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Ecography Species distribution models (SDMs) constitute the most common class of models
43: 1-17, 2020 across ecology, evolution and conservation. The advent of ready-to-use software pack-
doi: 10.1111/ecog.04960 ages and increasing availability of digital geoinformation have considerably assisted

the application of SDMs in the past decade, greatly enabling their broader use for
Subject Editor: David Nogués-Bravo informing conservation and management, and for quantifying impacts from global
Editor-in-Chief: Miguel Aradjo change. However, models must be fit for purpose, with all important aspects of their
Accepted 30 April 2020 development and applications properly considered. Despite the widespread use of

SDMs, standardisation and documentation of modelling protocols remain limited,
which makes it hard to assess whether development steps are appropriate for end use.
To address these issues, we propose a standard protocol for reporting SDMs, with an
emphasis on describing how a study’s objective is achieved through a series of model-
ing decisions. We call this the ODMAP (Overview, Data, Model, Assessment and
Prediction) protocol, as its components reflect the main steps involved in building
SDMs and other empirically-based biodiversity models. The ODMAP protocol serves
two main purposes. First, it provides a checklist for authors, detailing key steps for
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model building and analyses, and thus represents a quick guide and generic workflow for modern SDMs. Second, it introduces
a structured format for documenting and communicating the models, ensuring transparency and reproducibility, facilitating
peer review and expert evaluation of model quality, as well as meta-analyses. We detail all elements of ODMAP, and explain
how it can be used for different model objectives and applications, and how it complements efforts to store associated metadata
and define modelling standards. We illustrate its utility by revisiting nine previously published case studies, and provide an
interactive web-based application to facilitate its use. We plan to advance ODMAP by encouraging its further refinement and

adoption by the scientific community.
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Introduction

Modelling species’ environmental requirements and map-
ping their distributions through space and time constitute
important aspects of many biological analyses, particularly
in support of conservation and management interven-
tions (Franklin 2010). Species distribution models (SDMs)
represent a set of popular techniques for interpolating and
extrapolating species distributions based on quantitative
or rule-based models, with several review papers (Franklin
1995, Guisan and Zimmermann 2000, Guisan and Thuiller
2005, Elith and Leathwick 2009) and textbooks describing
their application in detail (Franklin 2010, Peterson et al.
2011, Guisan et al. 2017). The number of studies employ-
ing SDMs has increased tremendously over recent decades
(Sequeira et al. 2018, Aratjo et al. 2019), with > 1000 pub-
lications related to SDMs being released every year (Peterson
and Soberén 2012), including many receiving > 1000 cita-
tions each (Barbosa and Schneck 2015). Today, SDMs pres-
ent the most widely used modelling tool for forecasting
global change impacts on biodiversity (Guisan et al. 2013,
Ehrlén and Morris 2015, Ferrier et al. 2016). This boom in
SDM studies is likely related to the increasing availability of
digital data (Jetz et al. 2012, Franklin et al. 2017, Wiiest et al.
2020) and easy-to-use software packages (Phillips et al.
20006, Thuiller et al. 2009, Brown 2014, Naimi and Aragjo
2016, Golding et al. 2018, Kass et al. 2018) accompanied
by detailed guides, manuals and textbooks (Elith et al. 2008,
Merow et al. 2013, Guisan et al. 2017). Despite their wide-
spread use, SDM methods and results are often limited in
their reproducibility because of a lack of reporting stan-
dards (Rodriguez-Castanieda et al. 2012, Aradgjo et al. 2019,
Feng et al. 2019, Hao et al. 2019). In the the lexicon of
rescarch reproducibility (Goodman et al. 2016), methods
reproducibility means that sufficient details are provided on
data and methods in order to independently repeat the study,
while results reproducibility means that the same results
can be obtained from an independent study (Plesser 2018).
Here, we propose a standard protocol for reporting SDMs
to improve their methods reproducibility, ensuring transpar-
ency and consistency in their development and application.
We here use the term SDM to refer to any empirically-
based biodiversity model obtained from statistical and
machine learning methods that associate geographic biodi-
versity records (i.e. typically in the form of expert-derived or

observed presences, and sometimes absences/non-detections,
or measured counts) with the abiotic and/or biotic charac-
teristics at those locations (following Elith and Leathwick
2009). Common terms used synonymously for SDMs
or closely related models include ecological niche models
(ENM), species range models, environmental or climate
envelopes, habitat suitability and habitat distribution models,
occupancy models, resource selection functions, abundance
and N-mixture models. Often, these names emphasise dif-
ferent aspects of the entities being modelled: the niche, the
distribution or the habitat preferences of species, or the data
type used (Elith and Leathwick 2009, Peterson and Soberén
2012, Guisan et al. 2017).

Generally, information on both the data and methods
used should be provided in sufficient detail to allow anyone
to reproduce the findings of a given study — provided data
are also available — and to maximise transparency and allow
robust quality control (Feng et al. 2019, Merow et al. 2019).
Transparency and reproducibility are especially important for
models intended as quantitative tools for ecological impact
assessments, conservation planning and decision making,
and biodiversity analyses (Golding et al. 2018, Aratjo et al.
2019, Rapacciuolo 2019). Key to this is communicating suffi-
cient detail about the input data, the model implementation,
its evaluation and validation, and output processing such
that end-users (e.g. conservationist, evaluator) has enough
information at hand to judge the model’s reliability and rel-
evance without personal communication with the authors
(Aragjo et al. 2019, Garcfa-Diaz et al. 2019, Rapacciuolo
2019).

Methods reproducibility is crucial for ensuring adher-
ence to minimum standards and supporting the delivery of
adequate outputs for policy decisions. Indeed, poor or incon-
sistent modelling practices can lead to inappropriate infer-
ence and misguided conservation actions (Garcia-Diaz et al.
2019). Recognizing the necessity for reproducibility and
transparency, the recent IPBES (Intergovernmental Science-
Policy Platform on Biodiversity and Ecosystem Services)
methodological assessment report acknowledged the need
for agreed-upon standards in biodiversity assessments
(Ferrier et al. 2016). Similarly, the TUCN (International
Union for Conservation of Nature) also defined prelimi-
nary standards that should be adhered to for assessing the
threat status of species based on SDMs (IUCN Standards
and Petitions Subcommittee 2017); if these standards are not



adequately met by a scientific study, then the results cannot
be used as input for conservation assessments or decision
making. More recently, Aradjo et al. (2019) proposed best-
practice standards for biodiversity assessments using SDMs,
and suggested scoring SDM studies into gold (aspirational),
silver (current best practice), bronze (acceptable practice)
and deficient categories based on the combined quality of
the input data and the modelling, evaluation and predic-
tions approaches employed. When scoring a random subset
of 400 SDM studies, Aratjo et al. (2019) found that 46% of
the studies were deficient in at least one aspect. In particular,
many studies did not test the effects of uncertainty in pre-
dictor variables, structural and parameter uncertainty in the
models, or robustness of model assumptions.

Best practice standards in modelling cannot be achieved
unless standard procedures for reporting exist. A standard
protocol for reporting individual-based and agent-based
models (IBM/ABM) was introduced more than a decade
ago: the ODD protocol (Overview, Design concepts, Details;
Grimm et al. 2006). A review of the first five years of the
ODD protocol showed that it not only improved the trans-
parency of IBM/ABM studies but also facilitated a more
rigorous formulation of models by providing a checklist of
critical modelling steps to consider (Grimm et al. 2010).
Similarly, shared data standards like the Darwin Core
Standard (DwC; Wieczorek et al. 2012) and metadata stan-
dards like the Ecological Metadata Language (EML; based
on Michener et al. 1997) have proved essential to compil-
ing primary biodiversity data records in repositories such as
GBIF (<www.gbif.org/>; Anderson et al. 2016). Recently,
Merow et al. (2019) defined a range modelling metadata
framework to report the modelling steps and results from
SDMs, and Feng et al. (2019) suggested a checklist with
essential elements needed to ensure SDM reproducibility.
Both author groups emphasised that the proposed frame-
works provide only starting points that require further devel-
opment through community efforts. With this in mind, we
engaged in such a community effort to refine these initial
metadata standards and merge them within a standard proto-
col for reporting SDM methods from scientific studies.

Standardised approaches not only benefit beginners in
the field, but also authors, expert referees and journal edi-
tors. Specifically, for authors, standard protocols encourage
defining and reporting the modelling steps in a structured
way. For reviewers and editors, they provide an efficient way
of judging whether appropriate modelling decisions were
made with respect to the study objectives and whether the
modelling study is reproducible. For evaluators and policy
makers, standard protocols will help form expectations of
which information will be found where (Rapacciuolo 2019),
thus simplifying meta-analyses and facilitating scoring the
various model elements according to best-practice standards
(Aragjo et al. 2019).

Here, we propose an adaptation of the ODD protocol to
SDM studies. Our aim is not to define best practice in data
and methods (Aratjo et al. 2019), but rather to support best

practice in reporting data and modelling choices. In particu-
lar, the standard protocol provides a quick guide to the main
steps of fitting SDMs and a checklist of all the information
necessary to evaluate the validity and reproducibility of an
SDM study for a particular application. This complements
and integrates recent work defining range model metadata
standards (RMMS; Merow et al. 2019). Importantly, we
provide a web-based application to fill in the protocol and
which relies on and extends the metadata dictionary defined
by Merow et al. (2019). Methodologies and data types evolve
over time, and will require redefining best practices with
respect to intended objectives. By harnessing the RMMS dic-
tionary (Merow et al. 2019), ODMAP provides a guide for
developing and a language for documenting SDMs based on
the RMMS dictionary. Although we acknowledge that the
protocol will require some time investment and may seem
cumbersome at the start, we believe that, in the long run, it
should ease the burden on authors and reviewers by provid-
ing a generic workflow and clear reporting guidelines that
are understandable and easy to follow. Overall, the protocol
should not increase the length of publications because much
of the description can be provided as Supplementary material.

A standard protocol for species distribution
models

We propose a standard protocol that follows the five basic
modelling steps of SDMs (described in e.g. Guisan and
Zimmermann 2000, Elith and Leathwick 2009, Franklin
2010, Peterson et al. 2011, Guisan et al. 2017, Aradjo et al.
2019): Overview/Conceptualisation, Data, Model fitting,
Assessment and Prediction (ODMAP; Fig. 1). We set it
up in an easy to follow checklist format (Table 1). In prin-
ciple, this protocol should work for any empirically-based
biodiversity model beyond single species distribution mod-
els, including e.g. community-level models (D’Amen et al.
2017, Norberg et al. 2019, Zurell et al. 2020) and models of
functional composition (Wiiest et al. 2018). Often, SDMs
constitute only one part of the methods of a study and are
supplemented by further analyses. Here, we argue that any
scientific application of SDMs should include the entire
ODMAP protocol (Table 1), but in most publications it will
be sufficient to include the Overview section of ODMAP
(Fig. 1) as prose in the methods of the main text, while mov-
ing the entire ODMAP checklist to the Supplementary mate-
rial (also see example case studies in Supplementary material
Appendix 1-9). In the following, we first give a brief over-
view of the different ODMAP sections before providing fur-
ther details on each of these (Fig. 1, Table 1).

Any SDM or biodiversity analysis starts with the con-
ceptualisation of one or several underlying questions and
related hypotheses. These conceptual considerations should
be summarised in the Overview section, which captures
the skeleton of the analyses, providing enough information
for readers to understand the model setup and workflow



GENERAL
SPECIFICATIONS

Predictions (5)

* Prediction output
* Uncertainty quantification

Assessment (4)

* Performance statistics
* Plausibility: response shapes,
expert judgement

TECHNICAL DETAILS

Overview /
Conceptualisation

*Model objective

*Taxon, location, predictors, scale

* Conceptual underpinning
«Software, codes and data availability

(2) Data

* Biodiversity data

* Data partitioning

* Environmental data
* Transfer data

(3¥ Model fitting

*Variable selection

* Model settings and model complexity

* Model estimates, variable importance

*Model selection, averaging, ensembles
* Non-independence analyses

* Threshold selection

Figure 1. The five main modelling steps in the species distribution modelling cycle also constitute the five main sections of the ODMAP
(Overview, Data, Model, Assessment, Prediction) protocol. Each section contains unique information that is detailed in Table 1.

(Guisan and Zimmermann 2000, Austin 2002, 2007). In
particular, Overview specifies the model objectives, the focal
organismy(s), the type of biodiversity data, the type of envi-
ronmental predictor variables, the spatiotemporal scale of the
analyses, the underlying hypotheses about the biodiversity—
environment relationship, the critical model assumptions,
the chosen SDM algorithms and desired model complexity,
and, lastly, the software used. Overview thus provides a brief
but informative summary of the basic modelling decisions
and the modelling pipeline (Table 1). Including Overview in
the methods section of a publication will thus ensure that all
key aspects of the SDM are specified in the main text of the
scientific article or report while details could be relegated as
Supplementary material (Fig. 1).

The Data, Model, Assessment and Prediction sections in
ODMAP summarise the technical details needed to repro-
duce the methods (Feng et al. 2019, Merow et al. 2019) and
to assess their appropriateness for different purposes (e.g. bio-
diversity assessments, Aradjo et al. 2019). The Data section
details the data and their preparation, including potential
sampling bias and/or imperfect detection, any data cleaning
and processing steps, as well as any (re-)scaling or transfor-
mation of data (spatial, temporal, taxonomic scaling). Model
fitting is the central step where species—environment relation-
ships are estimated using the selected algorithms. In the pro-
tocol, details should be provided about model settings, model
tuning/selection, and whether and how potential sampling
bias and/or imperfect detection have been dealt with. The
section on Assessment (of models) describes both how the
estimated species-environmental relationship was assessed
for plausibility and how the model’s predictive ability was
quantified using appropriate goodness-of-fit measures and
performance statistics. The Predictions section outlines the
methods used to generate the spatial and/or temporal outputs
of the model (e.g. transfers/projections in space and time)
as well as any procedures for addressing uncertainty in those

predictions. If pure explanation is the goal of the SDM study
and no predictions are being made, then the protocol can be
reduced to the first four sections.

ODMAP sections and elements

Each ODMAP section is divided into several subsections
that consist of different elements. A checklist of these is pro-
vided in Table 1 (and more detail provided in Supplementary
material Table Al). We distinguish sections, subsections and
elements that are mandatory and should always be reported,
from those that are only needed for specific model purposes
or are optional (Table 1). Filling in all mandatory, and poten-
tially the optional, fields of ODMAP will ensure methods
reproducibility and transparency for peers and evaluators.

Overview

We identified eleven obligatory subsections that should be spec-
ified in the Overview section. These are the modelling objec-
tive, five data-related subsections (focal taxon/taxa, location,
biodiversity data overview, predictor type, spatial and tempo-
ral scale), two conceptual subsections (hypotheses, underlying
assumptions) and three technical subsections (SDM algo-
rithms, model workflow and the software and data used; Fig. 1,
Table 1). The Overview section thus briefly summarises the key
information relating to the analyses. In practice, the Overview
section may appear twice in scientific publications, once as
flow text in the methods section of the manuscript (cf. case
study 9 in Supplementary material Appendix 9) and once as
part of the full ODMAP checklist (Table 1) that should always
be provided in SDM studies, preferably in the appendix. To
make this checklist a self-contained document, the author list
and title of the study should also be specified in the Overview
section of the checklist.



Table 1. The five main ODMAP sections and list of ODMAP elements. The full ODMAP v1.0 checklist is available in Supplementary material

Table A1.
ODMAP section ODMAP subsection ODMAP elements
Overview Authorship Authors, contact email, title, doi
Model objective/model purpose ~ SDM objective/purpose (inference, mapping, transfer), main target output
Taxon Focal taxon
Location Location of study area
Scale of analysis Spatial extent (lon/lat), spatial resolution, temporal extent/time period,
temporal resolution, type of extent boundary (e.g. rectangular, natural,
political)
Biodiversity data overview Observation type, response/data type
Type of predictors Climatic, topographic, edaphic, habitat, etc.
Conceptual model/hypotheses Hypotheses about biodiversity-environment relationships
Assumptions State critical model assumptions (cf. Table 2)
SDM algorithms Model algorithms, justification of model complexity, is model averaging/
ensemble modelling used?
Model workflow Brief description of modelling steps
Software, codes and data Specify software, availability of codes, availability of data
Data Biodiversity data Taxon names, taxonomic reference system, ecological level, biodiversity
data sources, sampling design, sample size per taxon, country/region
mask, details on scaling, data cleaning/filtering, absence data collection,
pseudo-absence and background data, potential errors and biases in data
Data partitioning Selection of training data (for model fitting), validation data and test (truly
independent) data
Predictor variables State predictor variables used, data sources, spatial resolution and extent of
raw data, map projection, temporal resolution and extent of raw data, data
processing and scaling, measurement errors and bias, dimension reduction
Transfer data for projection Data sources, spatial resolution and extent, temporal resolution and extent,
models and scenarios used, data processing and scaling, quantification of
novel environments
Model Variable pre-selection Details on pre-selection of variables
Multicollinearity Methods for identifying and dealing with multicollinearity
Model settings/model Models settings for all selected algorithms and for extrapolation beyond
complexity sample range
Model estimates Model coefficients, variable importance
Model selection/model Model selection strategy, method for model averaging, ensemble method
averaging/ensembles
Non-independence Spatial autocorrelation in residuals, temporal autocorrelation in residuals,
correction/analyses nested data
Threshold selection Details on threshold selection
Assessment Performance statistics Performance statistics estimated on training data, on validation data and on
test (truly independent) data
Plausibility check Response plots; expert judgements (e.g. map display)
Prediction Prediction output Prediction unit; post-processing steps

Uncertainty quantification

Uncertainty through algorithms, input data, parameters, scenarios;
visualisation/treatment of novel environments

[ Obligatory; 1 Objective: mapping/interpolation; 2] Objective: forecast/transfer; L] Optional/context dependent.

Model objective

The Overview section should always start by specifying the
modelling objective/purpose. Please note that this does not
refer to the overall study objective but rather describes the
specific use of the model. Following Aradjo et al. (2019)
we suggest clearly distinguishing between three potential
purposes of modelling: 1) explanation, 2) mapping and 3)
transfer. If several or all of these purposes apply, we suggest
to regard these as nested (explanation < mapping < trans-
fer). Nesting accounts for the fact that transfer should not
be attempted without first having a thorough understanding
of the model (inference) (Aratjo et al. 2019). Importantly,
several aspects of the modelling process, and with this several

elements of ODMAPD, vary depending on the modelling
objective (Table 1). ‘Explanation’ (also termed inference)
regards detailed analyses of species—environment relation-
ships and aims to provide or test specific hypotheses about
the main factors driving the species distributions. ‘Mapping’
(also termed interpolation) means that the estimated species—
environment relationships are used to map (or interpolate)
the species distributions in the same geographic area and time
period in which the model was calibrated. “Transfer’ (also
termed forecast or projection; but these terms are less precise)
means that the estimated species—environment relationships
are transferred to a different geographic region or time period
— future or past (Yates et al. 2018). If mapping or transfer is



the goal, the main target output (prediction unit) should also
be specified in Overview as this will affect other ODMAP
elements.

Taxon, location, data and scale

The data-related subsections of Overview should specify
the focal taxon/taxa, the location of the study, the type of
biodiversity data, the type of predictors and the spatial and
temporal scales of analysis (Table 1). If the study focusses
on multiple species, it will be sufficient to specify the main
taxon/taxa or higher category here, e.g. birds or passerines.
Then, the authors should specify the type of biodiversity
observation (e.g. standardized monitoring, field survey, range
map, citizen science, GPS tracking) and the data/response
type used (e.g. presence-only, presence—absence, counts).
In addition, the type of predictor variables should be indi-
cated (e.g. climatic, topographic, edaphic). Finally, informa-
tion should be provided regarding the spatial and temporal
resolution and extent of the study system. Here, we refer to
the target scales of analyses while details on data processing
and scaling are given in the Data section. Where relevant, the
type of boundary should be indicated (e.g. rectangular within
specified spatial extent, natural, political). In all cases mul-
tiple answers are possible, to allow for studies across multiple
regions, taxa and data types.

Conceptual underpinning

Authors should clearly present their hypotheses about the
expected biodiversity—environment relationship, mean-
ing that they should justify what abiotic and biotic factors
are taken into account to model the focal taxon, and the
rationale behind these choices. Occasionally, studies may
not seem to build on a priori hypotheses but may be rather
exploratory, particularly when modelling many species in an
automated way. Nevertheless, we encourage authors to be
explicit about these conceptual considerations (Mod et al.
2016). For instance, authors could argue that they are using
climatic layers in an exploratory way because climate was
known to be an important driver of species distributions
at a continental scale. In models that account for imperfect

detection, hypotheses regarding the ecological model pre-
dictors (biodiversity—environment relationship) should be
clearly separated from hypotheses regarding the observation
(detectability—environment relationship) model predictors
(Guillera-Arroita 2017).

Underlying model assumptions are often overlooked or
unreported in SDM studies. Table 2 lists a number of typical
assumptions that are often made in SDMs. We encourage
authors to be specific about such underlying assumptions,
because this helps reviewers or users assess the validity of
the chosen approach for a given application. For example,
when transferring SDMs under scenarios of global change,
critical assumptions are that 1) all relevant environmental
drivers are included in the model, 2) the species’ observed
distribution is in pseudo-equilibrium with the environment,
3) the entire realised niche is encompassed by data, 4) the
correlation structure between predictors does not change
between source and target landscape and 5) if extrapolation
is involved, that the model extrapolates in a biologically sen-
sible manner (Dormann et al. 2013, Elith 2017, Guisan et al.
2017, Feng et al. 2019). Other critical assumptions related
to the observation process are also frequently ignored: when
ficting SDM, it is important to consider the issue of imper-
fect detection (Kéry 2011, Lahoz-Monfort et al. 2014). We
recommend that authors be explicit about potential biases in
the data (Guillera-Arroita 2017).

Technical aspects

Important technical aspects include the SDM algorithms
being used, along with a verbal description of model com-
plexity (especially if DMAP sections are moved to the
Supplementary material). The choice and number of SDM
algorithms contained in any study may vary depending on
modelling objectives and personal experience, and as new
algorithms appear. For example, when SDMs are used for
transfer under scenarios of global change, some scientists
advocate using ensembles of SDM algorithms to account
for algorithmic uncertainty (IUCN Standards and Petitions
Subcommittee 2017, Aratjo et al. 2019, Thuiller et al. 2019).
In contrast, if explanation or mapping is the goal, many users

Table 2. Typical model assumptions in species distribution models (Franklin 2010, Peterson et al. 2011, Guisan et al. 2017). Some of these
assumptions can be relaxed by extending models accordingly. For instance, models can be built to capture occurrence dynamics, including
spatial dependence, therefore relaxing the species—environment equilibrium assumption. Similarly, methods exist to address issues such as

sampling bias, imperfect detection or spatial autocorrelation.

Assumption

Description

Species—environment equilibrium
No observation bias issues

Species fill their niche and do not occur elsewhere
Species data are free from observational bias (sampling bias, imperfect detection), or it is

accounted for in the model

Independence of species observations
Availability of all important predictors

Each species record represents new information (e.g. not the same individual reported twice)
Key explanatory variables are available and incorporated in the model; ideally these should

be proximal predictors, particularly when the objective is model transfer

Predictors are free of error

Niche stability/constancy, niche
conservatism

No other extrapolation issues

predictions

Predictors are measured (or estimated) without error
Species retain their niches across space and time; particularly relevant when transferring

Relationship fitted under current conditions apply when transferring predictions, even when

projected beyond the range of the training data; no change in correlation structure of
environmental variables; no change in key limiting processes (e.g. biotic interactions)




select only one algorithm; for example, MaxEnt (Phillips et al.
20006, Elith et al. 2011, Merow et al. 2013) has been particu-
larly prominent in recent years. Authors should also indicate
whether they use model averaging or ensemble modelling
(Hao etal. 2019). Here, we do not give any recommendation
as to which approach or algorithm may be more appropriate
foragiven application (Aratjo etal. 2019). Rather, we empha-
sise that the modelling decisions need to be clearly described
and justified, and model complexity needs to be aligned with
the model objective. We define model complexity as the flex-
ibility of the fitted biodiversity—environment relationship
(cf. Merow et al. 2014, Muscarella et al. 2014, Cobos et al.
2019). Models can be more or less complex depending on
the algorithm but complexity also depends on several param-
eter settings that determine the flexibility of the response
surface (Merow et al. 2014). Specific model settings should
be detailed in the Model section. Nevertheless, we encourage
authors to provide a general description of model complexity
as part of the Overview section, for example ‘the model set-
tings were chosen to yield simple, smooth response surfaces
because we attempt extrapolation and the species may not be
at equilibrium with the environment’ or ‘the model settings
were chosen to yield complex response surfaces because our
goal is to accurately map the potential species’ distribution in
the region and our model is based on a large enough sample
size for calibrating such complex response surfaces’.

Lastly, the Overview section should contain a brief descrip-
tion of the overall model workflow (or point to a flowchart
in main text or appendix) and information on the software
packages and version, and software environment used for
modelling. Importantly, the availability of codes and data
needs to be specified. Here, we want to emphasise that while
ODMAP supports methods reproducibility, results repro-
ducibility can only be achieved if access to the exact data and
codes are provided.

Data

The Data section provides details about the species and envi-
ronmental data, and about data processing. We have identified
two mandatory subsections that should always be described:
biodiversity data, and environmental data (Table 1). Two
other subsections are optional: data partitioning (for model
assessment/evaluation), particularly important for mapping
and transfer (Table 1), and transfer data (Table 1).

Biodiversity data

This subsection should contain all relevant information on
the biodiversity data (Table 1). First, authors should provide
the taxon name(s) and information on the taxonomic ref-
erence system (e.g. APG IV, GBIF Backbone Taxonomy),
the latter being of particular importance if multiple species
or taxa are being modelled (e.g. all known migratory birds,
Zurell et al. 2018). Then, the focal taxonomic units being
modelled should be defined. Although species are the most
often used focal taxonomic unit, biodiversity models could
also focus on: populations, demographic traits, supraspecific

taxa, operationally defined taxa (e.g. OTUs or ASVs from
barecoding), functional types, functional traits, ecological
communities, community traits ot species richness, among
others. Likewise, studies modelling community-level proper-
ties need to specify how the community is being defined (e.g.
trophic levels). Next, the data source needs to be described.
If the data do not stem from one’s own field surveys, then
proper reference to the data source needs to be given. If
the data stem from online data repositories such as GBIF
(<http://data.gbif.org>) or OBIS (<http://iobis.org>), then
information on accession date and/or of the source should be
provided. Generally, authors should follow good data cita-
tion practices, for example as laid out by GBIF (<www.gbif.
org/citation-guidelines>). Authors should also describe the
underlying (spatial and temporal) sampling design and any
details regarding temporal replications or nestedness of the
darta. This point applies to all types of biodiversity data, not
only on one’s own field data. If the biodiversity data stem
from a standardised monitoring programme, then authors
should detail here how the monitoring was carried out, e.g.
how often observations were repeated and by whom (vol-
unteers, trained volunteers, experts). If the data stem from
online data repositories such as GBIF and OBIS, informa-
tion should be supplied regarding the type of observations
used (Anderson et al. 2016) as these databases may include
mixed data from museum specimens, opportunistic observa-
tions and monitoring data. It is crucial that authors report
the sample size for the focal taxa, as well as prevalence in the
case of presence—absence data.

Absence, pseudo-absence and background data are an
important issue for most SDM applications, and thus cru-
cial to report in ODMAP. This is often also relevant when
the response variable is abundance or species richness. It is
crucial to report how these absence data were obtained and
how accurate they are. Low detection probability will inevi-
tably yield false absences (Guillera-Arroita 2017). Many
SDM studies are based on presence-only data. Most algo-
rithms then require background data (also called ‘pseudo-
absences’ or ‘quadrature points’) against which the observed
presences are compared (Renner et al. 2015). For example,
when presence records are spatially biased, one could sample
the background data such that they reflect the same spatial
bias (Phillips et al. 2009, Kramer-Schadt et al. 2013). Or if
GPS tracking data are used, then the background data (use
versus availability) derived for each logged GPS location
could be drawn dependent on empirically observed distri-
butions of movement distances and directions (Fortin et al.
2005, Thurfjell et al. 2014). Thus, authors need to specify the
geographic region from which background data are drawn,
any biases induced in the background data, the number of
background data points, and whether different strategies for
background data derivation are used for different algorithms
(Barbet-Massin et al. 2012).

Many of the remaining elements in the biodiversity data
subsection are designated optional in Table 1 (i.e. context-
dependent), because their necessity depends on the context
of the study. We encourage authors to consider any potential



errors and biases in the data. For example, data may vary in
terms of spatial and temporal precision (Meyer et al. 2016),
which could significantly affect model accuracy (Park and
Davis 2017). Also, any steps taken to clean and scale the data,
both spatially and temporally, should be detailed here (Table
1; Daru et al. 2018). Common data cleaning steps include
the removal of outliers, duplicates, records pre-dating a speci-
fied year, and records with insufficient accuracy or associated
information (Serra-Diaz et al. 2017).

Data partitioning

In most SDM studies, one will assess model performance
using data independent from those used for model fitting.
This is most important when the model objective is map-
ping or transfer, although we do not wish to imply that it
may not be important for explanation as well. Ideally, a
modeller would use truly independent data from different
sources or methods of collection to assess model performance
(Aratjo et al. 2005); if these are not available, it is common
practice to partition data into training and testing sets. Any
such data partitioning should be clearly specified in the Data
section (Table 1). Following Hastie et al. (2009), we suggest
to clearly distinguish 1) training data that are being used
for model fitting, 2) validation data that are withheld from
model fitting and are used for estimating prediction errors for
model selection, model averaging and ensemble building and
3) independent test data that are used to assess the generalisa-
tion error of the final model. Here, the strategy for partition-
ing the data should be detailed. For example, validation data
could be obtained by splitting the data randomly, or into spa-
tially or environmentally stratified blocks for cross-validation
(Roberts et al. 2017, Valavi et al. 2018). The protocol here
demands description of the way the data are partitioned, and
appropriate justification based on strategies to remove differ-
ent types of biases in evaluation.

Environmental data

Although the overall types of environmental predictor vari-
ables (e.g. climatic, topographic) should be mentioned in
the Overview section, the Environmental data subsection
should clearly specify the individual environmental variables
used. All relevant information should also be given about
the data sources, the original spatial and temporal resolu-
tion and extent of the data as well as potential measurement
errors and biases (Morueta-Holme et al. 2018). Furthermore,
all data processing steps need to be described in detail, for
example spatial and temporal scaling, thematic scaling (e.g.
collapsing of categories), transformations and normalisa-
tions, among others (Table 1). Spatial and temporal cover-
age, resolution, and/or coordinate reference systems are likely
to differ amongst predictor variables obtained from multiple
data sources. Thus, any data harmonisation steps need to be
clearly described in the Data section. In recent years, we have
seen an upsurge in the availability of digitally available geo-
information relevant for biodiversity modelling, spanning
climatologies (Hijmans et al. 2005, Karger et al. 2017), land

cover data (Fritz et al. 2017), remote sensing data (Cord et al.
2013, Kennedy et al. 2014, Leitdo and Santos 2019) and
human impact data (Venter et al. 2016, Di Marco et al.
2018), among others. As these databases are under constant
development, it is crucial to provide information on acces-
sion date and versioning. Importantly, these data come with
different uncertainties that need to be addressed. For exam-
ple, cloud cover may affect the accuracy of the remote sens-
ing derived products such as vegetation indices. Also, when
using remote sensing time series for e.g. extracting pheno-
logical metrics, different data densities along the time series
imply different levels of certainty in the derived metrics. It
is therefore important for authors to report how they have
dealt with this problem when using remote sensing variables
(Schwieder et al. 2018).

Environmental data are often subject to some form of
dimension reduction, e.g. in the case of multi-collinearity
(Dormann et al. 2013), meaning that not all available envi-
ronmental predictors will enter the model fitting step. We
suggest that if the dimension reduction is done without tak-
ing into account the response variable, then it should be part
of the Data section (cf. Table 1). For example, this could be
the case if principal component analysis is used to identify the
main environmental axes, which are then used for modelling
instead of the original environmental predictors, or where all
but one of a set of highly correlated variables are dropped.

Transfer data

If the main modelling objective is to transfer the model to
different geographic regions and/or different time periods
(Yates et al. 2018), then authors need to report information
on the data used in the model transfer, i.e. the environmental
data to which the model is projected (Table 1). Analagous to
the environmental data for model fitting, information should
be included about the transfer data source (including acces-
sion date, version, etc.), spatiotemporal resolution and extent,
data uncertainties or errors and any data processing and scal-
ing steps. If the transfer data stem from scenario modelling,
for example future or past climate scenarios (IPCC 2013)
and land cover scenarios (van Vuuren and Carter 2013), it
should be explicitly specified and justified which underlying
models (e.g. global circulation model, regional circulation
model, global vegetation model) and scenarios (e.g. represen-
tative concentration pathway, shared socioeconomic path-
ways) have been used.

When transferring models, we advocate for assess-
ing environmental novelty because the transfer data may
include conditions not present in the calibration data (i.e.
in non-analogue situations) and, thus, the calibrated model
may be forced to extrapolate (Sequeira et al. 2018). We sug-
gest reporting how environmental novelty (Fitzpatrick and
Hargrove 2009) was quantified as part of the transfer data in
the Data section. Authors should specify exactly how novelty
was defined and quantified; for example novel environments
along single environmental gradients (Elith et al. 2010) or
novel combinations of environments (Zurell et al. 2012,



Mesgaran et al. 2014). In addition to environmental novelty,
modeling algorithms may also be sensitive to differences in
collinearity structures of training and projection environ-
ments (Dormann et al. 2013), thus assessments of collinear-
ity shifts can help evaluate the accuracy of model projections
(Feng et al. 2019 and references therein).

Model

The Model section reports all the information necessary to
repeat the model building. We have identified six subsections
(see checklist in Table 1); three are mandatory (multicol-
linearity, model settings/model complexity, analysis of non-
independence of data), two are context-dependent (variable
pre-selection, model selection/model averaging/ensembles)
and one is relevant for mapping and transfers only (threshold
selection).

Multicollinearity and variable selection
Highly collinear variables allow alternative model structures
to yield very similar model fits. The uncertainty around which
environmental predictor represents the true causal mecha-
nism may propagate into ‘inflated’ standard errors (Morrissey
and Ruxton 2018). Different strategies exist to deal with
multicollinearity, some of which will reduce the number of
environmental variables to a set of reasonably correlated pre-
dictors (Dormann et al. 2013). In that sense, dealing with
multicollinearity could also be seen as a data processing step.
However, some strategies also involve the response variable
and some preliminary model fitting, or deal with multicol-
linearity as part of the model building process (e.g. regular-
ization). We thus regard it as a mandatory part of the Model
section to report how multicollinearity was approached.
There may be other reasons to pre-select a specific set of
predictor variables additional to reducing multicollinearity
problems. For example, when attempting transfers authors
may choose to limit the number of variables to avoid over-
fitting and achieve simpler, more transferable models
(Elith et al. 2010). The strategy and rationale for selecting the
final set of predictors should be clearly described here.

Model settings and model complexity

Detailing the choice of algorithms, specific model settings
and model complexity is key to ensure methods reproduc-
ibility. We encourage authors to explicitly report the default
settings of specific software packages (rather than just noting
‘default settings were used’), as these may change based on
the software version. For algorithms and estimation frame-
works that rely on prior information (e.g. offsets in GLMs),
prior distributions (Bayesian models) or weights, these need
to be specified and justified. For Bayesian model fitting via
Markov Chain Monte Carlo (MCMC) sampling, the num-
ber of MCMC samples discarded (burn-in) and kept, num-
ber of chains and convergence criterion need to be reported.
When the model is being transferred, authors also need to
report model settings relevant for making such spatiotempo-
ral predictions (e.g. clamping in MaxEnt).

We recommend the use of the ‘range model metadata stan-
dards’ (RMMS) dictionary (Merow et al. 2019) for reporting
model settings, although we acknowledge that not all poten-
tial algorithms and settings are currently included.

Model selection, model averaging and ensembles

Often, authors do not simply fit one model but consider a set
of different candidate models or model algorithms, applying
additional steps including model selection, model averaging
or ensemble modelling. Model selection refers to situations
where different model structures are compared in order to
choose a single ‘best model or ‘best model set, cither to
improve prediction accuracy by reducing the variance of
predicted values or to facilitate interpretation (Hastie et al.
2009). Different approaches such as information criterion-
based variable selection and shrinkage of parameters fall into
this topic. Model averaging refers to situations where dif-
ferent models are fit and then combined into a single pre-
diction, which could be desirable when several candidate
models are similarly plausible or because several alterna-
tive modelling approaches are available (Hastie et al. 2009,
Dormann et al. 2018). Models might be averaged using an
unweighted consensus method or using weighted averaging
following information—theoretic, cross-validation or resam-
pling approaches (Dormann et al. 2018). It is crucial that
authors detail exactly how model selection or model averag-
ing was carried out, including what data were used to choose
amongst models. The term ensemble modelling is often used
interchangeably with model averaging, but could more spe-
cifically refer to cases where, in addition to using different
modelling algorithms, the initial and boundary conditions
are also varied (Aratjo and New 2007). Ensemble model-
ling is most often used in the context of making transfers
(forecasting) and useful for exploring the range of predictions
given the different uncertainties (initial conditions, model
classes, model parameters, boundary conditions, Aratjo and
New 2007, Thuiller et al. 2019), but it is also increasingly
used for mapping, e.g. to model rare species (Breiner et al.
2015, 2018, Hao et al. 2019). Initial conditions refer to dif-
ferent input data, for example when alternative species data
sources are available or alternative climatologies. Boundary
conditions refer to assumptions being made about changes
in predictor variables in the transfer data, for example the
different climate or land use scenarios as mentioned in the
Data section. Similar to model averaging, different weighted
and unweighted methods exist to combine the predictions
(Hao et al. 2019), which should be reported.

Model estimates

We encourage authors to report whether and how model
coefficients were extracted from the models and analysed,
and how variable importance was determined (e.g. through
permutation, Strobl et al. 2007). Further, identifying and
assessing parameter uncertainty is important for guiding
future work, e.g. monitoring efforts for improving the model
and reducing uncertainty, and for attributing confidence to a
certain model (Beale and Lennon 2012). It is thus crucial to



report how parameter uncertainty in SDMs was quantified
(e.g. using asymptotic approximations based on statistical
theory, or approaches based on resampling such as bootstrap-
ping, Kéry etal. 2013).

Non-independence analysis/correction

Most standard statistical methods, and most SDM tech-
niques, assume that the response data are random samples
and, thus, that errors are independent and identically distrib-
uted. However, three common kinds of non-independence
could occur in SDMs: spatial autocorrelation, temporal auto-
correlation and nesting (Table 1). As a result, we mandate
that authors clearly describe how non-independence in data
and residuals was analysed and corrected in this subsection
of the Model section of ODMAP. Spatial autocorrelation in
model residuals means that predicted values at nearby loca-
tions are not independent from each other (Dormann et al.
2007) (but see Diniz-Filho et al. 2003). Analogously, tempo-
ral autocorrelation in residuals may occur when consecutive
time steps are not independent from each other, which might
be an issue when analysing e.g. GPS locations from animal
movement data. Lastly, the assumption of independence is
violated if the data contain repeated observations of the same
subject or are grouped or nested in some way. For example,
radio-tracking animals will yield multiple, non-independent
GPS locations per individual and the locations of the same
individual are likely to be more related to each other than to
locations of other individuals. If several individuals have been
radio-tracked in different regions, then individuals from the
same region may show a more similar habitat preference than
individuals from different regions. If the data are grouped in
such a way, then the model needs to account for this relat-

edness, for example by means of random effects (Zuur et al.
2009).

Threshold selection

This subsection is important in presence-only and presence—
absence models, and in particular for mapping or transfer. In
the case of a binary response variable, most SDM approaches
produce continuous outputs such as habitat suitability indi-
ces or probabilities of occurrence. Whilst there are good
arguments for retaining predictions on a continuous scale
(Lawson et al. 2014, Guillera-Arroita et al. 2015), some
users prefer to threshold them for certain applications. To do
so, they need to define an adequate threshold to transform
the data. Several different thresholds have been proposed
depending on whether the presence—absence or presence-
only data are being used for modelling (Liu etal. 2005, 2013)
or when modelling communities (Scherrer et al. 2018). Here,
authors need to specify which threshold is used and explain
why thresholding is deemed necessary.

Assessment

After model building, typically a series of analysis steps are
aimed at assessing whether the modelled biodiversity—envi-
ronment relationships are fit for purpose. We have designated
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two mandatory subsections to report in this section: perfor-
mance statistics, and plausibility checks (Table 1). Irrespective
of the model aim, assessing predictive performance on (semi-)
independent data informs us of generalisability and overfit-
ting (Hastie et al. 2009). Constructing partial plots (= effect
plots, response curves, marginal responses, Elith et al. 2005)
provides an intuitive way to evaluate the ecological plausi-
bility of the fitted model. Plausibility could also be checked
by inspecting the spatial (and/or temporal) predictions. Both
plausibility checks are a form of expert judgement.

Performance statistics

Performance statistics are important for assessing the valid-
ity of a model for a specific goal and for comparing models,
and different statistics are under constant development and
testing. We do not wish to give advice on which performance
measures should be used but rather emphasise the need to
report on these performance measures and any additional
information necessary to interpret them. Generally, per-
formance should be assessed with respect to the aim of the
application and to the response variable. For most response
variables, e.g. for abundance and presence—absence data alike,
distance measures between hold-out data and prediction are
potentially suitable (Sequeira et al. 2018). These include the
root—mean—square—error (RMSE), log-likelihood, various
variations of R? (Nash and Sutcliffe 1970, Nagelkerke 1991),
the percentage of deviance explained (Hosmer and Lemeshow
2013) or calibration curve estimates (with the intercept quan-
tifying bias and the slope depicting overconfidence, Harrell
20006). If predictions were re-calibrated (Guisan et al. 2017),
this should be noted as well.

For presence—absence data, we may distinguish threshold-
independent measures such as the AUC (area under receiver-
operating characteristic curve ROC, Swets 1988), explained
deviance and log-likelihood, and threshold-dependent indi-
ces (Guisan et al. 2017). The latter are typically based on the
confusion matrix (e.g. correct classification rate, sensitivity
and specificity, precision, Fielding and Bell 1997), are sen-
sitive to the prevalence and cannot be interpreted without
it. When reporting thresholded indices, such as the true-
skill statistic (Allouche et al. 2006) or kappa (Cohen 1960),
authors must report the threshold selected and the rationale
for selecting it (cf. Model section, Table 1) or whether any
threshold-optimisation approach was applied (e.g. maxTSS,
Guisan et al. 2017). Lastly, for presence-only methods alter-
native performance measures have been introduced that
avoid using a confusion matrix, such as the Boyce index
(Boyce et al. 2002, Hirzel et al. 2006) or POC plot (Phillips
and Elith 2010).

Plausibility checks

The ecological plausibility of the model and model predictions
can be checked by inspecting the response shape of the fit-
ted biodiversity—environment relationship and by inspecting
the mapped predictions. Response shapes are one of the most
important outputs of SDMs as they summarise the estimated
species—environment relationship and can thus be directly



subjected to plausibility checks against available biological
knowledge. For example, when the input data were selected
to approximate drivers known to be ecologically important,
we can determine whether the model represents plausible
relationships between the drivers and the species’ occurrence.
Checking the plausibility of the functional relationships in
a model is also particularly important when the model is
used to transfer the species—environment relationship to new
time periods and regions (Thuiller et al. 2004). Generally,
response shapes can be visualised using more traditional par-
tial dependence plots, evaluation strips (Elith et al. 2005) or
inflated response curves, which also help to identify extrapo-
lation (Zurell et al. 2012). Furthermore, such plots indicate
the range of predictor values present in the calibration data,
beyond which predictions would rely on modelling assump-
tions (Qiao et al. 2018) and become less reliable. Ideally, such
partial plots should also include a 95% confidence or cred-
ible interval. Simply plotting the predictions against the envi-
ronmental predictors used in model fitting can provide a first
approximation of response shapes. Additionally, visual inspec-
tion of the mapped prediction can constitute an important
plausibility check for spatial models. We encourage modellers
to describe any such evaluations here.

Prediction

The Prediction section of ODMAP only bears relevance if
models are used to make spatial (or temporal) predictions to
new sites including mapping (interpolating) and/or trans-
ferring (extrapolating). It comprises two main subsections:
1) prediction output, and 2) uncertainty quantification.
Although this section deals primarily with spatial predictions,
note that the final product may not necessarily be a map but
could also be a data table containing the predictions at spe-
cific locations with specific environmental conditions.

Prediction output

First, prediction unit(s) should be clearly stated in ODMAR,
for example continuous occurrence probabilities or potential
presence derived by thresholding. Also, for some SDM algo-
rithms there may exist alternative interpretations of outputs,
e.g. MaxEnt and point process models where predictions
could be interpreted as relative occurrence rates or relative
densities, depending on assumptions about the data (samples
of species versus samples of individuals, respectively). Second,
any post-processing steps undertaken after predicting are
detailed here. This could include clipping the predictions to
a specific region or land cover map, e.g. clipping predicted
butterfly occurrences to where the host plant is predicted to
occur.

Uncertainty quantification

Studies applying SDMs for mapping and/or transferring
should always address how uncertainty in model predic-
tions was quantified. We can distinguish between uncertain-
ties in the input data, model structure (e.g. between model
algorithms), parameters, residual uncertainty (irreducible,

aleatory uncertainty) and in boundary conditions (e.g. sce-
nario uncertainty). In the Prediction section, it is important
to report how any sources of uncertainty were dealt with when
deriving the final prediction(s), such that maps of potential
species distributions are accompanied by equivalent ‘maps of
ignorance’ that convey how and where reliable predictions
are (i.e. magnitude and extent of prediction uncertainty),
thereby supporting their correct and honest interpretation
(Rocchini et al. 2011). We note that suitable tools for uncer-
tainty estimation are now readily available for all stages of the
modelling process (Beale and Lennon 2012). Error propa-
gation, for instance, is possible via bootstrapping or within
Bayesian frameworks. Garcfa-Diaz et al. (2019) recommend
plotting (posterior) distributions of model outputs to give a
measure of the likelihood of different values that can be read-
ily interpreted in an ecological risk assessment context.

Implementations of ODMAP involving model transfers
should specify how environmental novelty was accounted for
in predictions. We are aware that some overlap and confusion
with the Data section could occur, which demands details
on how environmental novelty was quantified (Table 1). In
the Prediction section, we particularly recommend to focus
on reporting any post-processing steps related to predictions,
such as masking or highlighting predictions to novel environ-
ments (Zurell et al. 2012).

Applying ODMAP
Template and web application

Table 1 provides the basic template for the ODMAP (ver.
1.0) protocol (for the detailed template see Supplementary
material Table Al). As indicated previously, we distinguish
fields that are mandatory and fields that are optional. The
mandatory fields also vary depending on the model objec-
tive (inference, mapping or transfer). That way, the ODMAP
table can be filled in step by step.

To simplify use of ODMAD we provide an interac-
tive Shiny web application as an online resource (<https://
odmap.wsl.ch>; ODMAP v1.0). This allows filling in the
different ODMAP elements through a browser interface
(Fig. 2). The resulting ODMAP table can be downloaded,
and also uploaded again for resuming work on the ODMAP
protocol. We call this version ODMAP v1.0. The ODMAP
Shiny app interacts with rangeModelMetaData R-package
(RMMS, Merow et al. 2019) and uses the RMMS dic-
tionary to make auto-suggestions, for example, concerning
algorithms and model settings. The app also allows existing
RMMS objects to be loaded to fill in the ODMAP table. An
important difference between RMMS and ODMAP is that
RMMS is meant to store metadata for each model object,
which could mean that several RMMS objects are needed for
a single study, and RMMS also stores important results to
ensure results reproducibility. By contrast, ODMAP is meant
to contain the methodological descriptions for the entire
SDM component of a study and is dedicated to method
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(A)

Create a protocol Protocol viewer Upload / Import

Species distribution models (SDMs) constitute the most common class of biodiversity models. The
advent of ready-to-use software packages and increasing availability of digital geo-information
have considerably assisted the application of SDMs in recent years enabling their use in informing
conservation and management, and quantifying impacts from global change.

ODMAP v1.0 What is ODMAP? How to use this app
What is ODMAP?
( ) ODMAP v1.0 What is ODMAP? How to use this app
1. Overview 2.Data 3. Model
Progress

Overview
Authorship
Data

Create a protocol

Protocol viewer Upload / Import

4. Assessment 5. Prediction

Give a brief overview of all important parts of your study.

Predicting the distribution of shrub species in southern California from climate and terrain-derived variables

(c) ODMAP v1.0 What is ODMAP? How to use this app

Create a protocol

Protocol viewer Upload / Import

- ODMAP protocol -

Predicting the distribution of shrub species in southern
California from climate and terrain-derived variables

Authors: Janet Franklin
Contact:
Date: 2020-03-02

(D)

ODMAP v1.0 What is ODMAP?

How to use this app

Create a protocol Protocol viewer Upload / Import

There are two options for importing data into your ODMAP protocol

(1) Upload an ODMAP protocol (.csv)
This option is convenient if you want to edit or resume working on a previously saved ODMAP

protocol.

(2) Upload an RMM file (.RDS or .csv)

Figure 2. Screenshots of the interactive Shiny web application of ODMAP. The browser interface shows several tabs. (A) Describes the main
features of ODMAP and provides the reference. (B) Contains the ODMAP core and allows entering the relevant information into the dif-
ferent ODMAP fields. Optional fields (cf. Table 1) can be hidden. Preliminary or finished ODMAP protocols can be downloaded as word
document or as csv file. (C) The progress of ODMAP can also be assessed using the Protocol viewer. (D) Previous ODMAP protocols can

be uploaded to continue protocolling or revising.

reproducibility. To accommodate these differences, we intro-
duced an ODMAP family into the RMMS package to allow
reporting for an entire study rather than single model objects.

As Merow et al. (2019) pointed out, the RMMS diction-
ary will need to grow through a community effort. Here, we
attempted a first such effort and updated the dictionary by
adding more algorithms and model settings to report. Any
further updates to the dictionary will also be automatically
accommodated in the ODMAP Shiny app. Similar to the
ODD protocol, we anticipate that ODMAP will require reg-
ular and systematic evaluation by the scientific community to
identify elements that are not being used or interpreted con-
sistently and may potentially need updating (Grimm et al.
2010). Any future ODMAP versions will be published in the
web application, with changes and updates clearly specified
to ensure that older and newer ODMAP applications will
remain comparable and compatible.

We recommend that the entire ODMAP checklist (e.g.
obtained from filling in the template based on Table 1, or by
filling in the ODMAP fields in the web application) should
be provided as Supplementary material in SDM studies, indi-
cating the ODMARP version. Additionally, we suggest that the

general specifications from the Overview section should be
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formulated as flow text for the methods section of the main
text following the structure of the Overview section in Table 1.

Case studies

The Supplementary material Appendix 1-9 includes nine exam-
ple applications of ODMAPD. All of these examples are taken
from previously published studies, and we revised the associ-
ated model descriptions according to ODMAP. Most examples
relate to terrestrial plants, birds and butterflies (Franklin 1998,
Dormann et al. 2008, Schréder et al. 2009, Leitao et al. 2010,
Rapacciuolo et al. 2012, Fandos and Tellerfa 2017, Zurell et al.
2020) but we also included a marine (Bouchet and Meeuwig
2015) and an epidemiological example (Peterson and Samy
2016). Examples cover all model objectives (inference/expla-
nation, mapping/interpolation, forecasts/transfers), single and
multiple species, different SDM algorithms as well as JSDMs.
All case studies are presented as ODMAP tables (Table 1),
which we would generally advise to include in the appendi-
ces of publications. In one case study (Zurell et al. 2020), we
also provide an example version of the flow text that could be
included in the corresponding manuscripts and reports as part
of the Overview section.



Introduction

/ ODMAP CHECKLIST\

Methods

Results

AUTHORS

M Study design
M Science writing

REVIEWERS / EDITORS

M Peer review

M Author guidelines

EVALUATORS

\ﬂf Meta analyses /

Figure 3. Schematic representation how ODMAP compiles relevant information about the SDM modelling process. Left: application of
ODMAP to the case study by Franklin (1998) showed that relevant information has previously been scattered in scientific publications
(grey lines) or missing (black dotted lines). Also see corresponding ODMAP protocol in Supplementary material Appendix 4. Right:
ODMARP provides an easy-to-follow checklist for authors, reviewers, editors and evaluators.

In most of the case studies, we found that there had been
a great deal of detail provided for the biodiversity and envi-
ronmental data, and also data processing and potential biases
were described in depth. Often missing were details about
software versions, packages and parameter settings that would
be required for reproducibility. Most of the information spec-
ified in ODMAP elements was provided in the main text of
the original publications. Therefore, ODMAP relevant infor-
mation was sometimes scattered across the entire publication
rather than just in Methods sections (Fig. 3). When applying
ODMARP, most test authors found that the protocol consider-
ably helped identifying and structuring relevant information
for model descriptions. Nevertheless, test authors also indi-
cated that retrieving the single ODMAP elements and con-
tents from the original publications was sometimes difficult.
This emphasises that the method descriptions of SDM studies
have not, to date, followed any standard structure or operat-
ing procedures to this date (Feng et al. 2019), which hampers
reproducibility and peer review as well as literature reviews,
expert assessments and meta-analyses (Aradjo et al. 2019). It
also means that ODMAP will take some time getting used to,
but the overall benefits should outweigh the growing pains in
the long run. Previous experience with the adoption of ODD
(Grimm et al. 2006, 2010) suggests important potential ben-
efits of such a standard protocol including more rigorous
model formulation, simplified peer review, better compara-
bility between models, easier communication between dis-
ciplines, and stronger emphasis on theoretical foundations.

Discussion

Our hope is that the ODMARP protocol can enhance transpar-
ency, reproducibility, evaluation and reuse in SDM research
to facilitate peer review, meta-analyses and more robust and

transparent biodiversity assessments. As the first iteration of
a reporting protocol, there are likely to be improvements,
refinements and disagreements. However, by developing a
‘checklist” of standard operating procedures, we hope to make
it easier for authors to report, and for readers to understand,
SDM data and methods, as ODD has done for ABM/IBM
(Grimm et al. 2006, 2010). Notably, ODMAP is not meant
to prescribe how modelling should be carried out but to pro-
vide a structured format for how models should be reported.
Indeed, comparability and transparency are necessary steps
towards developing and applying best-practice standards for
the field (Aradjo et al. 2019).

Many of the authors of this protocol have played major
roles in developing and refining different SDM methods, and
represent a critical mass of SDM developers, users and review-
ers. Based on this collective experience, we have designed
ODMAP to be general enough to accommodate SDM
reporting in the very broadest sense. In other words, it applies
to any study using a statistical framework to explain, predict
and/or project biodiversity distributions. While the specif-
ics of the source data and methods may change for response
variables other than the widely-used species occurrence data
(‘presence’), the requirements for reporting the conceptual
underpinnings as well as the Data, Model, Assessment and
Prediction sections described in Table 1 remain relevant and
applicable.

ODMAP is best suited for empirical-based biodiversity
models thatare fitted using rule-based, statistical and machine-
learning methods. Of course, also other more process-explicit
distribution models exist that are used for predicting range
dynamics (Zurell et al. 2016, Briscoe et al. 2019) or for
testing hypotheses about deep time processes (Rangel et al.
2018). Many ODMAP elements, such as variable selection
and approaches to deal with multicollinearity, will not neces-
sarily apply to these models. Despite this, the main sections
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of ODMAP - overview, data, model, assessment, prediction
— could also provide a useful skeleton for describing more
complex, process-explicit models, at least if the general mod-
elling framework is published and known (Lurgi et al. 2015).
By contrast, if authors are designing process-explicit models
from scratch (Rangel et al. 2018), then we encourage them
to use protocols such as ODD (Grimm et al. 2006, 2010),
which put more emphasis on specific design decisions.

We have strived to make ODMAP as readily accessible
and as easy to use as possible. The protocol explicitly includes
a checklist of reporting items and is thus easy to follow and
apply in practice (Fig. 1). In particular, the ODMAP table
(currently, ver. 1.0) and web application provide a step-
by-step guide through modelling and reporting, and inte-
grate with current metadata standards (Merow et al. 2019).
Moreover, we have designed ODMAP to apply for a broad
range of modelling objectives, and our example applications
provide additional guidance on how different study objec-
tives may be reported using this same protocol. As an extra
benefit, the ODMAP checklist also provides a roadmap for
planning all relevant modelling steps in SDM studies. We
anticipate that ODMAP will prompt researchers to consider
methodological issues that tend to be more easily overlooked
(e.g. uncertainty reporting) and to appropriately address key
issues in the modelling process such as model validation.
Identifying and addressing these issues at an early stage will
ensure robust scientific results and may reduce disagreements
among authors, reviewers and editors. Along these lines, we
hope that ODMAP will also be positively perceived and
implemented by journal editors and reviewers, who stand
to benefit from an easier evaluation of the methodological
aspects of SDM studies.

Standard protocols are effective tools to support deci-
sions because they establish expectations among readers on
what information should be included and where it should
be found (Schmolke et al. 2010), thus ensuring that relevant
information is delivered in a transparent and efficient way
(Grimm et al. 2014). In this context, ODMAP is likely to
help overcome two important barriers to the more frequent
uptake of SDM outputs in environmental decision making:
the perception of biodiversity models — including many fre-
quently used SDMs — as ‘black boxes’, and the effective com-
munication of model uncertainty (Rapacciuolo 2019).

In summary, ODMAP will help answer the clarion calls
for reproducible computational science (Peng 2011), and
for improved recording and reporting of methods and data
(Mesirov 2010, Munafd et al. 2017), within the field of spe-
cies distribution modelling, a crucial tool for science and
conservation.
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