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Abstract
In this paper, we study the static Born–Infeld equation

−div

(
∇u√

1 − |∇u|2
)

=
n∑

k=1

akδxk in R
N , lim|x |→∞ u(x) = 0,

where N ≥ 3, ak ∈ R for all k = 1, . . . , n, xk ∈ R
N are the positions of the point charges,

possibly non-symmetrically distributed, and δxk is the Dirac delta distribution centered at xk .
For this problem, we give explicit quantitative sufficient conditions on ak and xk to guarantee
that the minimizer of the energy functional associated with the problem solves the associated
Euler–Lagrange equation. Furthermore, we provide a more rigorous proof of some previous
results on the nature of the singularities of the minimizer at the points xk’s depending on the
sign of charges ak’s. For every m ∈ N, we also consider the approximated problem

−
m∑

h=1

αh�2hu =
n∑

k=1

akδxk in R
N , lim|x |→∞ u(x) = 0

where the differential operator is replaced by its Taylor expansion of order 2m (see (2.1)).
It is known that each of these problems has a unique solution. We study the regularity of
the approximating solution, the nature of its singularities, and the asymptotic behavior of the
solution and of its gradient near the singularities.
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1 Introduction

The classical electrostatic Maxwell equations in the vacuum lead to the following relations
for the electric field:

E = −∇u, −�u = �, (1.1)

where � is the charge density, u the electric potential, and E the electric field. However, in
physically relevant cases when ρ is only an L1-function, or in the case of point charges, the
model violates the principle of finiteness of the energy; see [13,14] for a counterexample.
In [6], Born and Infeld proposed a nonlinear theory of electromagnetism by modifying
Maxwell’s equationmimickingEinstein’s special relativity. They introduced a parameterb �
1, whose inverse is proportional to the radius of the electron, and replaced the Maxwellian
Lagrangian density LM := 1

2 |E|2 by

LBI := b2

⎛
⎝1 −

√
1 − |E|2

b2

⎞
⎠ for |E| ≤ b,

so that LM is a first-order approximation of LBI as |E|/b → 0. In the presence of a charge
density �, this new Lagrangian leads, at least formally, to replace Poisson’s equation in (1.1)
by the nonlinear equation

− div

(
∇u√

1 − |∇u|2/b2
)

= �,

which agrees with the finiteness of the energy even when � is a point charge or an L1-density.
After scaling u/b and �/b, we get

− Qu := − div

(
∇u√

1 − |∇u|2
)

= �. (1.2)

It is interesting to notice that the nonlinear operator in (1.2) has also a geometric interpretation
(see [3,12]). Indeed, Q is the so-called mean curvature operator in the Lorentz–Minkowski
space and (1.2) can be seen as the equation for hypersurfaces in Minkowski space with
prescribed mean curvature ρ. In particular, when � is a superposition of point charges,
(1.2) is the equation for area maximizing hypersurfaces in Minkowski space having isolated
singularities (cf. [12]). Since the density ρ is not smooth, we look for weak solutions in the
space

X := D1,2
(
R

N
)

∩
{
u ∈ C0,1

(
R

N
)

: ‖∇u‖∞ ≤ 1
}

(1.3)

endowed with the norm

‖u‖ :=
(∫

RN
|∇u|2dx

)1/2

.

Definition 1.1 A weak solution of (1.2) coupled with the decay condition

lim|x |→∞ u(x) = 0

is a function u ∈ X such that∫
RN

∇u · ∇v√
1 − |∇u|2 dx = 〈�, v〉 for all v ∈ X .
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We recall that D1,2(RN ) := C∞
c (RN )

‖·‖
, that is, D1,2(RN ) is the closure of the space of

smooth compactly supported functions with respect to the norm ‖ · ‖. Mathematically, (1.2)
has a variational structure, since it can be (at least formally) seen as the Euler–Lagrange
equation of the energy functional I� : X → R defined by

I�(u) :=
∫
RN

(
1 −

√
1 − |∇u|2

)
dx − 〈�, u〉 for all u ∈ X . (1.4)

We also denote the dual space ofX byX ∗ with respect to L2(RN ) inner product, andwewrite
〈·, ·〉 for the dual pairing between X ∗ and X . It is known that I� has a unique minimizer u�

for all � ∈ X ∗ (cf. [4] and Sect. 2). However, due to the lack of regularity of I� on functions
u such that |∇u(x)| = 1 for some points x ∈ R

N , the justification that minimizers of (1.4)
are also weak solutions of (1.2) presents many difficulties, which will be partly addressed
in the present paper. We remark that some variational problems with a gradient constraint
present similar difficulties (see, e.g., [7–9,24]). In those papers, the main idea is to remove
the constraint on the gradient by defining an appropriate obstacle problem. We believe that
some ideas from those papers could be useful in our context, but we do not push further those
ideas here.

To address the lack of smoothness, Bonheure et al. [4] used classical methods from non-
smooth analysis and weakened the definition of critical point of I�, using the notion critical
points in the weak sense (see [23]). Also, they proved the existence and uniqueness of a
critical point of I� in the weak sense and showed that the PDE is weakly satisfied in the sense
of Definition 1.1 for radially symmetric or locally bounded �’s.

Fortunato et al. [14] studied (1.2) in R
3 and its second-order approximation (by taking

the Taylor expansion of the Lagrangian density). In the same spirit, in [4,17] the authors
performedhigher-order expansions of theLagrangian density, so that, in the limit, the operator
Q can be formally seen as the series of 2h-Laplacians

− Qu = −
∞∑
h=1

αh�2hu, (1.5)

where we refer to Sect. 2 for the precise expression of the coefficients and �pu :=
div(|∇u|p−2∇u). This expansion allows to approximate Q with the operators sum

−
m∑

h=1

αh�2h (1.6)

and (1.2) with the quasilinear equations

−
m∑

h=1

αh�2hφ = � for m ∈ N.

Each of such equations, complemented with the condition lim|x |→∞ u(x) = 0, has a unique
solution um . In [17], respectively [4], it is further proved that the approximating solutions
um’s weakly converge to theminimizer u� of (1.2) when ρ is a superposition of point charges,
respectively for any � ∈ X ∗.

It is worth noting that X ∗ contains Radon measures, and in particular, superpositions of
point charges and L1-densities, which are in turn dense in the space of Radon measures.
Due to these reasons, we will assume that ρ is a finite superposition of charges without any
symmetry conditions, that is, we consider
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⎧⎪⎪⎨
⎪⎪⎩

− div

(
∇u√

1 − |∇u|2
)

=
n∑

k=1

akδxk in R
N ,

lim|x |→∞ u(x) = 0,
(1.7)

where N ≥ 3 and δxk is the Dirac delta function centered at xk , ak ∈ R and xk ∈ R
N for

k = 1, . . . , n. This situation is general enough to cover most of the phenomena, yet simple
enough that it can be analyzed explicitly. The energy functional associated with (1.7) has the
form

I (u) =
∫
RN

(
1 −

√
1 − |∇u|2

)
dx −

n∑
k=1

aku(xk) for all u ∈ X . (1.8)

Problem (1.7) has been first studied in [4,17], see also Sect. 2, where we report some recalls.
Our first goal is to provide a rigorous proof concerning the nature of the singularities xk’s

for the minimizer u� of I , depending on the sign of the charges ak’s (see [17] and Theorem
3.5).More precisely, in Theorem 3.5, we show that if the charge ak is positive (resp. negative),
then the point charge xk is a relative strict maximizer (resp. minimizer) for u�. Our proof uses
geometric results proved by Ecker [12], and the comparison principle in bounded domains
proved in Lemma 3.4. This result is far from obvious, since u� is globally bounded, and in
particular, it does not diverge at xk ; rather,∇u� is discontinuous at the location of the charges.
Of course since the problem is not linear, it cannot be decomposed into several problems,
each with just one point charge. However, this is not the only obstacle; if one replaces our
curvature operator with Laplacian in one dimension, then the Green’s function for the charge
located at xk has the form |x − xk |, and in particular, it is bounded in the neighborhood of
xk . But, adding several Green’s functions one obtains that the solution is a piecewise linear
function, which might not have local extrema at xk . Although the singularity is of the same
nature as one for Laplacian in one dimension, it is crucial that the solution vanishes at infinity,
which introduces a non-local argument into the proofs.

We immediately show an application of these results in the questionwhether theminimizer
u� of (1.8) is a weak solution of (1.7). To our best knowledge, this problem has not been
completely solved yet. Some results in this direction can be found in [17], but the main
arguments in that paper need to be adjusted (see Discussion in [4, Sect. 4]). As far as we
know, the case of a generic � is still open. In [4,17], the authors proved that u� solves the
equation in (1.7), inRN \�, where � := ⋃

k �= j xk x j and xkx j denotes the line segment with
endpoints xk and x j . Furthermore, it is proved in [4] that if the charges are sufficiently small
or far apart, u� solves the equation in R

N \ {x1, . . . , xn}. In particular, in [17] it is showed
that if two point charges xk , x j have the same sign ak · a j > 0, then u� solves the equation
also along the open line segment Int(xkx j ).

The arguments on the literature are based on the fact that if the minimizer does not satisfy
the equation along the segment connecting xk and x j , then it must be affine, and since the
minimizer is bounded, then one obtains a contradiction. However, the argument is purely
qualitative and it does not yield an easily verifiable condition based only on the location
and strength of the charges. In this paper, we partly bridge this gap by proving a sufficient
quantitative condition on the charges and on their mutual distance to guarantee that the
minimizer u� solves (1.7) also along the line segments joining two charges of different signs.
Let us denoteK+ := {k : ak > 0} andK− := {k : ak < 0}, that is, set of indexes for positive
respectively negative charges. Our result reads then as follows.
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Theorem 1.2 If

(
N

ωN−1

) 1
N−1 N − 1

N − 2

⎡
⎢⎣
⎛
⎝ ∑

k∈K+
ak

⎞
⎠

1
N−1

+
⎛
⎝ ∑

k∈K−
|ak |

⎞
⎠

1
N−1

⎤
⎥⎦ < min

j, l∈{1,...,n}
j �=l

|x j − xl |,

(1.9)
where ωN−1 is the measure of the unit sphere in R

N , then

u� ∈ C∞(RN \ {x1, . . . , xn}) ∩ C(RN )

and it is a classical solution of (3.4) in R
N \ {x1, . . . , xn}, with |∇u�| < 1.

Note that the occurrence of the sum of positive and negative charges is natural, since we
cannot rule out the situation when these charges are close to each other and they appear as
one point charge. The explicit form of the constant on the left-hand side of (1.9) is crucial
and observe that is bounded from below independently of N and the number of charges. This
allows for passing to the limit in the number of charges, and the formulation of the result is
left to the interested reader. We also give in Remark 3.9 a more precise way (although less
explicit) to calculate the constant on the left-hand side of (1.9) in the general case, and a yet
more optimal one if there are only two point charges of different signs in Proposition 3.10.

The proof of this theorem is based both on a new version of comparison principle
(Lemma 3.4) and on the explicit expression of the best constant C̄ for the inequality

‖∇u‖2L2(RN )
≥ C̄‖u‖NL∞(RN )

for all u ∈ X ,

proved in Lemmas 3.6 and 3.8, which might be of independent interest. Note that this result
has a different flavor than the results for optimal constants for the embeddings since our
inequality is inhomogeneous and we have to crucially use that the Lipschitz constant of u is
bounded by one.

In Sect. 4, we first turn our attention to the approximating problems⎧⎪⎪⎨
⎪⎪⎩

−
m∑

h=1

αh�2hu =
n∑

k=1

akδxk in R
N ,

lim|x |→∞ u(x) = 0
(1.10)

for m ≥ 1 and study the regularity of the solution um : by combining results of Lieberman
[19], a linearization, and a bootstrap argument, we prove that the solutions are regular away
from the points xk’s.

Proposition 1.3 Let 2m > max{N , 2∗}, 2∗ := 2N/(N−2), and um be the solution of (1.10).
Then um ∈ C0,βm

0 (RN ) ∩ C∞(RN \ {x1, . . . , xn}), where

C0,βm
0

(
R

N
)

:=
{
u ∈ C0,βm

(
R

N
)

: lim|x |→∞ u(x) = 0

}
,

with βm := 1 − N
2m .

In comparison with full problem (1.7), there is an important difference—we do not have a
priori an estimate on |∇u|, and therefore, the Hölder estimate is not immediate. Note that βm

converges to 1 asm → ∞, in agreement with the fact that the solutions of (1.10) approximate
solutions of (1.7). On the other hand, the operator in (1.10) is well defined for any sufficiently
smooth function u and the smoothness of solutions can be expected away from xk’s.
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We stress that in the proof of Proposition 1.3, we heavily use the fact that, in the operator
(1.6), also the Laplacian appears; see Remark 4.1 for further details. Moreover, we also prove
that um and ∇um behave as the fundamental solution (and its gradient) of the 2m-Laplacian
near the singularities xk’s. Intuitively, we could say that the Laplacian, �2, is responsible for
the regularity of the approximating solution um and the behavior at infinity, while the 2m-
Laplacian (the last one) dictates the local behavior of the solution um near the singularities
xk’s, in the following sense.

Theorem 1.4 Let 2m > max{N , 2∗} and k = 1, . . . , n. Then

lim
x→xk

um(x) − um (xk)

|x − xk | 2m−N
2m−1

= Km (1.11)

for some Km = Km(ak, αm, N ) ∈ R such that Km · ak < 0, and

lim
x→xk

|∇um(x)|
|x − xk | 1−N

2m−1

= K ′
m, (1.12)

with K ′
m := 2m−N

2m−1 |Km |. In particular, xk is a relative strict maximizer (resp. minimizer) of
um if ak > 0 (resp. ak < 0).

The same reasons as above make this result non-trivial. The operator is nonlinear; thus,
it is not obvious that the local behavior does not depend on the location of all charges as
it, for example, does for the Laplacian in one dimension. The asymptotic behavior is a fine
interplay between lowest and highest order differential operators in the expansion.

The proof of this theorem is rather technical and relies on a blow-up argument, combined
with Riesz potential estimates [2]. Such a usage of blow-up method is quite unusual since
the solution is bounded at the blow-up point and we need to rescale the problem in such a
way that we keep the boundedness of solution, but remove the lower-order terms.

The fact that the growth rate of um near the singularity xk is of the type |x − xk | 2m−N
2m−1 ,

with exponent that goes to 1 as m goes to infinity, shows that the singularities xk’s of um
approach cone-like singularities for m large, which is coherent with the results found for u�.
In particular, we note that blow-up rate (1.12) of |∇um | near the singularities and the fact that
limm→∞ K ′

m = 1 (cf. Remark 4.2) suggest that limm→∞ |∇um(x)| ≈ 1 as x → xk , which
is the same behavior as |∇u�| (see [17, Theorem 1.4]). Moreover, as an easy consequence
of (1.11), we get that the singularity xk is either a relative strict minimizer or a relative
strict maximizer depending on the sign of its coefficient ak . Altogether, this shows that the
approximating solutions um’s are actually behaving like the minimizer u� of (1.8), at least
qualitatively near the singularities.

Furthermore, it is worth stressing that problem (1.10) is governed by an inhomogeneous
operator that behaves like−�−�2m withm large. The interest in inhomogeneous operators
of the type sum of a p-Laplacian and a q-Laplacian has recently significantly increased, as
shown by the long list of recent papers (see, for instance, [1,2,10,11,20,21] and the references
therein).

The paper is organized as follows. In Sect. 2, we collect definitions and known results for
problems (1.7) and (1.10) relevant to our proof. Section 3 contains our results concerning the
qualitative properties of the minimizer of original problem (1.7) and the sufficient conditions
to guarantee that the minimizer u� of I indeed solves (1.7); in particular, we prove therein
Theorem 1.2. Finally, Sect. 4 is devoted to the study of approximating problem (1.10) and
the qualitative analysis of the solution and its gradient, namely to the proofs of Proposition
1.3 and Theorem 1.4.
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2 Preliminaries

In this section, we summarize used notation and definitions as well as previous results needed
in the rest of the paper.We start with properties of functions belonging to the setX (see (1.3)).

Lemma 2.1 (Lemma 2.1 of [4]). The following properties hold:

(i) X ↪→ W 1,p(RN ) for all p ≥ 2∗;
(ii) X ↪→ L∞(RN );
(iii) If u ∈ X , lim|x |→∞ u(x) = 0;
(iv) X is weakly closed;
(v) If (un) ⊂ X is bounded, up to a subsequence it converges weakly to a function ū ∈ X ,

uniformly on compact sets.

Throughout the paper, xy := {
z : z = (1 − t)x + t y for t ∈ [0, 1]} denotes the line

segment with endpoints x and y and Int(xy) the open segment.

Definition 2.2 Let u ∈ C0,1(�), with � ⊂ R
N . We say that

(i) u is weakly spacelike if |∇u| ≤ 1 a.e. in �;
(ii) u is spacelike if |u(x) − u(y)| < |x − y| for all x, y ∈ �, x �= y, and the line segment

xy ⊂ �;
(iii) u is strictly spacelike if u ∈ C1(�), and |∇u| < 1 in �.

Proposition 2.3 (Proposition 2.3 of [4]). For any � ∈ X ∗, there exists a unique u� ∈ X that
minimizes I� defined by (1.4). If furthermore � �= 0, then u� �= 0 and I�(u�) < 0.

Theorem 2.4 (Theorem 1.6 and Lemma 4.1 of [4]). Let � := ∑n
k=1 akδxk and � :=⋃

k �= j xk x j . The minimizer u� of the energy functional I given by (1.8) is a strong solu-
tion of ⎧⎨

⎩−div

(
∇u√

1−|∇u|2

)
= 0 in R

N \ �,

lim|x |→∞ u(x) = 0.

Furthermore,

(i) u� ∈ C∞(RN \ �) ∩ C(RN );
(ii) u� is strictly spacelike in RN \ �;
(iii) for k �= j , either u� is a classical solution on Int(xk x j ), or

u�(t xk + (1 − t)x j ) = tu�(xk) + (1 − t)u�(x j ) for all t ∈ (0, 1).

Theorem 2.5 (Corollary 3.2 of [17]). If ak ·a j > 0, then u� is a classical solution on Int(xkx j )
provided that no other charges are located on the segment xk x j .

As mentioned in Introduction, in order to overcome the difficulty related to the non-
differentiability of I , we consider approximating problems. The idea is to approximate the
mean curvature operator Q [for the definition, see (1.5)] by a finite sum of 2h-Laplacians, by
using the Taylor expansion. We note that the operator Q is formally the Fréchet derivative of
the functional ∫

RN

(
1 −

√
1 − |∇u|2

)
dx =

∫
RN

∞∑
h=1

αh

2h
|∇u|2hdx, (2.1)
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where α1 := 1, αh := (2h−3)!!
(2h−2)!! for h ≥ 2, and

k!! :=
[k/2]−1∏
j=0

(k − 2 j) for all k ∈ N.

The series in the right-hand side of (2.1) converges pointwise, although not uniformly, for

all |∇u| ≤ 1. Then, the operator −Qu = −div

(
∇u√

1−|∇u|2

)
can be regarded as the series of

2h-Laplacians (see (1.5)).
For every natural number m ≥ 1, we define the space X2m as the completion of C∞

c (RN )

with respect to the norm

‖u‖X2m :=
[∫

RN
|∇u|2dx +

(∫
RN

|∇u|2mdx
)1/m

]1/2

.

Let � ∈ X ∗
2m for some m ≥ 1. We study the approximating problem⎧⎪⎪⎨

⎪⎪⎩
−

m∑
h=1

αh�2hu = � in R
N ,

lim|x |→∞u(x) = 0
(2.2)

and we denote by Im : X2m → R the energy functional associated with (2.2)

Im(u) :=
m∑

h=1

αh

2h

∫
RN

|∇u|2hdx − 〈�, u〉X2m ,

where 〈·, ·〉X2m denotes the duality pairing between X ∗
2m and X2m . The functional Im is of

class C1 and is the mth-order approximation of I .

Definition 2.6 A weak solution of (2.2) is a function um ∈ X2m such that

m∑
h=1

αh

∫
RN

|∇um |2h−2∇um∇vdx = 〈�, v〉X2m for all v ∈ C∞
c

(
R

N
)

.

Clearly, a function is a weak solution of (2.2) if and only if it is a critical point of Im .

Proposition 2.7 (Proposition 5.1 of [4]). Let � ∈ X ∗
2m0

for some m0 ≥ 1. Then, for all
m ≥ m0, the functional Im : X2m → R has one and only one critical point um. Furthermore,
um minimizes Im.

Theorem 2.8 (Theorem 5.2 of [4]). Let � ∈ X ∗
2m0

for some m0 ≥ 1. Then um⇀u� in X2m̄

for all m̄ ≥ m0 and uniformly on compact sets.

3 Born–Infeld problem

In this section, we study the nature of the singularities of the minimizer of energy functional
(1.8) and sufficient conditions guaranteeing that the minimizer is a solution of (1.7) on
R

N \{x1, . . . , xn}. To this aim,we isolate one singularity, andwe investigate (1.7) on bounded
domains. We start with definitions and preliminary results.
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Let � ⊂ R
N be a bounded domain, ϕ : ∂� → R a bounded function and �� ∈ X ∗

�,
where X ∗

� is the dual space of X� := {u ∈ C0,1(�) : |∇u| ≤ 1 a.e. in �}. We consider the
variational problem

min
u∈C(ϕ,�)

I�,�(u), (3.1)

where

I�,�(u) :=
∫

�

(
1 −

√
1 − |∇u|2

)
dx − 〈��, u〉X� for all u ∈ X�

and

C(ϕ,�) := {v ∈ X� : v = ϕ on ∂�} .

Lemma 3.1 Problem (3.1) has at most one solution.

Proof Although the argument is similar to [3, Proposition 1.1], we include it here for com-
pleteness. Let u1, u2 ∈ X� be two solutions of (3.1) and consider ut := (1− t)u1 + tu2 for
any t ∈ (0, 1). By the convexity of 1 − √

1 − |x |2, we have

I�,�(ut ) ≤ (1 − t)
∫

�

(
1 −

√
1 − |∇u1|2

)
dx + t

∫
�

(
1 −

√
1 − |∇u2|2

)
dx

− (1 − t)〈��, u1〉X� − t〈��, u2〉X�

= (1 − t)I�,�(u1) + t I�,�(u2) = I�,�(u1),

(3.2)

where we used I�,�(u1) = I�,�(u2) = min I�,�. By the minimality of I�,�(u1), we have

I (ut ) = I (u1), and so the equality must hold in (3.2). Now, being x �→ 1−√
1 − |x |2 strictly

convex, we have ∇u1 = ∇u2 a.e. in �. Since u1 = u2 on ∂�, u1 − u2 can be extended to a
Lipschitz function on RN that vanishes in RN \ � (cf. [3]). Thus, being ∇(u1 − u2) = 0 a.e.
in �, we have u1 = u2 and the proof is concluded. ��
Remark 3.2 Concerning existence of a minimizer for (3.1), we observe that in the case under
consideration � = ∑n

k=1 akδxk , it is immediate to see that for every � ⊂ R
N \ {x1, . . . , xn},

u�|� minimizes I� over C(uρ,�), wherewe recall that u� denotes the uniqueminimizer of I�
in all ofRN (cf. Proposition 2.3). Indeed, let v ∈ C(uρ,�) and denoteψ := v−uρ ∈ C(0,�)

and ψ̃ Lipschitz continuation of ψ that vanishes outside of �. Then uρ + ψ̃ ∈ X and the
minimality of u� yields

I (u� + ψ̃) =
∫

�

(
1 −

√
1 − |∇(u� + ψ̃)|2

)
dx +

∫
RN \�

(
1 −

√
1 − |∇u�|2

)
dx

−
n∑

k=1

aku�(xk)

≥ I (u�) =
∫
RN

(
1 −

√
1 − |∇u�|2

)
dx −

n∑
j=1

aku�(xk) .

Hence, ∫
�

(
1 −

√
1 − |∇(u�|� + ψ)|2

)
dx ≥

∫
�

(
1 −

√
1 − |∇u�|�|2

)
dx

or equivalently

I�(v) = I�(u�|� + ψ) ≥ I�(u�|�),
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which proves the claim by the arbitrariness of v ∈ C(u�,�).

Definition 3.3 Let �1, �2 ∈ X ∗
�. We say that �1 ≤ �2 if 〈�1, v〉X� ≤ 〈�2, v〉X� for all

v ∈ X� with v ≥ 0.

Lemma 3.4 Let �1, �2 ∈ X ∗
�, ϕ1, ϕ2 : ∂� → R be two bounded functions, u1 ∈ C(ϕ1,�)

be the minimizer of I�,�1 , and u2 ∈ C(ϕ2,�) be the minimizer of I�,�2 . If �2 ≤ �1, then

u2(x) ≤ u1(x) + sup
∂�

(ϕ2 − ϕ1) for all x ∈ �.

Proof Throughout this proof, we use the following simplified notation

I1 := I�,�1 , I2 := I�,�2 , 〈·, ·〉 := 〈·, ·〉X�, Q(u) :=
∫

�

(1 −
√
1 − |∇u|2)dx .

Let α := sup∂�(ϕ2 −ϕ1) and ũ1 := u1 +α. We claim that ũ1 minimizes I1 in C(ϕ1 +α,�).
Indeed, since u1 minimizes I1 in C(ϕ1,�), for all u ∈ C(ϕ1,�) we have

I1(ũ1) = Q(u1) − 〈�1, u1〉 − 〈�1, α〉 ≤ I1(u) − 〈�1, α〉 = I1(u + α).

Since C(ϕ1 + α,�) = C(ϕ1,�) + α, the claim is proved.
Now, suppose by contradiction that the set�+ := {x ∈ � : u2(x) > ũ1(x)} is non-empty.

Let �− := � \ �+,

Q+(u) :=
∫

�+
(1 −

√
1 − |∇u|2)dx, Q−(u) :=

∫
�−

(1 −
√
1 − |∇u|2)dx ,

U := max{u2, ũ1} =
{
ũ1 in �−

u2 in �+,
and V := min{u2, ũ1} =

{
u2 in �−

ũ1 in �+.

Weobserve that, by continuity, u2 = ũ1 on ∂�+. Hence, by definition ofα,U ∈ C(ϕ1+α,�)

and V ∈ C(ϕ2,�). Furthermore, the following relations hold in the whole of �:

u2 − V = U − ũ1 ≥ 0.

Then, by �2 ≤ �1, we obtain

I1(U ) = Q(U ) − 〈�1,U − ũ1〉 − 〈�1, ũ1〉
≤ Q(U ) − 〈�2,U − ũ1〉 − 〈�1, ũ1〉
= Q+(u2) + Q−(ũ1) − 〈�2,U − ũ1〉 − 〈�1, ũ1〉
= I1(ũ1) − Q+(ũ1) + Q+(u2) − 〈�2,U − ũ1〉
= I1(ũ1) + I2(u2) − Q−(u2) + 〈�2, u2〉 − Q+(ũ1) − 〈�2,U − ũ1〉
= I1(ũ1) + I2(u2) − Q(V ) + 〈�2, V 〉
= I1(ũ1) + I2(u2) − I2(V )

< I1(ũ1),

where in the last step we used the strict minimality of I2(u2) over C(ϕ2,�) (see Lemma 3.1).
This contradicts the fact that ũ1 minimizes I1 in C(ϕ1 + α,�) and concludes the proof. ��
Theorem 3.5 If u� is the unique minimizer of problem (3.1), then for every k = 1, . . . , n one
has

(i) For every x ∈ R
N with |x | = 1, there exists lim

h→0+
u�(hx + xk) − u�(xk)

h
= ±1;
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(ii) xk is a relative strict minimizer (resp. maximizer) of u� if ak < 0 (resp. ak > 0).

Proof (i) For every k = 1, . . . , n, fix Rk > 0 such that BRk (xk)∩{x1, . . . , xn} = {xk}, where
BR(x) is an open ball of radius R centered at x . Now, define u�,k(x) := u�(x + xk)−u�(xk)
for every x ∈ BRk (0). Since ∇u�,k(x) = ∇u�(x + xk) and x ∈ BRk (xk) \ {xk} iff x − xk ∈
BRk (0) \ {0}, by Remark 3.2 we obtain that for every � ⊂ BRk (0) \ {0}, u�,k |� minimizes
the functional I� : C(u�,k |∂�, �̄) → R defined by

I�(u) :=
∫

�

(
1 −

√
1 − |∇u|2

)
dx .

Hence, the graph of u�,k |BRk (0) is an area maximizing hypersurface in the Minkowski
space having an isolated singularity at 0, in the sense of [12, Definitions 0.2 and 1.1]. By
[12, Theorem 1.5], we can conclude that 0 is a light-cone-like singularity in the sense of [12,
Definition 1.4]. This implies that, for every x ∈ BRk/t (0) with |x | = 1,

lim
h→0+

u�,k(hx)

h
exists and

∣∣∣∣ limh→0+
u�,k(hx)

h

∣∣∣∣ = 1.

Since u�,k(0) = 0, this means that for every direction x , there exists one-sided directional
derivative of u�,k along x at 0 and its absolute value is 1, that is,

lim
h→0+

u�,k(hx + 0) − u�,k(0)

h
exists and

∣∣∣∣ limh→0+
u�,k(hx + 0) − u�,k(0)

h

∣∣∣∣ = 1,

which concludes the proof of (i).
(ii) Since 0 is a light-cone-like singularity of u�,k |BRk (0), two cases may occur (cf. [12,

Definition 1.4 and Lemma 1.9]) : either

u�,k > 0 in BR(0)\ {0}
or

u�,k < 0 in BR(0)\ {0}
for some 0 < R < Rk . As a consequence, either xk is a relative strict minimizer of u� or xk
is a relative strict maximizer of u�.

Now, in order to detect which situation occurs depending on the sign of ak , we use the
comparison principle proved in Lemma 3.4. If ak < 0, we set � := BR/2(xk), �1 := 0,
ϕ1 := 0, �2 := akδxk , and ϕ2 := u�|∂BR/2(xk ). Hence, u1 = 0, u2 = u�|BR/2(xk ), and
�2 ≤ �1. Then, by Lemma 3.4

sup
BR/2(xk )

u� ≤ sup
∂BR/2(xk )

u�. (3.3)

Suppose by contradiction that xk is a relative strict maximizer of u� in BR(xk), then

u�(xk) = sup
BR/2(xk )

u� > max
∂BR/2(xk )

u�,

which contradicts (3.3). Thus, xk is a relative strictminimizer ofu�. Analogously, it is possible
to prove that when ak > 0, xk is a relative strict maximizer of u�. ��

In what follows, we give an explicit quantitative sufficient condition on the charge values
ak’s and on the charge positions xk’s for u� to be a classical solution of

− div

(
∇u√

1 − |∇u|2
)

= 0 (3.4)
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in some subset of RN \ {x1, . . . , xn}. As mentioned in Introduction, our results complement
the qualitative ones contained in [4] (see Theorem 2.4 above), stating that if the charges are
sufficiently small in absolute value or far away from each other, then the minimizer solves
the problem.

First, we prove the following lemma.

Lemma 3.6 Let N ≥ 3. There exists a constant C = C(N ) > 0 such that

‖∇u‖2L2(RN )
≥ C‖u‖NL∞(RN )

, (3.5)

for all u ∈ X . The best constant

C̄ := inf
u∈X\{0}

‖∇u‖2
L2(RN )

‖u‖N
L∞(RN )

is achieved by a radial and radially decreasing function.

Proof For all u ∈ X \ {0}, we define the ratio

R(u) :=
‖∇u‖2

L2(RN )

‖u‖N
L∞(RN )

and we observe that for any t > 0 it is invariant under the transformation φt : X → X , with
φt (v) := tv(·/t) for all v ∈ X .

Furthermore, fix u ∈ X \ {0} and denote by u� the symmetric decreasing rearrangement
of |u| (see, e.g., [18, Chapter 3]). Then, ‖u‖L∞(RN ) = ‖u�‖L∞(RN ) and ‖∇u‖L2(RN ) ≥
‖∇u�‖L2(RN ) by the Polya–Szegő inequality. Hence,R(u) ≥ R(u�). Therefore, if we denote
by X rad− the set of X -functions which are radial and radially decreasing, then

C̄ = inf
u∈X\{0}R(u) = inf

u∈X rad− \{0}
R(u).

Finally, we prove the existence of aminimizer ofR. Let (un) ⊂ X rad− \{0} be aminimizing
sequence. Without loss of generality, we may assume that un(0) = ‖un‖L∞(RN ) = 1 for all
n ∈ N, otherwise we transform it by an appropriate φt . Then, ‖∇un‖2L2(RN )

→ C̄ , and
in particular, (un) is bounded in X . Hence, up to a subsequence, un⇀ū in X and un → ū
uniformly on compact sets ofRN , by Lemma 2.1. In particular, ū ∈ X rad− , 1 = un(0) → ū(0),
and so ‖ū‖L∞(RN ) = 1. Therefore, the weak lower semicontinuity of the norm yields

R(ū) =
∫
RN

|∇ū|2dx ≤ lim inf
n→∞

∫
RN

|∇un |2dx = inf
u∈X\{0}R(u),

and so ū is a minimizer. ��
Remark 3.7 The exponent N appearing in the right-hand side of (3.5) naturally arises from
the fact that R is invariant under transformations φt .

Lemma 3.8 The best constant for inequality (3.5) is given by

C̄ = 2

N

(
N − 2

N − 1

)N−1

ωN−1. (3.6)
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Proof In order to find the explicit value of C̄ , we will build by hands a minimizer of R.
Step 1: Theminimizer can be found in a smaller function space.Wefirst observe that if u ∈

X , then λu ∈ X if and only if 0 < λ ≤ ‖∇u‖−1
L∞(RN )

.Moreover, for all λ ∈ (0, ‖∇u‖−1
L∞(RN )

]

R(λu) = λ2−NR(u) ≥ 1

‖∇u‖2−N
L∞(RN )

R(u) = R
(

u

‖∇u‖L∞(RN )

)
.

Then, set

X̃ := {u ∈ X rad− : u ≥ 0 and esssup |u′| = esssup u = 1},
where with abuse of notation we have written u(r) := u(x) for r = |x |. Together with
Lemma 3.6, we have

C̄ = inf
u∈X̃\{0}

R(u).

Step 2: The minimizer has non-decreasing first derivative. Let ū ∈ X̃ be any minimizer of
R and consider any two (measurable) sets S1, S2 ⊂ (0,∞)of positiveLebesguemeasure such
that sup S1 < inf S2. For a contradiction, assume that ū′ ≤ B − δ on S2 and 0 ≥ ū′ ≥ B + δ

on S1 for some B ∈ [−1, 0) and δ ∈ (0,−B). Note that by making sets S1, S2 smaller
if necessary (still of positive measure) we can assume that dist(S1, S2) ≥ ε and S1 ∪ S2
is bounded. Since S1 and S2 have positive measure, it is standard to see that there exists a
translation of S1, denoted by S1 + k for some k ≥ ε, such that M2 := (S1 + k) ∩ S2 has
positive measure. Denote M1 := M2 − k and note that M1 ⊂ S1. Of course, M1 and M2 are
measurable, with positive measure.

Define a new function

w′(r) :=

⎧⎪⎨
⎪⎩
ū′(r + k) r ∈ M1

ū′(r − k) r ∈ M2

ū′(r) otherwise ,

that is, we exchange the values of ū′ on sets M1 and M2. Note that w′ ∈ L2((0,∞)) and it
is the derivative of the function w(r) = 1+ ∫ r

0 w′(s) ds, which is decreasing by Lemma 3.6,
belongs to L2((0,∞)), and has w(0) = 1. Observe that w ≡ ū outside of the convex hull of
S1 ∪ S2. Then,

‖∇ū‖2L2(RN )
− ‖∇w‖2L2(RN )

=
∫ ∞

0
|ū′|2r N−1 dr −

∫ ∞

0
|w′|2r N−1 dr

=
∫
M1

(|ū′(r)|2 − |ū′(r + k)|2) r N−1 dr +
∫
M2

(|ū′(r)|2 − |ū′(r − k)|2) r N−1 dr

=
∫
M1

(|ū′(r + k)|2 − |ū′(r)|2) [(r + k)N−1 − r N−1
]
dr > 0 ,

a contradiction to ū being aminimizer. Note that we used that for r ∈ M1 one has r+k ∈ M2,
and consequently, since B < 0, |ū′(r + k)|2 ≥ (B − δ)2 > (B + δ)2 ≥ |ū′(r)|2. Moreover,
k ≥ ε > 0 and the strict inequality follows. By the arbitrariness of 0 < δ < −B, we obtain
that ū′ is a non-decreasing function.

Step 3: The minimizer is harmonic outside the set of points of -1 derivative. Denote
R := sup{r ∈ (0, 1) : ū′(r) = −1} and set R = 0 if ū′(r) > −1 for each r > 0. Fix any
ε > 0 and note that B := ū′(R + ε) > −1. Therefore, ū′(r) ≥ B > −1 on (R + ε,∞).
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In order to prove that at points r where ū′(r) �= −1, ū is harmonic, fix any smooth
ψ ∈ C1

c ((R + ε,∞)) and note that for sufficiently small (in absolute value) ξ , one has
(ū + ξψ)′ ≥ −1. Then, by the minimality of ū,

0 ≥
∫ ∞

0
|ū′|2r N−1 dr −

∫ ∞

0
|ū′ + ξψ ′|2r N−1 dr = −ξ

∫ ∞

0

(
2ū′ψ ′ + ξ |ψ ′|2) r N−1 dr .

Since |ξ | � 1 is arbitrarily small, positive or negative, we obtain

0 =
∫ ∞

0
ū′ψ ′r N−1 dr = −

∫ ∞

0

(
ū′r N−1

)′
ψ dr .

By the arbitrariness of ψ , this implies that (ū′r N−1)′ = 0 a.e. in (R + ε,∞), which in turn
gives that ū is harmonic in (R,∞), because ε > 0 is arbitrary.

Step 4: The explicit form of a minimizer. Altogether, we have proved that a minimizer ū
of R can be taken of the form

ū(r) =
{
1 − r if r ∈ (0, R),

c1r2−N + c2 if r ∈ [R,∞)

for suitable constants c1, c2 > 0 and R ≥ 0. Since limr→∞ ū(r) = 0, c2 = 0 and since
r2−N is unbounded at 0, we have R > 0, and clearly, R ≤ 1. Moreover, ū is continuous and
|ū′| ≤ 1, that is

c1 = RN−2(1 − R) and c1 ≤ RN−1

N − 2
.

Consequently, R ≥ N−2
N−1 . Now, we minimize ‖∇ū‖2

L2(RN )
as a function of R, or equivalently,

we minimize

E(R) :=
∫ +∞

0
ū′2(r)r N−1dr =

∫ R

0
r N−1dr +

∫ +∞

R
c21(N − 2)2r1−Ndr .

Using the bound on c1, we have

E ′(R) = RN−1 − c21(N − 2)2R1−N ≥ 0 , (3.7)

and therefore, E is a non-decreasing function. Thus, the minimum is attained at R̄ := N−2
N−1 ,

and since C̄ = E(R̄)ωN−1, we obtain the desired assertion. ��
We are now ready to prove the Theorem 1.2. Let � = ∑n

k=1 akδxk and

K+ := {k ∈ N : 1 ≤ k ≤ n and ak > 0},
K− := {k ∈ N : 1 ≤ k ≤ n and ak < 0}.

Proof of Theorem 1.2 Without loss of generality, assume j ∈ K+ and l ∈ K−. Let u± ∈
X \ {0} be the unique minimizers of

I±(u) :=
∫
RN

(
1 −

√
1 − |∇u|2

)
dx −

∑
k∈K±

aku(xk),

respectively. By Proposition 2.3

0 > I±(u±) ≥ 1

2
‖∇u±‖2L2(RN )

−
⎛
⎝ ∑

k∈K±
|ak |

⎞
⎠ ‖u±‖L∞(RN ), (3.8)
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where we have used the inequality 1
2 t ≤ 1 − √

1 − t for t ∈ [0, 1]. On the other hand, by
Lemma 3.6, we have

‖∇u±‖2L2(RN )
≥ C̄‖u±‖NL∞(RN )

.

Together with (3.8), this gives

‖u±‖L∞(RN ) ≤
⎛
⎝ 2

C̄

∑
k∈K±

|ak |
⎞
⎠

1
N−1

(3.9)

and in particular,

± u±(x j ) = |u±(x j )| ≤
⎛
⎝ 2

C̄

∑
k∈K±

|ak |
⎞
⎠

1
N−1

for all j ∈ {1, . . . n}, (3.10)

since u+ ≥ 0 and u− ≤ 0 in all of RN , by the comparison principle [4, Lemma 2.12]. By
the same principle, we also know that

u−(x) ≤ u�(x) ≤ u+(x) for all x ∈ R
N .

Hence, by (3.10), (1.9), and (3.6)

u�(x j ) − u�(xl) ≤ u+(x j ) − u−(xl)

≤
⎛
⎝ 2

C̄

∑
k∈K+

|ak |
⎞
⎠

1
N−1

+
⎛
⎝ 2

C̄

∑
k∈K−

|ak |
⎞
⎠

1
N−1

< min
h,i∈{1,...,n}

h �=i

|xh − xi | ≤ |x j − xl |.

(3.11)

By Theorem 2.4, either u� is smooth on Int(x j xl) or

u�(t xl + (1 − t)x j ) = tu�(xl) + (1 − t)u�(x j ) for all t ∈ (0, 1). (3.12)

For a contradiction, assume (3.12). Then, Theorem 3.5 yields that x j is a strict relative
maximizer and

lim
t→0+

u�(t(xl − x j ) + x j ) − u�(x j )

t |xl − x j | = −1.

By (3.12), this gives immediately

u�(xl) − u�(x j )

|xl − x j | = −1. (3.13)

Whence, together with (3.11), we have

−|xl − x j | < u�(xl) − u�(x j ) = −|xl − x j |,
a contradiction. We can now repeat the same argument for all the couples of point charges
and conclude the proof. ��
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Remark 3.9 By (3.11), it is apparent that under the weaker assumption

(
N

ωN−1

) 1
N−1 N − 1

N − 2

⎡
⎢⎣
⎛
⎝ ∑

k∈K+
ak

⎞
⎠

1
N−1

+
⎛
⎝ ∑

k∈K−
|ak |

⎞
⎠

1
N−1

⎤
⎥⎦ < |x j − xl |,

we get the result (i.e., u� is a classical solution) only along the line segment Int(x j xl).
Furthermore, it is possible to refine (3.9), and consequently the sufficient condition (1.9),

by replacing (3.5) with the following inequality∫
RN

(
1 −

√
1 − |∇u|2

)
dx ≥ C̃‖u‖NL∞(RN )

for all u ∈ X (3.14)

and for some C̃ = C̃(N ) ≥ C̄
2 . Indeed, suppose we have already proved (3.14). Starting as

in the proof of Theorem 1.2, we have

0 > I±(u±) ≥
∫
RN

(
1 −

√
1 − ‖∇u±‖2

)
dx −

⎛
⎝ ∑

k∈K±
|ak |

⎞
⎠ ‖u±‖L∞(RN )

that, combined with (3.14), gives

‖u±‖L∞(RN ) ≤
⎛
⎝ 1

C̃

∑
k∈K±

|ak |
⎞
⎠

1
N−1

.

Hence, it is enough to require

C̃− 1
N−1

⎡
⎢⎣
⎛
⎝ ∑

k∈K+
ak

⎞
⎠

1
N−1

+
⎛
⎝ ∑

k∈K−
|ak |

⎞
⎠

1
N−1

⎤
⎥⎦ < |x j − xl | (3.15)

(which is a weaker assumption than (1.9), since C̃− 1
N−1 ≤ (C̄/2)−

1
N−1 ) to conclude the

statement of Theorem 1.2. As in Lemma 3.6 (see also [5]), we can show that C̃ is attained
by the unique weak solution ũ of the problem⎧⎨

⎩−div

(
∇u√

1−|∇u|2

)
= aδ0 in R

N ,

lim|x |→∞ u(x) = 0

with a := A(N )1−N and

A(N ) := ω
− 1

N−1
N−1

∫ +∞

0

ds√
s2(N−1) + 1

, (3.16)

cf. [4, Theorem 1.4]. Such ũ is radial and radially decreasing, and the previous problem in
radial coordinates reads as⎧⎨

⎩
(
r N−1 u′√

1−(u′)2

)′
= 0 in (0,∞),

u(0) = 1, limr→∞ u(r) = 0,
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where as usual we have written u(r) := u(x) for r = |x |. Therefore,

ũ(r) =
∫ +∞

r

a/ωN−1√
s2(N−1) + (a/ωN−1)2

ds,

see below for a similar argument. Hence,

C̃ = ωN−1

∫ ∞

0
r N−1

(
1 −

√
1 − (ũ′(r))2

)
dr

= ωN−1

∫ ∞

0
r N−1

(
1 − r N−1

√
r2(N−1) + 1

)
dr

(∫ ∞

0

1√
r2(N−1) + 1

dr

)N
.

(3.17)

We can numerically check that, for example when N = 3,

C̄ = ω2

6
≤ 2C̃ ≈ 2 · 0, 097ω2.

To end this section, we consider the case of two point charges of different signs, namely

� := a1δx1 + a2δx2 , (3.18)

with a1 · a2 < 0. In this case, we can give a more precise sufficient condition.

Proposition 3.10 Let � be as in (3.18). If a1 · a2 < 0 and(
|a1| 1

N−1 + |a2| 1
N−1

)
A(N ) < |x1 − x2|,

where A(N ) is defined in (3.16), then u� ∈ C∞(RN \ {x1, x2}) ∩ C(RN ), it is a classical
solution of (3.4) and it is strictly spacelike in RN \ {x1, x2}.

Proof It is standard to prove that for k = 1, 2 the unique solution ũk of

− div

(
∇u√

1 − |∇u|2
)

= akδxk in R
N , (3.19)

with lim|x |→∞ u = 0, is radial about xk and satisfies

r N−1ũ′
k(r)√

1 − ũ′
k(r)

2
= C in R

N \ {xk} for some C ∈ R, (3.20)

where with abuse of notation ũk(r) = ũk(|x − xk |) and ′ denotes the derivation with respect
to r := |x−xk |. In particular, by (3.20), ũ′

k never changes sign, and therefore, ũk is monotone
in r . Since ũk vanishes at infinity, by (3.20) we obtain

−Cũk(0) = C

(
lim

r→+∞ ũk(r) − ũk(0)

)
= C

∫ +∞

0
ũ′
k(r)dr

=
∫ +∞

0

r N−1ũ′
k(r)

2√
1 − ũ′

k(r)
2
dr = ak

ωN−1
ũk(0).
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Since ũk is monotone in r , ak �= 0, and limr→∞ ũk = 0, we have that ũk(0) �= 0, whence
C = −ak/ωN−1. Furthermore, by solving for ũ′

k in (3.20) and integrating we have

ũk(r) =
∫ +∞

r

ak/ωN−1√
s2(N−1) + (ak/ωN−1)2

ds for k = 1, 2,

and in particular,

ũk(0) = sign(ak)|ak | 1
N−1 A(N ) for k = 1, 2. (3.21)

Since a1 > 0 > a2, a2δx2 ≤ � ≤ a1δx1 (cf. [4, Definition 2.11]). By Comparison Lemma
2.12 of [4], we know that

ũ2(x) ≤ u�(x) ≤ ũ1(x) for all x ∈ R
N .

The conclusion follows exactly as in Theorem 1.2. ��

4 Approximating problem

In this section, we study some qualitative properties of the approximating solutions um of
problem (1.10). In particular, we focus on the regularity of um in Proposition 1.3 and on
their local behavior near the singularities xk’s, proving Theorem 1.4. From these results, it is
apparent that um’s behavior resembles the behavior of the minimizer u� that we approximate
(see also Introduction for more comments).

Proof of Proposition 1.3 Let us denote

A(p) :=
m∑

h=1

αh |p|2h−2 p,

ai j (p) := ∂Ai

∂ p j
=

m∑
h=1

αh

[
(2h − 2)|p|2h−4 pi p j + |p|2h−2δi j

]
,

F(t) :=
m∑

h=1

αht
2h−2

for every p ∈ R
N and t ≥ 0, where δi j is the Kronecker delta. Then, by straightforward

calculations we have for all p, ξ ∈ R
N

N∑
i, j=1

ai j (p)ξiξ j =
(

m∑
h=1

αh |p|2h−2

)
|ξ |2 + (p · ξ)2

m∑
h=1

αh(2h − 2)|p|2h−4 ≥ F(|p|)|ξ |2,

|ai j (p)| ≤
m∑

h=1

αh |p|2h−2 +
m∑

h=1

αh(2h − 2)|p|2h−2 ≤ (2m − 1)F(|p|),

|A(p)| =
m∑

h=1

αh |p|2h−2|p| = |p|F(|p|).

Therefore, the operator −∑m
h=1 αh�2h and the function F satisfy the hypotheses of [19,

Lemma 1] with � = (2m − 1). To verify the last assumption in [19, Lemma 1], let um
be the solution of (1.10). Since 2m > max{N , 2∗}, one has X2m ↪→ C0,βm

0 (RN ), and in
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particular, um ∈ X2m is bounded. Let B4R be any ball of radius 4R, such that xk /∈ B4R for
any k = 1, · · · , n. Then um satisfies

−div

(
m∑

h=1

αh |∇um |2h−2∇um

)
= 0 in B4R in the weak sense,

and since um ∈ X2m , ∫
B4R

F (|∇um |) (1 + |∇um |)2 dx < ∞.

Therefore, by [19, Lemma 1], um ∈ C1,β(BR) for some β ∈ (0, 1), and BR has the same
center as B4R . We consider now the linear Dirichlet problem⎧⎪⎨

⎪⎩
Lmu := − div

(
m∑

h=1

αh |∇um |2h−2∇u

)
= 0 in BR,

u = um on ∂BR .

(4.1)

Clearly, um is a weak solution of (4.1). The boundary datum um is continuous on ∂BR , and the
operator Lm is strictly elliptic in BR and has coefficients inC0,β(BR). Hence, by [15, Theorem
6.13], (4.1) has a unique solution in C(B̄R) ∩ C2,β(BR), whence um ∈ C(B̄R) ∩ C2,β(BR).
We consider again (4.1). Now we know that the coefficients of Lm are of class C1,β(BR) and
that um is a C2-solution of the equation in (4.1). By [15, Theorem 6.17], um ∈ C3,β(BR). By
a bootstrap argument, we obtain um ∈ C∞(BR). By the arbitrariness of R and of the center
of the ball BR , um ∈ C∞(RN \ {x1, . . . , xn}). ��
Remark 4.1 The presence of the Laplacian in the operators sum

∑m
h=1 αh�2h plays an essen-

tial role in the proof of the previous result. Indeed, we observe that, among the hypotheses
on F , [19, Lemma 1] requires F(t) ≥ ε > 0 for all t ≥ 0, which is satisfied with ε = α1

thanks to the presence of the Laplacian.

Next, we study the behavior of the solution um of (1.10) and of its gradient, near the point
charges xk’s.

Proof of Theorem 1.4 For any k = 1, . . . , n, fix Rk > 0 so small that BRk (xk)∩{x1, . . . , xn} =
{xk}. Then, um solves {

−∑m
h=1 αh�2hu = akδxk in BRk (xk),

u = um on ∂BRk (xk)
(4.2)

for all k = 1, . . . , n. We split the proof into six steps.
Step 1: Translation. For all ϕ ∈ C∞

c (BRk (xk))

m∑
h=1

∫
BRk (xk )

αh |∇um |2h−2∇um · ∇ϕdx = akϕ(xk). (4.3)

So, if we define um,k(x) := um(x+xk)−um(xk) and ϕk(x) := ϕ(x+xk) for all x ∈ BRk (0),
we get um,k ∈ C∞(BRk (0) \ {0}), ϕk ∈ C∞

c (BRk (0)) and

m∑
h=1

∫
BRk (0)

αh |∇um,k |2h−2∇um,k · ∇ϕkdx = akϕk(0). (4.4)
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Hence, by the arbitrariness of ϕ ∈ C∞
c (BRk (xk)), um,k solves weakly{

−∑m
h=1 αh�2hu = akδ0 in BRk (0),

u = um,k on ∂BRk (0).
(4.5)

Of course, we have um,k(0) = 0.
Step 2: Potential estimates on um,k . Consider the operator

−
m∑

h=1

αh�2hu = − div

(
g(|∇u|)
|∇u| ∇u

)
,

with g(t) := ∑m
h=1 αht2h−1 for all t ≥ 0, and note that

1 ≤ g′(t)t
g(t)

≤ 2m − 1 for all t > 0.

By [2, Theorem 1.2], for every x0 ∈ BRk (0) Lebesgue point of ∇um,k and for every ball
B2R(x0) ⊂ BRk (0), one has

g
(|∇um,k(x0)|

) ≤ cI|akδ0|1 (x0, 2R) + cg

(
−
∫
BR(x0)

|∇um,k |dx
)

, (4.6)

where c = c(N ,m) > 0 and

I
|akδ0|
1 (x0, R) :=

∫ R

0

|akδ0|(Bρ(x0))

ρN
dρ

is the truncated linear Riesz potential of the measure |akδ0|. Now, if 0 < |x0| < Rk − 2R

I
|akδ0|
1 (x0, 2R) =

∫ 2R

|x0|
|ak |
ρN

dρ ≤ |ak |
(N − 1)|x0|N−1 . (4.7)

If furthermore R > Rk/4, it follows for almost every x0 that

g

(
−
∫
BR(x0)

|∇um,k |dx
)

<

m∑
h=1

αh

(‖∇um,k‖L1(BR(x0))

|BRk/4|
)2h−1

≤
m∑

h=1

αh

(‖∇um,k‖L1(BRk (0))

|BRk/4|

)2h−1

=: C,

(4.8)

where C = C
(
‖∇um‖L1(BRk (xk )), N , g

)
> 0 is independent of the specific x0 and R con-

sidered. We note that if |x0| < Rk/4, then (4.6)–(4.8) hold with any R ∈ (Rk/4, 3Rk/8).
Therefore, by combining (4.8) with (4.6) and (4.7), we obtain for a.e. x ∈ BRk/4(0)

|∇um,k(x)| =
(
g
(|∇um,k(x)|

)
αm

) 1
2m−1

≤
{

c

αm |x |N−1

[
|ak |
N − 1

+ C

(
Rk

4

)N−1
]} 1

2m−1

=: C ′

|x | N−1
2m−1

,

(4.9)

with C ′ = C ′(‖∇um‖L1(BRk (xk )), Rk, |ak |, N ,m, g) > 0.
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Step 3: Scaling. Fix two integersm > max{N/2, 2∗/2} and k ∈ {1, . . . , n}. For any ε > 0

and x ∈ BRk/ε(0) \ {0}, define uε(x) := ε
N−2m
2m−1 um,k(εx). Then uε ∈ C∞(BRk/ε(0) \ {0}),

and ∇uε(x) = ε
N−1
2m−1 ∇um,k(εx) for all x ∈ BRk/ε(0) \ {0}. By substituting into (4.4), we

obtain for any ϕ ∈ C∞
c (BRk/ε(0))

m∑
h=1

∫
BRk /ε(0)

εN−2h+ (2m−N )(2h−1)
2m−1 αh |∇uε|2h−2∇uε · ∇ϕdx = akϕ(0),

or in other words uε solves weakly

−
m∑

h=1

εN−2h+ (2m−N )(2h−1)
2m−1 αh�2hu = akδ0 in BRk/ε(0). (4.10)

We note that the exponent of ε is positive for h < m and is zero for h = m. Also note that
uε(0) = 0.

Step 4: Limit as ε → 0. In terms of uε, (4.9) translates for a.e. x ∈ BRk/4ε(0) to a global
estimate

|∇uε(x)| ≤ C ′|x | 1−N
2m−1 . (4.11)

Since 2m > N , for fixed R̄ ∈ (0, Rk/4ε), (4.11) yields∫
BR̄(0)

|∇uε|2mdx ≤ 2m − 1

2m − N
C ′2mωN−1 R̄

2m−N
2m−1 =: C ′′, (4.12)

where C ′′ = C ′′(‖∇um‖L1(BRk (xk )), |ak |, N ,m, g, R̄) > 0 independent of ε.
Next, we obtain local estimates uniform in ε. Let A ⊂ BR̄(0)\{0} be a compact set. Then,

by (4.11) and since uε(0) = 0,

|uε(x)| ≤
∫ 1

0
|∇uε(t x)||x |dt ≤ C ′ 2m − 1

2m − N
R̄

2m−N
2m−1 for all x ∈ A. (4.13)

Furthermore, by Proposition 1.3 we have

|∇uε(x) − ∇uε(y)| = ε
N−1
2m−1 |∇um,k(εx) − ∇um,k(εy)|

≤ ε
N−1
2m−1+1−βm |x − y|1−βm ≤ |x − y|1−βm ,

for every x, y ∈ A and ε ≤ 1. Since, by (4.11), |∇uε| is also uniformly bounded in A, by the
Arzelà–Ascoli theorem, there exist a subsequence, still denoted by (uε), and a function ū ∈
C1(A) such that limε→0 ∇uε = ∇ū in the uniform topology on A. By choosing ū(0) = 0, we
obtain that uε → ū inC1(A). By (4.12) and the Fatou lemma, we have that ‖∇ū‖L2m (BR̄(0))

≤
(C ′′)1/(2m). Hence, for any ψ ∈ [L2m(BR̄(0))]N∣∣∣∣∣

∫
BR̄(0)

(|∇uε|2m−2∇uε − |∇ū|2m−2∇ū
)
ψ dx

∣∣∣∣∣
≤

∫
A

(∣∣|∇uε|2m−2∇uε − |∇ū|2m−2∇ū
∣∣) |ψ |dx + 2

(C ′)2m−1

R̄N−1
‖ |ψ | ‖L1(BR̄(0)\A).

For any δ > 0, we can take A such that ‖ |ψ | ‖L1(BR̄(0)\A) ≤ δ, and for sufficiently small
ε > 0 we have, from the uniform convergence of ∇uε on A, that∣∣∣∣∣

∫
BR̄(0)

(|∇uε|2m−2∇uε − |∇ū|2m−2∇ū
)
ψ dx

∣∣∣∣∣ ≤ Cδ
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for some C > 0 independent of ε. Since δ > 0 and ψ ∈ [L2m(BR̄(0))]N were arbitrary, we
have |∇uε|2m−2∇uε⇀|∇ū|2m−2∇ū in [L(2m)′(BR̄(0))]N . Recalling that uε solves weakly
(4.10), we have for any ϕ ∈ C∞

c (BR̄(0))

m∑
h=1

∫
BR̄(0)

εN−2h+ (2m−N )(2h−1)
2m−1 αh |∇uε|2h−2∇uε · ∇ϕdx = akϕ(0)

and by passing ε → 0 and using proved weak convergences, we obtain∫
BR̄(0)

αm |∇ū|2m−2∇ū · ∇ϕdx = akϕ(0) ,

or equivalently ū is a weak solution of

− αm�2mu = akδ0 in BR̄(0). (4.14)

Step 5: Behavior of ū and its gradient near 0. By (4.14), we know that ū is 2m-harmonic
in BR̄(0) \ {0} and ū(0) = 0. As in Step 2, [2, Theorem 1.2] with g(t) := αmt2m−1 yields
for a.e. x ∈ BR̄/4(0)

|∇ū(x)| ≤
⎧⎨
⎩ c

αm |x |N−1

⎡
⎣ |ak |

(N − 1)
+ αm

(
R̄

4

)N−1 (‖∇ū‖L1(BR̄(0))

|BR̄/4|

)2m−1
⎤
⎦
⎫⎬
⎭

1
2m−1

=: C0|x | 1−N
2m−1

|ū(x)| ≤ 2m − 1

2m − N
C0|x | 2m−N

2m−1 ,

where the second bound follows as in (4.13). Hence, the isotropy result [16, Remark 1.6]
(see also work by Serrin [22]) implies

lim
x→0

ū(x)

μ(x)
= γ and lim

x→0
|x | N−1

2m−1 ∇(ū − γμ) = 0, (4.15)

where γ := sign(ak)
( |ak |

αm

) 1
2m−1

, and μ(x) := κm(N )|x | 2m−N
2m−1 with κm(N ) :=

− 2m−1
2m−N (N |B1|)− 1

2m−1 is the fundamental solution of the −�2m .

Step 6: Behavior of um and its gradient near xk . Since |x | N−1
2m−1 |∇μ| = |κm | 2m−N

2m−1 , from
(4.15) follows

lim
x→0

|∇ū(x)||x | N−1
2m−1 = 2m − N

2m − 1
|γ κm |.

Furthermore, by Step 4 we know in particular that ∇uε → ∇ū pointwise in BR̄(0) \ {0}.
Hence,

lim
x→0

(
lim
ε→0

|∇uε(x)||x | N−1
2m−1

)
= lim

x→0
|∇ū(x)||x | N−1

2m−1 = 2m − N

2m − 1
|γ κm |

and by the definition of uε,

2m − N

2m − 1
|γ κm | = lim

x→0

(
lim
ε→0

ε
N−1
2m−1 |∇um,k(εx)||x | N−1

2m−1

)
= lim

y→0
|∇um,k(y)||y| N−1

2m−1 .

123



On the Born–Infeld equation for electrostatic fields with… 771

Consequently,

|∇um,k(x)| ∼ |γ κm |2m − N

2m − 1
|x | 1−N

2m−1 as x → 0,

which in turn implies (1.12) with K ′
m := |γ κm | 2m−N

2m−1 . Analogously, by Step 4 we also know
that uε → ū pointwise in BR̄(0) \ {0}. Therefore, by (4.15)

lim
x→0

(
lim
ε→0

uε(x)

γ κm |x | 2m−N
2m−1

)
= 1

which in terms of um,k gives

lim
x→0

um,k(x)

|x | 2m−N
2m−1

= γ κm

and proves (1.11) with Km := γ κm . In particular, if ak > 0, then Km · ak < 0, and xk is a
relative strict maximizer of um , while if ak < 0 it is a relative strict minimizer of um . ��
Remark 4.2 Observe that, since αm = (2m−3)!!

(2m−2)!! ,

lim
m→∞ |Km | = lim

m→∞
2m − 1

2m − N

( |ak |
N |B1|αm

) 1
2m−1 = 1.
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21. Mihăilescu,M.: Classification of isolated singularities for nonhomogeneous operators in divergence form.

J. Funct. Anal. 268(8), 2336–2355 (2015)
22. Serrin, J.: Singularities of solutions of nonlinear equations. Proc. Symp. App. Math 17, 68–88 (1965)
23. Szulkin, A.: Minimax principles for lower semicontinuous functions and applications to nonlinear bound-

ary value problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 3(2), 77–109 (1986)
24. Treu, G., Vornicescu, M.: On the equivalence of two variational problems. Calc. Var. Partial Diff. Equ.

11(3), 307–319 (2000)

Affiliations

Denis Bonheure1 · Francesca Colasuonno1 · Juraj Földes2

Denis Bonheure
denis.bonheure@ulb.ac.be

Juraj Földes
foldes@virginia.edu

1 Département de Mathématique, Université Libre de Bruxelles, Campus de la Plaine - CP214
boulevard du Triomphe - 1050, Bruxelles, Belgique

2 Department of Mathematics, University of Virginia, 141 Cabell Drive, Kerchof Hall,
Charlottesville, VA 22904, USA

123

http://orcid.org/0000-0003-2671-029X

	On the Born–Infeld equation for electrostatic fields  with a superposition of point charges
	Abstract
	1 Introduction
	2 Preliminaries
	3 Born–Infeld problem
	4 Approximating problem
	Acknowledgements
	References




