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Abstract
In this paper, we study the static Born—Infeld equation

V n
—div [ ———— | =Y @y, RV, lim u(x) =0,
Ji—vul?) &= Il o0

where N > 3,a; € Rforallk = 1,...,n, x; € RV are the positions of the point charges,
possibly non-symmetrically distributed, and 4y, is the Dirac delta distribution centered at xj.
For this problem, we give explicit quantitative sufficient conditions on a; and x to guarantee
that the minimizer of the energy functional associated with the problem solves the associated
Euler—Lagrange equation. Furthermore, we provide a more rigorous proof of some previous
results on the nature of the singularities of the minimizer at the points x;’s depending on the
sign of charges ay’s. For every m € N, we also consider the approximated problem

m n
—ZahAzhu :ZakSXk inRN, Iim u(x)=0
h=1 k=1

[x|—o00

where the differential operator is replaced by its Taylor expansion of order 2m (see (2.1)).
It is known that each of these problems has a unique solution. We study the regularity of
the approximating solution, the nature of its singularities, and the asymptotic behavior of the
solution and of its gradient near the singularities.
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1 Introduction

The classical electrostatic Maxwell equations in the vacuum lead to the following relations
for the electric field:
E = —Vu, —Au = p, (1.1)

where o is the charge density, u the electric potential, and E the electric field. However, in
physically relevant cases when p is only an L!-function, or in the case of point charges, the
model violates the principle of finiteness of the energy; see [13,14] for a counterexample.
In [6], Born and Infeld proposed a nonlinear theory of electromagnetism by modifying
Maxwell’s equation mimicking Einstein’s special relativity. They introduced a parameter b >
1, whose inverse is proportional to the radius of the electron, and replaced the Maxwellian
Lagrangian density £y := %|E|2 by

2 IE|?
;CB] =b 1 - 1_7 for|E|§b,

so that Ly is a first-order approximation of Lp; as |E|/b — 0. In the presence of a charge
density p, this new Lagrangian leads, at least formally, to replace Poisson’s equation in (1.1)
by the nonlinear equation

. Vu
—div| —1] =0,
(,/ 1 — |Vu|2/b2)
which agrees with the finiteness of the energy even when g is a point charge or an L '-density.
After scaling u/b and o/b, we get

. Vu
— Qu = —div (m) = Q. (1.2)

Itis interesting to notice that the nonlinear operator in (1.2) has also a geometric interpretation
(see [3,12]). Indeed, Q is the so-called mean curvature operator in the Lorentz—Minkowski
space and (1.2) can be seen as the equation for hypersurfaces in Minkowski space with
prescribed mean curvature p. In particular, when o is a superposition of point charges,
(1.2) is the equation for area maximizing hypersurfaces in Minkowski space having isolated
singularities (cf. [12]). Since the density p is not smooth, we look for weak solutions in the
space

X =D (RN) n {u e 0! (RN) N Valloo < 1} (1.3)

1/2
||u||:=(/ |Vu|2dx) .
RN

Definition 1.1 A weak solution of (1.2) coupled with the decay condition

endowed with the norm

Iim u(x) =0
|x|—>o00
is a function u € X such that
Vu - Vo
vy x = (o,v) forallveX.
N /1 —|Vul?
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We recall that DV2(RY) .= C (RN)”.”, that is, D12(RV) is the closure of the space of
smooth compactly supported functions with respect to the norm || - |. Mathematically, (1.2)
has a variational structure, since it can be (at least formally) seen as the Euler-Lagrange
equation of the energy functional I, : X — R defined by

Io(u) = / (1 ~J1- |Vu|2) dx — (o, u) forallu € X. (1.4)
RN

We also denote the dual space of X' by X* with respect to LZ(RY) inner product, and we write
(-, -) for the dual pairing between X* and X It is known that I, has a unique minimizer u,
forall o € X" (cf. [4] and Sect. 2). However, due to the lack of regularity of /, on functions
u such that [Vu(x)| = 1 for some points x € R¥, the justification that minimizers of (1.4)
are also weak solutions of (1.2) presents many difficulties, which will be partly addressed
in the present paper. We remark that some variational problems with a gradient constraint
present similar difficulties (see, e.g., [7-9,24]). In those papers, the main idea is to remove
the constraint on the gradient by defining an appropriate obstacle problem. We believe that
some ideas from those papers could be useful in our context, but we do not push further those
ideas here.

To address the lack of smoothness, Bonheure et al. [4] used classical methods from non-
smooth analysis and weakened the definition of critical point of /,, using the notion critical
points in the weak sense (see [23]). Also, they proved the existence and uniqueness of a
critical point of /, in the weak sense and showed that the PDE is weakly satisfied in the sense
of Definition 1.1 for radially symmetric or locally bounded o’s.

Fortunato et al. [14] studied (1.2) in R3 and its second-order approximation (by taking
the Taylor expansion of the Lagrangian density). In the same spirit, in [4,17] the authors
performed higher-order expansions of the Lagrangian density, so that, in the limit, the operator
Q can be formally seen as the series of 2i-Laplacians

— Qu= _ZahAZhl/h (1.5)

h=1

where we refer to Sect. 2 for the precise expression of the coefficients and A,u :=
div(|Vu|?~2Vu). This expansion allows to approximate Q with the operators sum

m
=Y (1.6)
h=1
and (1.2) with the quasilinear equations

m
—Z(thZhd):Q for m € N.
h=1

Each of such equations, complemented with the condition lim || o #(x) = 0, has a unique
solution u,,. In [17], respectively [4], it is further proved that the approximating solutions
uy,’s weakly converge to the minimizer u,, of (1.2) when p is a superposition of point charges,
respectively for any o € X*.

It is worth noting that X* contains Radon measures, and in particular, superpositions of
point charges and L'-densities, which are in turn dense in the space of Radon measures.
Due to these reasons, we will assume that p is a finite superposition of charges without any
symmetry conditions, that is, we consider
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— div ayby, inRY,
(v IWI2> kz ' (1.7)

Iim u(x) =0,
|x|]—o00

where N > 3 and §,, is the Dirac delta function centered at x;, ax € R and x; € RY for
k =1, ..., n. This situation is general enough to cover most of the phenomena, yet simple
enough that it can be analyzed explicitly. The energy functional associated with (1.7) has the

form
n
[(u) = / (1 -1 |w|2) dx = Y " au(x) forallu € X. (1.8)
RY k=1

Problem (1.7) has been first studied in [4,17], see also Sect. 2, where we report some recalls.

Our first goal is to provide a rigorous proof concerning the nature of the singularities x;’s
for the minimizer u, of I, depending on the sign of the charges ay’s (see [17] and Theorem
3.5). More precisely, in Theorem 3.5, we show that if the charge ay, is positive (resp. negative),
then the point charge x; is a relative strict maximizer (resp. minimizer) for u,. Our proof uses
geometric results proved by Ecker [12], and the comparison principle in bounded domains
proved in Lemma 3.4. This result is far from obvious, since u, is globally bounded, and in
particular, it does not diverge at x ; rather, Vu,, is discontinuous at the location of the charges.
Of course since the problem is not linear, it cannot be decomposed into several problems,
each with just one point charge. However, this is not the only obstacle; if one replaces our
curvature operator with Laplacian in one dimension, then the Green’s function for the charge
located at x; has the form |x — xi|, and in particular, it is bounded in the neighborhood of
xi. But, adding several Green’s functions one obtains that the solution is a piecewise linear
function, which might not have local extrema at xj. Although the singularity is of the same
nature as one for Laplacian in one dimension, it is crucial that the solution vanishes at infinity,
which introduces a non-local argument into the proofs.

We immediately show an application of these results in the question whether the minimizer
uy of (1.8) is a weak solution of (1.7). To our best knowledge, this problem has not been
completely solved yet. Some results in this direction can be found in [17], but the main
arguments in that paper need to be adjusted (see Discussion in [4, Sect. 4]). As far as we
know, the case of a generic g is still open. In [4,17], the authors proved that u, solves the
equation in (1.7), in RN \I', where I' := Uk#j Xxx; and X;x; denotes the line segment with
endpoints x; and x ;. Furthermore, it is proved in [4] that if the charges are sufficiently small
or far apart, u, solves the equation in RN \ {x1,...,x,}. In particular, in [17] it is showed
that if two point charges xi, x; have the same sign ay - a; > 0, then u,, solves the equation
also along the open line segment Int(X;x;).

The arguments on the literature are based on the fact that if the minimizer does not satisfy
the equation along the segment connecting x; and x;, then it must be affine, and since the
minimizer is bounded, then one obtains a contradiction. However, the argument is purely
qualitative and it does not yield an easily verifiable condition based only on the location
and strength of the charges. In this paper, we partly bridge this gap by proving a sufficient
quantitative condition on the charges and on their mutual distance to guarantee that the
minimizer u, solves (1.7) also along the line segments joining two charges of different signs.
Letus denote K4 := {k : ar > 0}and K_ := {k : ax < 0}, that s, set of indexes for positive
respectively negative charges. Our result reads then as follows.
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Theorem 1.2 [f

1
N-T N-T

1
N \V¥TN-—-1 .
( > N 2 Z ag + Z lag| <jl€m{11n |xj — x1,

WN — s
N-1 kek s kek o

(1.9
where wn—1 is the measure of the unit sphere in RN, then

g € CXMRY\ {x1, ..., x, ) NCRY)
and it is a classical solution of (3.4) in RN \ {x1, ..., x,}, with [Vu,| < 1.

Note that the occurrence of the sum of positive and negative charges is natural, since we
cannot rule out the situation when these charges are close to each other and they appear as
one point charge. The explicit form of the constant on the left-hand side of (1.9) is crucial
and observe that is bounded from below independently of N and the number of charges. This
allows for passing to the limit in the number of charges, and the formulation of the result is
left to the interested reader. We also give in Remark 3.9 a more precise way (although less
explicit) to calculate the constant on the left-hand side of (1.9) in the general case, and a yet
more optimal one if there are only rwo point charges of different signs in Proposition 3.10.

The proof of this theorem is based both on a new version of comparison principle
(Lemma 3.4) and on the explicit expression of the best constant C for the inequality

5 i
IVulGa gy = Cllul oo gn, forallu € X,

proved in Lemmas 3.6 and 3.8, which might be of independent interest. Note that this result
has a different flavor than the results for optimal constants for the embeddings since our
inequality is inhomogeneous and we have to crucially use that the Lipschitz constant of u is
bounded by one.

In Sect. 4, we first turn our attention to the approximating problems

m n
— ZahAZh” = Zaksxk in RV,
h=1 k=1

Iim u(x)=0
|x|—o00

(1.10)

for m > 1 and study the regularity of the solution u,,: by combining results of Lieberman
[19], a linearization, and a bootstrap argument, we prove that the solutions are regular away
from the points x;’s.

Proposition 1.3 Let2m > max{N, 2*},2* := 2N /(N —2), and u,, be the solution of (1.10).

Then u,, € Cg’ﬁ'” RMYNC®RN \ {x1, ..., x,)), where
0,Bm NY ._ 0, Bm NY . _
) (]R ) - =u ecC (]R )  Jim ) _o},

with B =1 — -

In comparison with full problem (1.7), there is an important difference—we do not have a
priori an estimate on |Vu/|, and therefore, the Holder estimate is not immediate. Note that 8,
converges to 1 asm — 00, in agreement with the fact that the solutions of (1.10) approximate
solutions of (1.7). On the other hand, the operator in (1.10) is well defined for any sufficiently
smooth function # and the smoothness of solutions can be expected away from x;’s.
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754 D.Bonheure et al.

We stress that in the proof of Proposition 1.3, we heavily use the fact that, in the operator
(1.6), also the Laplacian appears; see Remark 4.1 for further details. Moreover, we also prove
that u,, and Vu,, behave as the fundamental solution (and its gradient) of the 2m-Laplacian
near the singularities x;’s. Intuitively, we could say that the Laplacian, A», is responsible for
the regularity of the approximating solution u,, and the behavior at infinity, while the 2m-
Laplacian (the last one) dictates the local behavior of the solution u,, near the singularities
Xi’s, in the following sense.

Theorem 1.4 Let2m > max{N,2*}andk =1, ...,n. Then

lim M:Km 1.11)

2m—N
X—> Xk |.X _ xk | =1

for some K, = K, (ay, oy, N) € R such that K, - ar < 0, and

. Vi, (x)
lim % =K, (1.12)
X=Xk |x — xk|2m—l
with K, := 22':;:1;’ | K |. In particular, xi is a relative strict maximizer (resp. minimizer) of

Uy if ax > 0 (resp. ar < 0).

The same reasons as above make this result non-trivial. The operator is nonlinear; thus,
it is not obvious that the local behavior does not depend on the location of all charges as
it, for example, does for the Laplacian in one dimension. The asymptotic behavior is a fine
interplay between lowest and highest order differential operators in the expansion.

The proof of this theorem is rather technical and relies on a blow-up argument, combined
with Riesz potential estimates [2]. Such a usage of blow-up method is quite unusual since
the solution is bounded at the blow-up point and we need to rescale the problem in such a

way that we keep the boundedness of solution, but remove the lower-order terms.
m—N

The fact that the growth rate of u,, near the singularity xi is of the type |x — xi| ot ,
with exponent that goes to 1 as m goes to infinity, shows that the singularities x;’s of u,,
approach cone-like singularities for m large, which is coherent with the results found for u,,.
In particular, we note that blow-up rate (1.12) of | Vu,, | near the singularities and the fact that
lim;— 00 K,/n = 1 (cf. Remark 4.2) suggest that lim,, o |Vt (x)| & 1 as x — xg, which
is the same behavior as |Vu,| (see [17, Theorem 1.4]). Moreover, as an easy consequence
of (1.11), we get that the singularity x; is either a relative strict minimizer or a relative
strict maximizer depending on the sign of its coefficient a;. Altogether, this shows that the
approximating solutions u,,’s are actually behaving like the minimizer u, of (1.8), at least
qualitatively near the singularities.

Furthermore, it is worth stressing that problem (1.10) is governed by an inhomogeneous
operator that behaves like —A — A»,,, with m large. The interest in inhomogeneous operators
of the type sum of a p-Laplacian and a ¢g-Laplacian has recently significantly increased, as
shown by the long list of recent papers (see, for instance, [1,2,10,11,20,21] and the references
therein).

The paper is organized as follows. In Sect. 2, we collect definitions and known results for
problems (1.7) and (1.10) relevant to our proof. Section 3 contains our results concerning the
qualitative properties of the minimizer of original problem (1.7) and the sufficient conditions
to guarantee that the minimizer u, of I indeed solves (1.7); in particular, we prove therein
Theorem 1.2. Finally, Sect. 4 is devoted to the study of approximating problem (1.10) and
the qualitative analysis of the solution and its gradient, namely to the proofs of Proposition
1.3 and Theorem 1.4.
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2 Preliminaries

In this section, we summarize used notation and definitions as well as previous results needed
in the rest of the paper. We start with properties of functions belonging to the set X (see (1.3)).

Lemma 2.1 (Lemma 2.1 of [4]). The following properties hold:

i) X — WLPRN) forall p > 2%;
(i) X — L®@RN);
(iii) Ifu € X, limy| oo u(x) =0;
(iv) X is weakly closed;
v) If (uy) C X is bounded, up to a subsequence it converges weakly to a function u € X,
uniformly on compact sets.

Throughout the paper, Xy := {z : z = (I — 1)x +ty fort € [0, 1]} denotes the line
segment with endpoints x and y and Int(xy) the open segment.

Definition 2.2 Let u € C%1(), with  c RY. We say that
(1) u is weakly spacelike if |[Vu| < 1 a.e. in ;
(i) u is spacelike if [u(x) —u(y)| < |x —y|forall x, y € @, x # y, and the line segment
Xy C £;
(iii) wu is strictly spacelike if u € C' (), and |Vu| < 1in Q.

Proposition 2.3 (Proposition 2.3 of [4]). For any o0 € X*, there exists a unique u, € X that
minimizes 1, defined by (1.4). If furthermore ¢ # 0, then u, # 0 and 1,(u,) < O.

Theorem 2.4 (Theorem 1.6 and Lemma 4.1 of [4]). Let o0 = ZZZI aidy, and T' =
Uk#j Xkxj. The minimizer u, of the energy functional 1 given by (1.8) is a strong solu-
tion of

: \Y _ . N
—div <\/ﬁ) =0 inR \ F,

limy |00 u(x) = 0.
Furthermore,
(i) up € C*M@RN\T)NCRY);
(ii) u, is strictly spacelike in RN\ T;
(iii) for k # j, either u, is a classical solution on Int(XxX;), or

ug(txy + (I —10)xj) = tuy(xg) + (I = ugp(x;) forallt € (0, 1).

Theorem 2.5 (Corollary 3.2 of [17]). If ax-a; > O, thenu, is a classical solution on Int (XX ;)
provided that no other charges are located on the segment Xix;.

As mentioned in Introduction, in order to overcome the difficulty related to the non-
differentiability of /, we consider approximating problems. The idea is to approximate the
mean curvature operator Q [for the definition, see (1.5)] by a finite sum of 2A-Laplacians, by
using the Taylor expansion. We note that the operator Q is formally the Fréchet derivative of

the functional o
/ (1 —\/1—|W|2) dx:/ 3 2 Yuhdx, 2.1
RN RN =1 2h
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756 D. Bonheure et al.

where o := 1, ap, := gz:;g:: for h > 2, and
[k/2]—1
k=[] (k—2j) forallkeN.
j=0

The series in the right-hand side of (2.1) converges pointwise, although not uniformly, for

< _ — —di _ Vu_
all |Vu| < 1. Then, the operator —Qu div JIveP
2h-Laplacians (see (1.5)).

For every natural number m > 1, we define the space X»,, as the completion of C°(RY)
with respect to the norm

1ym1/2
lull 2y, = [/ |Vu|2dx+</ |Vu|2mdx) ] .
RN RN

Let o € A5, for some m > 1. We study the approximating problem

can be regarded as the series of

m
—ZO{hAQhM =p in RN,
h=1 (2.2)
lim u(x) =0
|x|—o00

and we denote by I, : X2, — R the energy functional associated with (2.2)

m
h 2h
Ln(u) = Z*/ |Vu|*"dx — (0, u) xy,,
= 2]’1 ]RN

where (-, -) x,, denotes the duality pairing between Xz"‘m and X»,,. The functional [, is of
class C! and is the mth-order approximation of /.

Definition 2.6 A weak solution of (2.2) is a function u,, € X»,, such that
m
Zah/ Vit |2 Vu,, Vodx = (o, V)x,, forallve C (]RN) .
RN
h=1

Clearly, a function is a weak solution of (2.2) if and only if it is a critical point of I,,.

Proposition 2.7 (Proposition 5.1 of [4]). Let o € Xz*mo for some my > 1. Then, for all
m > my, the functional I, : X, — R has one and only one critical point u,,. Furthermore,
U, minimizes I,.

Theorem 2.8 (Theorem 5.2 of [4]). Let ¢ € Xz*mo for some mg > 1. Then uy,—u, in Xy
for all m > mq and uniformly on compact sets.

3 Born-Infeld problem

In this section, we study the nature of the singularities of the minimizer of energy functional
(1.8) and sufficient conditions guaranteeing that the minimizer is a solution of (1.7) on
RN\ {x1, ..., x,}. To this aim, we isolate one singularity, and we investigate (1.7) on bounded
domains. We start with definitions and preliminary results.
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Let @ c RV be a bounded domain, ¢ : 92 — R a bounded function and oq € XY,
where X is the dual space of Xqo := {u € C%1(Q) : |Vu| < 1 a.e. in 2}. We consider the
variational problem

min_ g o (1), 3.1)
ueC(p,Q)
where
Ig.o(u) == / (1 —J1- |Vu|2) dx — (0. u)x, forallu € Xg
Q
and

Clp, Q) :={veXq : v=¢pondQ}.
Lemma 3.1 Problem (3.1) has at most one solution.

Proof Although the argument is similar to [3, Proposition 1.1], we include it here for com-
pleteness. Let uy, ur € Xq be two solutions of (3.1) and consider u; := (1 —t)uj + tu, for
any ¢ € (0, 1). By the convexity of 1 — /1 — |x|2, we have

o) < (=0 [ (1=VI=VuP)ax+1 [ (1 V1= VP ds
Q Q

— (I =1){oq, ut)xy — t{oQ, u2) x,
=1 =t)lg,oui)+1tlg o) = Ig o(u1),
where we used I ,(u1) = Iq o(u2) = min Ig ,. By the minimality of I ,(u1), we have
I(u;) = I(uy), and so the equality must hold in (3.2). Now, being x +— 1—+/1 — |x|? strictly
convex, we have Vuiu; = Vuy a.e. in Q2. Since u; = up on 92, u; — uo can be extended to a

Lipschitz function on RY that vanishes in RV \ Q (cf. [3]). Thus, being V(| — u2) = 0 a.e.
in 2, we have u; = u» and the proof is concluded. ]

(3.2)

Remark 3.2 Concerning existence of a minimizer for (3.1), we observe that in the case under
consideration o = 22:1 axdy,, it is immediate to see that for every Q C RN \{x1, ..., xn},
uy|o minimizes Ig over C(u,, 2), where we recall that u,, denotes the unique minimizer of I,
inall of RN (cf. Proposition 2.3). Indeed, letv € C(u,,, ©2) and denote ¢ :=v—u, € C(0, 2)
and 1/~/ Lipschitz continuation of v that vanishes outside of €. Then u, + 1]/ € X and the
minimality of u, yields

1(@—1—1})2/@(1—,/l—|V(ug+1/~/)|2)dx—i-%l-w\s2 (l—,/l —|Vug|2>dx

=Y aug(x)
k=1
> I(up) = /RN (1 —J1- IVMQ|2> dx = Y apug(xr) .

j=1

Hence,

/Q(l—\/l—W(uQIQ—i-lﬁ)Iz)dxz/g(l—,/l—Wquﬂz)dx

or equivalently

Io(W) = Ia(uple + ¥) = Io(ugla),
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758 D. Bonheure et al.

which proves the claim by the arbitrariness of v € C(u,, ).

Definition 3.3 Let 01, 02 € XJ. We say that o1 < 02 if (01, V) < (02,V)x, for all
v € Xq withv > 0.

Lemma3.4 Let 01, 02 € X3, @1, 92 : 3Q — R be two bounded functions, uy € C(p1, Q)
be the minimizer of Iq ,,, and uy € C(@2, 2) be the minimizer of I ,. If 02 < 01, then

u(x) < uy(x) +sup(gx — 1) forall x € 2.
aQ

Proof Throughout this proof, we use the following simplified notation
I i=1Iq,, h:=Iqg, ()= )ag Q) := / (1 —+/1—|Vu[*)dx.
Q
Leta := supyq(¢2 — 1) and i1 := u1 + . We claim that it} minimizes /1 in C(¢; +«, 2).
Indeed, since ©#; minimizes /1 in C(p1, Q2), for all u € C(¢1, 2) we have
I (1) = Qu1) — (o1, u1) — (o1, @) < I1(u) — {01, a) = I1(u + a).

Since C(¢1 + «, ) = C(¢1, 2) + «, the claim is proved.
Now, suppose by contradiction that the set Q™ := {x € Q : up(x) > it (x)}is non-empty.
Let Q7 :=Q\ QF,

ot (u) := /Q+(l — V1= |VulP)dx, 9 (u):= /Q_(l — 1= |Vu?)dx,

up in Q7
121 in Q+.

u; in Q-

+

U :=max{up, i1} =
tu. i} {uz in Q7,

and V :=minfuy, i} = [

We observe that, by continuity, u, = i1 on 9Q". Hence, by definition of o, U € C(¢ +a, )
and V € C(¢2, ). Furthermore, the following relations hold in the whole of €2:

ur—V=U-—1u;>0.
Then, by 02 < o1, we obtain

L(U) = QW) — {01, U — i) — (o1, 1)
< QW) — (02, U —u1) — (o1, 1)
= Q" (u2) + Q™ () — (02, U —it1) — (@1, 1)
= 11(1) — Q7 () + Q" (u2) — (02, U — ity)
= 11 (1) + L (u2) — Q (u2) + (02, u2) — Q" (it1) — (02. U — i)
=1 (1) + L(u2) — QV) + (02, V)
=11 (u1) + Ly(u2) — (V)
< Ii(uy),

—
— i

where in the last step we used the strict minimality of I5(u3) over C(¢2, 2) (see Lemma 3.1).
This contradicts the fact that i1} minimizes /; in C(¢; + «, ) and concludes the proof. O

Theorem 3.5 Ifu, is the unique minimizer of problem (3.1), then for everyk =1, ..., n one
has

. . ug(hx +xp) —up(x
(i) For every x € RN with |x| = 1, there exists lim o &) o (xk) =

+1;
h—0t h

@ Springer



On the Born-Infeld equation for electrostatic fields with... 759

(ii) xx is a relative strict minimizer (resp. maximizer) of u, if ap < 0 (resp. ax > 0).

Proof (i)Foreveryk =1, ..., n, fix Ry > Osuchthat Bg, (x¢) N{x1, ..., x,} = {xx}, where
Bpg(x) is an open ball of radius R centered at x. Now, define u, x (x) := uy(x +xx) — o (Xg)
for every x € Bg, (0). Since Vu, k(x) = Vuy(x + x) and x € Bg, (x) \ {xx}iff x — x; €
Bg, (0) \ {0}, by Remark 3.2 we obtain that for every 2 C Bg, (0) \ {0}, up x|o minimizes
the functional Iq : C(ug s, Q) — R defined by

To(u) == / (1 _J1- |Vu|2) dx.
Q

Hence, the graph of u, | B, (0) is an area maximizing hypersurface in the Minkowski
space having an isolated singularity at 0, in the sense of [12, Definitions 0.2 and 1.1]. By
[12, Theorem 1.5], we can conclude that 0 is a light-cone-like singularity in the sense of [12,
Definition 1.4]. This implies that, for every x € Bg,,(0) with |x| =1,

Ug,k (hx) L Yok (%)

h—0+ h

lim

h—0t

exists and =1.

Since u, x(0) = 0, this means that for every direction x, there exists one-sided directional
derivative of u,  along x at 0 and its absolute value is 1, that is,

lim uQ,k(hx +0) - ”Q,k(o)
h—0+ h

lim ug k(hx +0) —ug 1 (0)

exists and
h—0t h

-

which concludes the proof of (i).
(ii) Since 0 is a light-cone-like singularity of u x| B, (0)» tWO cases may occur (cf. [12,
Definition 1.4 and Lemma 1.9]) : either

Ugx >0 in Br(0)\ {0}
or
gk <0 in Br(0)\ {0}

for some 0 < R < Ry. As a consequence, either xy is a relative strict minimizer of u, or xi
is a relative strict maximizer of u,.
Now, in order to detect which situation occurs depending on the sign of a;, we use the

comparison principle proved in Lemma 3.4. If a; < 0, we set Q := Bg2(xx), 01 := 0,
@1 =0, 02 == ardy,, and @2 = uglypg,(x)- Hence, uy = 0, uz = uplpg(x)» and
02 < o1. Then, by Lemma 3.4
Sup up < sup  u,. 3.3)
Bry2(xx) dBR/2(x)

Suppose by contradiction that x; is a relative strict maximizer of u, in Bg(x), then

ug(xg) = Sup up, > max U,
Brya(xx) dBR/2(xk)

which contradicts (3.3). Thus, x; is arelative strict minimizer of u, . Analogously, itis possible
to prove that when a; > 0, x; is a relative strict maximizer of u,. O

In what follows, we give an explicit quantitative sufficient condition on the charge values
ax’s and on the charge positions x;’s for u, to be a classical solution of

Vu
—div| ——=1]=0 34
1V<\/1—|Vu|2) G
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in some subset of RY \ {xy, ..., x,}. As mentioned in Introduction, our results complement
the qualitative ones contained in [4] (see Theorem 2.4 above), stating that if the charges are
sufficiently small in absolute value or far away from each other, then the minimizer solves
the problem.

First, we prove the following lemma.

Lemma3.6 Let N > 3. There exists a constant C = C(N) > 0 such that

VU3 gry = Cllull Yoo vy (3.5)
forallu € X. The best constant
2
€= in ||v“||L2(RN)
= N
MEX\{O} ”u”LOO(RN)

is achieved by a radial and radially decreasing function.

Proof For all u € X \ {0}, we define the ratio

2
”VMHLZ(RN)

N
Loo(RN)

R(u) :=

[[uell

and we observe that for any ¢ > 0 it is invariant under the transformation ¢, : X — X, with
¢r(v) :=tv(-/t) forallv € X.

Furthermore, fix # € X"\ {0} and denote by u* the symmetric decreasing rearrangement
of |u| (see, e.g., [18, Chapter 3]). Then, |[ullpco@n) = || o@n) and |Vull 2@y >
IVu*|| 12V by the Polya-Szegd inequality. Hence, R(u) > R(u*). Therefore, if we denote
by X" the set of X'-functions which are radial and radially decreasing, then

C= inf Rw= inf R@).
ueXx\{0} uex™\ (0}

Finally, we prove the existence of a minimizer of R. Let () C X™9\ {0} be a minimizing

sequence. Without loss of generality, we may assume that u, (0) = ||u,|| LooRN) = 1 for all
n € N, otherwise we transform it by an appropriate ¢,. Then, ||Vun||i2 ®") C, and
in particular, (u,) is bounded in X. Hence, up to a subsequence, u,—u in X and u, — i
uniformly on compact sets of RV, by Lemma 2.1. In particular, i € xrd 1=y, 0) — u(0),

and 8o |[u]| oo mny = 1. Therefore, the weak lower semicontinuity of the norm yields

R(it) = / |Vii|>dx < liminf f |Vun|?dx = inf R(u),
RN n—>00  JpN ueX\{0}
and so i is a minimizer. O

Remark 3.7 The exponent N appearing in the right-hand side of (3.5) naturally arises from
the fact that R is invariant under transformations ¢;.

Lemma 3.8 The best constant for inequality (3.5) is given by

- 2 (N=2\N!
=<y ON_1- (3.6)
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Proof In order to find the explicit value of C, we will build by hands a minimizer of R.
Step 1: The minimizer can be found in a smaller function space. We first observe thatifu €

X,thenAu € Xifandonlyif0 < A < ||Vu||zolo(RN).Moreover, forall A € (0, ||VM||ZOIO(RN)]
RQW:A%NRm)zgqum):R<ll>.
IVl e vy IVull oo vy
Then, set
X:={uex™ :y>0andesssup|u'| =esssupu = 1},
where with abuse of notation we have written u(r) := u(x) for r = |x|. Together with

Lemma 3.6, we have

C= inf R@).
ueX\{0}

Step 2: The minimizer has non-decreasing first derivative. Let u € X be any minimizer of
‘R and consider any two (measurable) sets S1, So C (0, oo) of positive Lebesgue measure such
that sup S| < inf S. For a contradiction, assume that i’ < B—38on S, and0 > i’ > B+
on Sj for some B € [—1,0) and § € (0, —B). Note that by making sets S1, S> smaller
if necessary (still of positive measure) we can assume that dist(Sy, S2) > ¢ and S; U S,
is bounded. Since S; and S, have positive measure, it is standard to see that there exists a
translation of S, denoted by S| + k for some k > ¢, such that M> := (S; + k) N S, has
positive measure. Denote M| := M> — k and note that M; C S;. Of course, M| and M, are
measurable, with positive measure.

Define a new function

iw'(r+k) re M
w ) =3a'(r—k) reM
i'(r) otherwise ,

that is, we exchange the values of i’ on sets M| and M. Note that w’ € L%((0, c0)) and it
is the derivative of the function w(r) = 1+ for w'(s) ds, which is decreasing by Lemma 3.6,
belongs to L2((0, 00)), and has w(0) = 1. Observe that w = i outside of the convex hull of
S1 U S>. Then,

oo oo
IVl 72 @n, = IVWIZ2gn, = /0 ' PV dr — /0 w'>r¥ L dr
=/(WmF—Wu+mﬂﬂ*m+/ (' ())* = i’ (r — k)1*) TV dr
M, M

=f (li'r + 1> — i’ (r)]?) [(r+k)N’1 —erl] dr > 0,
M,

a contradiction to & being a minimizer. Note that we used that for» € M| onehasr+k € M>,
and consequently, since B < 0, |i/ (r + k)|* = (B — 8)> > (B + 8)? > |it’(r)|. Moreover,
k > & > 0 and the strict inequality follows. By the arbitrariness of 0 < § < —B, we obtain
that &’ is a non-decreasing function.

Step 3: The minimizer is harmonic outside the set of points of -1 derivative. Denote
R :=sup{r € (0,1) : &'(r) = —1} and set R = 0 if &#/(r) > —1 for each r > 0. Fix any
& > 0 and note that B := it/(R + &) > —1. Therefore, #/(r) > B > —1 on (R + &, 00).
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In order to prove that at points r where i'(r) # —1, i is harmonic, fix any smooth
/NS Cg((R + &,00)) and note that for sufficiently small (in absolute value) &, one has
(i + &) > —1. Then, by the minimality of i,

00 00 .
02/ |ﬁ/|2rN—1 dr_/ |L_‘/+§W/|ZVN_1 dr = _g’:/ (25/1#/+§|W/|2)”N_1dr.
0 0 0

Since |£| < 1 is arbitrarily small, positive or negative, we obtain

00 [e3) ,
0 :f f/lﬂ’rN_ldr = —/ (ﬁ/rN_l> Ydr.
0 0

By the arbitrariness of i, this implies that @' rN=1y = 0 ae. in (R + &, 00), which in turn
gives that u is harmonic in (R, 00), because ¢ > 0 is arbitrary.
Step 4: The explicit form of a minimizer. Altogether, we have proved that a minimizer u

of R can be taken of the form

_ 1—r if r € (0, R),
u(r) = Y .
cir +cy ifr € [R,00)

for suitable constants ¢, ¢ > 0 and R > 0. Since lim, o u(r) = 0, ¢co = 0 and since
r2~N is unbounded at 0, we have R > 0, and clearly, R < 1. Moreover, u is continuous and
lu'| <1, that is

N-1
ci=R"21—R) and ¢ < .
1 ( ) 1S3
Consequently, R > % Now, we minimize | Vi ||2L2 (RN a8 function of R, or equivalently,

we minimize
+00 R +o0
E(R) r=/ ﬁ’z(r)r’v‘ldr=/ rN—ldr+/ TN =2 Ndr.
0 0 R

Using the bound on ¢, we have

E'(R)y=R""'—c}(N-2)’R""V >0, (3.7)
and therefore, E is a non-decreasing function. Thus, the minimum is attained at R := %,
and since € = E(R)wy_1, we obtain the desired assertion. ]

We are now ready to prove the Theorem 1.2. Let o = Y }_; xSy, and
Ky:={keN:1<k<nanda > 0},
K_:=lkeN:1<k<nandag, <0}

Proof of Theorem 1.2 Without loss of generality, assume j € Ky and [ € K_. Let uy €
X\ {0} be the unique minimizers of

T (u) = /RN (1 —J1- |Vu|2) dr— > aulxp),

keK4

respectively. By Proposition 2.3

1
0> Les) 2 o IVus g, = [ 2 tael |l o, (3.8)
kek4
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where we have used the inequality %t <1—4/1—tfort € [0, 1]. On the other hand, by
Lemma 3.6, we have

2 ~ N
||Vu:t||L2(RN) 2 C”u:l:”Loo(RN)'

Together with (3.8), this gives

1

N1
2
luclpommy < | = Y lad (3.9)
C
kel
and in particular,
1
2 N—1
Tusr(x;)=lur(x))| < | = a forall j € {1,...n}, 3.10
£00) = sl = (= D ol Jjed } (3.10)

kel

since uy > 0 and u_ < 0 in all of RY, by the comparison principle [4, Lemma 2.12]. By
the same principle, we also know that

u_(x) <up(x) <ui(x) forallx e RV,
Hence, by (3.10), (1.9), and (3.6)

ug(xj) —ug(xy) < uy(xj) —u—(x)

1 1
N-T N-T

2 2
= c Z la| + ¢ Z |ak| (3.11)

ke 4 kekK_—

< min |xp — x| < |x; — x].
hiell.... n}| h il <| Jj 1
h#i

By Theorem 2.4, either u, is smooth on Int(x;x;) or
up(tx; + (L —0)x;) = tuy(x;) + (1 — Huy(xj) forallt € (0, 1). (3.12)

For a contradiction, assume (3.12). Then, Theorem 3.5 yields that x; is a strict relative
maximizer and

ug(t(x1 = xj) +xj) — up(x;) _

lim —1.
t—0+ tlx; — xj|
By (3.12), this gives immediately
ol ~ 1o () _ (3.13)
[xr — x|
Whence, together with (3.11), we have
—lxr = xjl <wg(xr) —up(x;) = —lx; — xjl,

a contradiction. We can now repeat the same argument for all the couples of point charges
and conclude the proof. O
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Remark 3.9 By (3.11), it is apparent that under the weaker assumption
1 1
ﬁ N _ 1 N—-1 N—1
Z ag + Z || < |xj —xl,
kel

(as)
WN-1 N - 2 kel
we get the result (i.e., u, is a classical solution) only along the line segment Int(x;x;).
Furthermore, it is possible to refine (3.9), and consequently the sufficient condition (1.9),
(3.14)

by replacing (3.5) with the following inequality

/ (1 ~Ji- |Vu|2) dr > Cllull ¥ v, forallu e X
RN

and for some C = C(N) > 5. Indeed, suppose we have already proved (3.14). Starting as

in the proof of Theorem 1.2, we have
0> Ii(uy) > / (1 —J1- ||wi||2) dr = [ D7 lakl | lusll oo ey
R keks

that, combined with (3.14), gives
1
sl ooy < | = Y laxl
C
kE’Ci

(3.15)

< |xj — x|

Hence, it is enough to require
1
N-1
+ E lak|

~ 1
N1 E ax
keK_

kE’C+
~ 1 = 1
(which is a weaker assumption than (1.9), since C”¥-T < (C/2)" ¥-T) to c~0nclude the

statement of Theorem 1.2. As in Lemma 3.6 (see also [5]), we can show that C is attained

by the unique weak solution i of the problem
) =ady inRY,

a4 Vu
div <«/1—\Vu\2
lim |y oo u(x) =0

(3.16)

ds

1 +o00
/0 /s2N=1) ] ’

with a := A(N)'"" and
_ 1
A(N) = wp )
cf. [4, Theorem 1.4]. Such # is radial and radially decreasing, and the previous problem in

) =0 in (0, 00),

radial coordinates reads as
rN—l u'
/1—(14/)2
lim, 0o u(r) = 0,

u(0) =1,
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where as usual we have written u(r) := u(x) for r = |x|. Therefore,

i) = +0o0 aj/on_i ds
r VDt @foy-n?

see below for a similar argument. Hence,

Cooyt [ A1 (1= VI=@r)?)d
lefo o @'(r)?) dr

o0 N—1
N-1
l - ———|d .
fo ' ( «/rZ(N“)—i-l) ' G17
—1 .

o) 1 N
—d
(/0 Vr2IN=D ] r>

We can numerically check that, for example when N = 3,

C:€<2C~2 0,097 w;.

To end this section, we consider the case of two point charges of different signs, namely
0 = a18y, + axby,, (3.18)
with a1 - ap < 0. In this case, we can give a more precise sufficient condition.
Proposition 3.10 Let o be as in (3.18). If a; - a» < 0 and
(177 + 102177 ) ANV < Ix1 = xal,

where A(N) is defined in (3.16), then u, € C®M@RN \ {x1,x2) N CRN), it is a classical
solution of (3.4) and it is strictly spacelike in RN \ {x1, x2}.

Proof Tt is standard to prove that for k = 1, 2 the unique solution i of
v
—div[———— | = @5, iRV, (3.19)
V1 —|Vul?

with lim|y| 0 u = 0, is radial about x; and satisfies
pN=1 iy, (r)

1 — i, (r)?

where with abuse of notation 1 (rr) = ﬁk(lx — x¢|) and’ denotes the derivation with respect
tor := |x —xi|. In particular, by (3.20), i}, never changes sign, and therefore, ii; is monotone
in r. Since ii; vanishes at infinity, by (3. 20) we obtain

=C inRM\ {x} for some C € R, (3.20)

+00
—Cup(0)=C ( lim g (r) — ﬁk(O)) = C/ ft;((r)dr
0
B /+OO N lu/ (r)2 ag

= 0).
m Mk()
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Since 1y is monotone in r, a; # 0, and lim,_, , ity = 0, we have that i1z (0) % 0, whence
C = —ay/wy—1. Furthermore, by solving for iZ; in (3.20) and integrating we have

+eo ag/oN-1

ds fork=1, 2,
v VS2VD (@ Jon—1)?

i (r) =
and in particular,
1
ur(0) = sign(ag)|ax| *-TA(N) fork =1, 2. (3.21)

Since a; > 0 > ap, axdx, < 0 < a1y, (cf. [4, Definition 2.11]). By Comparison Lemma
2.12 of [4], we know that

iir(x) <up(x) <iiy(x) forallx e RV,

The conclusion follows exactly as in Theorem 1.2. O

4 Approximating problem

In this section, we study some qualitative properties of the approximating solutions u,, of
problem (1.10). In particular, we focus on the regularity of u,, in Proposition 1.3 and on
their local behavior near the singularities x;’s, proving Theorem 1.4. From these results, it is
apparent that u,,’s behavior resembles the behavior of the minimizer u,, that we approximate
(see also Introduction for more comments).

Proof of Proposition 1.3 Let us denote

m
Ap) ==Y @l pl2p,

h=1
ij dA; ¢ 2h—4 2h—2
a'l(p) i= S8 =Y an [@h =) plP = pip; + 18 ]
Pi 4
m
F(t) =Y apt™?
h=1

for every p € RY and r > 0, where §; j is the Kronecker delta. Then, by straightforward
calculations we have for all p, & € RN

N m m
Y aV(p)&E; = (Zammz“) €7+ (p- )Y an@h —2)|p*"~* = F(IpIEI,

ij=1 h=1 h=1

m m
a7 (p)| <Y enlplP" 24+ en(@h — 2)|pl?" 7 < @m — DF(|p)),
h=1 h=1

|A(p)| =Y anlp™2pl = [pIF(Ip]).
h=1

Therefore, the operator — Y )" | o Ao, and the function F satisfy the hypotheses of [19,
Lemma 1] with A = (2m — 1). To verify the last assumption in [19, Lemma 1], let u,,

be the solution of (1.10). Since 2m > max{N, 2*}, one has X»,, <— Cg’ﬂ'" (RM), and in
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particular, u,, € AX»,, is bounded. Let B4r be any ball of radius 4R, such that x; ¢ Bag for
any k =1, --- , n. Then u,, satisfies

m
—div (Z o | Vi, |2h2Vum) =0 in B4r in the weak sense,
h=1

and since u,;, € Xy,

f F (IVum|) (1 4+ [V 2 dx < oco.
B4r

Therefore, by [19, Lemma 1], u,, € Cl’ﬂ(BR) for some B € (0, 1), and Bg has the same
center as B4r. We consider now the linear Dirichlet problem

m

Ly = — div (Zah|Vum|2h_2Vu) =0 in Bg,
h=1

U=y on dBp.

4.1)

Clearly, u,, is a weak solution of (4.1). The boundary datum u,, is continuous on d Bg, and the
operator L,, is strictly elliptic in B and has coefficients in CY%8(Bg).Hence, by [15, Theorem
6.13], (4.1) has a unique solution in C(Bg) N C%B(Bg), whence u,, € C(Br) N C*P(Bg).
We consider again (4.1). Now we know that the coefficients of L,, are of class C LB (Bg) and
that u,, is a C2-solution of the equation in (4.1). By [15, Theorem 6.17], u,, € C>#(Bg). By
a bootstrap argument, we obtain u,, € C°°(Bg). By the arbitrariness of R and of the center
of the ball Bg, u,, € C°@RN \ {x1, ..., x,}). |

Remark 4.1 The presence of the Laplacian in the operators sum Y ;' o, Aop, plays an essen-
tial role in the proof of the previous result. Indeed, we observe that, among the hypotheses
on F, [19, Lemma 1] requires F(¢) > ¢ > 0 for all + > 0, which is satisfied with ¢ = o
thanks to the presence of the Laplacian.

Next, we study the behavior of the solution u,, of (1.10) and of its gradient, near the point
charges xi’s.

Proof of Theorem 1.4 Foranyk =1, ..., n,fix Ry > Ososmallthat Bg, (xg)N{x1, ..., X} =
{xx}. Then, u,, solves

=Y h anAopu = agdy, in Bg, (xk), @2)
U=y on d Bg, (xr) ’
forall k =1, ..., n. We split the proof into six steps.
Step 1: Translation. For all ¢ € C°(Bg, (x))
m
2 f o Vit |72Vt - Vepdx = apg(xi). (4.3)
h=1 BRk (x)

So, if we define u,, x (x) 1= uy (x +xx) — 1wy (x) and @g (x) := @(x +xy) forallx € Bg, (0),
we get iy € C(BR, (0) \ {0}), gx € C°(Bg,(0)) and

m
f Vit k1" Vit i - Vordx = axgr(0). 4.4)
1 ) Bre©
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Hence, by the arbitrariness of ¢ € CJ°(Bg, (Xk)), um i solves weakly

4.5)

— > h o Aopu = agdy in Bg, (0),
U= Upk on dBg, (0).

Of course, we have u,, x(0) = 0.
Step 2: Potential estimates on u,, . Consider the operator

— ZothAzhu = —div (g(||vu||) 14) .

with g(¢) := Y7, aut*"~! for all # > 0, and note that

g
g()

1<

<2m —1 forallt > 0.

By [2, Theorem 1.2], for every xo € Bg,(0) Lebesgue point of Vuy, ; and for every ball
Bog(xp) C Bg, (0), one has

¢ (IVitm 1 (x0)]) < eI (xg, 2R) + cg (f |wm,k|dx) : (4.6)
B

R (x0)
where ¢ = ¢(N, m) > 0 and
R
5 lakdol (B, (x0))
1% (xo, R) == / —————dp
0
is the truncated linear Riesz potential of the measure |a;dp|. Now, if 0 < |xg| < Ry — 2R

2R |

lak|
%%l (o, 2R) = / Mdp < —— A.7)
1 ol PV (N = 1)|xp|N !
If furthermore R > Ry /4, it follows for almost every xo that
m 2h—1
Vuy il
. (][ |wm,k|dx) <o (—” il (B'“’“)”)
Bg(x0) ot | BRy /4l
4.8)
2h—1 (
- ||Vum,k||Ll(BRk(o))
ED I iU )
—_ |BRk/4|

where C = C (||Vum l|Ll(BRk o N g) > 0 is independent of the specific xop and R con-

sidered. We note that if |xg| < Ry/4, then (4.6)—(4.8) hold with any R € (Ry/4,3Ry/8).
Therefore, by combining (4.8) with (4.6) and (4.7), we obtain for a.e. x € Bg,4(0)

1
g (|Vum,k(x>|)>

m

1
c |ak| Rk N—1 2m—1 . C/
=< o +C(— = —7>
am|x| N -1 4 |_x|2m 1

with € = C'(IVumll 1 (B, (xp0)» RE> lakl, Nom, g) > 0.

[V ik (x)] = (
(4.9)
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Step 3: Scaling. Fix two integers m > max{N /2,2*/2}and k € {1, ..., n}. Forany ¢ > 0
N-2m
and x € Bg,/¢(0) \ {0}, define ug(x) := & 27T u,, x(ex). Then u, € C*°(Bg,/:(0) \ {0}),
and Vug(x) = S%Vum,k(ex) for all x € Bpg,/¢(0) \ {0}. By substituting into (4.4), we
obtain for any ¢ € CZ°(Bg, /¢(0))
m
@2m—N)(2h—1)
[ e e 9 P, - iy = a0,
h=1 BRk/e(O)
or in other words u, solves weakly

m

(2m—N)(2h—1)
= eV g Agu = k8o in Bry e (0). (4.10)
h=1

We note that the exponent of ¢ is positive for 7 < m and is zero for 1 = m. Also note that
us(0) = 0.
Step 4: Limit as ¢ — 0. In terms of u,, (4.9) translates for a.e. x € Bg,4¢(0) to a global
estimate .
[Vue (x)| < C'|x|20=T. (4.11)

Since 2m > N, for fixed R € (0, Ry /4¢), (4.11) yields

2m—1 .
/ Ve [ dx < 2miNC’2mwN_1R22m—7 =, (4.12)
Bz (0) m—

where C” = C"(||Vum, ”LI(BRk(Xk))’ lak|, N, m, g, R) > 0 independent of ¢.
Next, we obtain local estimates uniformin e. Let A C B(0) \ {0} be a compact set. Then,
by (4.11) and since u:(0) = 0,

2m — 1 -2m-nN
R2n=T forall x € A. (4.13)
2m —

1
lue ()] s/ |Vue(tx)||x|dt < C’
0
Furthermore, by Proposition 1.3 we have
N—L
|Vite (x) — Ve (3)| = e 277 Vit (ex) — Vit i (£3)]
< e BBy (1P < g — gl

forevery x, y € A and ¢ < 1. Since, by (4.11), |Vu,| is also uniformly bounded in A, by the
Arzela—Ascoli theorem, there exist a subsequence, still denoted by (), and a function u €
CL(A) such thatlim,_,¢ Vi, = Vii in the uniform topology on A. By choosing i(0) = 0, we
obtain that u, — i in C!(A). By (4.12) and the Fatou lemma, we have that || Vi ||Lzm(BR(0)) <

(C"Y/@m) Hence, for any ¢ € [Lz”’(BR(O))]N

/ (IVue ™= 2Vu, — |Via|*2Vii) ¢ dx
B (0)

< Vug "2V Vi |?" Vi d 27@)2%l
< A(‘l Ug| ug — |Vitl i) |y ldx + ANl Y B 00\4)-

For any 6 > 0, we can take A such that || || ”LI(BR(O)\A) < 4, and for sufficiently small
& > 0 we have, from the uniform convergence of Vi, on A, that

<Cs

/ (IVue| "~ 2Vu, — |Via|* Vi) ¢ dx
Bj(0)
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for some C > 0 independent of €. Since § > 0 and ¢ € [L?>™(B 7 ONIN were arbitrary, we
have |Vug |*"2Vu,—|Vi|*"2Vi in [L(z’”)/(BR NIV Recalling that u, solves weakly
(4.10), we have for any ¢ € CZ°(Bz(0))

m
(2m—N)(2h—1)
S [N P2, - Yy = a0
h=1"B&©®

and by passing ¢ — 0 and using proved weak convergences, we obtain
/ o |Vit| "2V - Vodx = az(0),
B (0)
or equivalently « is a weak solution of
— oy Aot = agdp in B(0). (4.14)
Step 5: Behavior of u and its gradient near 0. By (4.14), we know that & is 2m-harmonic

in B (0) \ {0} and #(0) = 0. As in Step 2, [2, Theorem 1.2] with g(7) := o2 yields
fora.e.x € By, (0)

1
- N—1 — 2m—1 2m—1
c a R IVull g0
Vi) < LI (—) ((”’

VT | (N =) 1 Bl
1N
= C0|x|2m—1
G0l = o Lol B

where the second bound follows as in (4.13). Hence, the isotropy result [16, Remark 1.6]
(see also work by Serrin [22]) implies

u(x) . Nol
im =y and lim |[x|2=TV(@u —yu) =0, (4.15)
x—0 ,LL(X) x—0
. ; lax] et . e . .
where y := sign(ax) (W) , and pu(x) = ku(N)|x|2n=T with k,(N) =
— 22,;”__1{, (N|B1])~ 1 is the fundamental solution of the —A»,,.
Step 6: Behavior of u,, and its gradient near xi. Since |x|% IVul = |Km|227:17__1;], from

(4.15) follows

2m — N
2m — 1

_ N—1
lim |Vii(x)||x| 2T = [y icml.
x—0

Furthermore, by Step 4 we know in particular that Vu, — Vu pointwise in B3(0) \ {0}.
Hence,

. . Nl . _ N-1 2m — N
lim <hm |Vug(x)||x|2mf1> = lim |Vu(x)||x|2n-T = |V m|
—0 \e—0 x—0

X 2m — 1
and by the definition of u,,

2m — N
2m — 1

[Vkm| = im | lim e27=T |Vu,, i (ex)||x|27=T | = lim [V, (P)||y|2=T .
x—0 \e—0 y—0
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Consequently,
2m — 1-N
[V ()] ~ |ykm|l m——Ix]2»=T asx — 0,
2m — 1

which in turn implies (1.12) with K}, := |y k| 22’:1:1}' . Analogously, by Step 4 we also know

that u, — u pointwise in Bz (0) \ {0}. Therefore, by (4.15)

. . Uug(x
lim [ lim % =1
x—0 £—0 me|x|m

which in terms of u,, x gives

. um,k(x)
lim —— = vkn
x—0 |x| 2m—1

and proves (1.11) with K,,, := y«,,. In particular, if a; > 0, then K,;, - ax < 0, and xi is a

relative strict maximizer of u,,, while if a; < 0 it is a relative strict minimizer of u,,. ]
. _ em=3)!
Remark 4.2 Observe that, since o, = Gm—an>
=1 o] \%7
. . m — ag m-
lim |K,,| = lim =1.
m— 00 m—o00 2m — N N|Bl|0[m
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