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Abstract

Vast amounts of Primary Biodiversity Data exist online
(~10° records, each documenting an individual species
at a point in space and time). These data hold immense
but unrealized promise for science and society, including
use in biogeographic research addressing issues such
as zoonotic diseases, invasive species, threatened
species and habitats, and climate change. Ongoing
and envisioned changes in biodiversity informatics
involving data providers, aggregators, and users should
catalyze improvements to allow efficient use of such
data for diverse analyses. We discuss relevant issues
from the perspective of modeling species distributions,
currently the most common use of Primary Biodiversity
Data. Key cross-cutting principles for progress include
harnessing feedback from users and increasing incentives
for improving data quality. Critical challenges include:
(1) establishing individual and collective stable unique
identifiers across all of biodiversity science, (2) highlighting
issues regarding data quality and representativeness,
and (3) improving feedback mechanisms. Such changes
should lead to ever-better data and increased utility and
impact, including greater data integration with various
research areas within and beyond biogeography (e.g.,
population demography, biotic interactions, physiology,
and genetics). Building on existing pilot functionalities,
biodiversity informatics could see transformative changes
over the coming decade via a combination of community
consensus building, coordinated efforts to justify and
secure funding, and technical innovations.

Highlights

e Online biodiversity data hold great yet untapped
potential for biogeographic studies linking to diverse
areas of environmental research.

e Human health, agriculture, and the conservation and
management of natural systems depend on efficient
use of biodiversity data.

e Ongoing progress should be expanded to promote
transformative changes in the quality and utility of
biodiversity data.

e Data usage in publications and reports can serve as
a currency of the utility of biodiversity data and the
institutions that provide it.

e Necessary changes related to online portals require
consensus-building by various stakeholders, catalysis
by funding agencies, innovative pilot solutions, and
widespread implementation.
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Introduction

A staggering amount of digital information regarding
biodiversity now exists on the Internet, with many
ongoing changes aimed at meeting the needs of science
and society. Primary Biodiversity Data represent the
principal information available for most species on
Earth, consisting of individual records with place, time,
and taxonomic identification (Soberdn and Peterson
2004). The biodiversity informatics community includes
three overlapping groups interested in such data:
(1) data providers, such as natural history museums,
herbaria, and networks of citizen scientists; (2) data
aggregators, initiatives that serve data combined
from multiple providers; and (3) data users, including
scientists, decision-makers, and the general public
(Figure 1; Graham et al. 2004). Integrated by standards
such as the DarwinCore (Wieczorek et al. 2012),
enormous stores of Primary Biodiversity Data now
exist online, with the Global Biodiversity Information
Facility (GBIF!) constituting the largest and most
comprehensive aggregator (>1.4 x 10° digital records
from >1500 providers corresponding to >2.3 x 10° species;
Robertson et al. 2014).

Ideally, Primary Biodiversity Data lead to synthetic
knowledge and real-world applications, especially via
association with information regarding diverse organismal

Data user

2. Data
query

3. Data available
for viewing &
download

1. Data uploads
& updates

Data providers

Figure 1. Simplified overview of the interactions and flow of
data among providers, aggregators, and users in biodiversity
informatics. Numbers indicate the typical order of actions:
1. Aggregator receives data uploads (and periodic updates)
from providers; 2. User makes a data query to aggregator’s
online portal; 3. Aggregator responds to query by making
data available on portal (for viewing and/or download). Note
that by querying a single aggregator, a user can receive data
from multiple providers. Additionally, multiple intermediate
aggregators typically exist, feeding into the largest ones
most commonly consulted by users (e.g., GBIF).

1 https://www.gbif.org/, last accessed on 11 March 2020

attributes (e.g., measurements, images, recordings,
and DNA sequences; and physiological, behavioral,
ecological, or ethnobiological data; Ratnasingham
and Hebert 2007, Cook et al. 2016, Troudet et al.
2018; Box 1). Through diverse biogeographic and
environmental research, Primary Biodiversity Data
hold tremendous potential for applications to pressing
environmental issues—such as understanding zoonotic
diseases and invasive species, characterizing threatened
species and habitats, planning conservation priorities,
and anticipating effects of ongoing climate change
(Figure 2; Peterson et al. 2010, Guisan et al. 2013,
Hallgren et al. 2016, Johnson et al. 2019). Indeed,
many major biodiversity assessments rely heavily on
Primary Biodiversity Data and linked information or the
results of studies that use them (Pereira et al. 2010,
Sarukhan et al. 2015, IPBES 2019). For all of these uses,
relevant high-quality data must be readily available
for efficient assembly, especially for time-sensitive
issues such as an emerging zoonotic disease or
recently detected invasive species (Anderson 2012,
Johnson et al. 2019).

a Mammal
voucher
specimen
Gut
Ectoparasite microbiome
specimen Individual profile
Stable
Unique
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Population (I-sU1) N DNA
growth sequence
rate
Critical
thermal
maximum

QOO &

Collective Stable Unique Identifier (C-SUI)

Figure 2. Use of individual and collective Stable Unique
Identifiers (e.g., DOIs) in biodiversity informatics. (a) Individual
Stable Unique Identifier (I-SUI) allows linking diverse data
domains for a given organism. In this example, an I-SUI links
the voucher specimen and associated Primary Biodiversity
Data (e.g., date and locality) of an individual mammal to
information regarding various aspects of molecular- to
population-level biology. (b) Collective Stable Unique Identifier
(C-SUI) denotes a set (i.e., a list) of individual identifiers.
For example, a C-SUI could indicate the n individual records
used in a given analysis.
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Box 1. Data realms and research areas within and beyond biogeography that will be promoted by changes
to biodiversity informatics focusing on Primary Biodiversity Data.

Important data realms beyond the current DarwinCore fields include those regarding absences (Lobo et al. 2010,
Howard et al. 2014, Guillera-Arroita et al. 2015), population demography (Fordham et al. 2013, Merow et al.
2014, Ehrlén and Morris 2015), movement (Brook et al. 2009, Smouse et al. 2010, Franklin et al. 2014), biotic
interactions (Kissling et al. 2012, Wisz et al. 2013, Morales-Castilla et al. 2015, D’Amen et al. 2018), physiology
(Clusella-Trullas et al. 2011, Barve et al. 2014, Kearney et al. 2014), and genetics (Harris et al. 2013, Valladares et al.
2014, Fitzpatrick and Keller 2015, Exposito-Alonso et al. 2018). Such information can be integrated with Primary
Biodiversity Data records: (1) using the flexible “dynamicProperties” field of DarwinCore, (2) directly with an
expansion of the DarwinCore, or (3) via links from Primary Biodiversity Data aggregators to external databases.
For the latter, stable unique identifiers allow linkages to individual records, but sometimes links only will be
possible for taxonomic names and geographic locations.

Data realm Examples Research topics
Absences Field survey effort underlying sets ¢ Building distribution models using sites of
of Primary Biodiversity Data records relatively reliable absence
(allowing discrimination of well vs. poorly | ¢ Identifying regions with greater
sampled spatial units; Soberdn et al. 2007, uncertainties in model prediction
Lobo et al. 2018) e Prioritizing future survey efforts
Population Population size (abundance and e Associations between environmental
demography density) and growth rates over space suitability and population biology
and time (Salguero-Gémez et al. 2015, ¢ Population-level research questions of a
Salguero-Gémez et al. 2016, Santini et al. temporally dynamic nature (e.g., species
2018) range shifts)
Movement Position of individuals through time, ¢ Consideration of the ability of individuals
individual movement tracks, and capture— to move across landscapes
recapture information (Nathan and e Migratory phenomena and ongoing range
Muller-Landau 2000, Ovaskainen et al. 2008) | shifts (e.g., invasive species)
Biotic Interactions between individuals of e Effects of biotic interactions on
interactions different species (e.g., insect X collected species distributions and community
on plant Y); or co-occurrence matrices composition
linked with databases regarding species ¢ Applied topics that depend on the effects
traits, biotic interactions, and phylogenetic of biotic interactions (e.g., zoonotic
relationships (Jones et al. 2009, diseases)
Kattge et al. 2011, Poelen et al. 2014,
Wilman et al. 2014)
Physiology Physiological measurements (in situ or ¢ Physiological variation among individuals
ex situ; Sunday et al. 2011, Bennett et al. and across populations
2018) e Comparisons between (and integration of)
correlative and mechanistic models
Genetics Gene sequences, expression profiles e Geographic and environmental
(Ratnasingham & Hebert 2007, Pelini et al. distributions of alleles
2009, O’Neil et al. 2014) e Tests for natural selection across
populations

However, several limitations currently constrain
the utility of Primary Biodiversity Data, and we explain
and advocate for ongoing and envisioned changes that
could improve data quality dramatically and allow
widespread realistic uses for basic and applied science.
We provide examples through the lens of adequacy
for modeling species distributions—for which they are
most commonly employed—but the same issues and
solutions hold for myriad other uses (Graham et al.

2004). Although we take advantage of an ad hoc
online consultation of the community conducted by
the GBIF Secretariat (GBIF 2016; Table 1), we cover
issues germane to all aggregators. We provide several
specific illustrations based on current functionalities
of GBIF (Robertson et al. 2014) but also point out
innovations by some other aggregators. Below, we
summarize principal current limitations in the field,
outline ongoing and envisioned solutions, and sketch a
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roadmap forimplementation. We begin by highlighting
two critical cross-cutting principles for improving
biodiversity informatics: harnessing feedback from
users and promoting improvements in data quality.

Cross-cutting principles for progress

Current and future users can provide the best
information regarding Primary Biodiversity Data
and its quality, and ongoing changes that link users,
providers, and aggregators can help harness their
feedback (Suhrbier et al. 2017). Most aggregators
integrate periodic updates from providers, adding new
records and correcting previous errors. Additionally,
users often invest substantial time and resources
correcting taxonomic identifications and determining
georeferences. Nevertheless, in both the GBIF
community consultation and our discussions with
colleagues, users indicated that: (1) most aggregated
databases lack functionalities allowing users to flag
problematic records or suggest improved information
within the online interface; and (2) providers do not
consistently update records based on user feedback
(GBIF 2016, Suhrbier et al. 2017). Fortunately, the
situation regarding the former is changing rapidly via
pilot implementations, but changes are needed to
increase the incentives and resources for the latter.

The biodiversity informatics community can take
various actions to promote improvements in data quality.
Often with fixed or declining budgets, data providers
(especially natural history museums and herbaria)
juggle many priorities, including maintaining physical
specimens and their associated data. To help increase
the resources available for improving data quality, the
field needs explicit information flows that document
both data quality and use (van Hintum et al. 2011).
Importantly, indices of data quality can be tracked
over time to assess progress and outstanding needs.
Moreover, data usage represents a critical potential
currency, with higher-quality information being used
more frequently. The usage of individual Primary
Biodiversity Data can be quantified via linkage with
documentation of their use—for example downloading
events and, most importantly, publications or reports
based on them (Costello et al. 2013). Standardized
guantifications of data quality and use should both
help justify improvements to data quality and increase
incentives for both providers and funding sources to
improve data quality.

Current limitations

Consideration of key data-related issues for models
of species ecological niches and geographic distributions
(hereafter distribution models) exemplifies current
limitations of Primary Biodiversity Data for many kinds
of biodiversity analyses (Araujo et al. 2019). Distribution
models integrate such data with environmental
information to estimate the conditions and places
suitable for a species (Franklin 2010, Peterson et al.
2011, Guisan et al. 2017). Nevertheless, data from
aggregated databases cannot be used in distribution
modeling without substantial data-cleaning and

filtering (to fix errors and remove records of insufficient
quality), as well as consideration of inherent biases
(Beck et al. 2014, Gueta and Carmel 2016). Indeed,
the DarwinCore standard was developed to include
fields that characterize data limitations and promote
appropriate usage (Wieczorek et al. 2012, Otegui et al.
2013). However, current portals do not provide the
functionalities necessary for researchers to assemble
data suitable for such analyses efficiently, especially
because various uses require different data quality needs
(GBIF 2016, Veiga et al. 2017). As we outline briefly
below, limitations that hinder the use of such data at
present correspond to those that are: 1) inherent to
the data, 2) affect access to the data, or 3) relate to
how the data are used.

Limitations associated with Primary Biodiversity
Data themselves include the lack of information, as well
as inaccuracies and biases. As frequently mentioned,
a few key information fields remain empty for a high
proportion of digital records. Although copious records
lack digitization or species-level identification, the
greatest immediate obstacle concerns the lack of
georeferences (Hill et al. 2009, Beaman and Cellinese
2012, Peterson et al. 2015). Furthermore, records
include inaccuracies and biases, which are well known
but not yet rectified (Meyer et al. 2015, Amano et al.
2016, Troia and McManamay 2016). Taxonomic
misidentifications and inaccurate georeferences are
highly problematic, compounded by the fact that
fields regarding their uncertainty are almost always
empty (Wieczorek et al. 2004, Guralnick et al. 2007).
In addition, geographic and temporal biases in biological
sampling effort pervade Primary Biodiversity Data
(with some areas more heavily sampled than others,
and effort varying greatly among years and to a lesser
degree across annual seasons); such biases negatively
affect distribution models unless taken into account
(Hortal et al. 2008, Phillips et al. 2009).

Regarding data access, key information is seldom
provided in transparent and easily accessible ways,
leading to unrealistically high impressions of data quality
as well asincorrect inferences regarding species ranges
and their shifts over time (Aradjo et al. 2009). Some
data shielding rightly aims to protect sensitive species
from exploitation, and temporary data “embargoes”
sometimes protect research interests of those who
collected the data (Brooke 2000, Graves 2000). However,
existing information regarding the uncertainty of
taxonomic identifications and georeferences—as well
as characterizations of spatial and temporal biases—are
not made immediately obvious to the user in current
portals. This situation leads many non-specialists to
misconceptions: that identifications and georeferences
have little or no error; and that the lack of occurrence
records for a species in a region or time period indicates
its absence (Ruete 2015).

Limitations regarding data use correspond to both
use per se as well as documentation. Commonly,
researchers use data without adequate cleaning and
filtering, often not realizing the high levels of error,
bias, and uncertainty or the degree to which such
problems adversely affect modeling analyses. Whereas
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substantial research has addressed issues related
to error and bias in distribution modeling, the field
needs substantial advancements regarding how to
integrate and characterize information on uncertainty
(Rocchini et al. 2011, Lash et al. 2012). With respect
to documentation, distribution modeling is part of an
ongoing transition in scientific research regarding data
access and reproducibility. Increasingly, journals and
funding sources require that data used in publications
be made openly available (Molloy 2011, Reichmen et al.
2011; e.g., Nature Scientific Data, Biodiversity Data
Journal). Whereas digital deposition is customary for
some kinds of data (e.g., GenBank for gene sequences;
DRYAD for more diverse data types; Greenberg et al.
2009), no equivalent expectation or standard mechanism
yet exists for Primary Biodiversity Data (Table 1;
Chavan and Ingwersen 2009, Costello et al. 2013,
Guralnick et al. 2015). Similarly, recent years have seen
dramatic increases in online supplemental information
and external repositories to document methods and
provide code (Campbell et al. 2019). Unfortunately,
distribution modeling studies still infrequently explain
adequately the steps taken to obtain, clean, and filter
Primary Biodiversity Data and to conduct analyses
(or provide underlying code/workflows), but recent
advances in automated documentation and metadata
standardization greatly facilitate such goals (Kass et al.
2018, Feng et al. 2019, Merow et al. 2019).

Ongoing and envisioned solutions

Enable universal communication

Several initiatives by providers and aggregators are
currently progressing towards the establishment and
implementation of stable unique identifiers that allow
clear links among data, both for individual records
and collective sets of records (Figure 2; Page 2008).
Stable unique identifiers (e.g., Digital Object Identifiers)
provide unambiguous, long-lasting reference to a

particular entity—for Primary Biodiversity Data typically
a voucher specimen or observation event. At the
individual level, such identifiers help data providers
receive and act on feedback from users or aggregators
(Table 1) and also allow individual-level linkages both
between records (e.g., parasite and host) and between
data realms (e.g., Primary Biodiversity Data and gene
sequences; Peterson et al. 2010, Cook et al. 2016; Box 1).
Fortunately, many aspects of such identifiers have been
implemented for some individual aggregators, such
as a universally unique identifier (UUID) automatically
generated upon upload. Nevertheless, data providers
and aggregators need to ensure that a given Primary
Biodiversity Data record does not exist more than once
under different identifiers (as currently happens in
GBIF), for example via checks against other identifier
fields in the DarwinCore. Furthermore, a broad
consensus must be reached regarding mechanism to
achieve a standardized identifier system that can be
used across aggregators and throughout biodiversity
science (Guralnick et al. 2015, Suhrbier et al. 2017,
BCN 2018). We advocate for a single registry service to
guarantee that a given identifier indeed is universally
unique for all biodiversity uses (Costello et al. 2013).

The field also needs collective stable unique
identifiers that each specify a list of individual-level
identifiers. For example, a collective identifier can
be used to denote all of the records in a particular
download from an aggregator, or to all records used
in an analysis (Figure 2; Table 1). Many aggregators
(including GBIF) support the first functionality, but
they and other aggregators currently lack the second
(e.g., toreceive and integrate information regarding a
bundle of records). Collective stable unique identifiers
for the records used in a particular analysis (e.g., after
data cleaning/filtering; Costello et al. 2013) or for a
coherent dataset (e.g., sampled in a specific field survey
effort) will provide a short way of denoting long lists of
records; such identifiers will prove critical by facilitating

Table 1. Summary of responses from GBIF community consultation of users regarding data adequacy for modeling species
distributions (n = 137; GBIF 2016). Respondents provided overwhelmingly consistent answers to issues of data access via
the online portal and feedback from users, as well as strong majority opinions regarding repositories of occurrence data

used in peer-reviewed publications.

Enhancement of online Favorable

biodiversity informatics portals response
Quantification/mapping of sampling effort/data completeness would be useful. 89%
Users should be allowed to annotate data. 99%
Annotations should be transmitted automatically to data providers. 97%
Allowed annotations should include the quality of the taxonomic identification. 100%
Allowed annotations should include the quality of the georeference. 100%
Users should be allowed to provide a quality or “fit for use” tag for individual records. 93%
Providers should spend the time and money required to correct/update data (taxonomically/ 99%
geographically).
The field would be well served by a single online repository/archive for point occurrence data 77%
published in peer-reviewed journals.
GBIF should be one such repository/archive for point occurrence data published in 90%

peer-reviewed journals.
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documentation, reproducibility, and calculation of
statistics regarding the use of Primary Biodiversity Data
(Guralnick et al. 2015, Nelson et al. 2018). Importantly,
a system for individual and collective identifiers that
are unique across all of biodiversity science could
catalyze agreement regarding a community standard
for expected digital deposition of Primary Biodiversity
Data used in publications and reports (analogous to
submission to Genbank for DNA sequences).

Highlight data uncertainties and biases

Wise and efficient use of Primary Biodiversity Data
also depends on aggregators highlighting issues regarding
data quality and representativeness. Users need easy
and obvious access to fields documenting the reliability
of identifications and georeferences (Figure 3). Both
are defined in DarwinCore (Wieczorek et al. 2012).
Although most records currently lack any information for
these fields, information regarding the latter has been
populated densely in a few initiatives (e.g., VertNet? and
progenitors; Costello and Wieczorek 2014). Similarly,
some citizen-science initiatives aim at providing flags
based on plausibility upon upload (e.g., INFOFLORA3) or
have vetting processes built into their posting systems
(e.g., eBird®). Developing tools that allow easy query
and visualization of fields related to uncertainty will
help users assess the appropriateness of records for
the study at hand (Figure 3; Chapman et al. 2020).

To help users address issues related to sampling
biases, aggregators also can facilitate construction
and visualization of proxies for sampling effort across
space and time (Figure 3; Table 1; Guralnick et al. 2007,
Hortal et al. 2008, Otegui et al. 2013, Sousa-Baena et al.
2014). Records for a broad suite of taxa detected
with similar techniques (“target groups” for field
sampling) can provide a quantitative estimate of the
efforts that yielded the records for the particular
species of interest. Data for such target groups (e.g.,
small, non-volant mammals) document the places
and times where relevant efforts occurred and can
be used to quantify indices that serve as proxies of
sampling and its spatial and temporal gaps (Anderson
2003). Some useful implementations exist for visual
display of records from a given search. For example,
the “Spatial Module” of Symbiota® (Gries et al. 2014)
provides a heat density visualization of records as
well as a “Date Slider” that allows the user to control
the display of records by date range. Aggregators
should expand such functionalities to make querying,
mapping, summarizing, and downloading such records
an integral part of their online interfaces, allowing
the user to customize the relevant target group by
taking into account knowledge of relevant biological
sampling protocols (Figure 3). Such quantifications of
sampling enable corrections for biases (Phillips et al.
2009, Fithian et al. 2015), and indices of sampling

a b

Records showing georeferencing
uncertainty

Records of target group (reflecting
sampling effort)

Records with georeferences

Figure 3. Examples of ways in which aggregators can make uncertainties and biases visually available to users of Primary
Biodiversity Data. Such information can be employed to filter data and to quantify and correct for biases in sampling
effort, respectively. (a) Georeferenced localities of a given species are simply plotted in geographic space (black dots;
current practice). (b) Those same localities appear using symbologies that provide additional information; a hazy cloud
indicates the radius of error for localities holding information regarding uncertainty of the georeference, and localities
lacking such data appear only as hollow black circles. (c) Information appears that reflects the results of sampling effort,
by showing in gray the georeferenced localities for all species belonging to a more inclusive target group (i.e., all species
detected with the same techniques as the species of interest; conventions the same as in b). Note that the right-hand
side of the study region lacks records for any species of the target group, suggestive of very low sampling effort there.

2 http://vertnet.org/, last accessed on 28 May 2020

3 https://www.infoflora.ch/en/, last accessed on 28 May 2020
4 https://ebird.org/home, last accessed on 28 May 2020

5 http://symbiota.org/docs, last accessed on 28 May 2020
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completeness eventually could be populated for the
same purpose. Highlighting gaps in sampling also can
facilitate priority-setting for digitization, georeferencing,
and further sampling efforts.

Improve feedback mechanisms

Finally, aggregators can catalyze improvements in
data much more effectively by implementing quality
flags and annotations, as well as better quantifications of
uncertainty. Automated data-cleaning efforts can discover,
document, and flag some problems (e.g., geographic
inconsistencies, spatial or environmental outliers, or
disagreements with expert maps; Garcia-Rosell6 et al.
2014, Robertson et al. 2016). For example, GBIF includes
a series of known issues and flags discovered by checking
procedures during integration (or populated by data
providers). However, as mentioned earlier, the best
information regarding data quality depends on the
expertise of users (Peterson et al. 2004)—both individual
researchers (e.g., experts on a given taxon) and groups
of users (e.g., national biodiversity agencies; Table 1;
Guralnick et al. 2007, Ratnasingham and Hebert 2007).
Specifically, aggregators can enlist users to detect
and flag problems, suggest improvements, quantify
quality, and provide annotations that document the
information and methods employed.

To facilitate such data improvements, aggregators
have begun introducing functionalities that connect
users and providers (Suhrbier et al. 2017). The original
architects of biodiversity informatics envisioned that
users would notify providers of any issues with the
data; providers would then evaluate that input and
make changes to data records as they saw fit; and
finally the modified records would be passed back to
aggregators (and hence become available to users;
Figure 4; Soberdn et al. 1996). In addition to that original
feedback ‘loop’ of user = provider - aggregator - user,
we characterize recent modifications as a ‘pendular’
feedback pathway of user - aggregator - provider -
aggregator - user (Figure 4). Just as users interact with
aggregators to receive data from multiple providers,
they can send information directly to the aggregator
(regarding records corresponding to many providers).
Simple implementations of such user feedback
mechanisms already exist via open text boxes for
commenting (including in GBIF) and should become
much more structured (i.e., tied to particular fields).
After inspection to remove spam, user feedback can
lead to flagging and posting of suggested information
and annotations in the database of the aggregator
(visible to all users) and transmission of that information
to the respective providers for consideration. As a
complement to the original feedback loop, this pendular
pathway maintains the primacy of decision-making by
providers, enlists aggregators in facilitating information
flow and availability, and allows users increased access
to information regarding data quality and possible
improvements.

Implementation and outlook

Ifimplemented widely, these ongoing and envisioned
changes could prove transformational, catalyzing
increased utility of biodiversity data for myriad scientific

uses and applications (Box 1). Importantly, they should
promote positive feedback patterns, leading to ever
better data and concomitant increases in utility and
impact. Implementing these changes can happen via
a combination of community consensus-building,
coordinated efforts to justify and secure funding, and
technical innovations. Because biodiversity informatics
depends on diverse data providers, aggregators, and
users, the solutions must be feasible for all of these
groups. Some advances likely will be achieved by
large aggregators and others by smaller ones, yielding
pilot implementations subsequently taken up across
the field (Canhos et al. 2015). We envision a set of
initiatives: (1) to consolidate information regarding
existing implementations (to determine what pilot
examples exist for each challenge); and (2) to tackle
necessary outstanding advances. In designing particular
solutions, we suggest consultation with users regarding
desired functionalities at the outset, and then again
later to test and comment on prototypes. Below, we
sketch a roadmap for implementation, organizing items
by how quickly they might feasibly be implemented
(6—24 months, vs. 2—4 years).

Short-term deliverables

Likely one of the first achievable advances, web
interface development for well-funded aggregator
portals can highlight the uncertainties and biases of
existing data. This includes making the uncertainty of
identification and georeferencing for each record obvious
to users—including the lack of any such information in
a data record. It also entails functionalities to specify
relevant target groups (to characterize the results of past
sampling), as well as extending functions for mapping
and downloading such information. As an example,
some innovative implementations for visualizing spatial
and temporal biases exist, ripe for expansion (e.g., in
Symbiota’s “Spatial Module” described above).

Simultaneously, aggregators can summarize simple
statistics of data quality—benchmarks to guide,
justify, and assess future improvements. For example,
GBIF calculates several summary metrics for given
providers and higher-level taxonomic groups. In future
developments, portals can implement temporal
benchmarks for various taxa, geographic or political
entities, and data providers. In addition to doing so
for higher-level combinations of these categories, we
suggest flexibility so that users can tailor reports to
their needs. The existence of information regarding
species-level taxonomic identification, georeferencing,
and their uncertainties constitute the most important
fields to be assessed. We anticipate that such information
will prove highly useful in advocating for increased
investment in data completeness and quality.

Additionally, implementation of stable unique
identifiers that can be used universally across all of
biodiversity science constitutes a short-term deliverable
that will enable many other advancements (Box 1).
This requires final consensus among multiple data
providers, aggregators, and external databases (likely
including a registry to guarantee uniqueness), followed
by widespread execution (Guralnick et al. 2015). Once
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a Current feedback loop

1. Feedback sent to’
provider

2. Updated information sent to

3. Updated information
available for query

aggregator
b Proposed feedback pendulum
4. Updated 3. Updated
information  information
available for sent to
query aggregator

1. Feedback
sent to
aggregator

2. Record annotated
(visible to users);
feedback sent to

provider

Figure 4. Graphical representation of original and recently modified pathways for feedback regarding Primary Biodiversity Data,
showing information transfer among users, providers, and aggregators. Such feedback consists of suggested improvements
or additions to data fields, for example a change in species identification or a newly determined georeference. The diagrams
contrast two complementary mechanisms: (a) the original feedback loop (currently dominant); and (b) the emerging feedback
pendulum (proposed for expansion). In a: (1) the user sends feedback to the provider (e.g., a given natural history museum);
(2) if the provider makes a corresponding change to its database, the updated information is sent to the aggregator; and (3)
that information becomes available for query by all users. In practice, because many providers do not consistently make such
changes (denoted by an X), users do have access to updated information (dashed line). In b: (1) the user sends feedback to
the aggregator; (2) the aggregator simultaneously both annotates the record (visible to all users) and sends the suggested
information to the provider; (3) if the provider makes a corresponding change to its database, the updated information is sent
to the aggregator; and (4) the aggregator makes the updated information available for query by all users. Note that even if
a provider takes no action regarding the suggested information, the annotations placed by the aggregator are nevertheless
available to users. Additionally, because the quantifications of data quality and use described in the text allow for benchmarks
that can be tracked over time, we anticipate that the feedback pendulum will help providers become more successful in
justifying and securing funding to make data improvements based on feedback from users.

achieved for individual-level identifiers, the same
protocols can be modified to implement collective
ones. Such advances should facilitate development of
a community standard for expected digital deposition
of Primary Biodiversity Data used in publications and
reports (Table 1). In addition to allowing efficient
documentation and quantification of data use, these
functionalities will also prove essential for medium-term

deliverables regarding feedback mechanisms and links
to diverse external databases.

Medium-term deliverables

Although launching comprehensive mechanisms
for user feedback may take a few years, efforts
to determine desired functionalities and identify
technical needs and solutions should begin now. First,
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interested data providers, aggregators, and user groups
can reach consensus regarding the data fields to be
included, mechanisms for users to provide feedback to
aggregators, and technical vision for how information
will be transmitted to aggregators and then to and
from providers. We anticipate that feedback from
users will include at least: flags for likely taxonomic
misidentifications, suggested corrected identifications,
level of taxonomic expertise of the person identifying
the species (for uncertainty of the identification field),
flags for questionable georeferences, suggested new
orimproved georeferences, and estimated uncertainty
of georeferences—as well as annotations regarding
the data and resources used and an overall level
of confidence regarding the quality of the record
(Figure 4; van Hintum et al. 2011). Technical issues to
be resolved by aggregators will include how to provide
the flags and alternate information, automate the
sending of such feedback to providers, and remove
flags and alternate information if a provider makes the
change. Likely, the solutions for many of these issues
will leverage functionalities already implemented in
GBIF for some simple standardized flags regarding
data quality. Critically, the feedback system also will
need to track the history of feedback for each record.

Such feedback machinery could include properties of
existing open community platforms that have reputation
rewards systems (for example, stackoverflow® for the
coding community) or more generally online forums
such as reddit’). For biodiversity informatics, individual
‘actors’ associated with data providers (e.g., museum
curator/collection manager, field collector/observer)
could have a login ID and receive a notification when a
user provides feedback. Similarly, each user wishing to
provide feedback could have a login ID; it also would
be possible to implement a system in which such users
develop ‘reputations’ based on community responses
to their posts. Many complicated issues come with
online forums, including the need to filter spam, and
data providers and aggregators undoubtedly will
consider user reliability carefully (see user registry
protocols in Symbiota®).

Outlook

Given concerted engagement by the biodiversity
informatics community, we think that many funding
agencies, philanthropies, and other organizations
supporting biodiversity research and conservation
will embrace investments that lead to improved data
quality and quantification. Specifically, we foresee
successful proposals by groups of stakeholders to
develop innovative plans regarding vision and mechanics
(where necessary), as well as follow-up ones for
implementation. In the immediate term, many entities
regularly fund working groups and workshops (relevant
for developing detailed plans for needed solutions),
either via open calls for proposals or as supplements
to current grants. For implementing solutions, various
existing funding calls support biodiversity databasing

6 https://stackoverflow.com/, last accessed on 28 May 2020
7 https://www.reddit.com/, last accessed on 28 May 2020

and cyberinfrastructure; critically, we predict that
funding agencies will also participate in this rethinking
of biodiversity informatics by modifying and expanding
their calls to reflect and promote the changing landscape
of the field.

Once enabled by stable unique identifiers and
valuable information regarding data quality and
use, aggregators will be able to catalyze critical data
improvements to a degree long envisioned but not
yet possible (van Hintum et al. 2011). Aggregated
databases will be highly useful for identifying bundles
of Primary Biodiversity Data records particularly
worthy of improvement, as well as for identifying gaps
in data availability to be filled via targeted initiatives
(Meyer et al. 2015, Lobo et al. 2018). Often taxonomic
and/or geographic in nature, such characterizations can
focus and justify efforts to improve the availability and
quality of Primary Biodiversity Data (Stein and Wieczorek
2004, Sousa-Baena et al. 2014). Indeed, institutions
and consortia of users with common interests and
expertise will be particularly well poised to secure funds
for collective data improvement initiatives (Anderson
2012, Tobdn et al. 2017). For example, institutions and
researchers interested in a particular applied topic
(e.g., arthropod-borne zoonotic diseases in a given
region) should be able to make strong justifications for
the benefits of a cooperative project (Peterson 2015).
We envision similar situations regarding conservation
biology and many other practical applications of
Primary Biodiversity Data. In closing, we hope that
data providers, aggregators, users, and funding
organizations will collaborate to build upon recent
advances, leading to high-quality biodiversity data
widely available for addressing issues of importance
to science and society.
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