIG. 3. Global median extrapolated XBT bias (uncorrected

XBT2 corrected) for 0–700m by (a) year and (c) depth for various

XBT calibration methods (CH14; L09; and our EANN-G and

EANN-P) after binning to the WOA13 grid. Also shown are re-

sidual biases with respect to our validation dataset (corrected

XBT–RefVAL) for data corrected with the various XBT calibration

methods, and the uncorrectedXBT data (Unc), after binning to the

WOA13 grid and taking the median by (b) year and (d) depth.
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where the CH14 method has a small warm bias and the EANN

methods have a small cold bias. Overall, all methods perform

quite similarly on metric 1 (Table 1), with a slight edge given to

EANN-P or EANN-G, depending on the choice of FRE. Unlike

the extrapolated biases, the residual time-dependent biases

versus the available CTD data do not indicate a clear or con-

sistent difference arising due to the choice of FRE (Fig. S1b).

The second metric we consider measures the residual depth

bias, expressed as the average of the absolute XBT biases

across depth bins from 1 to n (1 being the 0-m bin and n 5 41

being the 700-m bin). Once again, we bin using the global

median since it is more robust to outliers:

Metric 25�
n

i51

jb
WOA

ðz
WOAi

Þj=n . (7)

Figure 3c shows profiles of the global median depth-dependent

extrapolated biases of XBT data for the various calibrations for

0–700m, demonstrating a positive XBT bias in the top 150m

and a negative bias below ;200m for all calibration methods.

EANN-P and L09 predict slightly larger extrapolated biases in

the top 100m, but the L09 extrapolated bias diminishes more

rapidly, becoming negative at the shallowest depth of any of

the methods (Fig. 3c). All methods exhibit a transition in their

extrapolated biases around 450m, because this is the terminal

depth of certain probe types and represents a change in the

makeup of the probe data. The residual biases against our

reference validation dataset (Fig. 3d) demonstrate maximal

disagreement among the methods at;450-m depth, where the

L09 method is biased cold and the EANN-G method is biased

warm, while the probe-specific calibrations, CH14 and EANN-

P, have smaller residual biases. Globally, all methods signifi-

cantly reduce the depth-dependent bias, but EANN-P is

slightly better than the other methods based on metric 2

(Table 1). Both the extrapolated and residual depth-dependent

biases reveal the impact of the choice of FRE, although the

effect is most apparent for lower latitudes (Figs. S1c,d).

Although there are significantly fewer XBT data below

700m (roughly 3% of that for 0–700m), these data are none-

theless important to studies that consider warming in the deep

ocean. While certain calibrations have previously been applied

to deep XBT data, the performance of these methods has not

beenwell investigated.We therefore briefly consider the global

median temporal and depth biases for 700–2000m. The L09

method is not included here, as it was originally only applied to

the 0–700-m depth interval [although in the WOD 2018, TSK-

T5 probes have received a correction using the method of Kizu

et al. (2005), in addition to having the H95 FRE applied].

The temporal component of the extrapolated XBT bias

below 700m differs widely between the CH14 and EANN

methods prior to the mid-1980s, when the methods disagree

about both the sign and magnitude of the extrapolated bias

(Fig. 4a). This disagreement can mainly be attributed to the

fact that the CH14 method employs a depth correction to the

FRE, which adjusts the sampling depths of the XBT mea-

surements and thus the overlap in gridded data with the un-

corrected XBT data using the MFR FRE, whereas the EANN

method only considers a thermal bias andmakes no adjustment

to the sampling depths. From the 1980s onward, the CH14

extrapolated bias oscillates with both a similar period and

phase to the extrapolated temporal bias in the top 700m

(Fig. 3a), although the sign of the bias is reversed. This con-

trasts with the EANNmethods, which exhibit a smoother time

dependence. The residual time-dependent bias (Fig. 4b) for the

uncorrected XBT data prior to 1990 likely is not well resolved

due to the sparsity of deep casts from this period, but it does

indicate a larger temporal bias during the pre-1990s period,

which is consistent with the timing and magnitude of this bias

for depths shallower than 700m (Fig. 3b). After 1990 the

temporal bias is minimal, indicating that deep probe types

(such as the T5 and TSK-T5) may not suffer from a significant

time-varying bias. For the period after 1990, it is not clear that

any of the calibration methods have much of an effect or are

even necessary. Prior to 1990, the CH14 method is more suc-

cessful than the EANNmethods at reducing the temporal bias.

Certain probe types have terminal depths at 760m, producing

a rapid transition in the extrapolated bias of the CH14 and

EANN methods around this depth (Fig. 4c). In the case of the

EANN-P method this includes a reversal in the sign of the bias,

though the magnitude remains stable below 800m. This con-

trasts with the EANN-G method, which undergoes a smoother

shift in the extrapolated bias with depth, and a change in sign at

roughly 1200m. In the case of the CH14 method, the extrapo-

lated bias briefly reverses sign around 1000m and again below

1600m. The residual bias of the uncorrected XBT data below

700m demonstrates that the deep probe groups do not exhibit

significant bias at these depths (Fig. 4d). The residual bias of the

calibratedXBT data is not much improved from the uncorrected

data, aside from the CH14method for depths below 1500m. The

EANN-G method is a global correction and cannot handle the

transition in the makeup of the probes around 760m, leading to

an increased residual bias relative to the uncorrected XBT data

above 1000m (Fig. 4d). Based on the metrics (Table S1 in the

online supplemental material), we find that the CH14 correction

is most effective at reducing the bias for the 700–1800-m depth

interval; however, we emphasize that the uncorrected XBT data

using the MFR FRE may already be sufficient, whereas the use

of the H95 FRE greatly increases the bias with depth. We rec-

ommend using either the uncorrected XBT with theMFR FRE,

or the CH14 or EANN-P corrections.

Our third metric considers the depth-dependent bias sepa-

rately for individual probe types, as depth profiles show distinct

biases for different probes. Metric 3 is the same as metric 2, but

it is applied to the nine categories of XBT probes specified in

CH14, whose biases with respect to RefVAL have been sepa-

rately binned to the WOA13 grid:

Metric 35�
n

i51

jb
WOA

(z
i
, probe)j/n. (8)

The results indicate that global calibrations such as L09 and

EANN-G perform similarly to probe-specific calibrations such

as CH14 and EANN-P at reducing the bias of the most com-

mon XBT probe types (Fig. 5 and Table 2). While probe-

specific calibrations are better overall (Table 2), the global

XBT bias is dominated by only a few probe types that the
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global calibrations can adequately handle. The choice of FRE

can also have a major impact on the residual bias of certain

calibrations. As an example, the T5 and TSK-T5 probes have

very little bias below 700m, but applying the H95 FRE sig-

nificantly increases the depth-dependent bias, especially for

the L09 method, which does not perform a correction below

700m aside from applying the method of Kizu et al. (2005) to

the TSK-T5 probes. In addition, the most common probe types

(Figs. 5a–d) tend to have smaller biases for the uncorrected

XBT data, which could be the result of having more collocated

data to actually resolve the bias or due to mixing of probe types

of different manufacturers for the unknown groups.

Because of insufficient metadata, nearly one-half of all XBT

casts cannot be directly assigned to a manufacturer or probe

type. Instead they are sorted into categories of shallow probes

(SX) and deep probes (DX). Shallow probes are those with

maximum reported depths of less than 450m, which could be

probes that have reached their terminal depths (e.g., T4/T6

from either Sippican or TSK and the Sippican T10) or any

other probe type that was deployed without reaching terminal

depth, which is likely in many coastal areas. Deep probes have

maximum depths of less than 930m, including T7/DB probes

and some T5 probes.

Manufacturer origin appears to have an impact on the depth

bias of some probe types, which a global correction cannot

address. For T4/T6 probes (Figs. 5c,g), the sign of the bias

below 100m depends on the manufacturer, and the resulting

bias of the mixed probes of the SX group (Fig. 5d) falls

somewhere in between. Global calibrations are also not suit-

able for T5 (Fig. 5f) or TSK-T5 (Fig. 5h) probes, as these ap-

parently have different bias histories at intermediate depths. On

the other hand, the use of probe-specific calibrationsmay run the

risk of overfitting for the least common probe types. Considering

the TSK-T4/T6 probes (Fig. 5g), for instance, not many casts are

known to exist, which could explain the poor performance of the

CH14 method using our validation set (Table 2).

The fourth metric considers the reduction in the spatial

component of the bias. An existing zonal bias may in fact be

related to water temperature (Thadathil et al. 2002; Kizu et al.

2005; Reverdin et al. 2009; Cowley et al. 2013; CH14) as well as

the vertical temperature gradient (GR10). Neither the CH14

nor the EANN calibrations directly correct for the zonal

component of the XBT bias, but they do include factors to

correct for a temperature-dependent bias. L09 corrects for

FIG. 4. As in Fig. 3, but for the 700–1800-m depth interval.

FIG. 5. Residual XBT biases with respect to our validation

dataset (corrected XBT 2 RefVAL) for various XBT calibration

methods (CH14; L09; and our EANNG and EANN-P) after sep-

arating the data into nine probe types, binning to theWOA13 grid,

and taking the median by depth.
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total XBT bias as a function of both depth and year but does

not consider a temperature-dependent bias. However, the L09

method uses the H95 FRE, which produces a spatial pattern in

the bias correction relative to the MFR FRE that varies with

water temperature. While the H95 depth correction factor at-

tempted to be optimal for the global ocean, this appears to

break down on regional scales due to in part to the time-

varying pure thermal bias (GR10).

We express the fourth metric as the average bias over n

depth layers (i5 1 at 0 m to i5 41 at 700m) andm latitudinal

bins ( j 5 1 at 69.58S to j 5 140 at 69.58N and progressing by

18 intervals) after binning using the global median:

Metric 45�
n

i51
�
m

j51

jb
WOA

(z
i
, lat

j
)j/(n �m). (9)

The uncorrected zonal XBT bias exhibits a fairly symmetric

pattern across the equator (Fig. 6a), with positive biases below

100m at high latitudes transitioning to negative biases at the

low latitudes in a pattern that resembles the zonally averaged

water temperature and vertical temperature gradient (GR10,

their Fig. 12). Aside from a small overcorrection in the

Southern Hemisphere and in the tropics, the CH14 correction

removes most of the original spatial pattern of the XBT bias

(Fig. 6b). At both high and low latitudes, the L09 method

overcorrects, turning positive biases negative and vice versa

(Fig. 6c). Both the EANN-G (Fig. 6d) and EANN-P (Fig. 6e)

calibrations reducemuch of the original spatial bias in theXBT

data. However, below 100m the EANNmethods undercorrect

the most prominent biases, most notably the strong negative

biases in the low latitudes. Due to the lower vertical resolution

of the OSD casts, including the interpolated OSD data in this

comparison exaggerates the apparent spatial biases compared

to the CTD data alone. However, reviewing the bias of the

original XBT casts versus the CTD data at high vertical reso-

lution prior to binning to theWOA grid shows that the overall

pattern remains consistent (Figs. S2a–c in the online supple-

mental material). Additionally, these low-latitude negative

biases can be eliminated by first applying the H95 FRE and

subsequently the EANN correction (Fig. S2d), which based on

metric 4 does best at reducing the spatial bias on our combined

reference dataset of both CTD and OSD data (Table 1). This

indicates that the H95 FRE is effective at reducing spatial

biases in the XBT data, even though without additional cor-

rections it worsens the overall XBT quality (Table 1).

Our final metric is a combination of the first two metrics and

considers both the depth- and time-dependent bias compo-

nents. Conceivably a low score inmetric 2 could be achieved by

having a positive bias and a negative bias of similar magnitudes

in the same part of the water column but in different years of

the time series. A similar logic could be applied to how a low

value for metric 1 might also be achieved. While such an oc-

currence for one metric would degrade the value of the other,

the possibility of having uncorrected biases of different signs

that can partially compensate for each other warrants this ad-

ditional metric. After using the global median to bin with

regard to both year (using a 5-yr moving filter for the temporal

binning) and depth, we consider the standard deviation of theT
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temporal component at each depth bin and then average these

values over all depth bins to obtain metric 5,

Metric 55�
n

i51

s[b
WOA

(yr, z
i
)]/n. (10)

The global median uncorrected XBT bias exhibits a nonlinear

time evolution at different depth levels. It is always positive at

depths shallower than 100m, peaking in the mid-1970s, whereas

below 100m the bias shifts from positive in the 1970s to negative

in the 1980s to more positive/neutral again after 2000 (Fig. 7a).

The L09 method (Fig. 7c) slightly overcorrects the original XBT

bias in much of the top 600m during the 1970–90 period. CH14

(Fig. 7b) and the EANN methods (Figs. 7d,e) do not eliminate

the shallow warm XBT biases from the mid-2000s onward but

remove themajority of the bias prior to this.However, EANN-G

(Fig. 7d) undercorrects the bias prior to 1980 around the terminal

depth of some probe types at 450m. Overall, the EANN-G,

EANN-P, andCH14 calibrations all performvery well according

to metric 5 (Table 1).

b. XBT calibration performance in individual basins
The XBT calibrations differ in their performance on basin

scales. To ensure that the performance of the XBT calibrations

onmetrics 1, 2, 4, and 5 discussed in section 3a is notmerely due

to a canceling of errors across basins, we reproduced these

metrics for the Atlantic, Pacific, and Indian Oceans. The geo-

graphic constraints we use for these basins are found in Fig. S3

in the online supplemental material. All metrics are calculated

the same as in section 3a aside from metric 4, which differs in

the number of latitudinal bins for the Pacific (m 5 135) and

Indian (m 5 95) Oceans.

FIG. 6. Residual XBT biases with respect to our validation dataset (corrected XBT 2
RefVAL) as a function of both depth and latitude for (a) uncorrected XBT data (Unc), (b) data

corrected with the CH14 method, (c) data corrected with the L09 method, (d) data corrected

with the EANN-G method, and (e) data corrected with the EANN-P method.
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The Atlantic basin exhibits a similar pattern in the

uncorrected XBT bias with regard to depth and year as was

seen globally, with alternating positive and negative biases over

timebelow100m (Fig. 7f).However, the transition frompositive

to negative bias is double peaked for the global bias, with one

negative peak in the late 1980s and a subsequent one in the

1990s, while for the Atlantic there is only one distinct negative

peak that occurs later than the first peak in the global bias. Both

CH14 and L09 overcorrect the initial positive bias to some ex-

tent before 1980 (Figs. 7g,h), with the exception of L09 in the top

200m after year 2000 where it overcorrects. The EANN

methods (Figs. 7i,j) reduce the bias more evenly across time and

depth but undercorrect significantly after 2010. CH14 also un-

dercorrects to some extent after 2010, including extending the

positive bias to greater depths like the EANNmethods, whereas

the L09 overcorrects during the same period. All methods per-

form similarly on metric 5 in the Atlantic (Table 1).

The shape of the uncorrected XBT bias in the Pacific

(Fig. 7k) dominates the global pattern (Fig. 7a), but the pattern

in the Pacific is more pronounced, as the offset in the timing of

the negative bias in the top 450m of the Atlantic partially

compensates for that in the Pacific on global scales. All

methods (Figs. 7l–o) undercorrect the positive biases in the

1970s and 2010s, but the EANN-G (Fig. 7n) and EANN-P

(Fig. 7o) calibrations do a slightly better job at correcting the

biases after 2010 below 200m. Again, based on the metrics, all

methods perform similarly (Table 1).

In the Indian Ocean (Figs. 7p–t), the uncorrected XBT

biases are larger and noisier than in the other basins because

there are less data in this basin. The existing data do indicate

that a pattern of positive biases before 1980 transitioning to

negative biases in the 1980s and 1990s, that again transition to

positive after 2000, is largely consistent across all of the ocean

basins. Additionally, while the sparse data in the Indianmake it

FIG. 7. Residual XBT biases with respect to our validation dataset (corrected XBT 2 RefVAL) as a function of

both depth and year for uncorrected XBT data (Unc), data corrected with the CH14 method, data corrected with

the L09 method, data corrected with the EANN-Gmethod, and data corrected with the EANN-Pmethod, globally

and for individual basins (Atlantic, Pacific, and Indian).
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difficult to establish the performance of the different calibra-

tions with any great certainty, it appears that all calibrations

reduce the bias from the uncorrected XBT (Fig. 7p). In the top

450m, both CH14 and L09 (Figs. 7q,r) appear to overcorrect

the bias prior to 1980 and undercorrect from the 1990s onward.

The EANN (Figs. 7s,t) methods leave a residual cold bias

above;300m depth, and introduce a residual warm bias below

300m. After 2010, there are large biases that no method is able

to correct.

After reviewing the performance of the methods for indi-

vidual ocean basins, all of the calibrations reduce the original

XBT biases considerably. The differences in performance

across the calibrations considered here are marginal, and we

cannot distinguish a single best correction based on these

metrics alone.

c. Spatial patterns of the extrapolated XBT bias for
different methods
Each XBT calibration method reduces the biases present in

the original uncorrected XBT data, but their different as-

sumptions about the form of these biases and how to best

correct for them lead to significant differences in how each

correction generalizes to regions with no reference data to

verify the calibration. The differences in how these calibrations

extrapolate can contribute to uncertainty in estimates of ocean

heat content on intradecadal time scales and ocean basin

scales. The ability of these products to extrapolate has previ-

ously been validated using independent datasets such as EN4

(Cheng et al. 2018) or by withholding substantial amounts of

CTD/OSD, as was done in this study, but clearly reductions in

the original XBT biases can be achieved by different methods

with varying success on the global scale while leading to sig-

nificant differences in the temporal and spatial patterns of the

extrapolations.

On a global scale, the extrapolated biases of the CH14 and

L09 methods over depth and year (Figs. 8a,b) exhibit a similar

pattern, but the L09 extrapolation is often of greater magni-

tude. One major distinction between CH14 and L09, and the

EANN-G (Fig. 8c) and EANN-P (Fig. 8d) calibrations, is the

presence of 2–3 distinct peaks of negative bias in the 1980s–

2000s in the two former methods, versus a single peak of

negative bias around 1990 in the latter two methods. The

EANN-P method does infer a bias with a semblance of two

negative peaks but remains smooth like the EANN-G after

2000. The EANN-P method is also distinguished from the

EANN-G by a more distinct transition and stronger cold bias

below 450m, a depth that coincides with changes in the

probe types.

The CH14 and L09 (Figs. 8e,f) extrapolated biases in the

Atlantic share a similar form that is mainly distinguished by a

FIG. 8. Median of the extrapolated XBT bias (uncorrected XBT2 corrected) as a function of depth and year for

data corrected with the CH14 method, data corrected with the L09 method, data corrected with the EANN-G

method, and data corrected with the EANN-P method, globally and for individual basins (Atlantic, Pacific, and

Indian).
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larger magnitude in the L09 extrapolation, especially for areas

of negative bias, which is apparent at shallower depths in L09.

EANN-G (Fig. 8g) has a smoother extrapolated bias that is

generally smaller than the other methods. The EANN-P

(Fig. 8h) method infers a larger bias but shallower positive

bias above 200m and after 2000 than the other methods.

Because of the amount of XBT data in the Pacific, this basin

has an outsized contribution to the shape of the global ex-

trapolated bias, masking some of the distinctions arising in the

Atlantic and Indian. Nonetheless, certain differences that were

not as well resolved on the global scale become apparent when

specifically considering the Pacific. For instance, in the 1960s

and early 1970s there is a period where both the CH14 and L09

methods (Figs. 8i,j) consider XBT data around 400m to have a

negative bias. The EANNmethods (Figs. 8k,l) differ from L09

and CH14 in their characterization of the bias below 450m in

the 1970s, which for the EANN methods is close to neutral

while for L09 and CH14 the bias remains positive.

In the Indian, the extrapolated biases of the CH14 (Fig. 8m)

and L09 (Fig. 8n) methods are highly distinct from those of the

EANNmethods (Figs. 8o,p). While all methods consider some

XBT biases to be negative in the 1960s, they disagree on the

sign of the bias below 200m in the 1970s, with CH14 and L09

indicating that the bias is positive, and the EANN methods

indicating that it is neutral to negative. The L09 extrapolation

also indicates that there are peaks of negative XBT biases at

two different depths in the 1980s and 1990s, one around 200m

and one around 600m (Fig. 8n). The CH14 method shows a

shallower peak in this negative bias (Fig. 8m), while the

EANN-G method spreads the negative bias more evenly

across the water column (Fig. 8o), and the EANN-P method

concentrates this bias below 450m (Fig. 8p).

Maps of the extrapolated bias with the median taken over

the top 700m for different decades reveal distinct spatial pat-

terns in the biases over time (Fig. 9). In the 1970s all methods

overwhelmingly treat the uncorrected XBT data as warmer

FIG. 9. Decadal averages of the extrapolated XBT bias (uncorrected XBT2 corrected) averaged over the top 700m for data corrected

with the CH14 method, data corrected with the L09 method, data corrected with the EANN-G method, and data corrected with the

EANN-P method during the 1970s, 1980s, and 1990s.
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than the corrected, but while the CH14 method (Fig. 9a) and

L09 (Fig. 9b) are more homogenous the EANN methods

(Figs. 9c,d) demonstrate an overall positive bias that is latitu-

dinally dependent, with higher latitudes having larger biases

than lower latitudes.

The four calibration methods have more distinct latitudinal

patterns in the 1980s. While all methods indicate data in the

high latitudes have a positive bias, data in tropics and sub-

tropics differ in the sign of the bias across methods (Figs. 9e–h).

Both the CH14 (Fig. 9e) and L09 (Fig. 9f) have negative biases

at low latitudes but these differ on basin scales, with negative

biases in the CH14 extrapolation being more extensive and

farther west in their respective ocean basins than for the L09

extrapolated bias. The EANN-Gmethod (Fig. 9g) extrapolates

positive biases at all latitudes, whereas the EANN-P method

(Fig. 9h) indicates a neutral to slightly negative bias in the

tropics. For both EANN methods the positive bias peaks near

308N and S.

During the 1990s, these various methods diverge the most of

any decade in the spatial patterns of their extrapolated biases.

Although the CH14 (Fig. 9i) and L09 (Fig. 9j) methods share

similarities, with high latitudes exhibiting positive biases and

low latitudes having negative biases, the L09 method indicates

larger magnitudes for the bias and a greater homogeneity to

the negative biases. The EANN methods (Figs. 9k,l) consider

the XBT bias to be neutral at most latitudes, aside from bands

of positive biases around 308N and S that mirror those from

the 1980s.

d. Performance and extrapolation of the MBT calibrations

Systematic biases in the MBT data remain less well studied

than the XBT, even though they are the dominant source of

temperature data prior to 1967 (Fig. 1). As with the XBT data,

we consider the performance of several MBT calibration

methods at removing depth- and time-dependent biases, as

well as the form of the global extrapolated biases.

The global median extrapolated temporal biases are quite

distinct for the different calibration schemes (Fig. 10a), with

the GR10 and L09 calibrations abruptly varying in the mag-

nitude of their bias. This contrasts with the extrapolated bias

inferred by the EANN-G method, which is temporally smooth

(Fig. 10a). The uncorrected time-dependent bias with respect

to our validation dataset is also smooth (Fig. 10b), peaking in

1954 around 0.18C and declining steadily so that by 1990 the

remaining bias is almost zero. After 1990, the bias in the un-

corrected MBT data increases again, but there are very little

MBT data during this period. GR10 slightly undercorrects the

original positive bias in the MBT data with respect to the

validation dataset, whereas the EANN-G slightly overcorrects

this positive bias (Fig. 10b). However, both calibrations sig-

nificantly reduce the original bias, outperforming the L09

method, which overcorrects for most of the period and offers

no correction after 1994 (Fig. 10b).

The median extrapolated biases with depth (Fig. 10c), and

the residual depth biases of the corrected data with respect to

our validation dataset (Fig. 10d), tell a similar story. GR10

has a smaller extrapolated bias, and positive residual biases in

the top 100m, whereas the EANN-G method exhibits a larger

extrapolated bias that also peaks at a shallower depth, leading

to negative residual biases in the top 50m (Figs. 10c,d). L09

creates a larger extrapolated bias than the other methods

(Fig. 10c), leading to a residual negative bias with respect to the

validation data that is similar in magnitude to the original

positive bias (Fig. 10d). L09 also does not offer a correction for

the sparse data below 250m.While the residual bias with depth

is smallest using the EANN method, the GR10 method per-

forms almost as well (Fig. 10d).

In examining the residual MBT biases with respect to the

validation dataset as a function of both depth and year, we find

that the structure of the uncorrected MBT bias remains mostly

FIG. 10. Global median extrapolated MBT bias (uncorrected

MBT2 corrected) for 0–300m by (a) year and (c) depth for various

MBT calibration methods (GR10; L09; and our EANN-G) after

binning to the WOA13 grid. Also shown are residual biases with

respect to our validation dataset (correctedMBT–RefVAL) for data

corrected with the various MBT calibration methods, and the un-

corrected MBT data (Unc), after binning to the WOA13 grid and

taking the median by (b) year and (d) depth.
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positive throughout its period of use (Fig. 11a). The GR10

calibration (Fig. 11b) largely reduces these positive tempera-

ture biases but slightly overcorrects biases in the 1940s and

slightly undercorrects biases in the 1990s. By comparison, the

L09 method (Fig. 11c) overcorrects MBT biases throughout

much of the water column but leaves the biases after 1990 es-

sentially untouched. Similar to the GR10 method, the EANN-

G calibration (Fig. 11d) removes the majority of the systematic

bias but undercorrects biases to some extent in the 1950s

and 1990s.

Similar patterns appear when examining the extrapolated

biases for these methods as a function of both depth and year.

The GR10 extrapolation (Fig. 12a) has a somewhat striated

pattern throughout the water column prior to 1975 and sug-

gests no bias in the MBT data during 1980s. The L09 method

(Fig. 12b) produces a maximum extrapolated bias in the mid-

1950s at roughly 50m, which also roughly coincides with the

maximum in the original MBT bias with respect to the vali-

dation dataset (Fig. 11a). A second strong positive bias in the

L09 extrapolation occurs in the mid-1960s (Fig. 12b). The

EANN-G method (Fig. 12c) also produces a maximum ex-

trapolated bias around 50–100m, but the pattern is much

smoother across the 1950s and 1960s than the other methods.

EANN-G also does not infer a large positive bias below 200m

in the 1950s, nor does it indicate negative MBT biases around

250m in the late 1970s, unlike the other twomethods (Fig. 12c).

A recently released study by Gouretski and Cheng (2020)

further examined the MBT bias and found similar results re-

garding the performance of the GR10 and L09 correction

schemes as we have here. They also indicate in their study that

country of origin for theMBT probes has an impact on the bias

history, a factor that we have not considered, and the new

corrections they present in their study take an empirical ap-

proach when considering the other known sources of bias.

After applying some of the metrics from Cheng et al. (2018) to

the MBT dataset, they found that their corrections out-

performed other available methods; our method was not yet

available for comparison. Additionally, they concluded that

the L09 correction does not reduce the total bias compared to

the original uncorrected MBT data, but that the GR10 method

is acceptable. On the basis of the comparison presented here,

the EANN-G method may present a useful alternative statis-

tical approach to correct the MBT data.

4. Discussion and conclusions
In this study, we developed and implemented a new

approach to correct global systematic temperature biases

in mechanical and expendable bathythermograph datasets

using an ensemble of artificial neural networks trained on

global data (EANN-G), and another using probe-specific

data (EANN-P). Our method offers a simple correction for

the total time-variable BT bias that is explicitly dependent

on a combination of year, depth, and water temperature.

Additionally, we compared the performance of this method,

on both global and basin scales, with that of several popular

methods (L09 and CH14 for XBT and L09 and GR10 for

MBT) using some of the metrics proposed by Cheng et al.

(2018). Last, we examined differences in how these cali-

bration methods extrapolate the bias both spatially and

temporally.

FIG. 11. Global residualMBTbiaseswith respect to our validation dataset (correctedMBT2
RefVAL) as a function of both depth and year for (a) uncorrected MBT data (Unc), (b) data

corrected with the GR10 method, (c) data corrected with the L09 method, and (d) data cor-

rected with the EANN-G method.
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Our results demonstrate the following:

1) The use of EANN-G and EANN-P methods greatly re-

duces time, depth, and latitudinal components of the XBT

bias, performing on par with the best available methods

when compared with an independent validation dataset.

Based solely on performance it is difficult to distinguish

EANN-G and EANN-P, except for their performances

correcting the biases of certain probe types. There is some

benefit to using a probe-level correction; however, the XBT

dataset is skewed toward only a few probe types and the

metadata are not complete. Both global and probe-level

methods would likely need to be incorporated into studies

examining OHC in order to fully characterize the uncer-

tainty due to the choice of XBT bias correction.

2) Both the EANN-G and EANN-P calibrations are simple to

implement and, like CH14 for XBT, L09 for XBT in the top

700m, and GR10 for MBT, can extrapolate well to new BT

data in areas where we have complementary CTD/OSD

data, indicating that both empirical and statistical approaches

to calibrating the global BT data are reasonable avenues.

3) All of the calibration methods considered here offer valid

corrections for BT biases on global and basin scales,

potentially with the exception of L09 for the MBT, but

examinations of the extrapolated biases reveal key distinc-

tions among methods, which will contribute to uncertainty

in OHC estimates on intradecadal and basin scales.

4) The choice of XBT FRE, either opting to use the original

manufacturer equation (MFR) or the H95 equation, impacts

the extrapolated XBT bias correction, even for what would

otherwise be the same calibration method. Our method pro-

vides calibrations for both FRE, and we recommend that both

corrections be incorporated into global OHC studies in order

to fully characterize the uncertainty arising from correcting for

historical XBT biases. Considering the effects that different

XBT calibrations have on deep OHC may be especially

important given the negative impact that the use of the H95

FRE has on the XBT bias for the 700–1800-m depth interval.

There remains room for improvement in both empirical and

statistical approaches to reducing biases in historical BT data,

and further refinements to existing methods (including the one

presented here) could be developed bymore deeply examining

underlying contributors to the bias, which perhaps can be

gleaned from further laboratory studies, numerical simula-

tions, or a comprehensive examination of the available probe

metadata. For example, most calibration methods to date (in-

cluding the one presented here) have assumed that BT biases

depend on the year of deployment, which does not directly

represent the underlying technological, manufacturing, and

design changes that ultimately drive the time-varying bias.

Without additional refinement, existing BT calibration methods

are likely only suitable for global or perhaps probe-level

calibrations, and corrections to individual casts should not

necessarily be considered reliable at this time. For certain

geographic regions and the deep ocean especially, where

there may not be enough direct data to fully characterize the

problem, the community may need to be satisfied with an

ensemble of calibration methods that at least impose maxi-

mum bounds on our uncertainty.
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