

EGU2020-12746

https://doi.org/10.5194/egusphere-egu2020-12746 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

Amazon forest responses to drought: scaling from individuals to ecosystems.

Scott R. Saleska¹, Natalia Restrepo-Coupe^{1,2}, Fernanda V. Barros³, Paulo R. L. Bittencourt³, Neill Prohaska¹, Deliane V. Penha⁴, Loren P. Albert⁵, Mauro Brum¹, Luciano Pereira³, Leila S. M. Leal¹², Alessandro C. Araujo⁶, Scott C. Stark⁷, Luciana Alves⁸, Edgard Tribuzy⁴, Plinio B. Camargo⁹, Raimundo Cosme de Oliveira¹⁰, Valeriy Ivanov¹¹, Jose Mauro⁴, Luiz Aragao¹³, and Rafael S. Oliveira³ Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA

Scaling from individuals or species to ecosystems is a fundamental challenge of modern ecology and understanding tropical forest response to drought is a key challenge of predicting responses to global climate change. We here synthesize our developing understanding of these twin challenges by examining individual and ecosystem responses to the 2015 El Niño drought at two sites in the central Amazon of Brazil, near Manaus and Santarem, which span a precipitation gradient from moderate (Manaus) to long (Santarem) dry seasons. We will focus on how ecosystem water and carbon cycling, measured by eddy flux towers, emerges from individual traitbased responses, including photosynthetic responses of individual leaves, and water cycle responses in terms of stomatal conductance and hydraulic xylem embolism resistance. We found the Santarem forest (with long dry seasons) responded strongly to drought: sensible heat values significantly increased and evapotranspiration decreased. Consistent with this, we also observed reductions in photosynthetic activity and ecosystem respiration, showing levels of stress not seen in the nearly two decades since measurements started at this site. Forests at the Manaus site showed significant, however, less consistent reductions in water and carbon exchange and a more pronounced water deficit. We report an apparent community level forest composition selecting for assemblies of traits and taxa manifest of higher drought tolerance at Santarem, compared to

²School of Life Science, University of Technology Sydney, Sydney, NSW, Australia

³Department of Plant Biology, Institute of Biology, CP 6109, University of Campinas – UNICAMP, 13083-970, Campinas, SP, Brazil

⁴Universidade Federal do Oeste do Pará, Santarem, Para, Brazil

⁵Institute at Brown for Environment and Society, Brown University, Providence, RI, USA

⁶LBA Program Micrometeorology Group, INPA, Manaus, Amazonas, Brazil

⁷Department of Forestry, Michigan State University, East Lansing, MI, USA

⁸UCLA Institute of the Environment and Sustainability, University of Califormia Los Angeles, Los Angeles, CA, USA
⁹Laboratório de Ecologia Isotópica, Centro de Energia Nuclear na Agricultura da Universidade de São Paulo, Piracicaba, SP, Brazil

¹⁰Embrapa Amazônia Oriental, Santarem, PA, Brazil

¹¹Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48019, USA

¹²Laboratory of Sustainable Systems Analyses, Oriental Amazon Embrapa, Belém, Pará, Brazil

¹³College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom

the Manaus forest (short dry seasons) and other forest sites across Amazonia. These results suggest that we may be able to use community trait compositions (as selected by past climate conditions) and environmental threshold values (e.g. cumulative rainfall, atmospheric moisture and radiation) as to help forecast ecosystem responses to future climate change.