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Abstract

Recent studies on automatic neural architecture search
techniques have demonstrated significant performance,
competitive to or even better than hand-crafted neural ar-
chitectures. However, most of the existing search ap-
proaches tend to use residual structures and a concatena-
tion connection between shallow and deep features. A re-
sulted neural network model, therefore, is non-trivial for
resource-constraint devices to execute since such a model
requires large memory to store network parameters and in-
termediate feature maps along with excessive computing
complexity. To address this challenge, we propose Mem-
NAS, a novel growing and trimming based neural archi-
tecture search framework that optimizes not only perfor-
mance but also memory requirement of an inference net-
work. Specifically, in the search process, we consider run-
ning memory use, including network parameters and the
essential intermediate feature maps memory requirement,
as an optimization objective along with performance. Be-
sides, to improve the accuracy of the search, we extract
the correlation information among multiple candidate ar-
chitectures to rank them and then choose the candidates
with desired performance and memory efficiency. On the
ImageNet classification task, our MemNAS achieves 75.4%
accuracy, 0.7% higher than MobileNetV2 with 42.1% less
memory requirement. Additional experiments confirm that
the proposed MemNAS can perform well across the differ-
ent targets of the trade-off between accuracy and memory
consumption.

1. Introduction

Deep Neural Networks (DNNs) have demonstrated the
state-of-the-art results in multiple applications including

classification, search, and detection [I, 2, 3, 4, 5, 6, 7].
However, those state-of-the-art neural networks are ex-
tremely deep and also highly complicated, making it a non-
trivial task to hand-craft one. This has drawn researchers’
attention to the neural architecture search (NAS), which in-
volves the techniques to construct neural networks without
profound domain knowledge and hand-crafting [8, 9, 10,

1.

On the other hand, whether to design a neural archi-
tecture manually or automatically, it becomes increasingly
important to consider the target platform that performs
inference. Today, we consider mainly two platforms, a
data center, and a mobile device. A neural network run-
ning on a data center can leverage massive computing re-
sources. Therefore, the NAS works for a data center plat-
form focus on optimizing the speed of the search process
and the performance (accuracy) of an inference neural net-
work [9, 10, 11, 12]. A mobile computing platform, how-
ever, has much less memory and energy resources. Hence,
NAS works for a mobile platform have attempted to use
lightweight network layers for reducing memory require-
ment [13, 14, 15]. Besides, off-chip memory access such as
FLASH and DRAM is 3 or 4 orders of magnitudes power-
hungrier and slower than on-chip memory [16]. Therefore,
it is highly preferred to minimize network size to the level
that the network can fit entirely in the on-chip memory of
mobile hardware which is a few MB.

Unfortunately, most of the existing NAS approach,
whether based on reinforcement learning (RL) or evolution-
ary algorithm (EA), adopts a grow-only strategy for gener-
ating new network candidates. Specifically, in each search
round, they add more layers and edges to a base archi-
tecture, resulting in a network that uses increasingly more
memory and computational resources.

Instead, we first propose a grow-and-trim strategy in
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Figure 1: (a) Flow Chart of the Proposed MemNAS. It has mainly three steps: i) candidate neural network generation, ii)
the top-k candidate generation using the proposed structure correlation controller, and iii) candidate training and selection.
(b) The Network Structure for CIFAR-10. The neural network architecture has five blocks. Each block contains several
cells with stride (S) 1 and 2. Each cell (C}), shown in the gray background, is represented by a tuple of five binary vectors. r;
represents the intermediate representations in one block. (¢) Examples of Candidates by Growing and Trimming a base
Network. The cells in the gray background are newly added. The layers with the dashed outlines are removed. We remove
only one layer or one edge only in a block when we trim a neural network. But we add the same cell to all five blocks when

we grow in CIFAR-10.

generating candidates in NAS, where we can remove layers
and edges during the search process from the base architec-
ture without significantly affecting performance. As com-
pared to the grow-only approaches, the proposed grow-and-
trim approach can generate a large number of candidate ar-
chitectures of diverse characteristics, increasing the chance
to find a network that is high-performance and memory-
efficient.

Such a large number of candidate architectures, however,
can be potentially problematic if we do not have an accu-
rate method to steer the search and thus choose the desired
architecture. To address this challenge, we propose a struc-
ture correlation controller and a memory-efficiency metric,
with which we can accurately choose the best architecture
in each search round. Specifically, the structure correlation
controller extracts the relative information of multiple can-
didate network architectures, and by using that information
it can estimate the ranking of candidate architectures. Be-
sides, the memory-efficiency metric is the weighted sum of
the accuracy performance of a network and the memory re-
quirement to perform inference with that network.

We perform a series of experiments and demonstrate that
MemNAS can construct a neural network with competitive
performance yet less memory requirement than the state of
the arts. The contributions of this work are as follows:

e We propose a neural architecture search framework
(MemNAS) that grows and trims networks for auto-

matically constructing a memory-efficient and high-
performance architecture.

e We design a structure correlation controller to pre-
dict the ranking of candidate networks, which enables
MemNAS effectively to search the best network in a
larger and more diverse search space.

e We propose a memory-efficiency metric that defines
the balance of accuracy and memory requirement, with
which we can train the controller and evaluate the
neural networks in the search process. The metric
considers the memory requirement of both parame-
ters and essential intermediate representations. To es-
timate the memory requirement without the details of
a target hardware platform, we also develop a lifetime-
based technique which can calculate the upper bound
of memory consumption of an inference operation.

2. Related Work
2.1. Hand-Crafted Neural Architecture Design

It has gained a significant amount of attention to perform
inference with a high-quality DNN model on a resource-
constrained mobile device[17, 18, 19, 20, 21, 22]. This
has motivated a number of studies to attempt to scale the
size and computational complexity of a DNN without com-
promising accuracy performance. In this thread of works,
multiple groups have explored the use of filters with small
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kernel size and concatenated several of them to emulate a
large filter. For example, GoogleNet adopts one 1 x N
and one IV X 1 convolutions to replace N x NN convolu-
tion, where N is the kernel size [18]. Similarly, it is also
proposed to decompose a 3-D convolution to a set of 2-
D convolutions. For example, MobileNet decomposes the
original N x N x M convolution (M is the filter number)
toone N X N x 1 convolution and one 1 x 1 x M convo-
lution [20]. This can reduce the filter-related computation
complexity from N x N x M x I x O ({ is the number of
input channels and O is the number of output channels) to
N XN xMxO+M xIx O.In addition, SqueezeNet
adopts a fire module that squeezes the network with 1 x 1
convolution filters and then expands it with multiple 1 x 1
and 3 x 3 convolution filters [19]. ShuffleNet utilizes the
point-wise group convolution to replace the 1 x 1 filter for
further reducing computation complexity [23].

2.2. Neural Architecture Search

Recently, multiple groups have proposed neural archi-
tecture search (NAS) techniques which can automatically
create a high-performance neural network. Zoph et al. pre-
sented a seminal work in this area, where they introduced
the reinforcement learning (RL) for NAS [10]. Since then,
several works have proposed different NAS techniques.
Dong et al. proposed the DPP-Net framework [14]. The
framework considers both the time cost and accuracy of
an inference network. It formulates the down-selection of
neural network candidates into a multi-objective optimiza-
tion problem [24] and chooses the top-k neural architectures
in the Pareto front area. However, the framework adopts
CondenseNet [25] which tends to produce a large amount
of intermediate data. It also requires the human interven-
tion of picking the top networks from the selected Pareto
front area in each search round. Hsu er al. [13] proposed
MONAS framework, which employs the reward function
of prediction accuracy and power consumption. While it
successfully constructs a low-power neural architecture, it
considers only a small set of existing neural networks in its
search, namely AlexNet [26], CondenseNet [25], and their
variants. Michel et al. proposed the DVOLVER framework
[15]. However, it only focuses on the minimization of net-
work parameters along with the performance. Without con-
sidering intermediate representation, DVOLVER may pro-
duce an inference network still requiring a large memory
resource.

3. Proposed Method
3.1. Overview

The goal of MemNAS is to construct a neural architec-
ture that achieves the target trade-off between inference ac-
curacy and memory requirement. Figure | (a) depicts the
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typical search process consisting of multiple rounds. In
each round, first, it generates several candidate architectures
via the grow and trim technique. Second, it ranks the candi-
date architectures, using the structure correlation controller,
in terms of the memory-efficiency metric, resulting in top-k
candidates. Third, we train the top-k candidates and evalu-
ate them in terms of the memory-efficiency metric. The best
architecture is chosen for the next search round. Finally, we
train the controller using the data we collected during the
training of the top-k candidates.

Figure 1 (b) shows the template architecture of the neural
networks used in the MemNAS. It has five series-connected
blocks. Each block consists of multiple cells. Each cell has
two operation layers in parallel and one layer that sums or
concatenates the outputs of the operation layers.

The location, connections, and layer types (contents)
of a cell are identified by a tuple of five vectors,
(I1,12, L1, Lo, O). Inatuple, I; and I are one hot encoded
binary vector that represents the two inputs of a cell. For ex-
ample, as shown in Figure 1(b) top right, the two inputs of
the C'y are both r; (=0001). Thus, the tuple’s first two vec-
tors are both ;. Similarly, the second cell Cs in Figure 1(b)
mid-right has two inputs, r4 (0010) and r; (0001). On the
other hand, O represents the type of the combining layer,
namely 001: summing two operation layers but the output
not included in the final output of the block; 110: concate-
nating two operation layers and the output included in the
final output of the cell. L, and L, represent the types of two
operation layers in a cell. They are also one-hot encoded.
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A cell employs two operation layers from a total of seven
operation layers. The two layers can perform the same op-
eration. The seven operation layers and their binary vectors
identifier are:

3 x 3 convolution (0000001)

3 x 3 depth-wise convolution (0000010)

5 x 5 depth-wise convolution (0000100)

1 x 7 followed by 7 x 1 convolution (0001000)
3 x 3 average pooling (0010000)

e 3 x 3 max pooling (0100000)

e 3 x 3 dilated convolution (1000000)

These layers are designed for replacing conventional convo-
lution layers that require large memory for buffering inter-
mediate representation [27]. The stride of layers is defined
on a block-by-block basis. If a block needs to maintain the
size of feature maps, it uses the stride of 1 (see the first
block in Figure 1(b)). To reduce the feature map size by
half, a block can use the stride of 2.

Inspired by the evolutionary algorithm [2], MemNAS
adds a new cell to each of the blocks in the same loca-

tion. Besides, MemNAS removes layers differently in each
block.

3.2. Grow-and-Trim Candidate Generation

In MemNAS, each round begins with generating a large
number of neural network candidates based on the network
chosen in the previous round (called a base network). The
collection of these generated candidate architectures con-
structs the search space of the round. It is important to make
the search space to contain diverse candidate architectures.
This is because a large search space can potentially increase
the chance of finding the optimal network architecture that
meets the target.

We first generate new candidates by growing a base net-
work. Specifically, we add a new cell to all of the five blocks
in the same way. We also generate more candidates by trim-
ming a base network. We consider two types of trimming.
First, we can replace one of the existing operation layers
with an identity operation layer. Second, we can remove an
edge. If the removal of an edge makes a layer to lose its in-
put edge or a cell’s output to feed no other cells, we remove
the layer and the cell (see Figure 1(c) bottom, the second
last Trim Generation example). Note that we perform trim-
ming in only one of the five blocks once.

The size of the search space of all possible candidates
via growing can be formulated to:

|1Sgl = > % [L|* % |CP?, (1)

where I denotes the number of available input locations in
a cell, L represents the number of available operation layer
types, and C' denotes the number of connection methods.
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Figure 3: An Example Lifetime Plot. We draw the lifetime
plot for the neural network block architecture in Figure 1(b).
The solid circle denotes the generation of intermediate rep-
resentations and the hallow circuits denote the deletion of
intermediate data. For simplicity, we assume the data size
of each intermediate representation (r; € r1,72,...7r10) 1S
1. The last row represents the memory requirement of each
time; the largest among them determines the memory re-
quirement of hardware for intermediate data representation.

On the other hand, the size of the search space of all possible
candidates via trimming can be formulated to:

B

1Sel = (L + i + e), 2

i=1

where B is the number of blocks, [; is the number of the
layers in block ¢, ¢; is the number of the cells in block 7, and
e; is the number of the existing outputs in the final concate-
nation of block 4.

3.3. Structure Correlation Controller

Our grow-and-trim technique enables MemNAS to ex-
plore a large search space containing a diverse set of neural
network architectures. Particularly, we trim an individual
layer or edge on a block-by-block basis, largely increasing
the diversity and size of the search space. To find the op-
timal neural network architecture without training all the
candidates, therefore, it is critical to build a controller (or a
predictor) for accurately finding the top-k candidates.

To this goal, we propose a structure correlation controller
(SCC). This controller can map the stacked blocks of each
candidate to a feature and then estimate the ranking of the
candidate networks in terms of the user-specified target of
accuracy and memory requirement. The SCC aims to ex-
tract the relative information among the candidate networks
to evaluate a relative performance, which is more accurate
than the existing controllers [15] predicting the absolute
score of each candidate network individually and then rank
the top-k based on the absolute scores.
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The SCC consists of mainly two recursive neural net-
work (RNN) layers: i) the encoding layer to map the blocks
of each candidate to a feature and ii) the ranking layer to
map the features of all the candidates to the ranking score
(Figure 2). In the encoding layer, we first feed candidate
networks to the embedding layer, obtaining a set of tuples,
and then feed them to the encoding layer (E-GRU: encoder-
RNN). The result of E-GRU represents the feature of each
candidate network f;. We repeat this process for all n candi-
dates and produce f; € {f1, f2, ..., fn}. Then, the ranking
layer, which consists of the ranking-RNN (R-GRU) and a
fully-connected (FC) layer, receives the feature of a candi-
date network at a time and estimates the ranking score of all
the candidates. The memorization capability of the ranking
layer improves the estimation accuracy since it remembers
the features of the past candidate networks to estimate the
relative performance of the current network. The loss func-
tion of the SCC is defined as:

n

_1 )2
LOSSmem - n Z((yz yz) )7 (3)

i=1

Where n denotes the number of input architectures, y de-
notes the estimated result of candidate architecture 7, and y;
denotes the memory-efficiency metric.

We devise the memory-efficiency metric y; to compare
each of the candidates in the current search round to the
neural network chosen in the previous search round. It is
thus formulated to:

Aj — Qpre

Yi =A
apre

+ (1 _ A)(TZ - Tp?“e + Di _Z)IJT‘e)7
Tpre DPpre

“4)

where a is the accuracy of a neural network, r is the max-
imum memory requirement for buffering intermediate rep-
resentations, and p is that for storing parameters. The sub-
script pre denotes the neural network selected in the previ-
ous search round (i.e., the base network of the current search
round) and the subscript ¢ denotes the ¢ —th candidate in the
current search round. ) is a user-specified hyper-parameter
to set the target trade-off between inference network perfor-
mance and memory requirement. A = 0 makes MemNAS
solely aiming to minimize the memory requirement of an
inference network, whereas A = 1 solely to maximize the
accuracy performance.

3.4. Candidate Selection

After the SCC produces the top-k list of the candidates,
MemNAS trained those candidates using the target dataset
and loss function. In this work, we used the CIFAR-10 and
ImageNet datasets for classification and therefore used the
cross-entropy loss function, Lo g, in training candidates.
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Table 1: CIFAR-10 Result Comparisons. MemNAS (\ =
0.5) and (A = 0.8) are different search results with differ-
ent search target trade-off between performance and mem-
ory requirement. Total Memory: memory requirement con-
taining the parameters memory and the essential intermedi-
ate representation memory calculated by our lifetime-based
method. Memory Savings: the savings in total memory re-
quirement calculated by MemNAS (A = 0.5). Top-1 Acc.:
the top-1 classification accuracy on the CIFAR-10.

Total Memory Top-1
Model Memory | Savings | Acc. (%)
MobileNet-V2 [20] 16.3MB | 60.7 % 94.1
ResNet-110 [1] 9.9 MB 41.1 % 93.5
ResNet-56 [1] 6.7 MB 12.4 % 93.0
ShuffleNet [23] 8.3 MB 30.1 % 92.2
CondenseNet-86[25] 8.1 MB 21.0 % 94.9
CondenseNet-50[25] 6.8 MB 14.7 % 93.7
DPPNet-P [14] 8.1 MB 28.4 % 95.3
DPPNet-M [14] 7.7 MB 24.7 % 94.1
MemNAS (A =0.5) | 5.8 MB — 94.0
MemNAS (A = 0.8) 6.4 MB - 95.7

We then calculate the memory-efficiency metric of each
candidate with the actual accuracy performance and cal-
culated memory requirement and re-rank them. Then, we
choose the candidate with the highest-ranking score.

We conclude the current round of MemNAS by training
the SCC. Here, we use the data of the top-k candidates that
we just trained and their memory-efficiency metrics that we
just calculated. We used the loss function, LosSmem, de-
fined above in Equation 3. After updating the SCC, we start
the new round of the search if the completion criteria have
not been met.

3.4.1 Memory Requirement Estimation

In each search round, MemNAS calculates and uses the
memory-efficiency metric (y;) in multiple steps namely, to
estimate the top-k candidates with the SCC, to train the
SCC, and to determine the best candidate at the end of a
search round. As shown in Equation 4, the metric is a func-
tion of the memory requirements for parameters and inter-
mediate representations. It is straightforward to estimate
the memory requirement of parameters. For example, we
can simply calculate the product of the number of weights
and the data size per weight (e.g., 2 Bytes for a short in-
teger number). However, it is not simple to estimate the
memory requirement for intermediate representations since
those data are stored and discarded in a more complex man-
ner in the course of an inference operation. The dynamics
also depend on the hardware architecture such as the size of



Table 2: ImageNet Result Comparisons. For baseline models, we divide them into two categories according to their target
trade-offs between accuracy and memory consumption. For our models, MemNAS-A and -B are extended from search
models MemNAS (A = 0.5) and (A = 0.8), respectively have 16 blocks. Top-1 Acc.: the top-1 classification accuracy on the
ImageNet. Inference Latency is measured on a Pixel Phone with batch size 1.

Total Memory Inference Top-1
Model Type Memory Savings Latency Acce. (%)
CondenseNet (G=C=8) [25] manual 24.4 MB 6.6 % — 71.0
ShuffleNet V1 (1.5x) [23] manual 25.1 MB 9.2 % - 71.5
MobileNet V2 (1.0x) [21] manual 33.1 MB 31.1 % 75 ms 71.8
ShuffleNet V2 (1.5x) [28] manual 26.1 MB 12.6 % — 72.6
DVOLER-C [15] auto 29.5 MB 22.7 % — 70.2
EMNAS [29] auto 54.0 MB 57.8 % — 71.7
FBNet-A [30] auto 29.0 MB 21.4 % — 73.0
MnasNet (DM=0.75) [{] auto 27.4 MB 16.8 % 61 ms 73.3
DARTS [31] auto 31.0 MB 38.7 % — 73.3
NASNet (Mobile) [11] auto 53.2MB 57.1 % 183 ms 73.5
MemNAS-A (ours) auto 22.8 MB — 58 ms 74.1
CondenseNet (G=C=4) [25] manual 31.6 MB 11.1 % — 73.8
ShuffleNet V1 (2.0x) [23] manual 33.5 MB 16.1 % - 73.7
MobileNet V2 (1.4x) [21] manual 48.5 MB 42.1 % — 74.7
ShuffleNet V2 (2.0x) [28] manual 51.6 MB 45.5 % — 74.9
DPPNet-P (PPPNet) [14] auto 347 MB 19.0 % — 74.0
ProxylessNAS-M [32] auto 36.2 MB 22.4 % 78 ms 74.6
DVOLER-A [15] auto 39.1 MB 28.1 % — 74.8
FBNet-C [30] auto 35.2 MB 20.2 % - 74.9
MnasNet (DM=1) [{] auto 36.7 MB 23.4 % 78 ms 75.2
MemNAS-B (ours) auto 28.1 MB — 69 ms 75.4

a register file, that of on-chip data memory, and a caching
mechanism, etc.

Our goal is therefore to estimate the memory require-
ment for buffering intermediate representations yet without
the details of the underlying computing hardware architec-
ture. To do so, we leverage a so-called register lifetime esti-
mation technique [33], where the lifetime of data is defined
as the period from generation to deletion.

To perform an inference operation with a feed-forward
neural network, a computing platform calculates each
layer’s output from the input layer to the output layer of
the network. The outputs of a layer must be stored in the
memory until it is used by all the subsequent layers requir-
ing that. After its lifetime, the data will be discarded, which
makes the memory hardware used to store those data to be
available again for other data.

For the neural network shown in Figure 1(b), we draw
the example lifetime plot (Figure 3). In the vertical axis, we
list all the edges of a neural network, i.e., intermediate rep-
resentations. The horizontal axis represents time (T), where
we assume one layer computation takes one unit time (u.t.).
At T=1 u.t., r; is generated and stored and fed to three lay-
ers (Dep 3 x 3, Fac 1 x 7, and Dep 5 x 5). Assuming the

data size of r1 is 1, the memory requirement at T=1 u.t. is
1. At T=2 u.t,, the three layers complete the computations
and generate I, I3, and I5. These data indeed need to be
stored. However, 7 is no longer needed by any layers and
thus can be discarded. Thus, at T=2 u.t., the size of the re-
quired memory is 3. We can continue this process to the last
layer of the network and complete the lifetime plot. The last
step is to simply find the largest memory requirement over
time, which is 4 in this example case.

4. Experiments
4.1. Experiment Setup

We first had MemNAS to find the optimal neural network
architecture for CIFAR-10, which contains 50,000 training
images and 10,000 test images. We use the standard data
pre-processing and augmentation techniques: namely the
channel normalization, the central padding of training im-
ages to 40x40 and then random cropping back to 32x32,
random horizontal flipping, and cut-out. The neural net-
work architecture considered here has a total of five blocks.
The number of filters in each operation layer is 64. The size
of the hidden stages in the GRU model of the SCC is 100.
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Figure 4: Performance and Memory Requirement over MemNAS Search Rounds on CIFAR-10. One MemNAS is
configured to optimize only accuracy performance (blue lines) and the other MemNAS to optimize both performance and
memory requirement (orange line). The latter achieves the same target accuracy (94.02%) while savings the memory require-
ment for parameters by 96.7% and intermediate representation data by 28.2%.

The size of the embedding layer is also 100. The SCC esti-
mates top-100 candidates, i.e., K = 100. The top-100 can-
didate networks are trained using Stochastic Gradient De-
scent with Warm Restarts [34]. Here, the batch size is 128,
the learning rate is 0.01, and the momentum is 0.9. They
are trained for 60 epochs. In the end, our grow-and-trim
based search process cost around 14 days with 4 GTX 1080
GPUs.

We then consider the ImageNet, which comprises 1000
visual classes and contains a total of 1.2 million training
images and 50,000 validation images. Here, we use the
same block architecture that MemNAS found in the CIFAR-
10, but extends the number of the blocks and the filters of
the inference neural network to 16 and 256 for MemNAS-
A and MemNAS-B in Table 2. Then, we adopt the same
standard pre-processing and augmentation techniques and
perform a re-scaling to 256x256 followed by a 224 x224
center crop at test time before feeding the input image into
the networks.

4.2. Results on CIFAR-10

Our experiment results are summarized in Table 1. We
had MemNAS to construct two searched models, MemNAS
(A = 0.5) and MemNAS (A = 0.8), for different tar-
get trade-offs between accuracy and memory consumption.
We compared our searched models with state-of-the-art ef-
ficient models both designed manually and automatically.
The primary metrics we care about are memory consump-
tion and accuracy.

Table 1 divides the approaches into two categories ac-
cording to their type. Compared with manually models, our
MemNAS (A = 0.5) achieves a competitive 94.0% accu-
racy, better than ResNet-110 (relative +0.5%), ShuffleNet
(relative +1.8%), and CondenseNet-50 (relative +0.3%).
Regarding memory consumption, our MemNAS (A = 0.5)
saves average 27.8% memory requirement. Specifically, our
MemNAS (A = 0.5) only requires 0.8 MB parameter mem-
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Figure 5: Results on A Modulations. Sweeping A from 0
to 1, MemNAS can produce a range of neural network ar-
chitectures with well-scaling accuracy and memory require-
ment. The mid-value, 0.5 enables MemNAS to produce
a well-balanced neural network architecture. The experi-
ments use the CIFAR-10 data set.

ory, which is satisfied for the on-chip memory storage of
mobile devices, such as Note 8’s Samsung Exynos 8895
CPU, Pixel 1’s Qualcomm Snapdragon 821 CPU, iPhone
6’s Apple A8 CPU, etc. Compared with automatic ap-
proaches, our MemNAS (A = 0.8) achieves the highest
95.7% top-1 accuracy, while costing 8.6% less memory re-
quirement. The searched architectures and more compari-
son results are provided in the supplement material.

4.3. Results on ImageNet

Our experiment results are summarized in Table 2. We
compare our searched models with state-of-the-art efficient
models both designed manually and automatically. Besides,
we measure the inference latency of our MemNAS-A and -



B when they are performed on Pixel 1. The primary metrics
we care about are memory consumption, inference latency,
and accuracy.

Table 2 divides the models into two categories according
to their target trade-offs between accuracy and memory con-
sumption. In the first group, our MemNAS-A achieves the
highest 74.1% accuracy. Regarding memory consumption,
our MemNAS-A requires 35.8% less memory consumption
than other automatic approaches, while still having an aver-
age +1.6% improvement on accuracy. In the second group,
our MemNAS-B also achieves the highest 75.4% top-1 ac-
curacy. Regarding memory consumption, our MemNAS-B
uses 22.62% less memory than other automatic approaches,
while still having an average +0.7% improvement on accu-
racy. Although we did not optimize for inference latency
directly, our MemNAS-A and -B are 3 ms and 9 ms faster
than the previous best approaches. More comparison results
are provided in the supplement material.

4.4. Results with \ Modulation

We performed a set of experiments on the impact of
modulating A in the memory-efficiency metric (Equation 4).
A sets the proportion between accuracy and memory re-
quirement in MemNAS. We first compare the MemNAS
with A = 1 that tries to optimize only accuracy performance
and the MemNAS with A = 0.5 that tries to optimize both
accuracy and memory requirement. Figure 4 shows the re-
sults of this experiment. The MemNAS optimizing both
accuracy and memory requirement achieves the same target
accuracy (relative 94.02%) while achieving 96.7% savings
in the memory requirement for parameter data and relative
28.2% in the memory requirement for intermediate repre-
sentation data.

Besides, we extend the experiment and sweep A from O
to 1 (0,0.2,0.5,0.8,1) to conduct our MemNAS on CIFAR-
10. Specifically, the other experiment settings follow the
same setting with the previous MemNAS-60. Figure 5
shows the results of the experiment. As the increasing of
A, asking MemNAS to less focus on memory requirement
optimization, the MemNAS achieves higher accuracy per-
formance, reducing the error rate from 9.5% to 4%, indeed
at the cost of larger memory requirement from 0.5 to over
2.5 MB. A = 0.5 balances the accuracy performance and
memory requirement.

4.5. Experiments on the Controller

We compare the proposed SCC to the conventional con-
troller used in the existing NAS work. The conventional
controllers [15] again try to estimate the absolute score of
each neural network candidate individually, and then the
NAS process ranks them based on the scores. We consider
two types of conventional controllers, one using one-layer
RNN (GRU) and the other using two-layer RNN (GRU),

[\S}

Table 3: Controller Comparisons. The proposed SCC
aims to estimate the relative ranking score, outperforming
the conventional controllers that estimate the absolute score
of each neural network candidate and later rank them using
the scores.

Model AP AP | NDCG | NDCG
@50 | @100 | @50 @100
Single-RNN | 0.066 | 0.237 | 0.043 0.078
Double-RNN | 0.128 | 0.268 | 0.062 0.080
Our Method | 0.196 | 0.283 | 0.135 0.201

the latter supposed to perform better. The performance of
the controllers is evaluated with two well-received metrics,
namely normalized discounted cumulative gain (NDCGQG)
and average precision (AP). NDCG represents the impor-
tance of the selected k candidates and AP represents how
many of the selected k candidates by a controller do re-
main in the real top-k candidates. We consider two k val-
ues of 50 and 100 in the experiment. Table 3 shows the
results. The SCC controller outperforms the conventional
controllers across the evaluation metrics and the & values.
As expected, the two-layer RNN improves over the one-
layer RNN but cannot outperform the proposed SCC.

5. Conclusion

In this work, we propose MemNAS, a novel NAS tech-
nique that can optimize both accuracy performance and
memory requirement. The memory requirement includes
the memory for both network parameters and intermediate
representations. We propose a new candidate generation
technique that not only grows but also trims the base net-
work in each search round, and thereby increasing the size
and the diversity of the search space. To effectively find the
best architectures in the search space, we propose the struc-
ture correlation controller, which estimates the ranking of
candidates by the relative information among the architec-
tures. On the CIFAR-10, our MemNAS achieves 94% top-
1 accuracy, similar with MobileNetV2 (94.1%) [21], while
only requires less than 1 MB parameter memory. On the
ImageNet, our MemNAS achieves 75.4% top-1 accuracy,
0.7% higher than MobileNetV?2 [21] with 42.1% less mem-
ory requirement.
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