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Species distribution models (SDMs) constitute the most common class of models 
across ecology, evolution and conservation. The advent of ready-to-use software pack-
ages and increasing availability of digital geoinformation have considerably assisted 
the application of SDMs in the past decade, greatly enabling their broader use for 
informing conservation and management, and for quantifying impacts from global 
change. However, models must be fit for purpose, with all important aspects of their 
development and applications properly considered. Despite the widespread use of 
SDMs, standardisation and documentation of modelling protocols remain limited, 
which makes it hard to assess whether development steps are appropriate for end use. 
To address these issues, we propose a standard protocol for reporting SDMs, with an 
emphasis on describing how a study’s objective is achieved through a series of model-
ing decisions. We call this the ODMAP (Overview, Data, Model, Assessment and 
Prediction) protocol, as its components reflect the main steps involved in building 
SDMs and other empirically-based biodiversity models. The ODMAP protocol serves 
two main purposes. First, it provides a checklist for authors, detailing key steps for 
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model building and analyses, and thus represents a quick guide and generic workflow for modern SDMs. Second, it introduces 
a structured format for documenting and communicating the models, ensuring transparency and reproducibility, facilitating 
peer review and expert evaluation of model quality, as well as meta-analyses. We detail all elements of ODMAP, and explain 
how it can be used for different model objectives and applications, and how it complements efforts to store associated metadata 
and define modelling standards. We illustrate its utility by revisiting nine previously published case studies, and provide an 
interactive web-based application to facilitate its use. We plan to advance ODMAP by encouraging its further refinement and 
adoption by the scientific community.

Keywords: biodiversity assessment, ecological niche model, habitat suitability model, reproducibility, Shiny, transparency

Introduction

Modelling species’ environmental requirements and map-
ping their distributions through space and time constitute 
important aspects of many biological analyses, particularly 
in support of conservation and management interven-
tions (Franklin 2010). Species distribution models (SDMs) 
represent a set of popular techniques for interpolating and 
extrapolating species distributions based on quantitative 
or rule-based models, with several review papers (Franklin 
1995, Guisan and Zimmermann 2000, Guisan and Thuiller 
2005, Elith and Leathwick 2009) and textbooks describing 
their application in detail (Franklin 2010, Peterson  et  al. 
2011, Guisan et al. 2017). The number of studies employ-
ing SDMs has increased tremendously over recent decades 
(Sequeira et al. 2018, Araújo et al. 2019), with > 1000 pub-
lications related to SDMs being released every year (Peterson 
and Soberón 2012), including many receiving > 1000 cita-
tions each (Barbosa and Schneck 2015). Today, SDMs pres-
ent the most widely used modelling tool for forecasting 
global change impacts on biodiversity (Guisan  et  al. 2013, 
Ehrlén and Morris 2015, Ferrier et al. 2016). This boom in 
SDM studies is likely related to the increasing availability of 
digital data (Jetz et al. 2012, Franklin et al. 2017, Wüest et al. 
2020) and easy-to-use software packages (Phillips  et  al. 
2006, Thuiller et al. 2009, Brown 2014, Naimi and Araújo 
2016, Golding  et  al. 2018, Kass  et  al. 2018) accompanied 
by detailed guides, manuals and textbooks (Elith et al. 2008, 
Merow et al. 2013, Guisan et al. 2017). Despite their wide-
spread use, SDM methods and results are often limited in 
their reproducibility because of a lack of reporting stan-
dards (Rodríguez-Castañeda et al. 2012, Araújo et al. 2019, 
Feng  et  al. 2019, Hao  et  al. 2019). In the the lexicon of 
research reproducibility (Goodman  et  al. 2016), methods 
reproducibility means that sufficient details are provided on 
data and methods in order to independently repeat the study, 
while results reproducibility means that the same results 
can be obtained from an independent study (Plesser 2018). 
Here, we propose a standard protocol for reporting SDMs 
to improve their methods reproducibility, ensuring transpar-
ency and consistency in their development and application.

We here use the term SDM to refer to any empirically-
based biodiversity model obtained from statistical and 
machine learning methods that associate geographic biodi-
versity records (i.e. typically in the form of expert-derived or 

observed presences, and sometimes absences/non-detections, 
or measured counts) with the abiotic and/or biotic charac-
teristics at those locations (following Elith and Leathwick 
2009). Common terms used synonymously for SDMs 
or closely related models include ecological niche models 
(ENM), species range models, environmental or climate 
envelopes, habitat suitability and habitat distribution models, 
occupancy models, resource selection functions, abundance 
and N-mixture models. Often, these names emphasise dif-
ferent aspects of the entities being modelled: the niche, the 
distribution or the habitat preferences of species, or the data 
type used (Elith and Leathwick 2009, Peterson and Soberón 
2012, Guisan et al. 2017).

Generally, information on both the data and methods 
used should be provided in sufficient detail to allow anyone 
to reproduce the findings of a given study – provided data 
are also available – and to maximise transparency and allow 
robust quality control (Feng et al. 2019, Merow et al. 2019). 
Transparency and reproducibility are especially important for 
models intended as quantitative tools for ecological impact 
assessments, conservation planning and decision making, 
and biodiversity analyses (Golding et al. 2018, Araújo et al. 
2019, Rapacciuolo 2019). Key to this is communicating suffi-
cient detail about the input data, the model implementation, 
its evaluation and validation, and output processing such 
that end-users (e.g. conservationist, evaluator) has enough 
information at hand to judge the model’s reliability and rel-
evance without personal communication with the authors 
(Araújo  et  al. 2019, García-Díaz  et  al. 2019, Rapacciuolo 
2019).

Methods reproducibility is crucial for ensuring adher-
ence to minimum standards and supporting the delivery of 
adequate outputs for policy decisions. Indeed, poor or incon-
sistent modelling practices can lead to inappropriate infer-
ence and misguided conservation actions (García-Díaz et al. 
2019). Recognizing the necessity for reproducibility and 
transparency, the recent IPBES (Intergovernmental Science-
Policy Platform on Biodiversity and Ecosystem Services) 
methodological assessment report acknowledged the need 
for agreed-upon standards in biodiversity assessments 
(Ferrier  et  al. 2016). Similarly, the IUCN (International 
Union for Conservation of Nature) also defined prelimi-
nary standards that should be adhered to for assessing the 
threat status of species based on SDMs (IUCN Standards 
and Petitions Subcommittee 2017); if these standards are not 
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adequately met by a scientific study, then the results cannot 
be used as input for conservation assessments or decision 
making. More recently, Araújo et al. (2019) proposed best-
practice standards for biodiversity assessments using SDMs, 
and suggested scoring SDM studies into gold (aspirational), 
silver (current best practice), bronze (acceptable practice) 
and deficient categories based on the combined quality of 
the input data and the modelling, evaluation and predic-
tions approaches employed. When scoring a random subset 
of 400 SDM studies, Araújo et al. (2019) found that 46% of 
the studies were deficient in at least one aspect. In particular, 
many studies did not test the effects of uncertainty in pre-
dictor variables, structural and parameter uncertainty in the 
models, or robustness of model assumptions.

Best practice standards in modelling cannot be achieved 
unless standard procedures for reporting exist. A standard 
protocol for reporting individual-based and agent-based 
models (IBM/ABM) was introduced more than a decade 
ago: the ODD protocol (Overview, Design concepts, Details; 
Grimm  et  al. 2006). A review of the first five years of the 
ODD protocol showed that it not only improved the trans-
parency of IBM/ABM studies but also facilitated a more 
rigorous formulation of models by providing a checklist of 
critical modelling steps to consider (Grimm  et  al. 2010). 
Similarly, shared data standards like the Darwin Core 
Standard (DwC; Wieczorek et al. 2012) and metadata stan-
dards like the Ecological Metadata Language (EML; based 
on Michener  et  al. 1997) have proved essential to compil-
ing primary biodiversity data records in repositories such as 
GBIF (<www.gbif.org/>; Anderson  et  al. 2016). Recently, 
Merow  et  al. (2019) defined a range modelling metadata 
framework to report the modelling steps and results from 
SDMs, and Feng  et  al. (2019) suggested a checklist with 
essential elements needed to ensure SDM reproducibility. 
Both author groups emphasised that the proposed frame-
works provide only starting points that require further devel-
opment through community efforts. With this in mind, we 
engaged in such a community effort to refine these initial 
metadata standards and merge them within a standard proto-
col for reporting SDM methods from scientific studies.

Standardised approaches not only benefit beginners in 
the field, but also authors, expert referees and journal edi-
tors. Specifically, for authors, standard protocols encourage 
defining and reporting the modelling steps in a structured 
way. For reviewers and editors, they provide an efficient way 
of judging whether appropriate modelling decisions were 
made with respect to the study objectives and whether the 
modelling study is reproducible. For evaluators and policy 
makers, standard protocols will help form expectations of 
which information will be found where (Rapacciuolo 2019), 
thus simplifying meta-analyses and facilitating scoring the 
various model elements according to best-practice standards 
(Araújo et al. 2019).

Here, we propose an adaptation of the ODD protocol to 
SDM studies. Our aim is not to define best practice in data 
and methods (Araújo et al. 2019), but rather to support best 

practice in reporting data and modelling choices. In particu-
lar, the standard protocol provides a quick guide to the main 
steps of fitting SDMs and a checklist of all the information 
necessary to evaluate the validity and reproducibility of an 
SDM study for a particular application. This complements 
and integrates recent work defining range model metadata 
standards (RMMS; Merow  et  al. 2019). Importantly, we 
provide a web-based application to fill in the protocol and 
which relies on and extends the metadata dictionary defined 
by Merow et al. (2019). Methodologies and data types evolve 
over time, and will require redefining best practices with 
respect to intended objectives. By harnessing the RMMS dic-
tionary (Merow et al. 2019), ODMAP provides a guide for 
developing and a language for documenting SDMs based on 
the RMMS dictionary. Although we acknowledge that the 
protocol will require some time investment and may seem 
cumbersome at the start, we believe that, in the long run, it 
should ease the burden on authors and reviewers by provid-
ing a generic workflow and clear reporting guidelines that 
are understandable and easy to follow. Overall, the protocol 
should not increase the length of publications because much 
of the description can be provided as Supplementary material.

A standard protocol for species distribution 
models

We propose a standard protocol that follows the five basic 
modelling steps of SDMs (described in e.g. Guisan and 
Zimmermann 2000, Elith and Leathwick 2009, Franklin 
2010, Peterson et al. 2011, Guisan et al. 2017, Araújo et al. 
2019): Overview/Conceptualisation, Data, Model fitting, 
Assessment and Prediction (ODMAP; Fig. 1). We set it 
up in an easy to follow checklist format (Table 1). In prin-
ciple, this protocol should work for any empirically-based 
biodiversity model beyond single species distribution mod-
els, including e.g. community-level models (D’Amen  et  al. 
2017, Norberg et al. 2019, Zurell et al. 2020) and models of 
functional composition (Wüest  et  al. 2018). Often, SDMs 
constitute only one part of the methods of a study and are 
supplemented by further analyses. Here, we argue that any 
scientific application of SDMs should include the entire 
ODMAP protocol (Table 1), but in most publications it will 
be sufficient to include the Overview section of ODMAP 
(Fig. 1) as prose in the methods of the main text, while mov-
ing the entire ODMAP checklist to the Supplementary mate-
rial (also see example case studies in Supplementary material 
Appendix 1–9). In the following, we first give a brief over-
view of the different ODMAP sections before providing fur-
ther details on each of these (Fig. 1, Table 1).

Any SDM or biodiversity analysis starts with the con-
ceptualisation of one or several underlying questions and 
related hypotheses. These conceptual considerations should 
be summarised in the Overview section, which captures 
the skeleton of the analyses, providing enough information 
for readers to understand the model setup and workflow 
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(Guisan and Zimmermann 2000, Austin 2002, 2007). In 
particular, Overview specifies the model objectives, the focal 
organism(s), the type of biodiversity data, the type of envi-
ronmental predictor variables, the spatiotemporal scale of the 
analyses, the underlying hypotheses about the biodiversity–
environment relationship, the critical model assumptions, 
the chosen SDM algorithms and desired model complexity, 
and, lastly, the software used. Overview thus provides a brief 
but informative summary of the basic modelling decisions 
and the modelling pipeline (Table 1). Including Overview in 
the methods section of a publication will thus ensure that all 
key aspects of the SDM are specified in the main text of the 
scientific article or report while details could be relegated as 
Supplementary material (Fig. 1).

The Data, Model, Assessment and Prediction sections in 
ODMAP summarise the technical details needed to repro-
duce the methods (Feng et al. 2019, Merow et al. 2019) and 
to assess their appropriateness for different purposes (e.g. bio-
diversity assessments, Araújo et al. 2019). The Data section 
details the data and their preparation, including potential 
sampling bias and/or imperfect detection, any data cleaning 
and processing steps, as well as any (re-)scaling or transfor-
mation of data (spatial, temporal, taxonomic scaling). Model 
fitting is the central step where species–environment relation-
ships are estimated using the selected algorithms. In the pro-
tocol, details should be provided about model settings, model 
tuning/selection, and whether and how potential sampling 
bias and/or imperfect detection have been dealt with. The 
section on Assessment (of models) describes both how the 
estimated species-environmental relationship was assessed 
for plausibility and how the model’s predictive ability was 
quantified using appropriate goodness-of-fit measures and 
performance statistics. The Predictions section outlines the 
methods used to generate the spatial and/or temporal outputs 
of the model (e.g. transfers/projections in space and time) 
as well as any procedures for addressing uncertainty in those 

predictions. If pure explanation is the goal of the SDM study 
and no predictions are being made, then the protocol can be 
reduced to the first four sections.

ODMAP sections and elements

Each ODMAP section is divided into several subsections 
that consist of different elements. A checklist of these is pro-
vided in Table 1 (and more detail provided in Supplementary 
material Table A1). We distinguish sections, subsections and 
elements that are mandatory and should always be reported, 
from those that are only needed for specific model purposes 
or are optional (Table 1). Filling in all mandatory, and poten-
tially the optional, fields of ODMAP will ensure methods 
reproducibility and transparency for peers and evaluators.

Overview

We identified eleven obligatory subsections that should be spec-
ified in the Overview section. These are the modelling objec-
tive, five data-related subsections (focal taxon/taxa, location, 
biodiversity data overview, predictor type, spatial and tempo-
ral scale), two conceptual subsections (hypotheses, underlying 
assumptions) and three technical subsections (SDM algo-
rithms, model workflow and the software and data used; Fig. 1, 
Table 1). The Overview section thus briefly summarises the key 
information relating to the analyses. In practice, the Overview 
section may appear twice in scientific publications, once as 
flow text in the methods section of the manuscript (cf. case 
study 9 in Supplementary material Appendix 9) and once as 
part of the full ODMAP checklist (Table 1) that should always 
be provided in SDM studies, preferably in the appendix. To 
make this checklist a self-contained document, the author list 
and title of the study should also be specified in the Overview 
section of the checklist.

Figure 1. The five main modelling steps in the species distribution modelling cycle also constitute the five main sections of the ODMAP 
(Overview, Data, Model, Assessment, Prediction) protocol. Each section contains unique information that is detailed in Table 1.
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Model objective
The Overview section should always start by specifying the 
modelling objective/purpose. Please note that this does not 
refer to the overall study objective but rather describes the 
specific use of the model. Following Araújo  et  al. (2019) 
we suggest clearly distinguishing between three potential 
purposes of modelling: 1) explanation, 2) mapping and 3) 
transfer. If several or all of these purposes apply, we suggest 
to regard these as nested (explanation < mapping < trans-
fer). Nesting accounts for the fact that transfer should not 
be attempted without first having a thorough understanding 
of the model (inference) (Araújo et  al. 2019). Importantly, 
several aspects of the modelling process, and with this several 

elements of ODMAP, vary depending on the modelling 
objective (Table 1). ‘Explanation’ (also termed inference) 
regards detailed analyses of species–environment relation-
ships and aims to provide or test specific hypotheses about 
the main factors driving the species distributions. ‘Mapping’ 
(also termed interpolation) means that the estimated species–
environment relationships are used to map (or interpolate) 
the species distributions in the same geographic area and time 
period in which the model was calibrated. ‘Transfer’ (also 
termed forecast or projection; but these terms are less precise) 
means that the estimated species–environment relationships 
are transferred to a different geographic region or time period 
– future or past (Yates et al. 2018). If mapping or transfer is 

Table 1. The five main ODMAP sections and list of ODMAP elements. The full ODMAP v1.0 checklist is available in Supplementary material 
Table A1.

ODMAP section ODMAP subsection ODMAP elements

Overview Authorship Authors, contact email, title, doi
Model objective/model purpose SDM objective/purpose (inference, mapping, transfer), main target output
Taxon Focal taxon
Location Location of study area
Scale of analysis Spatial extent (lon/lat), spatial resolution, temporal extent/time period, 

temporal resolution, type of extent boundary (e.g. rectangular, natural, 
political)

Biodiversity data overview Observation type, response/data type 
Type of predictors Climatic, topographic, edaphic, habitat, etc.
Conceptual model/hypotheses Hypotheses about biodiversity-environment relationships
Assumptions State critical model assumptions (cf. Table 2)
SDM algorithms Model algorithms, justification of model complexity, is model averaging/

ensemble modelling used?
Model workflow Brief description of modelling steps
Software, codes and data Specify software, availability of codes, availability of data

Data Biodiversity data Taxon names, taxonomic reference system, ecological level, biodiversity 
data sources, sampling design, sample size per taxon, country/region 
mask, details on scaling, data cleaning/filtering, absence data collection, 
pseudo-absence and background data, potential errors and biases in data

Data partitioning Selection of training data (for model fitting), validation data and test (truly 
independent) data

Predictor variables State predictor variables used, data sources, spatial resolution and extent of 
raw data, map projection, temporal resolution and extent of raw data, data 
processing and scaling, measurement errors and bias, dimension reduction

Transfer data for projection Data sources, spatial resolution and extent, temporal resolution and extent, 
models and scenarios used, data processing and scaling, quantification of 
novel environments

Model Variable pre-selection Details on pre-selection of variables
Multicollinearity Methods for identifying and dealing with multicollinearity 
Model settings/model  

complexity
Models settings for all selected algorithms and for extrapolation beyond 

sample range
Model estimates Model coefficients, variable importance
Model selection/model  

averaging/ensembles
Model selection strategy, method for model averaging, ensemble method

Non-independence  
correction/analyses

Spatial autocorrelation in residuals, temporal autocorrelation in residuals, 
nested data

Threshold selection Details on threshold selection
Assessment Performance statistics Performance statistics estimated on training data, on validation data and on 

test (truly independent) data
Plausibility check Response plots; expert judgements (e.g. map display)

Prediction Prediction output Prediction unit; post-processing steps
Uncertainty quantification Uncertainty through algorithms, input data, parameters, scenarios; 

visualisation/treatment of novel environments

 Obligatory;  Objective: mapping/interpolation;  Objective: forecast/transfer;  Optional/context dependent.
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the goal, the main target output (prediction unit) should also 
be specified in Overview as this will affect other ODMAP 
elements.

Taxon, location, data and scale
The data-related subsections of Overview should specify 
the focal taxon/taxa, the location of the study, the type of 
biodiversity data, the type of predictors and the spatial and 
temporal scales of analysis (Table 1). If the study focusses 
on multiple species, it will be sufficient to specify the main 
taxon/taxa or higher category here, e.g. birds or passerines. 
Then, the authors should specify the type of biodiversity 
observation (e.g. standardized monitoring, field survey, range 
map, citizen science, GPS tracking) and the data/response 
type used (e.g. presence-only, presence–absence, counts). 
In addition, the type of predictor variables should be indi-
cated (e.g. climatic, topographic, edaphic). Finally, informa-
tion should be provided regarding the spatial and temporal 
resolution and extent of the study system. Here, we refer to 
the target scales of analyses while details on data processing 
and scaling are given in the Data section. Where relevant, the 
type of boundary should be indicated (e.g. rectangular within 
specified spatial extent, natural, political). In all cases mul-
tiple answers are possible, to allow for studies across multiple 
regions, taxa and data types.

Conceptual underpinning
Authors should clearly present their hypotheses about the 
expected biodiversity–environment relationship, mean-
ing that they should justify what abiotic and biotic factors 
are taken into account to model the focal taxon, and the 
rationale behind these choices. Occasionally, studies may 
not seem to build on a priori hypotheses but may be rather 
exploratory, particularly when modelling many species in an 
automated way. Nevertheless, we encourage authors to be 
explicit about these conceptual considerations (Mod  et  al. 
2016). For instance, authors could argue that they are using 
climatic layers in an exploratory way because climate was 
known to be an important driver of species distributions 
at a continental scale. In models that account for imperfect 

detection, hypotheses regarding the ecological model pre-
dictors (biodiversity–environment relationship) should be 
clearly separated from hypotheses regarding the observation 
(detectability–environment relationship) model predictors 
(Guillera-Arroita 2017).

Underlying model assumptions are often overlooked or 
unreported in SDM studies. Table 2 lists a number of typical 
assumptions that are often made in SDMs. We encourage 
authors to be specific about such underlying assumptions, 
because this helps reviewers or users assess the validity of 
the chosen approach for a given application. For example, 
when transferring SDMs under scenarios of global change, 
critical assumptions are that 1) all relevant environmental 
drivers are included in the model, 2) the species’ observed 
distribution is in pseudo-equilibrium with the environment, 
3) the entire realised niche is encompassed by data, 4) the 
correlation structure between predictors does not change 
between source and target landscape and 5) if extrapolation 
is involved, that the model extrapolates in a biologically sen-
sible manner (Dormann et al. 2013, Elith 2017, Guisan et al. 
2017, Feng et al. 2019). Other critical assumptions related 
to the observation process are also frequently ignored: when 
fitting SDMs, it is important to consider the issue of imper-
fect detection (Kéry 2011, Lahoz-Monfort et al. 2014). We 
recommend that authors be explicit about potential biases in 
the data (Guillera-Arroita 2017).

Technical aspects
Important technical aspects include the SDM algorithms 
being used, along with a verbal description of model com-
plexity (especially if DMAP sections are moved to the 
Supplementary material). The choice and number of SDM 
algorithms contained in any study may vary depending on 
modelling objectives and personal experience, and as new 
algorithms appear. For example, when SDMs are used for 
transfer under scenarios of global change, some scientists 
advocate using ensembles of SDM algorithms to account 
for algorithmic uncertainty (IUCN Standards and Petitions 
Subcommittee 2017, Araújo et al. 2019, Thuiller et al. 2019). 
In contrast, if explanation or mapping is the goal, many users 

Table 2. Typical model assumptions in species distribution models (Franklin 2010, Peterson et al. 2011, Guisan et al. 2017). Some of these 
assumptions can be relaxed by extending models accordingly. For instance, models can be built to capture occurrence dynamics, including 
spatial dependence, therefore relaxing the species–environment equilibrium assumption. Similarly, methods exist to address issues such as 
sampling bias, imperfect detection or spatial autocorrelation.

Assumption Description

Species–environment equilibrium Species fill their niche and do not occur elsewhere
No observation bias issues Species data are free from observational bias (sampling bias, imperfect detection), or it is 

accounted for in the model
Independence of species observations Each species record represents new information (e.g. not the same individual reported twice)
Availability of all important predictors Key explanatory variables are available and incorporated in the model; ideally these should 

be proximal predictors, particularly when the objective is model transfer
Predictors are free of error Predictors are measured (or estimated) without error
Niche stability/constancy, niche 

conservatism
Species retain their niches across space and time; particularly relevant when transferring 

predictions
No other extrapolation issues Relationship fitted under current conditions apply when transferring predictions, even when 

projected beyond the range of the training data; no change in correlation structure of 
environmental variables; no change in key limiting processes (e.g. biotic interactions)
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select only one algorithm; for example, MaxEnt (Phillips et al. 
2006, Elith et al. 2011, Merow et al. 2013) has been particu-
larly prominent in recent years. Authors should also indicate 
whether they use model averaging or ensemble modelling 
(Hao et al. 2019). Here, we do not give any recommendation 
as to which approach or algorithm may be more appropriate 
for a given application (Araújo et al. 2019). Rather, we empha-
sise that the modelling decisions need to be clearly described 
and justified, and model complexity needs to be aligned with 
the model objective. We define model complexity as the flex-
ibility of the fitted biodiversity–environment relationship 
(cf. Merow et al. 2014, Muscarella et al. 2014, Cobos et al. 
2019). Models can be more or less complex depending on 
the algorithm but complexity also depends on several param-
eter settings that determine the flexibility of the response 
surface (Merow et al. 2014). Specific model settings should 
be detailed in the Model section. Nevertheless, we encourage 
authors to provide a general description of model complexity 
as part of the Overview section, for example ‘the model set-
tings were chosen to yield simple, smooth response surfaces 
because we attempt extrapolation and the species may not be 
at equilibrium with the environment’ or ‘the model settings 
were chosen to yield complex response surfaces because our 
goal is to accurately map the potential species’ distribution in 
the region and our model is based on a large enough sample 
size for calibrating such complex response surfaces’.

Lastly, the Overview section should contain a brief descrip-
tion of the overall model workflow (or point to a flowchart 
in main text or appendix) and information on the software 
packages and version, and software environment used for 
modelling. Importantly, the availability of codes and data 
needs to be specified. Here, we want to emphasise that while 
ODMAP supports methods reproducibility, results repro-
ducibility can only be achieved if access to the exact data and 
codes are provided.

Data

The Data section provides details about the species and envi-
ronmental data, and about data processing. We have identified 
two mandatory subsections that should always be described: 
biodiversity data, and environmental data (Table 1). Two 
other subsections are optional: data partitioning (for model 
assessment/evaluation), particularly important for mapping 
and transfer (Table 1), and transfer data (Table 1).

Biodiversity data
This subsection should contain all relevant information on 
the biodiversity data (Table 1). First, authors should provide 
the taxon name(s) and information on the taxonomic ref-
erence system (e.g. APG IV, GBIF Backbone Taxonomy), 
the latter being of particular importance if multiple species 
or taxa are being modelled (e.g. all known migratory birds, 
Zurell  et  al. 2018). Then, the focal taxonomic units being 
modelled should be defined. Although species are the most 
often used focal taxonomic unit, biodiversity models could 
also focus on: populations, demographic traits, supraspecific 

taxa, operationally defined taxa (e.g. OTUs or ASVs from 
barecoding), functional types, functional traits, ecological 
communities, community traits or species richness, among 
others. Likewise, studies modelling community-level proper-
ties need to specify how the community is being defined (e.g. 
trophic levels). Next, the data source needs to be described. 
If the data do not stem from one’s own field surveys, then 
proper reference to the data source needs to be given. If 
the data stem from online data repositories such as GBIF 
(<http://data.gbif.org>) or OBIS (<http://iobis.org>), then 
information on accession date and/or of the source should be 
provided. Generally, authors should follow good data cita-
tion practices, for example as laid out by GBIF (<www.gbif.
org/citation-guidelines>). Authors should also describe the 
underlying (spatial and temporal) sampling design and any 
details regarding temporal replications or nestedness of the 
data. This point applies to all types of biodiversity data, not 
only on one’s own field data. If the biodiversity data stem 
from a standardised monitoring programme, then authors 
should detail here how the monitoring was carried out, e.g. 
how often observations were repeated and by whom (vol-
unteers, trained volunteers, experts). If the data stem from 
online data repositories such as GBIF and OBIS, informa-
tion should be supplied regarding the type of observations 
used (Anderson et al. 2016) as these databases may include 
mixed data from museum specimens, opportunistic observa-
tions and monitoring data. It is crucial that authors report 
the sample size for the focal taxa, as well as prevalence in the 
case of presence–absence data.

Absence, pseudo-absence and background data are an 
important issue for most SDM applications, and thus cru-
cial to report in ODMAP. This is often also relevant when 
the response variable is abundance or species richness. It is 
crucial to report how these absence data were obtained and 
how accurate they are. Low detection probability will inevi-
tably yield false absences (Guillera-Arroita 2017). Many 
SDM studies are based on presence-only data. Most algo-
rithms then require background data (also called ‘pseudo-
absences’ or ‘quadrature points’) against which the observed 
presences are compared (Renner et al. 2015). For example, 
when presence records are spatially biased, one could sample 
the background data such that they reflect the same spatial 
bias (Phillips et al. 2009, Kramer-Schadt et al. 2013). Or if 
GPS tracking data are used, then the background data (use 
versus availability) derived for each logged GPS location 
could be drawn dependent on empirically observed distri-
butions of movement distances and directions (Fortin et al. 
2005, Thurfjell et al. 2014). Thus, authors need to specify the 
geographic region from which background data are drawn, 
any biases induced in the background data, the number of 
background data points, and whether different strategies for 
background data derivation are used for different algorithms 
(Barbet-Massin et al. 2012).

Many of the remaining elements in the biodiversity data 
subsection are designated optional in Table 1 (i.e. context-
dependent), because their necessity depends on the context 
of the study. We encourage authors to consider any potential 
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errors and biases in the data. For example, data may vary in 
terms of spatial and temporal precision (Meyer et al. 2016), 
which could significantly affect model accuracy (Park and 
Davis 2017). Also, any steps taken to clean and scale the data, 
both spatially and temporally, should be detailed here (Table 
1; Daru et al. 2018). Common data cleaning steps include 
the removal of outliers, duplicates, records pre-dating a speci-
fied year, and records with insufficient accuracy or associated 
information (Serra-Diaz et al. 2017).

Data partitioning
In most SDM studies, one will assess model performance 
using data independent from those used for model fitting. 
This is most important when the model objective is map-
ping or transfer, although we do not wish to imply that it 
may not be important for explanation as well. Ideally, a 
modeller would use truly independent data from different 
sources or methods of collection to assess model performance 
(Araújo et al. 2005); if these are not available, it is common 
practice to partition data into training and testing sets. Any 
such data partitioning should be clearly specified in the Data 
section (Table 1). Following Hastie et al. (2009), we suggest 
to clearly distinguish 1) training data that are being used 
for model fitting, 2) validation data that are withheld from 
model fitting and are used for estimating prediction errors for 
model selection, model averaging and ensemble building and 
3) independent test data that are used to assess the generalisa-
tion error of the final model. Here, the strategy for partition-
ing the data should be detailed. For example, validation data 
could be obtained by splitting the data randomly, or into spa-
tially or environmentally stratified blocks for cross-validation 
(Roberts et al. 2017, Valavi et al. 2018). The protocol here 
demands description of the way the data are partitioned, and 
appropriate justification based on strategies to remove differ-
ent types of biases in evaluation.

Environmental data
Although the overall types of environmental predictor vari-
ables (e.g. climatic, topographic) should be mentioned in 
the Overview section, the Environmental data subsection 
should clearly specify the individual environmental variables 
used. All relevant information should also be given about 
the data sources, the original spatial and temporal resolu-
tion and extent of the data as well as potential measurement 
errors and biases (Morueta-Holme et al. 2018). Furthermore, 
all data processing steps need to be described in detail, for 
example spatial and temporal scaling, thematic scaling (e.g. 
collapsing of categories), transformations and normalisa-
tions, among others (Table 1). Spatial and temporal cover-
age, resolution, and/or coordinate reference systems are likely 
to differ amongst predictor variables obtained from multiple 
data sources. Thus, any data harmonisation steps need to be 
clearly described in the Data section. In recent years, we have 
seen an upsurge in the availability of digitally available geo-
information relevant for biodiversity modelling, spanning 
climatologies (Hijmans et al. 2005, Karger et al. 2017), land 

cover data (Fritz et al. 2017), remote sensing data (Cord et al. 
2013, Kennedy  et  al. 2014, Leitão and Santos 2019) and 
human impact data (Venter  et  al. 2016, Di Marco  et  al. 
2018), among others. As these databases are under constant 
development, it is crucial to provide information on acces-
sion date and versioning. Importantly, these data come with 
different uncertainties that need to be addressed. For exam-
ple, cloud cover may affect the accuracy of the remote sens-
ing derived products such as vegetation indices. Also, when 
using remote sensing time series for e.g. extracting pheno-
logical metrics, different data densities along the time series 
imply different levels of certainty in the derived metrics. It 
is therefore important for authors to report how they have 
dealt with this problem when using remote sensing variables 
(Schwieder et al. 2018).

Environmental data are often subject to some form of 
dimension reduction, e.g. in the case of multi-collinearity 
(Dormann et al. 2013), meaning that not all available envi-
ronmental predictors will enter the model fitting step. We 
suggest that if the dimension reduction is done without tak-
ing into account the response variable, then it should be part 
of the Data section (cf. Table 1). For example, this could be 
the case if principal component analysis is used to identify the 
main environmental axes, which are then used for modelling 
instead of the original environmental predictors, or where all 
but one of a set of highly correlated variables are dropped.

Transfer data
If the main modelling objective is to transfer the model to 
different geographic regions and/or different time periods 
(Yates et al. 2018), then authors need to report information 
on the data used in the model transfer, i.e. the environmental 
data to which the model is projected (Table 1). Analagous to 
the environmental data for model fitting, information should 
be included about the transfer data source (including acces-
sion date, version, etc.), spatiotemporal resolution and extent, 
data uncertainties or errors and any data processing and scal-
ing steps. If the transfer data stem from scenario modelling, 
for example future or past climate scenarios (IPCC 2013) 
and land cover scenarios (van Vuuren and Carter 2013), it 
should be explicitly specified and justified which underlying 
models (e.g. global circulation model, regional circulation 
model, global vegetation model) and scenarios (e.g. represen-
tative concentration pathway, shared socioeconomic path-
ways) have been used.

When transferring models, we advocate for assess-
ing environmental novelty because the transfer data may 
include conditions not present in the calibration data (i.e. 
in non-analogue situations) and, thus, the calibrated model 
may be forced to extrapolate (Sequeira et al. 2018). We sug-
gest reporting how environmental novelty (Fitzpatrick and 
Hargrove 2009) was quantified as part of the transfer data in 
the Data section. Authors should specify exactly how novelty 
was defined and quantified; for example novel environments 
along single environmental gradients (Elith  et  al. 2010) or 
novel combinations of environments (Zurell  et  al. 2012, 
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Mesgaran et al. 2014). In addition to environmental novelty, 
modeling algorithms may also be sensitive to differences in 
collinearity structures of training and projection environ-
ments (Dormann et al. 2013), thus assessments of collinear-
ity shifts can help evaluate the accuracy of model projections 
(Feng et al. 2019 and references therein).

Model

The Model section reports all the information necessary to 
repeat the model building. We have identified six subsections 
(see checklist in Table 1); three are mandatory (multicol-
linearity, model settings/model complexity, analysis of non-
independence of data), two are context-dependent (variable 
pre-selection, model selection/model averaging/ensembles) 
and one is relevant for mapping and transfers only (threshold 
selection).

Multicollinearity and variable selection
Highly collinear variables allow alternative model structures 
to yield very similar model fits. The uncertainty around which 
environmental predictor represents the true causal mecha-
nism may propagate into ‘inflated’ standard errors (Morrissey 
and Ruxton 2018). Different strategies exist to deal with 
multicollinearity, some of which will reduce the number of 
environmental variables to a set of reasonably correlated pre-
dictors (Dormann  et  al. 2013). In that sense, dealing with 
multicollinearity could also be seen as a data processing step. 
However, some strategies also involve the response variable 
and some preliminary model fitting, or deal with multicol-
linearity as part of the model building process (e.g. regular-
ization). We thus regard it as a mandatory part of the Model 
section to report how multicollinearity was approached.

There may be other reasons to pre-select a specific set of 
predictor variables additional to reducing multicollinearity 
problems. For example, when attempting transfers authors 
may choose to limit the number of variables to avoid over-
fitting and achieve simpler, more transferable models 
(Elith et al. 2010). The strategy and rationale for selecting the 
final set of predictors should be clearly described here.

Model settings and model complexity
Detailing the choice of algorithms, specific model settings 
and model complexity is key to ensure methods reproduc-
ibility. We encourage authors to explicitly report the default 
settings of specific software packages (rather than just noting 
‘default settings were used’), as these may change based on 
the software version. For algorithms and estimation frame-
works that rely on prior information (e.g. offsets in GLMs), 
prior distributions (Bayesian models) or weights, these need 
to be specified and justified. For Bayesian model fitting via 
Markov Chain Monte Carlo (MCMC) sampling, the num-
ber of MCMC samples discarded (burn-in) and kept, num-
ber of chains and convergence criterion need to be reported. 
When the model is being transferred, authors also need to 
report model settings relevant for making such spatiotempo-
ral predictions (e.g. clamping in MaxEnt).

We recommend the use of the ‘range model metadata stan-
dards’ (RMMS) dictionary (Merow et al. 2019) for reporting 
model settings, although we acknowledge that not all poten-
tial algorithms and settings are currently included.

Model selection, model averaging and ensembles
Often, authors do not simply fit one model but consider a set 
of different candidate models or model algorithms, applying 
additional steps including model selection, model averaging 
or ensemble modelling. Model selection refers to situations 
where different model structures are compared in order to 
choose a single ‘best’ model or ‘best’ model set, either to 
improve prediction accuracy by reducing the variance of 
predicted values or to facilitate interpretation (Hastie et al. 
2009). Different approaches such as information criterion-
based variable selection and shrinkage of parameters fall into 
this topic. Model averaging refers to situations where dif-
ferent models are fit and then combined into a single pre-
diction, which could be desirable when several candidate 
models are similarly plausible or because several alterna-
tive modelling approaches are available (Hastie et al. 2009, 
Dormann et al. 2018). Models might be averaged using an 
unweighted consensus method or using weighted averaging 
following information–theoretic, cross-validation or resam-
pling approaches (Dormann  et  al. 2018). It is crucial that 
authors detail exactly how model selection or model averag-
ing was carried out, including what data were used to choose 
amongst models. The term ensemble modelling is often used 
interchangeably with model averaging, but could more spe-
cifically refer to cases where, in addition to using different 
modelling algorithms, the initial and boundary conditions 
are also varied (Araújo and New 2007). Ensemble model-
ling is most often used in the context of making transfers 
(forecasting) and useful for exploring the range of predictions 
given the different uncertainties (initial conditions, model 
classes, model parameters, boundary conditions, Araújo and 
New 2007, Thuiller  et  al. 2019), but it is also increasingly 
used for mapping, e.g. to model rare species (Breiner et al. 
2015, 2018, Hao et al. 2019). Initial conditions refer to dif-
ferent input data, for example when alternative species data 
sources are available or alternative climatologies. Boundary 
conditions refer to assumptions being made about changes 
in predictor variables in the transfer data, for example the 
different climate or land use scenarios as mentioned in the 
Data section. Similar to model averaging, different weighted 
and unweighted methods exist to combine the predictions 
(Hao et al. 2019), which should be reported.

Model estimates
We encourage authors to report whether and how model 
coefficients were extracted from the models and analysed, 
and how variable importance was determined (e.g. through 
permutation, Strobl  et  al. 2007). Further, identifying and 
assessing parameter uncertainty is important for guiding 
future work, e.g. monitoring efforts for improving the model 
and reducing uncertainty, and for attributing confidence to a 
certain model (Beale and Lennon 2012). It is thus crucial to 
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report how parameter uncertainty in SDMs was quantified 
(e.g. using asymptotic approximations based on statistical 
theory, or approaches based on resampling such as bootstrap-
ping, Kéry et al. 2013).

Non-independence analysis/correction
Most standard statistical methods, and most SDM tech-
niques, assume that the response data are random samples 
and, thus, that errors are independent and identically distrib-
uted. However, three common kinds of non-independence 
could occur in SDMs: spatial autocorrelation, temporal auto-
correlation and nesting (Table 1). As a result, we mandate 
that authors clearly describe how non-independence in data 
and residuals was analysed and corrected in this subsection 
of the Model section of ODMAP. Spatial autocorrelation in 
model residuals means that predicted values at nearby loca-
tions are not independent from each other (Dormann et al. 
2007) (but see Diniz-Filho et al. 2003). Analogously, tempo-
ral autocorrelation in residuals may occur when consecutive 
time steps are not independent from each other, which might 
be an issue when analysing e.g. GPS locations from animal 
movement data. Lastly, the assumption of independence is 
violated if the data contain repeated observations of the same 
subject or are grouped or nested in some way. For example, 
radio-tracking animals will yield multiple, non-independent 
GPS locations per individual and the locations of the same 
individual are likely to be more related to each other than to 
locations of other individuals. If several individuals have been 
radio-tracked in different regions, then individuals from the 
same region may show a more similar habitat preference than 
individuals from different regions. If the data are grouped in 
such a way, then the model needs to account for this relat-
edness, for example by means of random effects (Zuur et al. 
2009).

Threshold selection
This subsection is important in presence-only and presence–
absence models, and in particular for mapping or transfer. In 
the case of a binary response variable, most SDM approaches 
produce continuous outputs such as habitat suitability indi-
ces or probabilities of occurrence. Whilst there are good 
arguments for retaining predictions on a continuous scale 
(Lawson  et  al. 2014, Guillera-Arroita  et  al. 2015), some 
users prefer to threshold them for certain applications. To do 
so, they need to define an adequate threshold to transform 
the data. Several different thresholds have been proposed 
depending on whether the presence–absence or presence-
only data are being used for modelling (Liu et al. 2005, 2013) 
or when modelling communities (Scherrer et al. 2018). Here, 
authors need to specify which threshold is used and explain 
why thresholding is deemed necessary.

Assessment

After model building, typically a series of analysis steps are 
aimed at assessing whether the modelled biodiversity–envi-
ronment relationships are fit for purpose. We have designated 

two mandatory subsections to report in this section: perfor-
mance statistics, and plausibility checks (Table 1). Irrespective 
of the model aim, assessing predictive performance on (semi-)
independent data informs us of generalisability and overfit-
ting (Hastie et al. 2009). Constructing partial plots (= effect 
plots, response curves, marginal responses, Elith et al. 2005) 
provides an intuitive way to evaluate the ecological plausi-
bility of the fitted model. Plausibility could also be checked 
by inspecting the spatial (and/or temporal) predictions. Both 
plausibility checks are a form of expert judgement.

Performance statistics
Performance statistics are important for assessing the valid-
ity of a model for a specific goal and for comparing models, 
and different statistics are under constant development and 
testing. We do not wish to give advice on which performance 
measures should be used but rather emphasise the need to 
report on these performance measures and any additional 
information necessary to interpret them. Generally, per-
formance should be assessed with respect to the aim of the 
application and to the response variable. For most response 
variables, e.g. for abundance and presence–absence data alike, 
distance measures between hold-out data and prediction are 
potentially suitable (Sequeira et al. 2018). These include the 
root–mean–square–error (RMSE), log-likelihood, various 
variations of R2 (Nash and Sutcliffe 1970, Nagelkerke 1991), 
the percentage of deviance explained (Hosmer and Lemeshow 
2013) or calibration curve estimates (with the intercept quan-
tifying bias and the slope depicting overconfidence, Harrell 
2006). If predictions were re-calibrated (Guisan et al. 2017), 
this should be noted as well.

For presence–absence data, we may distinguish threshold-
independent measures such as the AUC (area under receiver-
operating characteristic curve ROC, Swets 1988), explained 
deviance and log-likelihood, and threshold-dependent indi-
ces (Guisan et al. 2017). The latter are typically based on the 
confusion matrix (e.g. correct classification rate, sensitivity 
and specificity, precision, Fielding and Bell 1997), are sen-
sitive to the prevalence and cannot be interpreted without 
it. When reporting thresholded indices, such as the true-
skill statistic (Allouche et al. 2006) or kappa (Cohen 1960), 
authors must report the threshold selected and the rationale 
for selecting it (cf. Model section, Table 1) or whether any 
threshold-optimisation approach was applied (e.g. maxTSS, 
Guisan et al. 2017). Lastly, for presence-only methods alter-
native performance measures have been introduced that 
avoid using a confusion matrix, such as the Boyce index 
(Boyce et al. 2002, Hirzel et al. 2006) or POC plot (Phillips 
and Elith 2010).

Plausibility checks
The ecological plausibility of the model and model predictions 
can be checked by inspecting the response shape of the fit-
ted biodiversity–environment relationship and by inspecting 
the mapped predictions. Response shapes are one of the most 
important outputs of SDMs as they summarise the estimated 
species–environment relationship and can thus be directly 
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subjected to plausibility checks against available biological 
knowledge. For example, when the input data were selected 
to approximate drivers known to be ecologically important, 
we can determine whether the model represents plausible 
relationships between the drivers and the species’ occurrence. 
Checking the plausibility of the functional relationships in 
a model is also particularly important when the model is 
used to transfer the species–environment relationship to new 
time periods and regions (Thuiller  et  al. 2004). Generally, 
response shapes can be visualised using more traditional par-
tial dependence plots, evaluation strips (Elith et al. 2005) or 
inflated response curves, which also help to identify extrapo-
lation (Zurell et al. 2012). Furthermore, such plots indicate 
the range of predictor values present in the calibration data, 
beyond which predictions would rely on modelling assump-
tions (Qiao et al. 2018) and become less reliable. Ideally, such 
partial plots should also include a 95% confidence or cred-
ible interval. Simply plotting the predictions against the envi-
ronmental predictors used in model fitting can provide a first 
approximation of response shapes. Additionally, visual inspec-
tion of the mapped prediction can constitute an important 
plausibility check for spatial models. We encourage modellers 
to describe any such evaluations here.

Prediction

The Prediction section of ODMAP only bears relevance if 
models are used to make spatial (or temporal) predictions to 
new sites including mapping (interpolating) and/or trans-
ferring (extrapolating). It comprises two main subsections: 
1) prediction output, and 2) uncertainty quantification. 
Although this section deals primarily with spatial predictions, 
note that the final product may not necessarily be a map but 
could also be a data table containing the predictions at spe-
cific locations with specific environmental conditions.

Prediction output
First, prediction unit(s) should be clearly stated in ODMAP, 
for example continuous occurrence probabilities or potential 
presence derived by thresholding. Also, for some SDM algo-
rithms there may exist alternative interpretations of outputs, 
e.g. MaxEnt and point process models where predictions 
could be interpreted as relative occurrence rates or relative 
densities, depending on assumptions about the data (samples 
of species versus samples of individuals, respectively). Second, 
any post-processing steps undertaken after predicting are 
detailed here. This could include clipping the predictions to 
a specific region or land cover map, e.g. clipping predicted 
butterfly occurrences to where the host plant is predicted to 
occur.

Uncertainty quantification
Studies applying SDMs for mapping and/or transferring 
should always address how uncertainty in model predic-
tions was quantified. We can distinguish between uncertain-
ties in the input data, model structure (e.g. between model 
algorithms), parameters, residual uncertainty (irreducible, 

aleatory uncertainty) and in boundary conditions (e.g. sce-
nario uncertainty). In the Prediction section, it is important 
to report how any sources of uncertainty were dealt with when 
deriving the final prediction(s), such that maps of potential 
species distributions are accompanied by equivalent ‘maps of 
ignorance’ that convey how and where reliable predictions 
are (i.e. magnitude and extent of prediction uncertainty), 
thereby supporting their correct and honest interpretation 
(Rocchini et al. 2011). We note that suitable tools for uncer-
tainty estimation are now readily available for all stages of the 
modelling process (Beale and Lennon 2012). Error propa-
gation, for instance, is possible via bootstrapping or within 
Bayesian frameworks. García-Díaz et al. (2019) recommend 
plotting (posterior) distributions of model outputs to give a 
measure of the likelihood of different values that can be read-
ily interpreted in an ecological risk assessment context.

Implementations of ODMAP involving model transfers 
should specify how environmental novelty was accounted for 
in predictions. We are aware that some overlap and confusion 
with the Data section could occur, which demands details 
on how environmental novelty was quantified (Table 1). In 
the Prediction section, we particularly recommend to focus 
on reporting any post-processing steps related to predictions, 
such as masking or highlighting predictions to novel environ-
ments (Zurell et al. 2012).

Applying ODMAP

Template and web application

Table 1 provides the basic template for the ODMAP (ver. 
1.0) protocol (for the detailed template see Supplementary 
material Table A1). As indicated previously, we distinguish 
fields that are mandatory and fields that are optional. The 
mandatory fields also vary depending on the model objec-
tive (inference, mapping or transfer). That way, the ODMAP 
table can be filled in step by step.

To simplify use of ODMAP, we provide an interac-
tive Shiny web application as an online resource (<https://
odmap.wsl.ch>; ODMAP v1.0). This allows filling in the 
different ODMAP elements through a browser interface 
(Fig. 2). The resulting ODMAP table can be downloaded, 
and also uploaded again for resuming work on the ODMAP 
protocol. We call this version ODMAP v1.0. The ODMAP 
Shiny app interacts with rangeModelMetaData R-package 
(RMMS, Merow  et  al. 2019) and uses the RMMS dic-
tionary to make auto-suggestions, for example, concerning 
algorithms and model settings. The app also allows existing 
RMMS objects to be loaded to fill in the ODMAP table. An 
important difference between RMMS and ODMAP is that 
RMMS is meant to store metadata for each model object, 
which could mean that several RMMS objects are needed for 
a single study, and RMMS also stores important results to 
ensure results reproducibility. By contrast, ODMAP is meant 
to contain the methodological descriptions for the entire 
SDM component of a study and is dedicated to method 
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reproducibility. To accommodate these differences, we intro-
duced an ODMAP family into the RMMS package to allow 
reporting for an entire study rather than single model objects.

As Merow et al. (2019) pointed out, the RMMS diction-
ary will need to grow through a community effort. Here, we 
attempted a first such effort and updated the dictionary by 
adding more algorithms and model settings to report. Any 
further updates to the dictionary will also be automatically 
accommodated in the ODMAP Shiny app. Similar to the 
ODD protocol, we anticipate that ODMAP will require reg-
ular and systematic evaluation by the scientific community to 
identify elements that are not being used or interpreted con-
sistently and may potentially need updating (Grimm et  al. 
2010). Any future ODMAP versions will be published in the 
web application, with changes and updates clearly specified 
to ensure that older and newer ODMAP applications will 
remain comparable and compatible.

We recommend that the entire ODMAP checklist (e.g. 
obtained from filling in the template based on Table 1, or by 
filling in the ODMAP fields in the web application) should 
be provided as Supplementary material in SDM studies, indi-
cating the ODMAP version. Additionally, we suggest that the 
general specifications from the Overview section should be 

formulated as flow text for the methods section of the main 
text following the structure of the Overview section in Table 1.

Case studies

The Supplementary material Appendix 1–9 includes nine exam-
ple applications of ODMAP. All of these examples are taken 
from previously published studies, and we revised the associ-
ated model descriptions according to ODMAP. Most examples 
relate to terrestrial plants, birds and butterflies (Franklin 1998, 
Dormann et al. 2008, Schröder et al. 2009, Leitão et al. 2010, 
Rapacciuolo et al. 2012, Fandos and Tellería 2017, Zurell et al. 
2020) but we also included a marine (Bouchet and Meeuwig 
2015) and an epidemiological example (Peterson and Samy 
2016). Examples cover all model objectives (inference/expla-
nation, mapping/interpolation, forecasts/transfers), single and 
multiple species, different SDM algorithms as well as JSDMs. 
All case studies are presented as ODMAP tables (Table 1), 
which we would generally advise to include in the appendi-
ces of publications. In one case study (Zurell et al. 2020), we 
also provide an example version of the flow text that could be 
included in the corresponding manuscripts and reports as part 
of the Overview section.

Figure 2. Screenshots of the interactive Shiny web application of ODMAP. The browser interface shows several tabs. (A) Describes the main 
features of ODMAP and provides the reference. (B) Contains the ODMAP core and allows entering the relevant information into the dif-
ferent ODMAP fields. Optional fields (cf. Table 1) can be hidden. Preliminary or finished ODMAP protocols can be downloaded as word 
document or as csv file. (C) The progress of ODMAP can also be assessed using the Protocol viewer. (D) Previous ODMAP protocols can 
be uploaded to continue protocolling or revising.
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In most of the case studies, we found that there had been 
a great deal of detail provided for the biodiversity and envi-
ronmental data, and also data processing and potential biases 
were described in depth. Often missing were details about 
software versions, packages and parameter settings that would 
be required for reproducibility. Most of the information spec-
ified in ODMAP elements was provided in the main text of 
the original publications. Therefore, ODMAP relevant infor-
mation was sometimes scattered across the entire publication 
rather than just in Methods sections (Fig. 3). When applying 
ODMAP, most test authors found that the protocol consider-
ably helped identifying and structuring relevant information 
for model descriptions. Nevertheless, test authors also indi-
cated that retrieving the single ODMAP elements and con-
tents from the original publications was sometimes difficult. 
This emphasises that the method descriptions of SDM studies 
have not, to date, followed any standard structure or operat-
ing procedures to this date (Feng et al. 2019), which hampers 
reproducibility and peer review as well as literature reviews, 
expert assessments and meta-analyses (Araújo et al. 2019). It 
also means that ODMAP will take some time getting used to, 
but the overall benefits should outweigh the growing pains in 
the long run. Previous experience with the adoption of ODD 
(Grimm et al. 2006, 2010) suggests important potential ben-
efits of such a standard protocol including more rigorous 
model formulation, simplified peer review, better compara-
bility between models, easier communication between dis-
ciplines, and stronger emphasis on theoretical foundations.

Discussion

Our hope is that the ODMAP protocol can enhance transpar-
ency, reproducibility, evaluation and reuse in SDM research 
to facilitate peer review, meta-analyses and more robust and 

transparent biodiversity assessments. As the first iteration of 
a reporting protocol, there are likely to be improvements, 
refinements and disagreements. However, by developing a 
‘checklist’ of standard operating procedures, we hope to make 
it easier for authors to report, and for readers to understand, 
SDM data and methods, as ODD has done for ABM/IBM 
(Grimm et al. 2006, 2010). Notably, ODMAP is not meant 
to prescribe how modelling should be carried out but to pro-
vide a structured format for how models should be reported. 
Indeed, comparability and transparency are necessary steps 
towards developing and applying best-practice standards for 
the field (Araújo et al. 2019).

Many of the authors of this protocol have played major 
roles in developing and refining different SDM methods, and 
represent a critical mass of SDM developers, users and review-
ers. Based on this collective experience, we have designed 
ODMAP to be general enough to accommodate SDM 
reporting in the very broadest sense. In other words, it applies 
to any study using a statistical framework to explain, predict 
and/or project biodiversity distributions. While the specif-
ics of the source data and methods may change for response 
variables other than the widely-used species occurrence data 
(‘presence’), the requirements for reporting the conceptual 
underpinnings as well as the Data, Model, Assessment and 
Prediction sections described in Table 1 remain relevant and 
applicable.

ODMAP is best suited for empirical-based biodiversity 
models that are fitted using rule-based, statistical and machine-
learning methods. Of course, also other more process-explicit 
distribution models exist that are used for predicting range 
dynamics (Zurell  et  al. 2016, Briscoe  et  al. 2019) or for 
testing hypotheses about deep time processes (Rangel et al. 
2018). Many ODMAP elements, such as variable selection 
and approaches to deal with multicollinearity, will not neces-
sarily apply to these models. Despite this, the main sections 

Figure 3. Schematic representation how ODMAP compiles relevant information about the SDM modelling process. Left: application of 
ODMAP to the case study by Franklin (1998) showed that relevant information has previously been scattered in scientific publications 
(grey lines) or missing (black dotted lines). Also see corresponding ODMAP protocol in Supplementary material Appendix 4. Right: 
ODMAP provides an easy-to-follow checklist for authors, reviewers, editors and evaluators.
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of ODMAP – overview, data, model, assessment, prediction 
– could also provide a useful skeleton for describing more 
complex, process-explicit models, at least if the general mod-
elling framework is published and known (Lurgi et al. 2015). 
By contrast, if authors are designing process-explicit models 
from scratch (Rangel et al. 2018), then we encourage them 
to use protocols such as ODD (Grimm et al. 2006, 2010), 
which put more emphasis on specific design decisions.

We have strived to make ODMAP as readily accessible 
and as easy to use as possible. The protocol explicitly includes 
a checklist of reporting items and is thus easy to follow and 
apply in practice (Fig. 1). In particular, the ODMAP table 
(currently, ver. 1.0) and web application provide a step-
by-step guide through modelling and reporting, and inte-
grate with current metadata standards (Merow et al. 2019). 
Moreover, we have designed ODMAP to apply for a broad 
range of modelling objectives, and our example applications 
provide additional guidance on how different study objec-
tives may be reported using this same protocol. As an extra 
benefit, the ODMAP checklist also provides a roadmap for 
planning all relevant modelling steps in SDM studies. We 
anticipate that ODMAP will prompt researchers to consider 
methodological issues that tend to be more easily overlooked 
(e.g. uncertainty reporting) and to appropriately address key 
issues in the modelling process such as model validation. 
Identifying and addressing these issues at an early stage will 
ensure robust scientific results and may reduce disagreements 
among authors, reviewers and editors. Along these lines, we 
hope that ODMAP will also be positively perceived and 
implemented by journal editors and reviewers, who stand 
to benefit from an easier evaluation of the methodological 
aspects of SDM studies.

Standard protocols are effective tools to support deci-
sions because they establish expectations among readers on 
what information should be included and where it should 
be found (Schmolke et al. 2010), thus ensuring that relevant 
information is delivered in a transparent and efficient way 
(Grimm et al. 2014). In this context, ODMAP is likely to 
help overcome two important barriers to the more frequent 
uptake of SDM outputs in environmental decision making: 
the perception of biodiversity models – including many fre-
quently used SDMs – as ‘black boxes’, and the effective com-
munication of model uncertainty (Rapacciuolo 2019).

In summary, ODMAP will help answer the clarion calls 
for reproducible computational science (Peng 2011), and 
for improved recording and reporting of methods and data 
(Mesirov 2010, Munafò et al. 2017), within the field of spe-
cies distribution modelling, a crucial tool for science and 
conservation.
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