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� This work contains successful
prediction and optimization of
Portland cement systems.

� Novel predictions of heat-evolution
profiles were achieved via machine
learning (ML).

� This work offers an original dataset,
which contains results for 300+
unique entries.

� The database considers mixture
design and physiochemical features
as attributes.

� This work can be expanded to
formulate mixture design based on
user kinetic-criteria.
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The production of ordinary Portland cement (OPC), themost broadly utilizedman-madematerial, has been
scrutinized due to its contributions to global anthropogenic CO2 emissions. Thus — to mitigate CO2 emis-
sions — mineral additives have been promulgated as partial replacements for OPC. However, additives —
depending on their physiochemical characteristics — can exert varying effects on OPC’s hydration kinetics.
Therefore — in regards to more complex systems — it is infeasible for semi-empirical kinetic models to
reveal the underlying nonlinear composition-property (i.e., reactivity) relationships. In the past decade
or so,machine learning (ML) has arisen as a promising, holistic approach to predict the properties of hetero-
geneous materials, even without an across-the-board comprehension of the underlying composition-
properties correlations. This paper describes the use of a Random Forests (RF) model to enable high-
fidelity predictions of time-dependent hydration kinetics of OPC-based systems — more specifically
[OPC +mineral additive(s)] systems—using the system’s physiochemical attributes as inputs. Results show
that the RFmodel can also be used to formulatemixture designs that satisfy user-imposed kinetics-related
criteria. Lastly, the presented results can be expanded to formulate mixture designs that satisfy target
kinetic criteria, even without knowledge of the underlying kinetic mechanisms.
� 2021 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction As stated above, these kinetic phenomena are commonly
Compared to other construction materials (e.g., wood; steel;
masonry; etc.), concrete has the highest annual production [1], with
4.1 billion tons produced in theUnited States in 2019 [2]. Concrete is
especially vital to emerging nations, as it is an economically viable
material and its precursors plentiful enough to satisfy the demand
for decent low-cost housing and infrastructure [1]. Thus, the com-
plete eradication of concrete and cementitious materials in pursuit
of a greener material is most likely an impossibility in the near
future.With that stated, research that can provide improved under-
standing — or even further, predict the behavior and composition-
property linkages — of OPC-based systems (i.e., pastes; mortars;
and concretes), can improve the efficiency of the implementation
of the mentioned materials in practice. As a standalone product,
the productionof OPC is responsible for 9% of CO2 emissions globally
[3-5]. As the overall demand for OPC continues to increase [6-8],
there is rising pressure to discover alternate practices and resources
to reduce CO2 emissions resulting from OPC production [3,4,7,9].
Currently being extensively explored and optimized by researchers
is partial replacement of OPC with CO2-efficient mineral additives
such as pozzolanic and filler materials. Examples of the discussed
additives, in the form of ground powder, are limestone (crystalline
CaCO3), quartz (crystalline SiO2), and silica fume (amorphous
SiO2); other less commonly used additives include polymorphs of
TiO2 (i.e., rutile and anatase), metakaolin (dominantly amorphous
Al2Si2O7), and corundum (crystalline Al2O3) [10-17]. When present
in OPC-based systems, filler materials are known to alter hydration
rates [10,11,18-20], typically by accelerating the hydration (i.e., the
reaction with water) of the host phase by providing additional sur-
face sites for calcium silicate hydrate (C-S-H) — universally consid-
ered to be the ‘‘glue” of OPC-based systems and the most
important hydrate phase — to heterogeneously nucleate and grow
upon. The acceleration of hydration rates as a result of inclusion of
fillers in OPC-based systems is commonly referred to as the filler
effect [19-21]. To follow that point, when present in OPC-based sys-
tems, pozzolanic materials are known to contribute to a pozzolanic
reaction, which ultimately yields an increased percentage of C-S-H
present in the system — an effect known to increase with time
[18,22]. However,materials such as silica fumeandmetakaolinhave
an additional layer of complexity. These materials have been estab-
lished to contribute to the hydration of OPC-systems as pozzolanic
and filler materials simultaneously, with the contributions to each
effect varying with time [18,22].

The hydration of the abovementioned systems is often fitted to
physical results to predict the hydration behavior and microstruc-
tural development of cement systems with respect to time. A tech-
nique that is often at the forefront of cement hydration studies is
isothermal calorimetry, which measures the heat absorbed or
emitted, that is, endo-/exo-thermic processes, for a given system.
The measured heat is often represented in the literature in terms
of heat flow rate and the overall heat produced at a fixed temper-
ature with respect to time: the heat flow rate is indicative of reac-
tion rates, while the cumulative heat released can be used to
extract thermodynamic information (e.g., degree of hydration of
cement) at a desired time in the hydration process. The heat flow
emitted over the course of the entire hydration reaction, with
respect to each unique cementitious system, can serve as a charac-
teristic heat-evolution ‘‘fingerprint,” yielding information regard-
ing underlying kinetic mechanisms. Early hydration of cement is
often described in four periods that correspond to observable
regime changes in heat flow rate as a function of time. The four
stages of early hydration are often referred to in the literature
[23] as: the (I) initial period; (II) induction period; (III) acceleration
period; and (IV) deceleration period.
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observed via unique heat evolution signatures with time, which
are used to demonstrate hydration degree and microstructural
development of cement systems, typically by numerical kinetic
models [24-27]. Arguably the most prominent, prolifically-cited
numerical kinetic works developed in the past century, relatively
around the same time, has been by William A. Johnson and Robert
F. Mehl [28], Melvin Avrami [29-31], and Andrey N. Kolmogorov
[32], whose collective work is commonly denoted as JMAK kinetics.
JMAK kinetics assume that nucleation occurs in a random, homo-
geneous fashion over the total untransformed material of the given
system, where the growth rate is an independent factor and
assumed to occur isotropically. Several studies [33-40] have
applied JMAK kinetics to cement hydration, with relatively poor
fits. For some time, it’s been known that such assumptions do
not fit with what has been experimentally observed in terms of
cement microstructure development after mixing. That is, it is well
established that one of the more important hydration products of
OPC systems, C-S-H, grows heterogeneously in a needle-like fash-
ion (sometimes also referred to as fibrillar [41], sheet-like [42],
or globular [43] in the literature) on cement surfaces at early ages,
eventually leading to setting and the consequent development of
mechanical properties. Thomas [44] pointed out that experimental
observations contradict assumptions set by the JMAK equations
and consequently chose to frame cement hydration in the context
of John W. Cahn’s original work [45]. Cahn’s boundary nucleation
and growth model — similar to the JMAK equations — is based
on a few assumptions; Cahn’s work assumes that nuclei form on
planar boundaries that are randomly oriented and distributed
within the system, a constant nucleation rate per unit area of the
unreacted surface, and a constant, isotropic growth rate.

Cahn’s work has served as a springboard for several numerical
studies [16,18,19,21,22,24,44,46-57], whose collective work has
sought to comprehensively explain the rate-limiting steps driving
the early stages of hydration — corresponding to nucleation and
growth — and eventually leading to the slowing or decelerating
of hydration reaction rates. Though the referenced works
[16,18,19,21,22,24,44,46-57] serve as examples of important mile-
stones in understanding underlying hydration mechanisms of OPC-
based systems, there are still points of contention within the liter-
ature. For example, in regards to the aforementioned slowing of
hydration rates that occurs 10 hours or so after mixing for a plain
OPC-based system, there is debate on whether the deceleration per-
iod is rate-limited by diffusion-limited [16,50-53] or dissolution-
limited [54,58,59] kinetics. In addition, the process of elucidating
hydration mechanisms to then predict hydration behavior based
on the aforementioned mechanisms is an approach that has and
still requires numerous studies with varying physical and numeri-
cal approaches.

Currentlywithin the literature, there are numericalmethods that
can predict properties based on physical data, however these meth-
ods do not consider reaction kinetics, but instead take an engineer-
ing approach by utilizing artificial intelligence, machine learning
(ML) techniques. Previous studies [60-69] have proposed that
improving understanding of the relationships between hydration
kinetics and consequent mechanical properties [60-66,70-79] of
OPC-based systems can be assisted by a ML approach, based on
the large-scale analysis of experimental data. Bangaru et al. [69]
applied Random Forests (RF), Naïve Bayes, Logistic Regression, K-
Nearest Neighbors, and Support Vector Machine models to predict
the degree of hydration based on the microstructural development
of concrete systems. Conversely, Cruz et al. [68] predicted the
microstructural development of cement systems using the degree
of hydration as an input via an Artificial Neural Network model.
These studies [68,69] reveal that ML can serve as a promising plat-
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form to predict the heat evolution of the hydration reaction, which
canbe directly linked to the kinetics of the overall reaction. Byutiliz-
ing ML platforms, complexities pertaining to large compositional
degrees of freedom (i.e., mixture design variables, permutations of
which canvary significantly andexert substantial influenceonprop-
erties) and the consequent, nonlinear relationships between design
variables and properties of OPC-based systems can be overcome. For
example, the inclusion of ground limestone in OPC-based systems,
depending on the replacement level, can lead to formation of addi-
tional, carboaluminate phases in OPC-based systems via reactions
with alumina-containing anhydrous phases (e.g., C3A) [14,80-83],
or from destabilization of the monosulfoaluminate phase [84]. The
dissolution of metakaolin is known to release aluminate [Al(OH)4�]
anions, ultimately suppressing the nucleation and growth of C-S-H
[18]. Further, mineral additives, as stated previously, can function
as pozzolanic or filler materials or both to varying degrees at differ-
ent ages, complicating the overall hydration process. Their perfor-
mances have been linked to the available specific surface area
(SSA; cm2.g�1) and other parameters related to physiochemical
effects, such as agglomeration [18,22], which can effectively alter
the total SSA contributing to the hydration reaction. Therefore,
sophisticated approaches, such asML, are required to reveal the hid-
den, and complex, semi-empirical rules that govern the correlation
between mixture design and properties of OPC-based systems.

In this study, the RF model — a modification of the
classification-and-regression decision trees (CART) ML models —
is used to perform novel predictions of the time-dependent,
kinetically-related heat-evolution behavior with variations accord-
ing to different mineral additive types, such as quartz, limestone,
metakaolin, and silica fume and physiochemical attributes such
as SSA. The prediction results show that the RF models can predict
and optimize the relatively continuous (i.e., short time steps) and
long time period (i.e., 24 h) heat-evolution-determined kinetic pro-
files corresponding to plain and [OPC + mineral additive] systems
as well as predict profiles for new systems when properly and rig-
orously trained, a feat that is currently impossible with current
numerical kinetic models. The database constructed from heat evo-
lution experimental data includes 1-additive and 2-additive sys-
tems. In order to evaluate the performance of the ML model, five
different statistical parameters are used to compare the predicted
cumulative heat and heat flow rate against measured data. The cor-
relations between the inputs and outputs developed by the RF
algorithms utilized in this study can be used to optimize the mix-
ture design based on desired hydration kinetics. Further, by utiliz-
ing the reactivity of cementitious systems in both the differential
(i.e., heat flow rate) and integral (i.e., cumulative heat released)
forms, this study shows that ML can be applied regardless of mea-
surement technique and data form (i.e., differential or integral).

2. Overview of the Random Forests (RF) model

The RF model — a modification of classification-and-regression-
trees (CART) model, as detailed in our previous studies [60,61,85-
89] — constructs a large number of uncorrelated CART trees as a
committee to produce independent outputs andultimately averages
them to produce the final output [90]. Each tree within the RF algo-
rithm is constructed via binary splits into ‘‘near-homogeneous” ter-
minal nodes; such splits are done in a recursive fashion until the
optimal structure of the tree is achieved. The RF algorithm leverages
the techniqueofbagging [91,92],whichensures that each treegrows
from a randomly-selected group of bootstrap samples, each com-
prising of the same number of inputs as the entire training dataset.
The RF algorithm also leverages another technique, bootstrapping,
which helps to reduce the variation (underfitting) and bias (overfit-
ting) among the 100 s-to-1000 s of trees that are grown in the forest
[93]. Another advantage of the RF model — compared to other ML
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platforms — is that it allows each tree to grow to its maximum size
without any smoothening or pruning whatsoever; this helps main-
tain diversity among the trees (i.e., output of each tree is truly inde-
pendent of the output of all other trees), thereby allowing themodel
to not just capture trends in thedataset, but also account for outliers.
Lastly, the RFmodel contains two hyper-parameters that need to be
adjusted manually to achieve the optimal prediction. These hyper-
parameters — that is, the number of trees in the forest and number
of splits in each tree — were optimized in this study using the 10-
fold cross validation (CV) method [61,62,85,87-89,94,95] in con-
junction with a grid-search method [96] that is described in
Section 4.2.
3. Database collection and assessment of prediction accuracy of
ML model

The cumulative heat and heat flow rate corresponding to the
hydration of [OPC + mineral additive] paste systems collected from
isothermal calorimetry, described in the Supplementary Information
document, were consolidated into the training database (Table 1)
and the testing database (Table 2). The first-mentioned database
was used for training the ML model, and subsequently the testing
database was used for evaluating its prediction performance (i.e.,
ability to predict hydration heat flow rate and cumulative heat that
were precluded from the training database). The training database
is comprised of 7800 unique data-records from 326 systems,
wherein the time-dependent cumulative heat and heat flow rate
of each mixture design at every hour from 0 to 24 hours are out-
puts. The training database includes 8 inputs related to physico-
chemical properties of the system: mineral additive type (e.g.,
0 = OPC; 1 = Quartz; 2 = Limestone; 3 = Metakaolin; 4 = Silica
Fume; 5 = Quartz + Limestone; 6 = Quartz + Metakaolin; 7 = Qua
rtz + Silica Fume; 8 = Limestone + Metakaolin; 9 = Limestone + Si
lica Fume; 10 = Metakaolin + Silica Fume); mineral additive type
(Unitless); normalized OPC content (Unitless); normalized
additive-1 content (Unitless); normalized additive-2 content (Unit-
less); SSA of OPC (cm2.g�1); SSA of additive-1 (cm2.g�1); SSA of
additive-2 (cm2.g�1); and time (hour). For both 1-additive and 2-
additive systems, the mineral additive replacement level varied
as described in the Supplementary Information document. Statistical
parameters pertaining to the training database are shown in
Table 1. The testing database consisted of 312 unique data-
records from 26 systems and the same 8 inputs and 2 outputs as
the training database. The time-dependent cumulative heat and
heat flow rate of each system were predicted every two hours from
0 to 24 hours. The mineral additive replacement levels for both 1-
additive and 2-additive system in the testing database were ran-
domly selected. Statistical parameters pertaining to the testing
database are shown in Table 2.

In this study, 5 unique statistical parameters — Pearson correla-
tion coefficient (R); mean absolute percentage error (MAPE); coef-
ficient of determination (R2); root mean squared error (RMSE); and
mean absolute error (MAE) — were to quantitatively and rigorously
assess the prediction performance of a ML model (RF) against the
testing databases. Mathematical formulations for each of these
parameters can be found elsewhere [60,85].
4. Results and discussion

4.1. Experimental isothermal calorimetry of [OPC + mineral additive]
systems

Isothermal calorimetry was used to measure the hydration
rates of OPC that was partially replaced by four mineral additive
types (e.g. quartz, limestone, metakaolin, and silica fume), in



Table 1
Summary of four statistical parameters related to each of the 10 attributes (8 inputs and 2 outputs) of the training database. The training database included 8 inputs related to
physicochemical properties of the system: mineral additive type (e.g., 0 = OPC; 1 = Quartz; 2 = Limestone; 3 = Metakaolin; 4 = Silica Fume; 5 = Quartz + Limestone;
6 = Quartz + Metakaolin; 7 = Quartz + Silica Fume; 8 = Limestone + Metakaolin; 9 = Limestone + Silica Fume; 10 = Metakaolin + Silica Fume); mineral additive type (Unitless);
normalized OPC content (Unitless); normalized additive-1 content (Unitless); normalized additive-2 content (Unitless); SSA of OPC (cm2.g�1); SSA of additive-1 (cm2.g�1); SSA of
additive-2 (cm2.g�1); and time (hour). The training database additional includes 2 outputs, that is, the time-dependent cumulative heat and heat flow rate of each system were
predicted every two hours from 0 to 24 hours. The database consists of 7800 unique data-records.

Attribute Unit Min. Max. Mean Std. Dev.

Mineral Additive Type Unitless 0.0000 10.000
Normalized OPC Content Unitless 0.2650 0.6902 0.4670 0.1333
Normalized Additive-1 Content Unitless 0.0000 0.4136 0.1694 0.1105
Normalized Additive-2 Content Unitless 0.0000 0.3787 0.0507 0.0856
Cement SSA cm2.g�1 1726.5 1726.5 1726.5 0.0000
Additive-1 SSA cm2.g�1 0.0000 198,000 22,659 43,392
Additive-2 SSA cm2.g�1 0.0000 198,000 34,359 71,681
Time hour 1.0000 24.000
Cumulative Heat J.gopc�1 4.1620 312.53 141.75 83.571
Heat Flow mW.gopc�1 0.4117 6.0298 2.7629 1.2437

Table 2
Summary of four statistical parameters related to each of the 10 attributes (8 inputs and 2 outputs) of the testing database. The database consists of 312 unique data-records.

Attribute Unit Min. Max. Mean Std. Dev.

Additive Type Unitless 0.0000 10.000
Normalized Cement Content Unitless 0.2827 0.6132 0.4169 0.1186
Normalized Additive-1 Content Unitless 0.0690 0.3714 0.1961 0.0908
Normalized Additive-2 Content Unitless 0.0000 0.3171 0.0758 0.0955
Cement SSA cm2.g�1 1726.5 1726.5 1726.5 0.0000
Additive-1 SSA cm2.g�1 1054.1 198,000 32,552 60,228
Additive-2 SSA cm2.g�1 0.0000 198,000 49,603 81,587
Time hour 2.0000 24.000
Cumulative Heat J.gopc�1 16.407 301.20 161.21 84.608
Heat Flow mW.gopc�1 0.5321 7.2012 2.8690 1.2483
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1-additive (Fig. 1) and 2-additive designs (Fig. 2). Figs. 1 and 2
show representative heat evolution profiles of OPC paste systems
prepared by substituting OPC with different mineral additives at
various replacement levels. In Fig. 1, all additive replacements
appear to substantially enhance OPC hydration rates, by means
of a leftward shift of the main hydration peak — indicated by a
shortened induction period — and higher heat flow rate peak.
The acceleration of hydration rates increases with increasing addi-
tive replacement level (Fig. 1a) due to the filler effect [19-21]— a
phenomenon which intensifies as the total solid surface area of
the system increases.
(a) (b
Fig. 1. Isothermal calorimetry determinations of time-dependent (a) heat flow rate of [O
heat flow rate and (c) cumulative heat release of [OPC + 1-additive] systems at iden
calorimetry measurements were recorded over the initial 24 hours of hydration. Uncert

4

Fig. 1b and 1c compare the heat evolution profiles of OPC
replaced by the four mineral additives, with 1-additive included
in each system, at the identical replacement level of 20 wt%. Each
system exhibits accelerated hydration rates compared to the neat
system, largely due to the filler effect [18-22]. However, the varying
degrees of acceleration (Fig. 1b) and cumulative heat released at
24 hours (Fig. 1c) are a result of the varying chemical and physical
effects, which are consequent of the inclusion of each mineral addi-
tive, as discussed in Section 1. These systems (shown in Fig. 1) are
fairly simple and have been predicted using traditional thermo-
kinetic models [18,19,21,22,57].
) (c) 
PC + quartz] systems at replacement levels varying from 0 wt% to 60 wt%, and (b)

tical 20 wt% replacements of limestone; quartz; silica fume; and metakaolin. All
ainty in heat flow rate at the main hydration peak is ±2%.



(a) (b) 

(c) (d) 
Fig. 2. Isothermal calorimetry determinations of time-dependent 2-additive systems, that is, (a) heat flow rate and (b) cumulative heat released of [OPC + metakaolin + lime-
stone] systems as replacement levels ranging from 0% to 60% with respect to each additive in the system; and (c) heat flow rate and (d) cumulative heat released of
[OPC + quartz + silica fume] systems as replacement levels ranging from 0% to 30% with respect to each additive in the system. All calorimetry measurements were recorded
over the initial 24 hours of hydration. Uncertainty in heat flow rate at the main hydration peak is ±2%.
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However, for only slightly more-complex OPC systems (i.e., OPC
systems prepared by replacing OPC with 2-additives at different
replacement levels), such as those represented by the heat evolu-
tion profiles shown in Fig. 2, the hydration process of each system
is much more difficult to predict by traditional means due to
increased compositional degrees of freedom [68,69]. [OPC + meta
kaolin + limestone] systems (Fig. 2a and 2b), although showing
accelerated heat flow rates and greater cumulative heat released
at 24 hours compared to the neat system, display no clear trend
(s) in terms of the occurrence of main hydration peak and the
cumulative heat released at 24 hours with increasing replacement
levels. With the many behaviors metakaolin is known to exhibit in
a simple system [18,57], it is difficult to determine which mecha-
nism dominates its contributions to the acceleration of OPC hydra-
tion. Adding another layer of complexity is the incorporation of
limestone, which can form carboaluminate phases in the presence
of aluminate phases [14,80-84]. Heat evolution profiles corre-
sponding to [OPC + quartz + silica fume] systems, (Fig. 2c and
2d) also exhibit no clear trends with increasing replacement level,
with the exception of accelerated heat flow rates and greater
cumulative heat released at 24 hours compared to the neat system.
However, it can be speculated that the filler effect is the dominating
effect in [OPC + quartz + silica fume] systems based on the obser-
vations from Fig. 2 as well as these related works [10,11,18-22].
Even so, it is truly unknown if the accelerated rates resulting from
the incorporation of quartz and silica fume in this study are equiv-
alent or not. The contributions of additive chemistry and/or phys-
ical effects such as effective SSA can potentially vary with both the
individual replacement level and total replacement level. Such
complexity, nonetheless, is expected because each input variable
5

— pertaining to either the additive chemistry, mixture design, or
SSA — consistently casts unique and significant impact on the
OPC hydration; when more than one input variable are concomi-
tantly adjusted, especially hydration mechanism(s), the cumula-
tive impact on properties is even more complex. Precisely
because of such complexities, derivation of empirical, concurrent
physical and chemical property relationships in OPC hydration is
not feasible using simple statistical and analytical kinetic models;
more sophisticated algorithms such as machine learning are
needed for such tasks.

4.2. Heat evolution prediction of [OPC + mineral additive] systems

As described in Section 3, the RF model was trained using the
training database; thereafter, the prediction performance of the
trained ML model was evaluated against the testing database. To
maximize the RF model’s prediction performance, it is important
to ascertain that: inputs-output correlations are properly estab-
lished; outliers are accounted for; and variance and bias among
trees (i.e., CARTs) of the model are kept as low as possible. To
accomplish these objectives, the two hyper-parameters of the RF
model (i.e., number of trees in the forest; and number of splits
per tree) were rigorously optimized based on the nature and vol-
ume of the database. In this study, for such optimizations, the
grid-search method [96,97] was used. This method involves auton-
omous, iterative variations in the hyper-parameters — while con-
currently employing the 10-fold CV method [94] — to determine
optimal values of hyper-parameters that result in a minimum devi-
ation between RF predictions and measured values. The aforesaid
deviation between predictions and observations is quantified using
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all five statistical parameters listed in Section 3 (i.e., R; R2; MAE;
MAPE; and RMSE). Simply put, hyper-parameters are determined
to be optimal when R and R2 are at (or close to) their global max-
imum, while MAE, MAPE, and RMSE are at (or close to) their global
minimum.

The representative results of the RF model, which were
obtained from the grid-search method, are shown in Fig. 3. Two
of the statistical parameters — that is, MAPE and R2 — that were
used to measure the deviation between predictions and measured
values of cumulative heat flow and heat flow rate (averaged over
the initial 24-hour period) are showcased. On the basis of MAPE
and R2, the optimal prediction performance of the RF model for
the cumulative heat prediction occurred for common values of
the two hyper-parameters: that is, number of trees in the for-
est = 800; and number of splits in each tree = 5. Moreover, the RF
model was structured using 800 trees and 5 splits produced accu-
rate prediction of the heat flow rate as well. Therefore, 800 trees
and 5 splits were selected as optimal hyper-parameters for further
predictions in this study. When the number of splitswas less than 5,
logical splits in the databases were numerically inadequate and too
simplistic to fully encompass the complex, underlying correlations
between inputs and output. When the number of splits was larger
than 5, the complex structure of the trees (CARTs) heightened
the likelihood of bias, which in turn resulted in overfitting. Like-
wise, when the number of trees was less than 800, the RF model
did not have enough independent bootstraps to produce accurate
predictions (for new OPC systems in the testing dataset). However,
when excessive trees (i.e., greater than 800) were used, the predic-
(a) 

(c) 
Fig. 3. Grid-search method used to optimize hyper-parameters (number of trees in the
performance against: (a) cumulative heat flow, as evaluated by MAPE; (b) cumulative h
flow rate, as evaluated by R2.
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tion performance did not improve (akin to law of diminishing
returns [91,98]), even though the computational complexity of
the model indubitably increased. This is hypothesized to be caused
by increased redundancy among the trees. More specifically, it is
expected that — in a forest with greater than 800 trees, all of which
were meant to be distinct — several trees (that were forced to be
grown from similar bootstraps) ended up having similar structures,
and, therefore, produced similar predictions; thereby, resulting in
little to no improvement in the RF model’s overall prediction
accuracy.

Prediction performance using heat evolution data, related to the
kinetics of the hydration reaction corresponding to [OPC + mineral
additive] systems, are compared — in the form of the five statistical
parameters — against extracted physical values in Figs. 4–6 for
every two hours. The statistical parameters (averaged over the ini-
tial 24-hour period of hydration) corresponding to the testing set
are itemized in Table 3. Fig. 6 shows representative predicted
results against the measured values; for reference, the entire
cumulative heat and heat flow rate spectrum of representative sys-
tems from calorimetry experiments are included to exhibit a visual
comparison between predicted values and measured values.

As can be seen in Table 3, predictions of heat flow rate and
cumulative heat, as produced by the RF model, are accurate. The
prediction of heat flow rate had a Pearson correlation coefficient
(R) value of 0.965 and a root mean squared error (RMSE) value of
0.331 mW.gopc�1 , while the prediction of the cumulative heat had a
Pearson correlation coefficient (R) value of 0.989 and a root mean
squared error (RMSE) value of 14.398 J.gopc�1 . In Figs. 4 and 5, it is
(b) 

(d) 
forest; and number of splits in each tree) of the RF model to improve its prediction
eat flow, as evaluated by R2; (c) heat flow rate, as evaluated by MAPE; and (d) heat



(a) (b) (c) 

(d) (e) 
Fig. 4. Statistical parameters describing errors in prediction of cumulative heat release of pastes over a 24-hour period in the testing database: (a) Pearson correlation
coefficient (R); (b) coefficient of determination (R2); (c) root mean squared error (RMSE); (d) mean absolute percentage error (MAPE); and (e) mean absolute error (MAE) as
functions of time.
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worth pointing out that the prediction for early-age hydration
reaction behavior reveals lower accuracy than the prediction for
later hours because of significant variations among pastes. For
example, the hydration reaction needs to experience three stages
— the initial period, induction period, and acceleration period —
within the first 2-to-4 hours, and each stage exhibits a unique
‘‘footprint” (e.g., distinct kinetic behaviors) corresponding to differ-
ent mechanisms. However, hydration undergoes only two stages
(i.e., the acceleration period and deceleration period) for the latter
twenty hours, during which the kinetic behavior is occurring at a
significantly slower rate. As seen in Fig. 6 (g-h), the prediction of
the paste containing metakaolin replacement presented relatively
lower accuracy compared to other [OPC + mineral additive] sys-
tems without metakaolin. The most plausible reason is that the
volume of the training database used is not large enough, despite
containing more than 300 unique compositions (i.e., OPC systems).
The inclusion of more data-records into the database will enhance
its volume and diversity, which will, in turn, further reduce the
model’s prediction errors, especially errors for the metakaolin sys-
tem, thereby making the model more amenable for optimization-
based tasks.

The high-fidelity prediction of cumulative heat and heat flow
rate from the RF model is expected because several past studies
have already reported that the RF model produces superior predic-
tions of materials’ properties [60-62,78,85,86,99]. This disparity in
the RF model’s prediction performance vis-à-vis other ML model
can be traced back to the former model’s structure, which gives
it several advantages [91,92,100]. In the RF model, a large number
of trees (i.e., number of CARTs �100) are grown, one-by-one in a
recursive manner by using randomly-selected bootstraps of identi-
cal volume; as such, generalization errors (likelihood of overfitting)
7

are minimized [93]. As each tree is permitted to grow — and not
pruned or smoothened at all — until it reaches it maximum size,
the RF model is proficient at developing rational input–output cor-
relations, while ensuring that seemingly anomalous data-records
(i.e., outliers with respect to already established trends) are not
ignored or removed during any stage of the training process. Fur-
thermore, the RF model employs two-stage randomization, which
goes a long way in ensuring that each of the deep, unpruned trees,
is distinct in its structure and does not exhibit any dependency to
the rest of the trees in the forest. Such independency among the
trees is crucial because it ensures that predictions produced by
the trees are truly independent of each other; which in turn, results
in low variance in the final predictions (i.e., average of predictions
from all trees). Lastly, the RF model is easy to implement because
the number of trees in the forest and number of splits in each tree are
the only two hyper-parameters that are required as inputs from
the user. Adjusting these parameters through trial-and-error is
generally cumbersome and time-consuming, and could compro-
mise prediction performance [94]. Therefore, in this study, we used
the grid-search method along with the 10-fold CV method (see
Fig. 3) for such adjustments.

4.3. Optimization of [OPC + mineral additive] mixture design

The results and discussion shown in the above section have pro-
ven that the RF model, and further ML in general, can be utilized to
predict the time-dependent heat flow rate and cumulative heat
corresponding to the hydration reaction of [OPC + mineral addi-
tive] systems — in relation to additive replacement level and par-
ticle size distribution — in a high-fidelity manner. The authors,
therefore, posit that this ability of the RF model — to understand



(a) (b) (c) 

(d) (e) 
Fig. 5. Statistical parameters describing errors in prediction of heat flow rate of pastes over a 24-hour period in the testing database: (a) Pearson correlation coefficient (R);
(b) coefficient of determination (R2); (c) root mean squared error (RMSE); (d)mean absolute percentage error (MAPE); and (e)mean absolute error (MAE) as functions of time.
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hidden correlations between physiochemical attributes of the
paste and hydration behavior of cement in such pastes — can be
leveraged to develop optimal mixture design of [OPC + mineral
additive] systems that exhibit target (user-imposed) hydration
behavior. To verify this, an optimization scheme was designed to
accept three target calorimetric features — the heat flow rate cor-
responding to the main hydration peak; time corresponding to the
occurrence of the main hydration peak; and the slope of heat flow
curve during the acceleration period — as inputs, along with
selected mixture design inputs. Then, the Bayesian optimization
approach [101,102] was employed, wherein the RF model was
invoked to leverage its knowledge of composition-reactivity corre-
lations (obtained during its training and validation) to reveal the
optimal mineral additive type, additive SSA, and additive replace-
ment level, which in combination would yield a calorimetry profile
featuring the target (user-imposed) calorimetric features (i.e.,
slope of acceleration; time of main hydration peak; and heat flow
rate at the main hydration peak). To the best of authors’ knowl-
edge, no kinetic models reported in previous studies are capable
of producing such reverse predictions of the mixture design (i.e.,
mineral additive type; SSA; and replacement level) using heat evo-
lution signatures as inputs.

During the optimization process, four variables were used as
the primary inputs: the heat flow rate corresponding to the main
hydration peak (J.gopc�1 ); time corresponding to the occurrence of
the main hydration peak (hour); slope of the acceleration period
(J.gopc�1 . hour�1); and normalized water mass (unitless). The opti-
mization process — altogether, comprised of three steps — was uti-
lized to determine physicochemical information corresponding to
the relevant mineral additive, which were subsequently used
8

to achieve the targeted heat flow rate signature corresponding to
1-additve systems. (I) Initially, the RF model was used to predict
the mineral additive type (unitless) present in each cement system
using the aforementioned four inputs. (II) The output mineral addi-
tive type was then utilized as an additional, secondary input (i.e., in
additional to the primary inputs) to consecutively predict the min-
eral additive’s SSA (cm2.g�1). (III) In the final step, both the mineral
additive type and the SSA of the mineral additive, predicted in
steps (I) and (II), respectively, were utilized as additional, sec-
ondary inputs adjunct to the primary inputs to predict the replace-
ment level of the relevant mineral additive. The training dataset
consisted of 208 1-additive systems; while the target calorimetric
parameters were extracted from six 1-additve systems (see Fig. 7)
that were randomly selected from the testing dataset used in the
above section. Results obtained from the optimizations, corre-
sponding to the 1-additive systems, are shown in Table 4. Here,
the optimal values of mineral additive type, additive replacement
level, and additive’s SSA – as produced by the RF model – are com-
pared against actual values.

As can be seen in Table 4, the optimization of mineral additive
type was successful, and the predictions of additive SSA and
replacement level are reasonably accurate. Overall, these results
are expected. This is because various combinations of replacement
level and effective SSA of additives can yield similar heat flow
behavior, thereby leading to potential error (i.e., deviation between
predicted and actual additive replacement level or SSA). For exam-
ple, high peak heat flow rate could be obtained by using a coarse
mineral additive at high replacement level, or a fine mineral addi-
tive at low replacement level. The presence of different mineral
additives in each OPC system contributes to the uniqueness of



(a) (b) 

(c) (d) (e)

(f) (g) (h)
Fig. 6. The RF model’s predictions of: (a) cumulative heat and (b) heat flow rate of [OPC + silica fume]; (c) cumulative heat and (d) heat flow rate of [OPC + limestone]; (e)
cumulative heat and (f) heat flow rate of [OPC + silica fume + limestone]; and (g) cumulative heat and (h) heat flow rate of [OPC + metakaolin + limestone] compared against
experimental measurements. Mean absolute error (MAE) of each prediction is shown in the figure. The overall mean absolute errors (MAE) of the predictions are shown in the
legends.

Table 3
Prediction performance of ML models, measured on the basis of the cumulative heat release and heat flow rate of cement pastes in the testing database. Five statistical parameters
(i.e., R, R2, MAE, MAPE, and RMSE) – averaged over the initial 24-hour period – are shown.

ML Model R R2 MAE MAPE RMSE

Heat Flow Rate RF Unitless Unitless mW.gopc�1 % mW.gopc�1

0.965 0.932 0.197 7.078 0.331
Cumulative Heat Release RF Unitless Unitless J.gopc�1 % J.gopc�1

0.989 0.979 10.417 8.460 14.398
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the respective heat flow signatures, consequent of the hydration
reaction. Thus, additive type is highly predictable when ML tech-
niques are properly utilized.

A limitation of the optimization scheme described above is
insufficient data-records (i.e., 208 unique compositions), and
limited variations in the inputs, leading to error in predictions
of replacement level and SSA of the additive. A larger and
9

more diverse database will enable the ability to optimize mix-
ture design in high-fidelity manner. With that stated, there is
potentially room for improvement within the optimization pro-
cess in future studies; however, the novel work within this
publication is the first step to optimize cementitious mixture
designs that are likely to exhibit target/desired heat evolution
signatures.



(a)   (b) (c) 
Fig. 7. Isothermal calorimetry profiles of (a) [OPC + limestone]; (b) [OPC + quartz]; and (c) [OPC + metakaolin]. These, and heat evolution profiles of three other 1-additive
systems, were randomly selected from the testing database. From these profiles, heat flow rate and time of the main hydration peak (marked by red circle), and slope of the
acceleration period (marked by red dashed line) were extracted; and subsequently used as inputs (target calorimetric parameters) for mixture design optimization.

Table 4
Optimization results of six 1-additive systems compared against actual values of additive type, additive replacement level, and additive SSA.

11% Limestone 53% Quartz 23% Metakaolin

Actual Predicted Error (%) Actual Predicted Error (%) Actual Predicted Error (%)

Additive Type 2 2 0 1 1 0 3 3 0
Additive Replacement Level (%) 11 7.9 27.90 53 48.9 7.64 23 24.6 7.17
Additive SSA (cm2.g�1) 1577 1676 6.30 15,502 16,744 8.01 21804.95 21,608 0.90

18% Silica Fume 23% Silica Fume 13% Quartz

Actual Predicted Error (%) Actual Predicted Error (%) Actual Predicted Error (%)

Additive Type 4 4 0 4 4 0 1 1 0
Additive Replacement Level (%) 18 21.7 21.03 23 28.3 23.30 13 12.0 7.51
Additive SSA (cm2.g�1) 198,000 198,000 0 198,000 198,000 0 14,970 14,442 3.53
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5. Conclusion

In the past decade or so, machine learning (ML) has arisen as a
promising, holistic approach to reveal such composition-property
correlations in composite materials. This study describes the use
of a Random Forests (RF) model to enable high-fidelity predictions
of time-dependent hydration kinetics of blended ordinary Portland
cement (OPC) systems — more specifically [OPC + mineral addi-
tives] systems — using the systems’ mix design features and phys-
iochemical attributes as inputs. As a method to limit OPC’s
contributions to global anthropogenic CO2 emissions, mineral
additives have been endorsed by literature as partial replacements
for OPC. However, it has been well established that mineral
replacements of differing types and physical properties can have
varying effects on the hydration kinetics of OPC-based systems.
Therefore — in regards to more complex systems — it is infeasible
for semi-empirical kinetic models to reveal the underlying nonlin-
ear composition-property (i.e., reactivity) relationships.

To elucidate the aforementioned underlying nonlinear
composition-property (i.e., reactivity) relationships, an original
application of the Random Forests (RF) ML model was utilized to
predict the time-dependent hydration behavior (i.e., heat flow
rate; and cumulative heat release) of plain and blended ordinary
Portland cement (OPC) systems. The prediction results have proven
that the RF model has the ability to predict and optimize the rela-
tively continuous (i.e., short time steps) and long time period (i.e.,
24 hour) heat-evolution-determined kinetic profiles corresponding
to plain and blended OPC systems. Further, these novel ML results
demonstrate for the first time that rapid and reliable predictions —
once the model is properly and rigorously trained, are possible for
new OPC-based systems without further experimentation — of
10
time-dependent hydration behavior of plain and blended OPC sys-
tems are indeed feasible, a feat that is currently impossible with
current numerical kinetic models. To the best of the authors’
knowledge, this is the first study that employs ML to predict
time-dependent kinetic behavior of cement hydration that features
multiple mineral additives and focuses on mixture design parame-
ters and physiochemical attributes.

The results from this study can be expanded to formulate mix-
ture designs that satisfy target (user-imposed) kinetic criteria,
even without a comprehensive understanding of the underlying
kinetic mechanisms. For example, if the current training database
is extended to include additional [OPC + mineral additives] per-
mutations, the heat-evolution profiles corresponding to the
hydration of more complex blended systems could be potentially
predicted with reasonable accuracy. Such examples include, a sys-
tem with numerous mineral additives, such as a [OPC + lime
stone + quartz + metakaolin + silica fume] system or even a
system containing other commonly used additives such as fly
ashes and/or geopolymers if said additives are included in addi-
tional permutations. In terms of optimization, a database with
additional data-entries could also be utilized to predict, in a
high-fidelity approach, the exact ideal amount and additive
type for a [OPC + mineral additive(s)] system with a desired
time-dependent heat-evolution profile and strength threshold.
Of course, if other mineral additives are introduced, the database
must be developed, accordingly. For example, it can be estimated
that J100 additional binary/ternary [cement + fly ash + other
mineral additives] data entries — featuring variations in fly ash
composition, fineness, and replacement levels — should be
added to the existing training database to enable reliable predic-
tions of cement hydration behavior. As the database is grown
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(i.e., database volume increases), the variations in physicochemi-
cal attributes will span gradually wider, and the prediction per-
formance will improve, albeit at progressively slower rates.

Lastly, there are additionally a plethora of potential opportuni-
ties for improvement within the prediction and optimization pro-
cesses in future studies; however, the novel work within this
publication represents an important initial design optimization
milestone for cementitious mixture designs that successfully
demonstrates the feasible for a given ML model to elucidate under-
lying nonlinear time-dependent composition-property (i.e., reac-
tivity) relationships.
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[83] M. Boháč, M. Palou, R. Novotnỳ, J. Másilko, D. Všianský, T. Staněka,
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