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Abstract—Knowledge distillation was pioneered to transfer
the generalization ability of a large teacher deep network to a
light-weight student network. The student network can retain
the high quality of the teacher network, yet exhibiting low
computational complexity and storage requirement, which is
attractive for deploying a deep convolution neural network on a
resource-constrained mobile device. However, most of the existing
methods focus on transferring the probability distribution of a
softmax layer in a teacher network and neglect the intermediate
representations. However, we find that the intermediate repre-
sentation is critical for a student network to better understand
the transferred generalization as compared to the probability
distribution only. In this paper, therefore, we propose such a
knowledge transfer adversarial network method which holisti-
cally considers both intermediate representations and probability
distributions of a teacher network. To transfer the knowledge
of intermediate representations, we set high-level teacher feature
maps as a target, toward which the method trains student feature
maps. Furthermore, to support various structures of a student
network, we arrange a novel teacher-to-student layer. Finally,
the proposed method employs an adversarial learning process.
Specifically, it includes a discriminator network to fully exploit
the spatial correlation of feature maps during the training process
of a student network. The experimental results demonstrate that
the proposed method can significantly improve the performance
of a student network on two important vision tasks, image
classification and object detection.

Index Terms—Knowledge transfer, distillation, adversarial
learning

I. INTRODUCTION

The AlexNet [20] and various other deep convolution neural
network (CNN) models have demonstrated the state-of-the-
art performance in computer vision tasks [1], [5]-[8], [10],
[13], [22], [24], [26], [33], [34]. However, the top-performance
CNN models generally rely on wide and deep architecture
consisting of large number of synapses and neurons [28].
Training and deploying such complex CNN models indeed
incur large computation and storage cost, which limits the
implementation of a CNN on a resource-limited device.

To tackle the challenges, researchers have attempted tech-
niques to scale the complexity of CNN models. One such
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technique is network quantization, which tries to convert a
full-precision CNN model into a low-precision one [2], [3],
[32]. Another technique is network pruning, which attempts to
remove the redundant and insignificant connections (weights)
[12], [21]. Some practical downsides of these approaches
include the memory requirement of storing a large number
of indices, and the reliance on special hardware/software
accelerators [18]. By contrast, knowledge distillation (KD) aims
to train a light-weight model with the knowledge transferred
from a trained large model [15], [23] without changing its
original architecture or extra storage for indices.

Among the KD techniques, the seminal work by Hinton
et al. [15] collects the output probability distribution of the
softmax layer of a teacher network and use them as target
objectives in training a student network. It demonstrates
promising results in the classification task. However, as it
considers the probability distribution of the output layer as the
only knowledge to transfer, it could miss the rich information
residing in the other layers and its application can be limited
to the classification tasks using the softmax loss function.

Recent studies [27], [30] proposed to exploit intermediate
representations as knowledge distillation targets. Specifically,
they use the outputs in the convolution layers of a teacher
network. The knowledge in feature maps contains not only the
feature values and their spatial correlations, which are requisite
in various deep CNN models. For transferring this knowledge,
they directly align the values of intermediate representations of
a teacher and a student network. However, such direct aligning
cannot effectively transfer the latent spatial correlation. Given
the importance of such information in computer vision tasks,
the direct aligning remains a limitation.

In this paper, we propose a new framework titled knowledge
transfer adversarial network (KTAN) which works as a general
class of the existing KD methods. KTAN has two main
operations: 1) knowledge extraction and 2) knowledge learning.
In knowledge extraction, since the deeper convolution layer
extracts more complicated and high dimensional features, we
choose the feature maps of teacher’s last convolution layer as
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the shared knowledge. We consider both pixel values as well
as region values named spatial information. Since most, if not
all, of CNNs contain convolution layers, our framework can
be applicable to those CNNs that do not have a softmax layer.

In knowledge learning, we adopt the concept of the genera-
tive adversarial networks (GAN) and propose to employ three
networks in the knowledge transfer framework: 1) a teacher
generative network (TGN); 2) a student generative network
(SGN); and 3) a discriminator network (DN). The framework
operation is illustrated in Figure 1. The TGN first observes
a large network model and generates the teacher feature map
(TFM) as the knowledge to transfer. In this framework, the
TGN includes a teacher-to-student layer to accommodate the
topological differences between TFM and student feature map
(SEM). Then, for transferring the pixel-to-pixel value, we train
the SGN to produce SFM similar to TFM using the MSE
loss function. After this, for transferring the region-to-region
value, we perform adversarial training by using convolution
discriminator network understand those spatial information. The
goal of SGN is to maximize the probability of being classified
as SFM by the discriminator, while the DN’s optimization
target is to identity an output as coming from TGN rather than
SGN. Therefore, the region-to-region value hidden in the shared
knowledge can be delivered from teacher to student network.
In this way, the proposed framework is suitable for various
computer vision tasks, such as classification and detection,
and is evaluated on image classification and object detection
benchmarks, demonstrating performance improvements.

To summarize, the contributions of this work are as follows:

o We propose a knowledge transfer adversarial convolution
network to provide the light-weight student network with
greater intermediate representation knowledge from a
deeper/wider teacher model;

o We introduce Teacher-to-Student layer such that interme-
diate spatial information knowledge can be delivered in
an adversarial learning manner to a student network with
arbitrary topology;

o We conduct extensive experiments on image classification
and object detection tasks, demonstrating the merit of the
proposed knowledge transfer adversarial network (KTAN)

II. RELATED WORKS

A student model with its knowledge transferred from a well
trained teacher model typically achieve better inference results
than a small model trained in the conventional way. There are
two components in KT: how to extract the shared knowledge
from a large teacher model; and how to transfer it to a simpler
student model.

Among the early works on KT, [15] concludes the softmax
output from a large teacher model contains information on how
the model distinguish between classes. However, the softmax
output can only perform the classification task; for tasks
optimizing different objective function, for example bounding
boxes for detection problem, the softmax output cannot be
applied due to the low number of classes.

Researchers also attempt to extract intermediate represen-
tation from a teacher model. [27] extended the idea of KD
and introduced FitNet to compress a network from wide and
relatively shallow to thin and deep. In order to learn the
generalization of a teacher network, FitNet adopted a squared
difference objective function to make the student models mimic
the middle layer output of the teacher network. Although the
middle layer output in CNN models offer knowledge on a
teacher network’s generalization, the directly matching learning
solution ignored the correlation between models, thus can
hardly learn how the teacher model generalize. Later, [30]
proposed an idea of Attention Transfer (AT). This method
encodes the spatial areas of a teacher network most focused
on attention maps, and then transfers the attention maps
as shared knowledge to a student network. However, this
method’s objective function is also a directly matching learning
function. Although the attention maps may contain useful
spatial information generalized by the teacher network, the
directly matching learning process could not sufficiently transfer
the spatial generalization of a teacher network to a student
network.

III. KNOWLEDGE TRANSFER ADVERSARIAL NETWORK

CNN typologies have increasingly become deeper and wider
for better inference accuracy performance [13]. On the other
hand, to reduce inference time and requirement of computation
and storage, cutting down the scale of the model is often needed
[16]. Considering this trade-off between resource and accuracy
performance, we propose a method to transfer the knowledge
from a large teacher network to a small student network.
This section is organized into four subsections to introduce
our teacher-student knowledge transfer framework. Sec 3.1
introduces the process of extracting the shared knowledge
from a large teacher model. Considering the different structure
between two models, we design a teacher-to-student regressor
layer for matching the size of TFM and SFM. Sec 3.2 presents
a normal method for transferring the shared knowledge from
a teacher network to student network. In Sec 3.3, in order to
make up the deficiency of the directly aligning method, we
propose an convolution adversarial network for understanding
the spatial information in shared knowledge.

A. Knowledge Extraction

In the field of computer vision, deep CNNs have achieved
great success on tasks such as classification [9], localization
[29], detection [25] and segmentation [17].

In a CNN model, convolution layers extract features from
input or previous layer activations, the features become more
complex as the network becomes deeper. Unlike fully connected
(FC) layers, each convolution layer are comprised of multiple
linear image filters capable of capturing more complex visual
features with spacial information. The filter F' € RFw*Fnx¢ jg
convolved with the multiple channel of input images or feature
maps I € R¥*"*¢ from last layer to produce a new image I'.
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Fig. 1: The architecture of the Knowledge Transfer Adversarial Network on classification task. The green lines represent
Feedfoward (FW) and Back propagation (BP) of the teacher network, the blue lines represent FW and BP of the student
network, and the orange lines represent FW and BP of the discriminator network. (Best seen in color)
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where k,, and kj, represent the kernel width and height of F,

w and h represent the size of input images or feature maps, c
represents the number of channel of input images.

As shown in [31], a trained shallow convolution layer
corresponds to low-level features like edge, angle, and curve.
A deeper convolution layer corresponds to more complicated
features like circle and rectangle. As the network topology
deepens, the model can extract more complex and higher
dimensional features. Deep CNN features also better represent
the generalizability of the network than shallow ones. Hence,
we utilize the feature maps (FM) of the last convolution layer
of teacher network as the shared knowledge.

Student Feature Map (SFM) and Teacher Feature Maps
(TFM) having non-matching dimensions is an obstacle to the
knowledge learning process. To handle the transfer, we add a
teacher-to-student regressor to the end of the last convolution
layer in the teacher network, whose output matches the size of
the SFM. To lower the memory constraint and to retain spatial
information in the shared knowledge, we define a convolution
regressor layer for resizing the high dimensional feature maps.
Let My, X My 5, and C be the TFM’s spatial size and number
of channels. Correspondingly, let M; ., x M; ; and C; be the
SFM’s spatial dimension and number of channels. Given a

shared knowledge of size (Cy, My, X M, ), the teacher-to-
student regressor sets the output channel as Cj of learning layer
and adopts its kernel size of (M, ;+2x P—K;)/S;+1 = M,
where ¢ € {h, w}. The detailed training process of Teacher-to-
Student layer is shown in Algorithm 1. We obtain a regressed
shared knowledge with the same size of student network.

B. Knowledge Pixel-to-Pixel Learning

After we obtain the shared knowledge from the teacher
network, effective transfer to student network is required. An
obvious way to transfer the pixel values of shared knowledge
is encouraging a student network to simulate the output of a
teacher network. In this method, a Mean Square Error (MSE) is
adopted as extra objective function to train the student network.
Considering the FM of the student network as m, € R¥*"x¢
and the FM of the teacher network as m; € R“’/Xhlxcl, an
extra loss function can be calculated by:

c rw rh

2.0 D (mu(wy.m)

n=1zx=1y=1

ms (.CL‘, y’ n))2

2
Where r is the scale ratio, w and h are the width and height
of ms.

As shown in Equation 2, the MSE objective function aims to
train a student network by aligning the pixe-to-pixel value of
SFM and TFM. However, the shared knowledge also contains
correlation spatial information between pixels and channels,
which are ignored in this transfer method.

Lyse =
rzcwh
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Algorithm 1 Training process of the Teacher-to-Student layer.

Input: The Teacher network model 7', divided to convolution
parts G and fully connected parts C'
Output: The weight of Teacher-to-Student layer, w.,;
1: Load pre-trained G, C, and initial the Teacher-to-Student
layer w, randomly;
2: for number of k step training iterations do
3: Input N training samples {I',...,I™V} with label
{y!,...,y™M} to the teacher network.
4: Update the w, by cross-entropy
(¥, C(R(G(i))))
5: end for

loss H =

C. Knowledge Region-to-Region Learning

Knowledge directly learning method transfers the pixel-to-
pixel value by aligning the value of shared knowledge from
a teacher and a student network. As the shared knowledge is
consisted of multiple feature maps, the directly learning method
ignores the spatial information in the regional feature. Hence,
we attempt to use another convolution network to extract those
spatial information in shared knowledge and employ a region-
to-region knowledge transferring approach from a teacher to a
student network.

Inspired by the Generative Adversarial Network (GAN) [11],
we propose the Knowledge Transfer Adversarial network
(KTAN) to transfer the region values of shared knowledge
from a large teacher network to a small student network, as
shown in Figure 1. In our KTAN, in addition to the teacher and
student networks, we include a discriminator. The discriminator
network receives the shared intermediate representation from
a teacher network as well as the corresponding features of a
student network. The discriminator uses two convolution layers
to process the regional feature of the received feature maps.
Similar to the discriminator network in GAN, our discriminator
convolution network aims to distinguish whether one piece
of knowledge originate from a teacher network or a student
network. The student network is trained with the goal to deceive
the discriminator convolution network by generating feature
maps similar to those from a teacher network. Therefore, due
to the end-to-end training process, the region-to-region value
hidden in the shared knowledge can be delivered from a teacher
to a student network.

In the adversarial training process, to obtain the teacher
network’s TFM distribution m; over image data ¢, we represent
data space mapping as T'(i;w;). T refers to the teacher
network’s final convolution layer. w; represents its weight.
Then, a Teacher-to-Student layer is defined by R with weights
w,. This layer represents a mapping to feature map space
R(my; w,), which is a regression result between the teacher and
student networks. To transfer the spatial information in TFM,
we feed m and R(m;) to discriminator model D to maximize
the probability of correctly labeling feature maps as from
Teacher-to-Student layer or the student network S. The student
network is simultaneously trained to minimize the distinction
between D(m,) and D(R(m;)) through log(1 — D(S(4)))

(original objective function) and MSE difference between m
and R(m;). In the training stage of the framework, we first pre-
train the layer R with image data ¢ to obtain w,., as presented in
Algorithm 1. Then, we devise k steps of optimizing S with the
original task’s loss function and MSE object function before
adversarial optimization. After that, we simultaneously train
the S and D playing the following two-player min-max game
and a detailed example training process on classification task
is presented in Algorithm 2.

Algorithm 2 Training process of KTAN on classification task.

Input: The Student network model, composed of generator .S
and classifier C'; The trained Teacher-to-Student layer R;
and Teacher network T

Qutput: The improved student model, S and C;

1: Load pre-trained S, C, T, and initialize the discriminator
network D randomly; Pre-train the Teacher-to-Student layer
R;

2: for k iterations of pre-training do

Input n training samples I, ..., I" with label 3!, ...
to student networks.

4: Update S using cross-entropy loss LCE and the Mean
square error loss between m and R(my)

Leg(y,C(ms)) + BLayse(R(my), ms)

: end for

. for iterations of adversarial training do

Input same N training samples ', ..., IV to G and T.
Sample N student feature maps ms from S.

Sample N teacher feature maps R(m;) from R.

10: Update network D by Lp, i.e., probability of mg
being labeled a teacher network’s generalization:

n
Y

R A4

N
Lp= Z —logD(ms)

n—1

11: Update network S by:
H(y, C(ms))+aLp(Yrm,)> Ms)+BLarse(R(ms)), ms)
12: Update network C' by:
H(y, C(ms))

13: end for

IV. EXPERIMENT

In this section, we perform two computer vision tasks to
verify our knowledge transfer adversarial network model: image
classification and object detection. Classification is the most
popular challenge in computer vision, suitable for verification
and comparison; while object detection can demonstrate the
generalizability of our model.

A. Image classification

For classification, we evaluate our model on two standard
datasets, CIFAR-10 and CIFAR-100. The CIFAR is a popular
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image classification benchmark. It contains 50k training images
and 10K testing images with 10 and 100 classes, where
instances are 32 x 32 color images involving airplanes, cats,
human and so on. In the experiments, we utilize random
horizontal flips and random crops for data argumentation. For
general training, SGD method is used with a mini-batch size
of 32 and learning rate of 0.2. For adversarial training, we
initialize the learning rate at 102 and the weight decay at
1074

TABLE I: Knowledge transfer results on CIFAR

Method CIFAR-10(%) CIFAR-100(%)
Student 93.6 73.1
KD [Hinton et al.] 94.7 76.0
FitNet [Romero et al.] 94.4 75.2
AT [Zagoruyko et al.] 94.5 74.5
DLN 94.4 75.3
KTAN 94.7 77.1
KD+KTAN 95.0 77.6
Teacher 95.1 78.0

On the CIFAR datasets, we use a very deep residual network
Resnet-1001 [14] as the teacher network and a shallow version
of Inception network [19] as the student network. We compare
our model with several state-of-the-art knowledge transfer
methods, including KD [15], FitNet [27] and AT [30].

(1) Teacher. A large CNN model (Resnet-1001) trained by
the true label objective, which contains 1001 layers.

(2) Student. A small CNN model (Inception) trained by the
true label objective.

(3) KD [15]. This method utilizes the softmax output of a

teacher network as shared knowledge. We raise the softmax

temperature for teacher network to 4, and set the weight

given to the teacher cross-entropy to 0.9, following [15].

FitNet [27]. This method utilizes an intermediate represen-

tation as shared knowledge and applying a direct knowledge

learning process. We transfer the last convolution layer’s
output to a student network since the simpler student
network needs less regularization from the teacher network
than a thin and deep one. The weight given to the transfer

loss follows [27].

AT [30]. This method utilizes only the attention maps as

shared knowledge and applies a direct knowledge learning

process. Due to the different structure of Teacher and

Student, we can only align the attention maps of the last

convolution layer in the two networks. The weight given

to the transfer loss is 0.05, following the explanation in

[30].

(6) Directly learning network (DLN). Our KTAN network
without the adversarial learning process.

(7) KTAN. This method utilizes the FM of a deep convolution
layer and applies an adversarial knowledge learning process.
We set the « to 0.6 and 3 to 0.5.

(8) KTAN + KD. We combine our KTAN and KD to transfer
both the FM and softmax output to student. The adversarial
learning process is only applied on FM shared knowledge.

As shown in Table 1, our KTAN model indeed improves the
performance of the original student network, which indicates

“)

&)

the effectiveness of the intermediate representation based
adversarial learning process. Comparing with other methods,
our KTAN model is also competitive. In the CIFAR-10 dataset,
KTAN archives the best performance among the methods. DLN
method slightly outperforms FitNet. The reason is that the
regressor layer used in FitNet contain some shared knowl-
edge. For AT method, because of the topological difference
between the teacher and student networks, it is hard to map
attention maps of all convolution layers from a teacher to
a student network. In many cases, only the last convolution
layer’s attention map is suitable for transferring to a student
network, which contains few spatial information than a high-
level generalization of a deep convolution layer. Our KTAN
method shows better performance than DLN, which indicates
the adversarial training process in the KTAN model indeed
improves spatial information retention in a student network. In
the CIFAR-100 dataset, the large number of classes provide
more shared knowledge on the teacher network’s probability
distribution, the softened softmax output achieves better results
on CIFAR-100 than on CIFAR-10. For the same reason, our
KTAN model also achieves the best performance on CIFAR-
100.

TABLE II: mAP result on Pascal VOC 2007 dataset

Method Architecture mAP
Student Faster-RCNN (Res50) 70.4
KD Faster-RCNN (Res50) 70.9
FitNet Faster-RCNN (Res50) 71.4
DLN Faster-RCNN (Res50) 71.5
KTAN Faster-RCNN (Res50) 73.0
KTAN+KD Faster-RCNN (Res50) 73.4
Teacher Faster-RCNN (Res152) 754

B. Object detection

Although several works have successfully improved small
networks’ image classification capability, few explored the
performance of their methods on other computer vision tasks,
like object detection.

In this section, we perform experiments to compare several
methods in object detection, including KD [15], FitNet [27],
DLN and our KTAN. We evaluate them on PASCAL VOC 2007
dataset [4]. On this dataset, we select the Faster-RCNN network
as the object detection architecture, then use ResNet152 [13] as
teacher model and ResNet-50 [13] as student model. Following
the settings in [10], we train models on VOC 2007 trainval, and
evaluate them on the test set with the mean Average Precision
(mAP).

As shown in Table 2, our KTAN model achieves the best
performance on PASCAL VOC 2017 dataset. Unlike typical
classification tasks, object detection problems contain two
optimizing targets, including predicting bounding boxes and
classification results for all instances. In the Faster-RCNN
method, it applies a region proposal network (RPN) to generate
candidate bounding boxes from the output feature map of the
last convolution layer. Then, it maps candidate bounding boxes
into feature map and classifies each bounding boxes. Therefore,
a softmax output of a large model only contains the probability
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Fig. 2: The detection results of a) original student network,
b) the KTAN network, and c) teacher network. The yellow
bounding boxes in the middle column represent the improved
detection results after knowledge transfer and the red bounding
box in left column represents the false detection in the original
student network. (Best seen in color)

distribution of candidate bounding boxes. Alternatively, our
KTAN model extracts the teacher model’s last convolution
layer’s feature maps as shared knowledge, which include more
high dimensional information about the dataset. Furthermore,
through the adversarial training process, our KTAN method
can transfer more spatial information from a large model to a
small one than the DLN method.

We also provide some detection results of KTAN on PASCAL
VOC 2007 test set. As shown in Figure 2, the first line
represents the detection results of original student network,

the last line represents teacher networks’ results, and the
middle line shows the prediction of our KTAN network.
The yellow bounding boxes in the middle line represent
the improved detection results after the knowledge transfer.
Through our KTAN method, a simple Faster-RCNN model
can generate better feature maps with the shared knowledge
of a large Faster-RCNN model than the original one, allowing
it to correctly detect more bounding boxes than the original
model. With a better feature map, the improved model can
also remove the false positives, as shown in the fourth
column. Furthermore, since our KTAN model only learns an
intermediate representation from a teacher network, it can
eliminate false positives originated from the teacher network’s
final FC layers.

V. CONCLUSION

In this paper, we propose a deep feature maps knowledge
based adversarial knowledge transfer framework for various
computer vision tasks, which is implemented in two sequential
processes. For the knowledge extraction operation, we propose
to transfer the intermediate representation of teacher to student
network. A Teacher-to-Student layer is designed to bridge the
structural difference between the teacher and student neural
networks. Unlike prior directly matching knowledge learning
solution, we devise an adversarial training framework to teach
the student network the spatial information in the shared
knowledge, since the most valuable information in the shared
knowledge is the spatial correlation between feature maps.
Our method has experimentally shown improvement in student
network’s knowledge of the teacher network’s generalization.

In the future work, we aim to explore more powerful
adversarial frameworks and pursue more applications of our
KTAN methods, specifically on computer vision tasks, like
video caption, video semantic understanding, etc.
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