OCTOBER 2020

BAGNELL AND DEVRIES

1781

Correcting Biases in Historical Bathythermograph Data Using Artificial Neural Networks?

AARON BAGNELL?

Interdepartmental Graduate Program in Marine Science, University of California, Santa Barbara, Santa Barbara, California

TIMOTHY DEVRIES®

Department of Geography, University of California, Santa Barbara, Santa Barbara, California
(Manuscript received 19 June 2019, in final form 16 July 2020)

ABSTRACT: Historical estimates of ocean heat content (OHC) are important for understanding the climate sensitivity of
the Earth system and for tracking changes in Earth’s energy balance over time. Prior to 2004, these estimates rely primarily
on temperature measurements from mechanical and expendable bathythermograph (BT) instruments that were deployed
on large scales by naval vessels and ships of opportunity. These BT temperature measurements are subject to well-
documented biases, but even the best calibration methods still exhibit residual biases when compared with high-quality
temperature datasets. Here, we use a new approach to reduce biases in historical BT data after binning them to a regular grid
such as would be used for estimating OHC. Our method consists of an ensemble of artificial neural networks that corrects
biases with respect to depth, year, and water temperature in the top 10 m. A global correction and corrections optimized to
specific BT probe types are presented for the top 1800 m. Our approach differs from most prior studies by accounting for
multiple sources of error in a single correction instead of separating the bias into several independent components. These
new global and probe-specific corrections perform on par with widely used calibration methods on a series of metrics that
examine the residual temperature biases with respect to a high-quality reference dataset. However, distinct patterns emerge
across these various calibration methods when they are extrapolated to BT data that are not included in our cross-

instrument comparison, contributing to uncertainty that will ultimately impact estimates of OHC.
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1. Introduction

The oceans play an enormous role in Earth’s energy budget,
having gained roughly 10 times as much heat over the past half
century as all other parts of the Earth system combined
(Church et al. 2011). Reconstructing past changes in ocean heat
content is therefore critical to understanding Earth’s climate
sensitivity and energy balance (Hansen 2005; Trenberth et al.
2014; Meehl et al. 2005). Reconstructions of ocean heat content
prior to roughly year 2005 are hampered by data sparsity and
persistent instrumental biases. Recent studies have demon-
strated that issues related to the choice of calibration applied to
instrumental biases in the historical ocean temperature record
contribute to significant uncertainty in ocean heat content
(OHC) reconstructions (Lyman et al. 2010; Boyer et al. 2016;
Cheng et al. 2016, 2018; Wang et al. 2018). It is crucial to correct
these biases and further constrain the instrument calibration
methods, as better constraints on past ocean temperature
changes will impact projections of future warming.
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The most widely used instruments for measuring ocean tem-
perature prior to the Argo era (2005-present, when autonomous
profiling floats provide global data coverage) were the expend-
able bathythermograph (XBT) and its predecessor the mechan-
ical bathythermograph (MBT). Excluding profiling floats, during
the period 1945-present these instruments accounted for roughly
60%-70% of the raw temperature casts in a given calendar year
(Fig. 1). Additionally, because of their widespread use by the
U.S. Navy and ships of opportunity, these instruments provide
the community with vastly greater spatial sampling coverage
(twice as much as other instruments on a 1° grid) in the historical
ocean temperature record than would otherwise be afforded by
scientific cruises alone. These instrument casts are therefore es-
sential to numerous studies of historical ocean and climate
trends, including assessments of OHC (Domingues et al. 2008;
Ishii and Kimoto 2009; Levitus et al. 2012; Cheng et al. 2017).

The MBT probe was designed to reach nominal depths (60,
150, or 275 m depending on the model) and relied on being
lowered on a winch at near free-fall speeds (Couper and
LaFond 1970). It contained instruments to measure temper-
ature and pressure, which it continuously recorded on either a
smoked or film-coated plate. This setup required that the
probe be retrieved after every deployment, reducing the
conditions under which it could be safely deployed. The XBT
probe was designed to overcome this limitation by being ex-
pendable, with temperature recordings transmitted through a
copper wire to a chart recorder on deck (Abraham et al.
2013). After playing out the entire spool of wire the con-
nection severs, and the probe sinks to the bottom of the
ocean. Several different probe types were designed over the
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FIG. 1. The relative annual sampling coverage of individual instrument casts for (a) total
discrete samples after linearly interpolating to 350 standard depths (Zsiandara) and (b) percentage
of total samples from a particular temperature instrument.

long and continued period of use of the XBT, with most de-
signs able to reach depths of roughly 400-700 m and a small
subset able to reach depths up to 2000 m.

However, it is well understood that both XBT and MBT
observations contain global systematic biases on the order of
0.1°C, significantly impacting the estimation of OHC, which is
highly sensitive to small temperature changes. Additionally, as
first identified by Gouretski and Koltermann (2007), the biases
of the XBT/MBT instruments vary over time, leading to ad-
ditional uncertainty about the rate of ocean warming on sub-
decadal time scales. The community has therefore undertaken
a concerted effort to examine and address the causes of these
biases. However, uncertainties across an ensemble of prior bias
corrections are of the same magnitude as natural intradecadal
variations (Lyman et al. 2010; Cheng et al. 2014, hereinafter
CH14), making these corrections one of the leading sources of
uncertainty in estimates of OHC (Lyman et al. 2010; Boyer
et al. 2016) and limiting the reliability of any single calibration
method on shorter time scales.

Because the XBT instrument did not directly measure depth
but relied on a fall-rate equation (FRE), this is an obvious source
of systematic bias. After careful examination of a subset of probe
deployments, Hanawa et al. (1995, hereinafter H95) proposed a
modified FRE with new coefficients to correct for this depth
bias. Against the warning of H95 that this new FRE should not
be introduced into original XBT data archives, the new equation
was quickly adopted by the probe manufacturers, leading to
XBT probes with a mixture of the old and new FRE being de-
ployed in subsequent years (Abraham et al. 2013). In addition,
after applying the H95 depth correction to historical XBT data,
Gouretski and Koltermann (2007) identified that a previously
documented warm period in the XBT record could not be rec-
tified with known climate patterns and was instead related to a
residual time-variable bias in the XBT data themselves, indi-
cating that other sources of error exist. This finding triggered
extensive interest in investigating the causes of this time-variable
bias and generated numerous approaches to correct it (e.g.,
Wijffels et al. 2008; Ishii and Kimoto 2009; Gouretski and
Reseghetti 2010, hereinafter GR10; Good 2011; Gouretski
2012; Hamon et al. 2012; Cowley et al. 2013; CH14).

Earlier studies corrected for the time-varying bias by using
a FRE that varied based on the year of probe deployment
(Wijttels et al. 2008; Ishii and Kimoto 2009). However, other
studies indicated that the bias was also dependent on near-
surface water temperature. GR10 found that the error could be
further reduced by separating the bias into a depth-dependent
component and another they considered the “pure thermal”
bias. Subsequently, Cowley et al. (2013) assembled thousands
of side-by-side XBT and conductivity—temperature—depth (CTD)
casts to look at cross-instrumental error, finding that there is a
pure thermal bias that varies with both time and temperature
but that is independent of depth, and also a depth error that
varies not only with depth but also with time and perhaps with
temperature.

The side-by-side comparisons of Cowley et al. (2013) relied
on relatively ideal conditions where a CTD could be lowered
from a stationary research vessel alongside an XBT probe
deployment. This contrasts with normal operating conditions
for the XBT, which was designed specifically so that it could be
deployed from naval and merchant ships with minimal ad-
justments to the vessels’ courses or speeds. Nevertheless, these
findings were corroborated by CH14 with a much larger global
XBT dataset composed of probes deployed under more typical
conditions. In addition, CH14 sorted the XBT casts into groups
of major probe types, confirming that differences in probe
design not only led to different fall rates but also distinct time-
varying bias histories.

The residual time-dependent biases that remain after the
HO95 depth correction, or subsequent depth corrections that
accounted for the effects of near-surface temperature on the
probe fall rate (Cheng et al. 2011) and the effect of probe de-
sign (CH14), are likely due to multiple sources of error such as
variability in sea state, weather, and other deployment condi-
tions, as well as technological developments that led to a shift
in ship speeds, increasing deck heights, and a transition from
analog to digital recorders. It has also been speculated that
changes to probe manufacturing, such as the move by Sippican
(one of two major XBT vendors) of operations from the
United States to Mexico, could cause rapid shifts in the bias for
certain XBT probe types (Wijffels et al. 2008). These factors
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cannot be easily quantified for the global dataset without suf-
ficient metadata. Unfortunately, in the global XBT dataset
roughly half of the casts do not even contain the necessary
metadata to assign them to a specific probe type. Because of this,
developing a truly mechanistic model, one which accounts for
errors using a purely physical explanation, remains difficult.
Therefore, methods have been developed to account for only the
most persistent biases, which evolve over multiyear time scales.

Prior attempts to correct BT biases generally used one of
two approaches. The first approach uses an empirical model,
informed by the physics of the system, while also making
necessary simplifying assumptions to estimate unknown model
parameters. These approaches include methods that modify
the original XBT probe FRE using time-variable parameters
(Wijffels et al. 2008; Ishii and Kimoto 2009; Cowley et al. 2013;
CH14) instead of parameters that are constant with time (as
with H95). The other approach uses statistical methods to re-
move biases, producing a single correction for the total bias,
which is the approach taken by Levitus et al. (2009, hereinafter
L09) and the current study. Arguments can be made for or
against either approach, but both approaches can lead to sig-
nificant reductions in the observed XBT/MBT biases.

Here, we propose a new approach to correcting historical BT
biases that sorts measurements from individual BT casts into
categories based on the year of deployment, the temperature of
the near-surface ocean, and the depth at which the measure-
ment was taken, then uses an ensemble artificial neural net-
work (EANN) to smooth and extrapolate the total BT bias to
all times and locations for which BT data exist (section 2). This
method is a statistical approach that does not attempt to sep-
arate components of the time-dependent bias, aside from
considering the impact of different XBT probe types on the
bias. While some of the underlying factors that contribute to
the time-varying bias are likely independent of each other, our
ability to disentangle these are limited by the completeness of
available metadata. Therefore, for simplicity, our method
considers the total bias to be an inseparable and nonlinear
combination of the major sources of error identified in prior
studies (Gouretski and Koltermann 2007; L09; GR10; CH14).
We apply our correction to both XBT and MBT datasets, with
an option to either apply one global correction (what we call
EANN-G) to each instrumental dataset or, for the XBT, to apply
corrections to the individual probe types (EANN-P) (section 3).
Using the metrics from Cheng et al. (2018) we demonstrate that
we can favorably reduce the XBT/MBT bias with respect to an
independent validation dataset, with our calibration performing
as well as or better than several widely used existing methods
(section 3). We close by summarizing our main findings and
highlighting unresolved issues in correcting BT biases that
should be addressed by the community (section 4).

2. Data and methods

a. Constructing a correction grid

We used individual casts of temperature data taken from the
World Ocean Database (WOD) 2018 (Boyer et al. 2018) (https:/
www.nodc.noaa.gov/OC5/SELECT/dbsearch/dbsearch.html;
accessed 30 September 2019). These are provided as separate
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datasets for the different instrument types, which in our case
are the two bathythermograph datasets (XBT and MBT) that
will be corrected, and the ocean station data (OSD) and CTD
which we use as reference data (Fig. 2, step 1). Before quality
control there are roughly 2.3 million XBT casts and 2.4 million
MBT casts.

The XBT data we obtain are modified to have the original
manufacturer FRE (MFR FRE hereinafter) applied for the
period after 1995. Without such a modification, there is a rapid
transition in the bias simply due to instrument manufacturers
adopting the H95 FRE in the late 1990s (see section 1 for
further details). To modify individual casts from the 1990s
onward that have been flagged by the WOD as having the H95
FRE applied, we multiply their sample depths by the factor
0.9675, following GR10, which approximates the depths that
would be given by using the original manufacturer FRE.
Other studies such as L09 and CH14 have instead opted to use
the H95 FRE as a starting point, but some studies (Thadathil
et al. 2002; GR10) have indicated that the H95 FRE may
increase the time-dependent thermal bias relative to collo-
cated CTD/OSD data as compared with using the MFR FRE.

In addition, we exclude data in casts that have been flagged
by the WOD for quality control issues with any flag other than
zero, as well as unrealistic values that fall outside a temperature
range from —3° to 36°C, because seawater does not normally fall
outside this temperature range except for geographically isolated
areas (e.g., hydrothermal vents) that are not relevant to our global
study. Additionally, a cast must contain at least four temperature
measurements as well as a measurement in the top 100 m to be
included. After applying this quality control (Fig. 2, step 2),
there are approximately 2.1 million XBT casts and 2.2 million
MBT casts.

Following CH14, each XBT probe is sorted into one of nine
groups based on manufacturer, similarity in probe design, or
terminal depth for probes of unknown type. These groups
(their approximate terminal depths are in parentheses) are
1) T7/DB (760m), 2) DX (760m), 3) T4/T6 (450m), 4) SX
(450 m), 5) T10 (200 m), 6) TS (1820m), 7) TSK-T4/T6 (450 m), 8)
TSK-T5 (1820 m), and 9) TSK-T7/DB (760 m). Probe groups 1, 3,
5, and 6 are manufactured by Sippican, groups 7-9 are manufac-
tured by TSK, and groups 2 and 4 are of unknown manufacturer/
type and are only differentiated by their greatest reported depth.

CH14 noted that operators have generally considered XBT
probes to be able to reach depths that are roughly 20% greater
than their listed terminal depths with minimal loss in accuracy.
However, because of the sparsity of data below these terminal
depths and some apparently spurious observations, we chose to
omit these data from the training of our model. In the end,
these data will still receive a calibration.

Next, we interpolated individual casts for each instrument
(XBT, MBT, OSD, and CTD) to the standard depth levels
used by Cheng et al. (2018) (Fig. 2, step 3). These depth levels
are spaced 1 m apart in the top 100 m, 5 m apart from 105 to
700m, and 10m apart from 710 to 2000 m, for a total of
350 depth levels. We then separately identified casts from the
CTD and OSD datasets that were sampled within 1° of latitude
and longitude and within the same 30-day window as a cast from
either the XBT or MBT datasets (Fig. 2, step 4). Since multiple
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FIG. 2. Schematic of this study’s data flow and quality control, as well as the application of an EANN to calibrate bathythermograph
data. Steps 6-9 are repeated 30 times to create an ensemble of bias corrections. See the text for additional details on quality control,

binning, and network architecture.

CTD and OSD casts could be associated with the same BT cast,
the median of these ““collocated casts’” was computed separately
for both the CTD and OSD datasets. Each respective BT cast
could then have up to two reference casts. Keeping the two
reference datasets separate, instead of taking the median of both
CTD and OSD casts, was done so that our correction would not
overly depend on a particular dataset, since the CTD and OSD
data have different spatiotemporal sampling histories and ver-
tical resolutions (Cheng and Zhu 2014).

After interpolation of the BT data to standard depth levels,
we set aside 50% of the OSD and CTD data in order to use
them for validating our calibration method. Because of the
vastly different number of casts in each XBT probe category,
removing a random 50% of data without consideration for
probe type would leave some probe types with dispropor-
tionate amounts of training data versus validation data, so one-
half of all reference CTD casts and one-half of all reference
OSD casts are removed for each of the nine categories of XBT
probes. The CTD/OSD data that we set aside for validation are
then concatenated and averaged. We refer to this dataset as
Refyar and use it only for validation of our calibration scheme,
to ensure that our bias corrections extrapolate well to inde-
pendent high-quality data (see section 3). One caveat to note is
that some of the XBT/MBT data were collected by ships of
opportunity from areas of the ocean that are far from any
contemporaneous CTD/OSD data, so the validation dataset
Refyar has a different spatiotemporal distribution than the
full XBT dataset. This ultimately contributes additional un-
certainty to the extrapolated bias corrections employed by
various calibrations.

We use the remaining collocated casts, Refrg, to calculate
the biases (bcast) in the individual XBT and MBT casts, de-
fined as

bCAST(CaSt’ Zstandard) = BT(CaSt’ zstandau'd) - RefTR (CaSt’ Zstandard)'

1

Because the cast level data are spatially biased toward regions,
such as coasts, where significant repeat sampling occurred, we
further bin the bcast data to a regular grid so that various
geographic regions are more equally represented (Fig. 2, step
5). Our chosen grid, the World Ocean Atlas 2013 (WOAI3)
grid, has 1° X 1° resolution and 67 depth layers for 0-2000 m
(Locarnini et al. 2013). When binning vertically, we use the
depth layer whose value is closest to the observation’s sampling
depth (e.g., the first depth layer has a value of 0m, the second of
5m, and the third of 10 m, so all raw temperature values sampled
between 0 and 2.5 m fall in the 0-m bin; between 2.5 and 7.5 m they
fall in the 5-m bin). A point that lies exactly at the midpoint be-
tween depth intervals is binned to the shallower interval.

We opted to bin using the median of bcast instead of the
mean, as it is more robust to noise caused by natural variability
and instrumental errors. At subannual time scales the time-
varying biases appear to be dominated by changes in water
temperature due to the seasonal cycle (GR10) and not by other
factors such as changes to probe design that occurred over
multiple years (CH14). Given this, we assume short-term
changes to the temporal biases are purely a function of water
temperature and are not specific to a particular time or loca-
tion. We can then bin bcast to the WOA13 grid annually based
on the year of sampling, yielding bwoa:

beasr(cast, z o) — median-binned to WOA13 grid
= byoa(lon, lat, 7y, y1). 2)

In the next step, biases on the WOAI3 annual grid (bwoa)
are sorted into categories using the variables on which the XBT
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and MBT biases depend, namely, year, depth, and temperature
(Fig. 2, step 6). This forms the basis of our “correction grid.”
The dimensions of this grid are 52 years for the XBT and
65 years for the MBT data (at 1-yr increments) by 67 depths
(with depth increments coinciding with the WOA13) by 79
temperatures (from —3°to 36°C at 0.5°C increments) for a total
of 275236 elements in the correction grid for the XBT and
344045 elements for the MBT. For temperature binning, we
use the 10-m temperature from the WOA climatology at the
measurement location (lon, lat), since it can be used as a proxy
for a spatial component of the bias, which varies with latitude
and has been proposed to be dependent on near-surface ocean
temperature (Kizu et al. 2005; Reverdin et al. 2009). CH14
used the 0-100-m average temperature taken from the cast
itself, but some of these near-surface data contain errors that
cannot easily be accounted for by standard quality control
procedures. Additionally, many casts do not contain mea-
surements for the full 0-100-m depth interval, in which case a
climatological value would need to be substituted.

Biases whose absolute values exceed 5°C are omitted (fol-
lowing Cheng et al. 2018), as these extremes are likely due to
insufficient sampling coverage for that particular grid cell in-
stead of a systematic bias. The binning of biases to the cor-
rection grid follows the same median-binning procedure that
we use to bin bcast to the WOA grid. After binning to the
correction grid, there are 150 thousand bias data points for the
XBT data, and 80 thousand for the MBT data. Step 6 (Fig. 2)
thus yields the value of the bathythermograph instrumental
bias on the correction grid, which we refer to as bcogr,

byoa(lon, lat, zy,o ., yr) = median-binned to correction grid

= beor @wonr Tiom: YO

®)

We produced separate correction grids for the XBT and MBT
datasets. For the XBT data, we consider the years 1967-2018 in
our correction, and for MBT we consider the years 1940-2004.
Although certain data exist in both datasets prior to these time
intervals, they are insufficiently sampled, leading to large ap-
parent biases with respect to the CTD/OSD data and therefore
are not considered in this study. Nine additional correction grids
are generated for probe-specific calibrations of the XBT data.

b. Creating an ensemble of artificial neural networks

The correction grids that result from the steps described
above (Fig. 2, steps 1-6) are noisy and contain holes where
there are no collocated data that satisfy the requirements of
that grid cell. We employ an artificial neural network (ANN) to
smooth out the result and fill in the gaps (Fig. 2, step 7), so the
correction can be extrapolated to all of the data in the XBT and
MBT instrumental datasets, including for testing on our in-
ternal validation sets (Fig. 2, step 8).

Our feedforward ANN is a machine learning approach that
seeks to reduce cross-instrumental biases by minimizing the
following ‘‘cost function”:

cost=3, Y Z[bCOR(zWOA, T10m Y1) — CZwon Tiom yOl>.  (4)

z Ty YT
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As such, the ANN is trained to produce a final correction C
(Fig. 2, step 9) that replicates the bias bcor as closely as pos-
sible while extrapolating to areas without bias data.

Given that the fall rate of a probe may be partially depen-
dent on water temperature (Thadathil et al. 2002; Kizu et al.
2005; Reverdin et al. 2009; Cowley et al. 2013; CH14), the
vertical temperature structure likely has an impact on the re-
sulting depth bias. For this reason, we also use the vertical
temperature gradient derived from the annual WOA clima-
tology as an additional input to our ANN (Fig. 2, step 7), which
indirectly gives us spatial information about different water
masses as well as their average vertical structure. Including the
vertical temperature gradient improves the reconstructed bias
in the shallow subsurface in our model.

We use a fully connected network that consists of two hidden
layers, with 10 nodes each (Fig. 2, step 7). This architecture
keeps the ratio of free parameters (151 total weights) versus
training samples (~10000-150000 depending on probe type)
below 2%, thus reducing the chance of overfitting the training
data. The value of each node is partially dependent on the
transfer function used to propagate information from one layer
to the next. Initially we opted for a network with only a single
hidden layer and the hyperbolic tangent as the transfer func-
tion, but the use of this particular transfer function introduced
artificial structure to the extrapolated correction that was in-
consistent with the raw correction grid. Once we opted to go
beyond a single hidden layer, the obvious candidate for the
transfer function was the rectified linear unit. This has become
the default for deep networks because it has fewer problems
with vanishing gradients (Glorot et al. 2011).

For the back-propagation algorithm in our ANN, which it-
eratively updates the values of the weights, we chose the
Levenberg-Marquardt algorithm (Marquardt 1963) due to its
improved performance at achieving a lower mean squared
error between predicted and expected values for the targets,
versus other common algorithms such as gradient descent
(Hagan and Menhaj 1994). There is a danger of overfitting the
model, which occurs when the neural network is overtrained
on a dataset so that it cannot extrapolate well when presented
with new data. This becomes more difficult to avoid with more
nodes in a hidden layer or more layers in the network
(Weigend et al. 1990). To counteract this, we incorporate
Bayesian regularization (MacKay 1992; Foresee and Hagan
1997) directly into the back-propagation algorithm to optimize
the regularization procedure that prevents overfitting by pe-
nalizing large weights in the network. Additionally, we employ
early stopping (Prechelt 1998) using our internal validation set,
which stops training when performance extrapolating to the
internal validation set begins to degrade.

As mentioned in section 2a, we create an independent val-
idation set by omitting half of the CTD/OSD data before cal-
culating the biases from the concatenated CTD/OSD datasets
that are then binned to the WOA and correction grids (Fig. 2,
steps 5-6). This independent validation dataset is not ever
“seen’’ by the ANN or used to tune it in any way. We therefore
also create an internal validation set byt by randomly drop-
ping 50% of the data in the correction grid. The remaining 50 %
of the data are used for training. Utilizing random validation
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sets helps ensure that the individual ANN generalizes well for
the systematic biases that are independent of choice of refer-
ence dataset. For the ANN to be accepted, it must produce a
correction C that reduces the sum of squared errors of the in-
ternal validation set (Fig. 2, step 8):

2 2 Z(bINT - C)z < z z Zb%NT . (5)

z Tyop YT 2 Tyop ¥T

Steps 6-9 (Fig. 2) are repeated until 30 validated ANNSs are
produced, and these 30 ANNs are combined to produce the
EANN. About 10% of models fail to fulfill the validation cri-
terion set by Eq. (5) and are discarded.

There are several advantages to using an ensemble of ANNs
rather than a single ANN. As a result of the random initialization
of weights in the ANNs and differences in training sets across
members, it is possible for many different networks to achieve
similar performance on a validation set while extrapolating to
areas with no data coverage differently. This randomization is
a form of data subsampling similar to bootstrap aggregating
(Breiman 1996), which by averaging the solution across ensem-
ble members affords better performance on the validation sets
compared to an individual member. This ensemble averaging has
been demonstrated to improve the robustness of the extrapola-
tion in areas without data coverage (Hansen and Salamon 1990;
Lincoln and Skrzypek 1990). The ensemble range also provides a
measure of the uncertainty of our corrections.

Steps 6-9 are again repeated using data binned to correction
grids for individual probe-specific bias corrections. The result is
10 ensembles of corrections for the XBT and an additional one
for the MBT. These ensembles consist of one global correction,
which can be applied to all of an instrument’s data, as well as cor-
rections for the nine XBT probe types that are applied individually
to each category of probes. Data from depths greater than the
terminal depths of each probe type (see section 2a) are also cor-
rected, as our EANN extrapolates the correction down to 2000 m.

Our correction grid organizes BT bias corrections into cat-
egories based on sample depth, year, and temperature in the
top 10 m. Because our correction grid has the depth levels of
the WOA13 grid, we linearly interpolate the correction grid to
the 350 depth levels of our cast data. XBT/MBT casts are
corrected by identifying the grid cell in the interpolated
correction grid that corresponds to each measurement in the
XBT/MBT cast (based on standard depth level, year, and 10-m
temperature), and applying the corresponding correction. The
end result is 60 and 30 different corrected datasets of individual
XBT and MBT casts, respectively, obtained by combining the
two different correction schemes (global vs probe type) with
the 30 ensemble members of the EANN.

We compare the XBT/MBT casts calibrated with the EANN
ensemble with the independent validation set Refyar (Fig. 2,
step 10) as a final test of our method’s ability to correct ‘“‘never
before seen” BT biases.

3. Results

To compare the performances of multiple existing XBT
calibrations, Cheng et al. (2018) proposed a set of metrics that
can be used to gauge the residual biases with regard to depth,
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probe type, year, and latitude, variables on which the bias has
been demonstrated to depend (Gouretski and Koltermann
2007; L09; GR10; CH14). We have used four of these metrics to
assess our own method’s performance when compared to the
two top performing calibrations, L09 and CH14, as determined
by Cheng et al. (2018).

These previous calibrations are dissimilar from this current
study as well as from each other in their approach. L09 calcu-
lated the total bias as the difference between XBT data and a
combined reference dataset of both OSD and CTD data after
each dataset had been binned to a regular grid. Next, they took
the global median of the bias for each depth level and year as
their correction after smoothing with a 5-yr moving average
filter. CH14 applied independent depth and pure thermal bias
corrections while taking into account the various probe types
with respect to a reference set of CTD casts (later updated
with a reference set of OSD, CTD, and PFL casts). Our method
uses correction grids (section 2a) that have been smoothed and
filled using ensembles of artificial neural networks to reduce
biases with respect to year, depth, water temperature in the top
10 m, and probe types.

We use four metrics adapted from Cheng et al. (2018), as
well as a new metric of our own, to compare the residual biases
of these disparate methods with respect to the same reference
dataset of CTD/OSD data (Refy a1 ) after the residual biases of
the individual casts are binned to the WOA13 grid (section 3a).
Additionally, given the uncertainty across different ocean heat
content estimates on basin scales (Wang et al. 2018), we
compare how these methods perform and extrapolate in the
various ocean basins (section 3b). We also consider differences
in how these methods extrapolate to locations where there are
no collocated reference data (section 3c). Similarly, we con-
sider both the residual biases and extrapolated biases for the
MBT dataset using our calibration method as well as those of
L09 and GR10 (section 3d). Our main analysis and figures use
the global (EANN-G) and probe-specific (EANN-P) correc-
tions to XBT data that use the MFR FRE, but we also provide
metrics for EANN methods that have been applied to XBT
data that use the H95 FRE (see Tables 1 and 2, which will be
described in more detail below).

a. Assessing global XBT bias correction

The World Ocean Database 2018 provides XBT data that
have been precalibrated using some of the most popular XBT
corrections including the CH14 and L09 corrections we con-
sider here. We opted to use these precalibrated XBT data in
our comparison, as we could download, quality control, and
process them exactly in the same way as the uncorrected data
(section 2a). As with the uncorrected data, XBT data from the
WOD 2018 corrected with the CH14 and L09 methods were
interpolated to the 350 standard depth levels used in Cheng
et al. (2018). The residual biases for the uncorrected XBT
data, as well as the CH14, .09, and EANN corrections were
then calculated by subtracting our reference validation set of
CTD/OSD data (Refyar) from the interpolated XBT casts.

Next, these biases were binned to the WOAI3 grid using the
same procedure discussed in section 2a. Calculating these re-
sidual biases on the individual casts and then binning them to a
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regular grid preserves information gained from the higher
vertical resolution of the individual casts while also ensuring
more frequently sampled regions, such as coastal areas, are not
disproportionately represented in the metrics that follow.
Additionally, this method of comparison provides a reasonable
compromise given that L09 biases were originally calculated
on a regular grid, while the CH14 biases were calculated
on interpolated casts at a much higher vertical resolution.
Performance of the calibrations on a regular grid is the most
relevant for studies of OHC, since studies of OHC rely on
gridded temperature anomalies.

The five metrics that follow for assessing the original and
residual XBT biases rely on taking a global median of the bias
(represented as an overbar in the equations) on this regular
grid [bwoa in Eq. (3)] to sort them into relevant bins that
isolate components such as the temporal and depth biases.

The first metric we consider measures the reduction in the
temporal bias, with a good method having minimal time vari-
ance in the residuals. As in Cheng et al. (2018), we too use a
5-yr moving filter when compositing our biases to annual
temporal bins; however, we opt to bin using the global median
instead of the mean, as this has proven to be more robust. Thus,
the first metric measures the standard deviation of the tem-
poral component of the bias after aggregating the total XBT
bias to annual bins using a 5-yr moving filter:

Metric 1 = o[byq A (y1)] 6)

Figure 3a shows the global median extrapolated temporal bias
(uncorrected XBT-corrected) of the various calibration
schemes for 0—700 m. In our analysis, negative or positive bias
respectively implies that the uncorrected XBT data are too
cold or too warm relative to the corrected data. All extrapo-
lations from these different methods follow the same general
temporal pattern with a few exceptions. CH14 and L.09 show an
earlier peak in the bias during the 1970s, occurring prior to
1975, while EANN-G and EANN-P peak after 1975. All
methods show minimal bias in the late 1980s, with small biases
persisting through the 1990s. The CH14 and EANN methods
are in general agreement throughout the 1990s, whereas the
L09 method indicates that the bias becomes negative in the
1990s (Fig. 3a). All methods agree that a positive bias re-
appears in the 2000s, although the magnitude and temporal
pattern of the bias differs between the various corrections by
as much as 0.05°C or more. Both EANN-G and EANN-P
exhibit a smooth leveling off in their extrapolated bias, whereas
CH14 and L09 exhibit an oscillatory pattern (Fig. 3a). The choice
of FRE also impacts the extrapolated bias of individual XBT
probes (Fig. Sla in the online supplemental material). While at
high latitudes (>30°) the difference is negligible, at low latitudes
(30°S - 30°N) the extrapolated bias for the EANNP method using
the H95 FRE is colder than the same method using the MFR
FRE after 1970. Not only is the difference in the extrapolations
due to the choice of FRE nonlinear, it also results in the ex-
trapolations having the opposite sign after 2005 (Fig. S1a).

All four methods reduce the temporal bias against our in-
dependent validation dataset to within 0.05°C for the entire
period 1967-2018, as shown in Fig. 3b. However, CH14 and the
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WOAI3 grid and taking the median by (b) year and (d) depth.

EANN methods appear to underestimate the positive bias in
the XBT data for the period after 2010, when data become
sparser. Prior to the minimum in the uncorrected XBT bias in
1987, the L09 method has a slight cold bias against the vali-
dation dataset, while the EANN methods have a slight warm
bias (Fig. 3b). The residual biases for all methods, including the
uncorrected XBT bias, converge at the 1987 minimum and
diverge again afterward. The LO9 residual bias transitions from
positive in the early 1990s to negative in the early 2000s. The
CH14 method is in broad agreement with the two EANN
methods after 1990, except for a few years in the late 1990s
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where the CH14 method has a small warm bias and the EANN
methods have a small cold bias. Overall, all methods perform
quite similarly on metric 1 (Table 1), with a slight edge given to
EANN-P or EANN-G, depending on the choice of FRE. Unlike
the extrapolated biases, the residual time-dependent biases
versus the available CTD data do not indicate a clear or con-
sistent difference arising due to the choice of FRE (Fig. S1b).

The second metric we consider measures the residual depth
bias, expressed as the average of the absolute XBT biases
across depth bins from 1 to n (1 being the 0-m bin and n = 41
being the 700-m bin). Once again, we bin using the global
median since it is more robust to outliers:

Metric 2 = 2 |bWOA ZwoA |/n (7)

Figure 3c shows profiles of the global median depth-dependent
extrapolated biases of XBT data for the various calibrations for
0-700 m, demonstrating a positive XBT bias in the top 150 m
and a negative bias below ~200 m for all calibration methods.
EANN:-P and L09 predict slightly larger extrapolated biases in
the top 100 m, but the L09 extrapolated bias diminishes more
rapidly, becoming negative at the shallowest depth of any of
the methods (Fig. 3c). All methods exhibit a transition in their
extrapolated biases around 450 m, because this is the terminal
depth of certain probe types and represents a change in the
makeup of the probe data. The residual biases against our
reference validation dataset (Fig. 3d) demonstrate maximal
disagreement among the methods at ~450-m depth, where the
L09 method is biased cold and the EANN-G method is biased
warm, while the probe-specific calibrations, CH14 and EANN-
P, have smaller residual biases. Globally, all methods signifi-
cantly reduce the depth-dependent bias, but EANN-P is
slightly better than the other methods based on metric 2
(Table 1). Both the extrapolated and residual depth-dependent
biases reveal the impact of the choice of FRE, although the
effect is most apparent for lower latitudes (Figs. Slc,d).
Although there are significantly fewer XBT data below
700 m (roughly 3% of that for 0-700 m), these data are none-
theless important to studies that consider warming in the deep
ocean. While certain calibrations have previously been applied
to deep XBT data, the performance of these methods has not
been well investigated. We therefore briefly consider the global
median temporal and depth biases for 700-2000 m. The L09
method is not included here, as it was originally only applied to
the 0-700-m depth interval [although in the WOD 2018, TSK-
TS5 probes have received a correction using the method of Kizu
et al. (2005), in addition to having the H95 FRE applied].
The temporal component of the extrapolated XBT bias
below 700 m differs widely between the CH14 and EANN
methods prior to the mid-1980s, when the methods disagree
about both the sign and magnitude of the extrapolated bias
(Fig. 4a). This disagreement can mainly be attributed to the
fact that the CH14 method employs a depth correction to the
FRE, which adjusts the sampling depths of the XBT mea-
surements and thus the overlap in gridded data with the un-
corrected XBT data using the MFR FRE, whereas the EANN
method only considers a thermal bias and makes no adjustment

BAGNELL AND DEVRIES

1789

to the sampling depths. From the 1980s onward, the CH14
extrapolated bias oscillates with both a similar period and
phase to the extrapolated temporal bias in the top 700m
(Fig. 3a), although the sign of the bias is reversed. This con-
trasts with the EANN methods, which exhibit a smoother time
dependence. The residual time-dependent bias (Fig. 4b) for the
uncorrected XBT data prior to 1990 likely is not well resolved
due to the sparsity of deep casts from this period, but it does
indicate a larger temporal bias during the pre-1990s period,
which is consistent with the timing and magnitude of this bias
for depths shallower than 700m (Fig. 3b). After 1990 the
temporal bias is minimal, indicating that deep probe types
(such as the TS5 and TSK-T5) may not suffer from a significant
time-varying bias. For the period after 1990, it is not clear that
any of the calibration methods have much of an effect or are
even necessary. Prior to 1990, the CH14 method is more suc-
cessful than the EANN methods at reducing the temporal bias.

Certain probe types have terminal depths at 760 m, producing
a rapid transition in the extrapolated bias of the CH14 and
EANN methods around this depth (Fig. 4c). In the case of the
EANN-P method this includes a reversal in the sign of the bias,
though the magnitude remains stable below 800m. This con-
trasts with the EANN-G method, which undergoes a smoother
shift in the extrapolated bias with depth, and a change in sign at
roughly 1200 m. In the case of the CH14 method, the extrapo-
lated bias briefly reverses sign around 1000 m and again below
1600 m. The residual bias of the uncorrected XBT data below
700 m demonstrates that the deep probe groups do not exhibit
significant bias at these depths (Fig. 4d). The residual bias of the
calibrated XBT data is not much improved from the uncorrected
data, aside from the CH14 method for depths below 1500 m. The
EANN-G method is a global correction and cannot handle the
transition in the makeup of the probes around 760 m, leading to
an increased residual bias relative to the uncorrected XBT data
above 1000 m (Fig. 4d). Based on the metrics (Table S1 in the
online supplemental material), we find that the CH14 correction
is most effective at reducing the bias for the 700-1800-m depth
interval; however, we emphasize that the uncorrected XBT data
using the MFR FRE may already be sufficient, whereas the use
of the H95 FRE greatly increases the bias with depth. We rec-
ommend using either the uncorrected XBT with the MFR FRE,
or the CH14 or EANN-P corrections.

Our third metric considers the depth-dependent bias sepa-
rately for individual probe types, as depth profiles show distinct
biases for different probes. Metric 3 is the same as metric 2, but
it is applied to the nine categories of XBT probes specified in
CH14, whose biases with respect to Refy 41 have been sepa-
rately binned to the WOA13 grid:

Metric 3 = 2 |bywo A (z,, probe)|/n. (©))

woa (2
The results indicate that global calibrations such as L09 and
EANN-G perform similarly to probe-specific calibrations such
as CH14 and EANN-P at reducing the bias of the most com-
mon XBT probe types (Fig. 5 and Table 2). While probe-

specific calibrations are better overall (Table 2), the global
XBT bias is dominated by only a few probe types that the
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global calibrations can adequately handle. The choice of FRE
can also have a major impact on the residual bias of certain
calibrations. As an example, the T5 and TSK-TS5 probes have
very little bias below 700 m, but applying the H95 FRE sig-
nificantly increases the depth-dependent bias, especially for
the LO9 method, which does not perform a correction below
700 m aside from applying the method of Kizu et al. (2005) to
the TSK-TS5 probes. In addition, the most common probe types
(Figs. 5a—d) tend to have smaller biases for the uncorrected
XBT data, which could be the result of having more collocated
data to actually resolve the bias or due to mixing of probe types
of different manufacturers for the unknown groups.

Because of insufficient metadata, nearly one-half of all XBT
casts cannot be directly assigned to a manufacturer or probe
type. Instead they are sorted into categories of shallow probes
(SX) and deep probes (DX). Shallow probes are those with
maximum reported depths of less than 450 m, which could be
probes that have reached their terminal depths (e.g., T4/T6
from either Sippican or TSK and the Sippican T10) or any
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and taking the median by depth.

other probe type that was deployed without reaching terminal
depth, which is likely in many coastal areas. Deep probes have
maximum depths of less than 930 m, including T7/DB probes
and some TS5 probes.

Manufacturer origin appears to have an impact on the depth
bias of some probe types, which a global correction cannot
address. For T4/T6 probes (Figs. 5c,g), the sign of the bias
below 100 m depends on the manufacturer, and the resulting
bias of the mixed probes of the SX group (Fig. 5d) falls
somewhere in between. Global calibrations are also not suit-
able for TS5 (Fig. 5f) or TSK-T5 (Fig. Sh) probes, as these ap-
parently have different bias histories at intermediate depths. On
the other hand, the use of probe-specific calibrations may run the
risk of overfitting for the least common probe types. Considering
the TSK-T4/T6 probes (Fig. 5g), for instance, not many casts are
known to exist, which could explain the poor performance of the
CH14 method using our validation set (Table 2).

The fourth metric considers the reduction in the spatial
component of the bias. An existing zonal bias may in fact be
related to water temperature (Thadathil et al. 2002; Kizu et al.
2005; Reverdin et al. 2009; Cowley et al. 2013; CH14) as well as
the vertical temperature gradient (GR10). Neither the CH14
nor the EANN calibrations directly correct for the zonal
component of the XBT bias, but they do include factors to
correct for a temperature-dependent bias. LO9 corrects for
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TABLE 2. Results of applying metric 3 to the uncorrected XBT (Unc), CH14, L09, EANN-G, and EANN-P methods for each of the nine probe types considered in this study. The choice

of FRE that each method uses, either the MFR or H95, is also listed. Boldface values indicate best performance for that probe type.

Calibration

EANN-G (MFR) EANN-P (MFR)

EANN-P (H95)
0.010 =+ 0.008
0.005 = 0.006
0.004 = 0.006
0.008 *+ 0.010
0.038 = 0.037
0.026 + 0.015
0.040 *+ 0.051
0.054 + 0.047
0.038 + 0.031

EANN-G (H95)

L09 (H95)
0.008 =+ 0.007
0.010 + 0.011
0.010 + 0.019
0.012 + 0.009
0.016 + 0.025
0.068 + 0.020
0.056 + 0.058
0.084 + 0.044
0.019 + 0.012

CH14 (H95)
0.007 = 0.010
0.008 + 0.007
0.017 + 0.023
0.006 + 0.012
0.012 + 0.023
0.018 + 0.016
0.084 + 0.063
0.098 * 0.072

Unc (H95)
0.076 = 0.027
0.067 = 0.030
0.096 = 0.035
0.069 = 0.025
0.047 = 0.035
0.119 = 0.036
0.105 = 0.082
0.184 = 0.137
0.064 = 0.045

Unc (MFR)
0.036 = 0.039
0.036 = 0.031
0.060 = 0.051
0.035 = 0.035
0.031 = 0.035
0.049 = 0.052
0.070 = 0.083
0.134 = 0.119

Probe group

0.009 = 0.008
0.006 + 0.006
0.008 + 0.011
0.006 = 0.007
0.014 * 0.026
0.014 = 0.011
0.032 + 0.041
0.045 = 0.033
0.012 * 0.012

0.008 = 0.009
0.008 = 0.011

0.010 = 0.011
0.008 + 0.006
0.024 + 0.024
0.005 = 0.010
0.010 * 0.023
0.029 + 0.019
0.058 + 0.062
0.117 * 0.100
0.016 * 0.020

T7/DB
DX

0.022 * 0.019
0.006 + 0.011
0.008 = 0.015
0.032 + 0.019
0.047 = 0.060
0.102 + 0.091
0.016 * 0.019

T4/T6
SX
T10
TS

TSK-T4/T6
TSK-TS
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0.009 + 0.011

0.045 *= 0.042

TSK-T7

total XBT bias as a function of both depth and year but does
not consider a temperature-dependent bias. However, the L09
method uses the H95 FRE, which produces a spatial pattern in
the bias correction relative to the MFR FRE that varies with
water temperature. While the H95 depth correction factor at-
tempted to be optimal for the global ocean, this appears to
break down on regional scales due to in part to the time-
varying pure thermal bias (GR10).

We express the fourth metric as the average bias over n
depth layers (i = 1 at 0 m to i = 41 at 700 m) and m latitudinal
bins (j = 1 at 69.5°S to j = 140 at 69.5°N and progressing by
1° intervals) after binning using the global median:

n m

Metric 4= Y, Y, \%(zi,latj)V(n -m). )

i=1j=1

The uncorrected zonal XBT bias exhibits a fairly symmetric
pattern across the equator (Fig. 6a), with positive biases below
100 m at high latitudes transitioning to negative biases at the
low latitudes in a pattern that resembles the zonally averaged
water temperature and vertical temperature gradient (GR10,
their Fig. 12). Aside from a small overcorrection in the
Southern Hemisphere and in the tropics, the CH14 correction
removes most of the original spatial pattern of the XBT bias
(Fig. 6b). At both high and low latitudes, the 109 method
overcorrects, turning positive biases negative and vice versa
(Fig. 6¢). Both the EANN-G (Fig. 6d) and EANN-P (Fig. 6¢)
calibrations reduce much of the original spatial bias in the XBT
data. However, below 100 m the EANN methods undercorrect
the most prominent biases, most notably the strong negative
biases in the low latitudes. Due to the lower vertical resolution
of the OSD casts, including the interpolated OSD data in this
comparison exaggerates the apparent spatial biases compared
to the CTD data alone. However, reviewing the bias of the
original XBT casts versus the CTD data at high vertical reso-
lution prior to binning to the WOA grid shows that the overall
pattern remains consistent (Figs. S2a—c in the online supple-
mental material). Additionally, these low-latitude negative
biases can be eliminated by first applying the H95 FRE and
subsequently the EANN correction (Fig. S2d), which based on
metric 4 does best at reducing the spatial bias on our combined
reference dataset of both CTD and OSD data (Table 1). This
indicates that the H95 FRE is effective at reducing spatial
biases in the XBT data, even though without additional cor-
rections it worsens the overall XBT quality (Table 1).

Our final metric is a combination of the first two metrics and
considers both the depth- and time-dependent bias compo-
nents. Conceivably a low score in metric 2 could be achieved by
having a positive bias and a negative bias of similar magnitudes
in the same part of the water column but in different years of
the time series. A similar logic could be applied to how a low
value for metric 1 might also be achieved. While such an oc-
currence for one metric would degrade the value of the other,
the possibility of having uncorrected biases of different signs
that can partially compensate for each other warrants this ad-
ditional metric. After using the global median to bin with
regard to both year (using a 5-yr moving filter for the temporal
binning) and depth, we consider the standard deviation of the
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temporal component at each depth bin and then average these
values over all depth bins to obtain metric 5,

Metric 5= o[byo, (v, z,)l/n. (10)
i=1

The global median uncorrected XBT bias exhibits a nonlinear
time evolution at different depth levels. It is always positive at
depths shallower than 100 m, peaking in the mid-1970s, whereas
below 100 m the bias shifts from positive in the 1970s to negative
in the 1980s to more positive/neutral again after 2000 (Fig. 7a).
The L09 method (Fig. 7c) slightly overcorrects the original XBT
bias in much of the top 600 m during the 1970-90 period. CH14
(Fig. 7b) and the EANN methods (Figs. 7d,e) do not eliminate
the shallow warm XBT biases from the mid-2000s onward but
remove the majority of the bias prior to this. However, EANN-G

(Fig. 7d) undercorrects the bias prior to 1980 around the terminal
depth of some probe types at 450 m. Overall, the EANN-G,
EANN-P, and CH14 calibrations all perform very well according
to metric 5 (Table 1).

b. XBT calibration performance in individual basins

The XBT calibrations differ in their performance on basin
scales. To ensure that the performance of the XBT calibrations
onmetrics 1,2, 4, and 5 discussed in section 3a is not merely due
to a canceling of errors across basins, we reproduced these
metrics for the Atlantic, Pacific, and Indian Oceans. The geo-
graphic constraints we use for these basins are found in Fig. S3
in the online supplemental material. All metrics are calculated
the same as in section 3a aside from metric 4, which differs in
the number of latitudinal bins for the Pacific (m = 135) and
Indian (m = 95) Oceans.
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The Atlantic basin exhibits a similar pattern in the
uncorrected XBT bias with regard to depth and year as was
seen globally, with alternating positive and negative biases over
time below 100 m (Fig. 7f). However, the transition from positive
to negative bias is double peaked for the global bias, with one
negative peak in the late 1980s and a subsequent one in the
1990s, while for the Atlantic there is only one distinct negative
peak that occurs later than the first peak in the global bias. Both
CH14 and L09 overcorrect the initial positive bias to some ex-
tent before 1980 (Figs. 7g,h), with the exception of L09 in the top
200m after year 2000 where it overcorrects. The EANN
methods (Figs. 7i,j) reduce the bias more evenly across time and
depth but undercorrect significantly after 2010. CH14 also un-
dercorrects to some extent after 2010, including extending the
positive bias to greater depths like the EANN methods, whereas
the L09 overcorrects during the same period. All methods per-
form similarly on metric 5 in the Atlantic (Table 1).

The shape of the uncorrected XBT bias in the Pacific
(Fig. 7k) dominates the global pattern (Fig. 7a), but the pattern
in the Pacific is more pronounced, as the offset in the timing of
the negative bias in the top 450m of the Atlantic partially
compensates for that in the Pacific on global scales. All
methods (Figs. 71-0) undercorrect the positive biases in the
1970s and 2010s, but the EANN-G (Fig. 7n) and EANN-P
(Fig. 70) calibrations do a slightly better job at correcting the
biases after 2010 below 200m. Again, based on the metrics, all
methods perform similarly (Table 1).

In the Indian Ocean (Figs. 7p-t), the uncorrected XBT
biases are larger and noisier than in the other basins because
there are less data in this basin. The existing data do indicate
that a pattern of positive biases before 1980 transitioning to
negative biases in the 1980s and 1990s, that again transition to
positive after 2000, is largely consistent across all of the ocean
basins. Additionally, while the sparse data in the Indian make it
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difficult to establish the performance of the different calibra-
tions with any great certainty, it appears that all calibrations
reduce the bias from the uncorrected XBT (Fig. 7p). In the top
450 m, both CH14 and L09 (Figs. 7q.,r) appear to overcorrect
the bias prior to 1980 and undercorrect from the 1990s onward.
The EANN (Figs. 7s,t) methods leave a residual cold bias
above ~300 m depth, and introduce a residual warm bias below
300 m. After 2010, there are large biases that no method is able
to correct.

After reviewing the performance of the methods for indi-
vidual ocean basins, all of the calibrations reduce the original
XBT biases considerably. The differences in performance
across the calibrations considered here are marginal, and we
cannot distinguish a single best correction based on these
metrics alone.

c¢. Spatial patterns of the extrapolated XBT bias for

different methods

Each XBT calibration method reduces the biases present in
the original uncorrected XBT data, but their different as-
sumptions about the form of these biases and how to best
correct for them lead to significant differences in how each
correction generalizes to regions with no reference data to
verify the calibration. The differences in how these calibrations
extrapolate can contribute to uncertainty in estimates of ocean

heat content on intradecadal time scales and ocean basin
scales. The ability of these products to extrapolate has previ-
ously been validated using independent datasets such as EN4
(Cheng et al. 2018) or by withholding substantial amounts of
CTD/OSD, as was done in this study, but clearly reductions in
the original XBT biases can be achieved by different methods
with varying success on the global scale while leading to sig-
nificant differences in the temporal and spatial patterns of the
extrapolations.

On a global scale, the extrapolated biases of the CH14 and
L09 methods over depth and year (Figs. 8a,b) exhibit a similar
pattern, but the L09 extrapolation is often of greater magni-
tude. One major distinction between CH14 and L09, and the
EANN-G (Fig. 8c) and EANN-P (Fig. 8d) calibrations, is the
presence of 2-3 distinct peaks of negative bias in the 1980s—
2000s in the two former methods, versus a single peak of
negative bias around 1990 in the latter two methods. The
EANN-P method does infer a bias with a semblance of two
negative peaks but remains smooth like the EANN-G after
2000. The EANN-P method is also distinguished from the
EANN-G by a more distinct transition and stronger cold bias
below 450m, a depth that coincides with changes in the
probe types.

The CH14 and L09 (Figs. 8e,f) extrapolated biases in the
Atlantic share a similar form that is mainly distinguished by a
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larger magnitude in the L09 extrapolation, especially for areas
of negative bias, which is apparent at shallower depths in L09.
EANN-G (Fig. 8g) has a smoother extrapolated bias that is
generally smaller than the other methods. The EANN-P
(Fig. 8h) method infers a larger bias but shallower positive
bias above 200 m and after 2000 than the other methods.

Because of the amount of XBT data in the Pacific, this basin
has an outsized contribution to the shape of the global ex-
trapolated bias, masking some of the distinctions arising in the
Atlantic and Indian. Nonetheless, certain differences that were
not as well resolved on the global scale become apparent when
specifically considering the Pacific. For instance, in the 1960s
and early 1970s there is a period where both the CH14 and L09
methods (Figs. 8i,j) consider XBT data around 400 m to have a
negative bias. The EANN methods (Figs. 8k,l) differ from L09
and CH14 in their characterization of the bias below 450 m in
the 1970s, which for the EANN methods is close to neutral
while for L09 and CH14 the bias remains positive.

In the Indian, the extrapolated biases of the CH14 (Fig. 8m)
and L09 (Fig. 8n) methods are highly distinct from those of the
EANN methods (Figs. 80,p). While all methods consider some
XBT biases to be negative in the 1960s, they disagree on the
sign of the bias below 200 m in the 1970s, with CH14 and L09
indicating that the bias is positive, and the EANN methods
indicating that it is neutral to negative. The L09 extrapolation
also indicates that there are peaks of negative XBT biases at
two different depths in the 1980s and 1990s, one around 200 m
and one around 600 m (Fig. 8n). The CH14 method shows a
shallower peak in this negative bias (Fig. 8m), while the
EANN-G method spreads the negative bias more evenly
across the water column (Fig. 80), and the EANN-P method
concentrates this bias below 450 m (Fig. 8p).

Maps of the extrapolated bias with the median taken over
the top 700 m for different decades reveal distinct spatial pat-
terns in the biases over time (Fig. 9). In the 1970s all methods
overwhelmingly treat the uncorrected XBT data as warmer
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than the corrected, but while the CH14 method (Fig. 9a) and
L09 (Fig. 9b) are more homogenous the EANN methods
(Figs. 9¢,d) demonstrate an overall positive bias that is latitu-
dinally dependent, with higher latitudes having larger biases
than lower latitudes.

The four calibration methods have more distinct latitudinal
patterns in the 1980s. While all methods indicate data in the
high latitudes have a positive bias, data in tropics and sub-
tropics differ in the sign of the bias across methods (Figs. 9e-h).
Both the CH14 (Fig. 9¢) and L09 (Fig. 9f) have negative biases
at low latitudes but these differ on basin scales, with negative
biases in the CH14 extrapolation being more extensive and
farther west in their respective ocean basins than for the L09
extrapolated bias. The EANN-G method (Fig. 9g) extrapolates
positive biases at all latitudes, whereas the EANN-P method
(Fig. 9h) indicates a neutral to slightly negative bias in the
tropics. For both EANN methods the positive bias peaks near
30°N and S.

During the 1990s, these various methods diverge the most of
any decade in the spatial patterns of their extrapolated biases.
Although the CH14 (Fig. 9i) and L09 (Fig. 9j) methods share
similarities, with high latitudes exhibiting positive biases and
low latitudes having negative biases, the L09 method indicates
larger magnitudes for the bias and a greater homogeneity to
the negative biases. The EANN methods (Figs. 9k,l) consider
the XBT bias to be neutral at most latitudes, aside from bands
of positive biases around 30°N and S that mirror those from
the 1980s.

d. Performance and extrapolation of the MBT calibrations

Systematic biases in the MBT data remain less well studied
than the XBT, even though they are the dominant source of
temperature data prior to 1967 (Fig. 1). As with the XBT data,
we consider the performance of several MBT calibration
methods at removing depth- and time-dependent biases, as
well as the form of the global extrapolated biases.

The global median extrapolated temporal biases are quite
distinct for the different calibration schemes (Fig. 10a), with
the GR10 and L09 calibrations abruptly varying in the mag-
nitude of their bias. This contrasts with the extrapolated bias
inferred by the EANN-G method, which is temporally smooth
(Fig. 10a). The uncorrected time-dependent bias with respect
to our validation dataset is also smooth (Fig. 10b), peaking in
1954 around 0.1°C and declining steadily so that by 1990 the
remaining bias is almost zero. After 1990, the bias in the un-
corrected MBT data increases again, but there are very little
MBT data during this period. GR10 slightly undercorrects the
original positive bias in the MBT data with respect to the
validation dataset, whereas the EANN-G slightly overcorrects
this positive bias (Fig. 10b). However, both calibrations sig-
nificantly reduce the original bias, outperforming the L09
method, which overcorrects for most of the period and offers
no correction after 1994 (Fig. 10b).

The median extrapolated biases with depth (Fig. 10c), and
the residual depth biases of the corrected data with respect to
our validation dataset (Fig. 10d), tell a similar story. GR10
has a smaller extrapolated bias, and positive residual biases in
the top 100 m, whereas the EANN-G method exhibits a larger
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extrapolated bias that also peaks at a shallower depth, leading
to negative residual biases in the top 50 m (Figs. 10c,d). L09
creates a larger extrapolated bias than the other methods
(Fig. 10c), leading to a residual negative bias with respect to the
validation data that is similar in magnitude to the original
positive bias (Fig. 10d). L09 also does not offer a correction for
the sparse data below 250 m. While the residual bias with depth
is smallest using the EANN method, the GR10 method per-
forms almost as well (Fig. 10d).

In examining the residual MBT biases with respect to the
validation dataset as a function of both depth and year, we find
that the structure of the uncorrected MBT bias remains mostly



OCTOBER 2020

Unc

BAGNELL AND DEVRIES

1797

GR10

-50

-

— 100
150
200
250

Depth (m

o &

300 .
L09

| ]
1980 2000

Year

T T T
1960 1980 2000

Year

FIG. 11. Global residual MBT biases with respect to our validation dataset (corrected MBT —
Refyay) as a function of both depth and year for (a) uncorrected MBT data (Unc), (b) data
corrected with the GR10 method, (c) data corrected with the L09 method, and (d) data cor-

rected with the EANN-G method.

positive throughout its period of use (Fig. 11a). The GR10
calibration (Fig. 11b) largely reduces these positive tempera-
ture biases but slightly overcorrects biases in the 1940s and
slightly undercorrects biases in the 1990s. By comparison, the
L09 method (Fig. 11c) overcorrects MBT biases throughout
much of the water column but leaves the biases after 1990 es-
sentially untouched. Similar to the GR10 method, the EANN-
G calibration (Fig. 11d) removes the majority of the systematic
bias but undercorrects biases to some extent in the 1950s
and 1990s.

Similar patterns appear when examining the extrapolated
biases for these methods as a function of both depth and year.
The GRI10 extrapolation (Fig. 12a) has a somewhat striated
pattern throughout the water column prior to 1975 and sug-
gests no bias in the MBT data during 1980s. The L09 method
(Fig. 12b) produces a maximum extrapolated bias in the mid-
1950s at roughly 50 m, which also roughly coincides with the
maximum in the original MBT bias with respect to the vali-
dation dataset (Fig. 11a). A second strong positive bias in the
L09 extrapolation occurs in the mid-1960s (Fig. 12b). The
EANN-G method (Fig. 12c) also produces a maximum ex-
trapolated bias around 50-100m, but the pattern is much
smoother across the 1950s and 1960s than the other methods.
EANN-G also does not infer a large positive bias below 200 m
in the 1950s, nor does it indicate negative MBT biases around
250 m in the late 1970s, unlike the other two methods (Fig. 12¢).

A recently released study by Gouretski and Cheng (2020)
further examined the MBT bias and found similar results re-
garding the performance of the GR10 and L09 correction
schemes as we have here. They also indicate in their study that

country of origin for the MBT probes has an impact on the bias
history, a factor that we have not considered, and the new
corrections they present in their study take an empirical ap-
proach when considering the other known sources of bias.
After applying some of the metrics from Cheng et al. (2018) to
the MBT dataset, they found that their corrections out-
performed other available methods; our method was not yet
available for comparison. Additionally, they concluded that
the LO9 correction does not reduce the total bias compared to
the original uncorrected MBT data, but that the GR10 method
is acceptable. On the basis of the comparison presented here,
the EANN-G method may present a useful alternative statis-
tical approach to correct the MBT data.

4. Discussion and conclusions

In this study, we developed and implemented a new
approach to correct global systematic temperature biases
in mechanical and expendable bathythermograph datasets
using an ensemble of artificial neural networks trained on
global data (EANN-G), and another using probe-specific
data (EANN-P). Our method offers a simple correction for
the total time-variable BT bias that is explicitly dependent
on a combination of year, depth, and water temperature.
Additionally, we compared the performance of this method,
on both global and basin scales, with that of several popular
methods (L09 and CH14 for XBT and L09 and GR10 for
MBT) using some of the metrics proposed by Cheng et al.
(2018). Last, we examined differences in how these cali-
bration methods extrapolate the bias both spatially and
temporally.
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Our results demonstrate the following:

1) The use of EANN-G and EANN-P methods greatly re-
duces time, depth, and latitudinal components of the XBT
bias, performing on par with the best available methods
when compared with an independent validation dataset.
Based solely on performance it is difficult to distinguish
EANN-G and EANN-P, except for their performances
correcting the biases of certain probe types. There is some
benefit to using a probe-level correction; however, the XBT
dataset is skewed toward only a few probe types and the
metadata are not complete. Both global and probe-level
methods would likely need to be incorporated into studies
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examining OHC in order to fully characterize the uncer-
tainty due to the choice of XBT bias correction.

2) Both the EANN-G and EANN-P calibrations are simple to
implement and, like CH14 for XBT, L09 for XBT in the top
700 m, and GR10 for MBT, can extrapolate well to new BT
data in areas where we have complementary CTD/OSD
data, indicating that both empirical and statistical approaches
to calibrating the global BT data are reasonable avenues.

3) All of the calibration methods considered here offer valid
corrections for BT biases on global and basin scales,
potentially with the exception of L09 for the MBT, but
examinations of the extrapolated biases reveal key distinc-
tions among methods, which will contribute to uncertainty
in OHC estimates on intradecadal and basin scales.

4) The choice of XBT FRE, either opting to use the original
manufacturer equation (MFR) or the H95 equation, impacts
the extrapolated XBT bias correction, even for what would
otherwise be the same calibration method. Our method pro-
vides calibrations for both FRE, and we recommend that both
corrections be incorporated into global OHC studies in order
to fully characterize the uncertainty arising from correcting for
historical XBT biases. Considering the effects that different
XBT calibrations have on deep OHC may be especially
important given the negative impact that the use of the H95
FRE has on the XBT bias for the 700-1800-m depth interval.

There remains room for improvement in both empirical and
statistical approaches to reducing biases in historical BT data,
and further refinements to existing methods (including the one
presented here) could be developed by more deeply examining
underlying contributors to the bias, which perhaps can be
gleaned from further laboratory studies, numerical simula-
tions, or a comprehensive examination of the available probe
metadata. For example, most calibration methods to date (in-
cluding the one presented here) have assumed that BT biases
depend on the year of deployment, which does not directly
represent the underlying technological, manufacturing, and
design changes that ultimately drive the time-varying bias.
Without additional refinement, existing BT calibration methods
are likely only suitable for global or perhaps probe-level
calibrations, and corrections to individual casts should not
necessarily be considered reliable at this time. For certain
geographic regions and the deep ocean especially, where
there may not be enough direct data to fully characterize the
problem, the community may need to be satisfied with an
ensemble of calibration methods that at least impose maxi-
mum bounds on our uncertainty.
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