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Abstract
Quantum states are represented by positive semidefinite Hermitian operators with unit
trace, known as density matrices. An important subset of quantum states is that of sep-
arable states, the complement of which is the subset of entangled states. We show that
the problem of deciding whether a quantum state is entangled can be seen as a moment
problem in real analysis. Only a small number of such moments are accessible exper-
imentally, and so in practice the question of quantum entanglement of a many-body
system (e.g, a systemconsistingof several atoms) canbe reduced to a truncatedmoment
problem. By considering quantum entanglement of n identical atoms we arrive at the
truncated moment problem defined for symmetric measures over a product of n copies
of unit balls in R

d . We work with moments up to degree 2 only, since these are most
readily available experimentally. We derive necessary and sufficient conditions for
belonging to the moment cone, which can be expressed via a linear matrix inequality
of size at most 2d+2, which is independent of n. The linear matrix inequalities can be
converted into a set of explicit semialgebraic inequalities giving necessary and suffi-
cient conditions for membership in themoment cone, and show that the two conditions
approach each other in the limit of large n. The inequalities are derived via consider-
ing the dual cone of nonnegative polynomials, and its sum-of-squares relaxation. We
show that the sum-of-squares relaxation of the dual cone is asymptotically exact, and
using symmetry reduction techniques (Blekherman and Riener: Symmetric nonnega-
tive forms and sums of squares. arXiv:1205.3102, 2012; Gatermann and Parrilo: J Pure
Appl Algebra 192(1–3):95–128. https://doi.org/10.1016/j.jpaa.2003.12.011, 2004), it
can be written as a small linear matrix inequality of size at most 2d+2, which is inde-
pendent of n. For the cone of symmetric nonnegative polynomials with the relevant
supportwe also prove an analogue of the half-degree principle for globally nonnegative
symmetric polynomials (Riener: J Pure Appl Algebra 216(4): 850–856. https://doi.
org/10.1016/j.jpaa.2011.08.012, 2012; Timofte: J Math Anal Appl 284(1):174–190.
https://doi.org/10.1016/S0022-247X(03)00301-9, 2003).
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1 Introduction

We consider a problem that lies in the intersection of real analysis, real algebraic
geometry and quantum entanglement. We begin with a brief introduction to quantum
entanglement, explaining how it is related to real analysis and algebraic geometry. We
then define and motivate the problem considered in this paper.

In quantum mechanics, the state of a physical system is represented by a density
matrix, which is, by definition, a positive semi-definite, Hermitian operator with trace
one. As a convention, we drop the trace condition so that the space of density matrices
is a convex cone. Since any positive semidefinite matrix can be rescaled to have trace
one, this does not affect the results of the paper. Let Tn be the convex cone of all positive
semi-definite Hermitian operators acting on Cn . By our convention, an element of Tn
can be rescaled to an n × n density matrix. Physical systems that correspond to n = 2
are known as qubits.

A natural way to construct larger density matrices is by using tensor products. In
physics this corresponds to combining several subsystems into a large system. As
an example, we will consider a system with two subsystems represented by density
operators in Tm and Tn respectively. The tensor product gives a map Tm × Tn → Tmn ,
where ρ1 ∈ Tm and ρ2 ∈ Tn are mapped to ρ1 ⊗ ρ2 ∈ Tmn , for m, n ∈ N. A convex
subset �nm of Tnm is generated by the conical hull of the image of this map:

�mn = conical. hull{ρ1 ⊗ ρ2 : ρ1 ∈ Tm ρ2 ∈ Tn}.

An element ρ ∈ �mn can be obtained from a measure μ over Tm × Tn via
ρ = ∫Tm×Tn

ρ1⊗ρ2 dμ. The densitymatrices in Tm are states of anm-dimensional sys-
tem; the density matrices in Tn are states of an n-dimensional system, and the density
matrices in Tmn are states of the composite of the two systems. The subset�mn ⊂ Tmn

consists of separable states. That is, a density matrix in �mn represents a separable
state and a density matrix in Tmn\�mn represents an inseparable state, also known as
an entangled state of the two subsystems. While the notion of quantum non-locality
[27,40] is different from inseparability, the latter is used synonymously with entan-
glement (see for instance, the recent review [17]). Quantum entanglement is not only
fundamental to quantum physics, it also has applications in quantum communications,
quantum metrology and quantum computation [17].

One of the basic problems in quantum entanglement is the characterization of the
cone �mn . In the special case of rank-1 density matrices, also known as pure states,
this problem has a complete solution [9]. The mn elements of the vector in the range
of a rank-1 matrix ρ ∈ Tmn can be written as am×n matrix in a natural way. ρ ∈ �mn

iff this matrix also has rank-1. The general problem of deciding whether an element
ρ ∈ Tmn is in �mn has been shown to be NP-hard in the complexity parameter
mn [14]. However, several special instances of this problem can be solved exactly.
When m = 2, n = 2 and when m = 2, n = 3, the cone �mn has been completely
characterized [16,26], using positive partial transpose criterion. The general case of
larger dimensions, or greater number of subsystems, is open, although there are a
number of partial results [6,13,21,31,35,39].
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Quantum entanglement, symmetric nonnegative quadratic…

Our approach is to convert the study of quantum entanglement into a truncated
moment problem. The relation between quantum entanglement and the truncated
moment problem has been recognised rather recently [4,8,23] and therefore, the full
potential of the state of the art in the truncatedmoment problem has not been utilized to
address the entanglement problem. The elements of ρ ∈ �mn are quadratic moments
of a measure over Tm × Tn , where each quadratic monomial has one variable from
Tm and one variable from Tn . Therefore, characterizing the cone �mn can be viewed
as a truncated moment problem. In fact, this equivalence between deciding whether a
quantum state is entangled and a truncated moment problem generalizes to quantum
systems with arbitrary number of subsystems. Although quantum entanglement has
been studied extensively over the past few decades, this formulation, which allows
us to bring in the tools of real algebraic geometry, has not been sufficiently explored.
In this work, we consider a class of truncated moment problems that arise from the
study of quantum entanglement and show that the resulting criteria on entanglement
are stronger than the existing ones.

The most commonly studied physical system is the so-called “two-level system”
or a “qubit”, described by a density matrix in T2. Theoretically, this is the simplest
non-trivial example of quantum mechanical systems, and experimentally, there have
been several platforms to realize such systems including trapped atoms, photons, and
circuit QED systems. Therefore, we consider a truncated moment problem that arises
from the study of entanglement in a system consisting of n subsystems, each described
by a density matrix in T2. The space of all density matrices of the composite system
is T2n . The subspace of separable states is

�2n = conical.hull{ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn : ρi ∈ T2}.

From the above discussion we see that�2n is a moment cone of measures defined over
T2 ×· · ·× T2, where we take degree n moments, and each moment monomial has one
variable from the coordinates of each T2. We observe that T2 has a simple description:
any self-adjoint 2 × 2 complex matrix can be written as

ρ =
(

w + z x − iy
x + iy w − z

)

,

for x, y, z, w ∈ R and w ≥ 0. The positive semidefiniteness condition is given by
w2 − x2 − y2 − z2 ≥ 0. Due to multilinearity of tensors, we may restrict ourselves to
measures defined on the compact section T̃2 of T2 with the hyperplane w = 1. We see
from above that T̃2 is D3, the closed unit ball in R

3 also known as the Bloch sphere.
Since we dehomogenized by setting w = 1 we now consider moments up to degree
n on T̃ n

2 , where each moment monomial has at most 1 variable from the coordinates
of each T̃2. Therefore, �2n is a moment cone of such moments for measures defined
over the space K 3

n = D3 × · · · × D3.
There are two characteristics of a real physical situation that simplify this problem.

First, in a laboratory, not every element of a density matrix ρ ∈ T2n can be retrieved.
Therefore, the decision of whether ρ can be in�2n has to be made based on a subset of
the elements of ρ. In other words, the problem requires characterization of a projection
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of the cone of moments over K 3
n , usually consisting of very few moments. We do not

consider the characterization of the cone �2n here; instead, we consider the charac-
terization of its projection. That is, corresponding to a linear space L , we consider the
decision problem of deciding whether a point in �L(T2n ) is in �L(�2n ). The linear
space L is defined by taking all the relevant quadratic moments, since these are most
readily measured in the lab [15,32]. And secondly, the atoms used in such experiments
are called bosons, meaning, they possess an exchange symmetry. That is, the density
matrix ρ is invariant under the action of the symmetric group Sn , which permutes the
atoms, and so is any measure μ that generates the density matrices in �2n . Therefore,
the problem is to characterize the moment cone of symmetric measures defined over
K 3
n .
Wenowconsider a generalized version of the above problem in physics. In particular

we use Dd instead of D3, although the structure is not physically relevant for any value
of d other than 3.

1.1 Problem statement and results

Let Dd ⊂ R
d be the closed unit ball in a d dimensional real vector space. That is,

Dd = {v : v ∈ R
d , ||v|| ≤ 1}. We define Kd

n as the product of n such unit balls:

Kd
n = Dd × · · · × Dd ⊂ R

nd .

Points in Kd
n can be represented by a n-tuple of d-dimensional vectors (v1, v2, . . . , vn),

where, vi = (vi,1, vi,2 . . . vi,d) ∈ Dd . The symmetric group Sn (i.e., the group of all
permutations of the set {1, 2, . . . , n}) acts on Kd

n by permuting the vectors vi . For
σ ∈ Sn , its action on Kd

n is given by σ ◦ (v1, v2, . . . , vn) = (vσ(1), vσ(2), . . . , vσ(n)).
We refer to a measure μ defined on Kd

n as a symmetric measure if it is invariant under
the action of Sn . That is, if A ⊂ Kd

n ,

μ(A) = μ(σ ◦ A), ∀ σ ∈ Sn .

In this work, we consider the truncated K -moment problem for symmetric measures
over Kd

n . Moments of symmetric measures are also invariant under coordinate permu-
tations.

Let Vn,d the vector space of real square-free polynomials in d · n variables
x1, . . . , xn, xi = (ξi,1, . . . , ξi,d) which is spanned by the following symmetric poly-
nomials:

sα =
n∑

i=1

ξi,α, 1 ≤ α ≤ d and sαα =
∑

i 
= j

ξi,αξ j,α, 1 ≤ α ≤ d.

A polynomial Q in Vn,d can be uniquely written as

Q(x) = A0 +
d∑

α=1

Aαsα +
d∑

α=1

Aααsαα.
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The dimension of Vn,d is therefore 2d + 1. This choice of basis polynomials sα and
sαα is dictated by the underlying physics. The moments are symmetric because the
particles are bosons, possessing exchange symmetry, they are square-free since tensor
product of different vector spaces only includemultilinear (or square-free)monomials,
and we only look at quadratic moments because the corresponding moments can be
measured in a laboratory [15,32].

We sometimes refer to polynomials in Vn,d by the (2d + 1)-tuple of coefficients
(A0, Aα, Aαα).

We use m0,mα and mαα to denote the corresponding moments:

m0 =
∫

Kd
n

1 dμ, mα =
∫

Kd
n

sα dμ, mαα =
∫

Kd
n

sαα dμ.

The moment sequence βμ = (m0,mα,mαα) lies in R
2d+1. We define Cn,d ⊂ R

2d+1

to be the set of all moment sequence coming from measures on Kd
n . Since the product

of the unit balls Kd
n is compact, it follows that Cn,d is a closed convex cone (cf. [2,

Exercise 4.17]).
The dual cone of Cn,d is the cone Pn,d of symmetric polynomials in Vn,d nonneg-

ative on Kd
n : [2, Chapter 4].

Pn,d =
{
Q ∈ Vn,d : Q(x) ≥ 0 for all x ∈ Kd

n

}
.

We consider the problem of characterizing the cones Cn,d and Pn,d . Our main result
are four explicit LinearMatrix Inequalities (LMI) of size 2d+2, which give necessary
and sufficient conditions for belonging to Cn,d and Pn,d (Theorems 3.2 and 3.5 for
Pn,d , and Theorem 4.1 for Cn,d ). The linear matrix inequalities for Cn,d and Pn,d are
dual to each other. These necessary and sufficient criteria can be seen to approach the
same limit as the number n of unit balls approaches infinity (see Remark 4.3). For the
cone Cn,d we were able to convert the linear matrix inequality into an explicit set of
2d + 1 semialgebraic inequalities describing necessary and sufficient conditions for
membership in Cn,d .

Theorem (Theorems 4.1 and 4.2 )Anon zero vector (z0, z1, . . . , zd , z11, z22, . . . , zdd)
lies in Cn,d if z0 > 0 and

d∑

α=1

max

{
z0zαα

n
,
z2α
n

}

≤ z20

(
n − 1

n

)2

+
d∑

α=1

(n − 1)z0zαα

n2

Moreover, if the inequalities below are violated:

z0 > 0 and
d∑

α=1

max

{
z0zαα

n − 1
,
z2α
n

}

≤ z20 +
d∑

α=1

z0zαα

n
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Then the non zero vector (z0, z1, . . . , zd , z11, z22, . . . , zdd) /∈ Cn,d . Each of the above
systems of inequalities may also be expressed by a linear matrix inequality of size
2d + 2.

conditions in the physically relevant case of d = 3 appeared in [37] in the language
of spin moments (see Sect. 5 for more details). For other related results from physics,
see [7], [34] and [38]. As we explain below the necessary conditions are obtained from
the sum-of-squares approximation to the cone Pn,d . The sufficient conditions are new,
and they allow us to estimate the tightness of approximation for large n, which was
previously unknown.

We now give a more detailed description of our results. First we show that nonneg-
ativity on Kd

n of a polynomial Q ∈ Vn,d , can be established by testing its values on
much smaller subset of Kd

n . It is easy to see that Q ∈ Vn,d is nonnegative on Kd
n if

and only if Q is nonnegative on the product of unit spheres (Sd−1)n . Furthermore we
show that Q(x) ≥ 0 for all x = (x1, . . . , xn) ∈ (Sd−1)n if and only if Q(x) ≥ 0 for
all x with at most 2d of xi distinct.

Theorem (Theorem 2.3) A polynomial Q ∈ Vn,d is nonnegative on Sd−1×· · ·× Sd−1

if and only if Q(x1, . . . , xn) is nonnegative for all sets of n points x1, . . . , xn on Sd−1

with at most 2d of them distinct.

The above theorem is in the spirit of the half-degree principle for globally non-
negative symmetric polynomials [29,36]. Our problem is different in two ways. First,
we are concerned here nonnegativity of polynomials over a compact subset, Kd

n , and
second, the symmetry in our problem permutes only d-tuples of coordinates. This is a
smaller group of transformations, compared to the usual symmetric case. Symmetries
of such type have also been considered in [12], where such polynomials were called
mutlisymmetric. However our bounds are sharper than those of [12].

Secondly, we provide an asymptotically tight characterization of the cones Cn,d

and Pn,d using sums of squares approximations. For i = 1, . . . , n define pi = 1 −
∑d

j=1 ξ2j,i . If Q ∈ Vn,d can be written as

Q(x) =
r∑

i=1

	2i (x) +
d∑

i=1

λi (1 − pi (x)),

where 	i are linear polynomials and λi ≥ 0, then Q is clearly nonnegative on Kd
n .

Define �n,d to be the cone of such polynomials, whose nonnegativity can be certified
via sums of squares. One can view �n,d as the first level of the Lasserre (or Sum-of
Squares) hierarchy for Kd

n [19,20,22,25]. See Sect. 1.2 for more details. We have the
inclusion:

�n,d ⊆ Pn,d .

As we show in Sect. 3 the containment is already strict when d = 1. Using this,
strict containment for larger d also follows by considering polynomials with Aα and
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Aαα equal to 0 for α ≥ 2. For the analogous results on equality between globally
nonnegative symmetric polynomials and sums of squares see [10].

Using symmetry reduction techniques [3,11] we show that �n,d can be character-
ized by a linear matrix inequality (LMI), of size 2d + 2, which is independent of n.
Now define �′

n,d as a slightly expanded version of �n,d :

�′
n,d = {(A0, Aα, Aαα) : A0 + n − 1

n

d∑

α=1

Aαsα + n − 1

n

d∑

α=1

Aααsαα ∈ �n,d}.

Our main result on sum of squares approximations is that the reverse inclusion
holds for �′

n,d and Pn,d :

Theorem (Theorem 3.5) We have the following inclusions:

�n,d ⊆ Pn,d ⊆ �′
n,d .

Moreover, both cones �n,d and �′
n,d can be described by a linear matrix inequality

of size at most 2d + 2.

As the number of unit balls n grows the cones �n,d and �′
n,d approach each other

at the rate 1
n and therefore, they give an asymptotically exact characterization of Pn,d .

Therefore sums of squares give an asymptotically tight approximation of nonnegative
polynomials. A similar result for fully symmetric globally nonnegative polynomials
of degree 4 was established in [3], and for fully symmetric even degree 6 polynomials
in [5]. Using semidefinite duality and Schur complement we derive the LMI and
semialgebraic descriptions of the cone Cn,d in Theorems 4.1 and 4.2.

1.2 Relation to previous work on Lasserre/sum of squares hierarchies

The cone �n,d is simply the first level of the Lasserre or sum of squares hierarchy for
Kd
n [19,20,22,25]. We observe that the size of the linear matrix inequalities produced

by the standard hierarchy grows with the number n of unit balls. However, after
we apply the symmetry reduction technique, we find an explicit LMI whose size is
independent of n, and depends only on.the dimension d of the unit ball. In principle,
one can use higher levels of the hierarchy to obtain a tighter inner approximation
of Pn,d . Unfortunately, symmetry reduction gets quite complicated if we go above
degree 2. However, as we show, the first level of the hierarchy unexpectedly provides
an asymptotically tight approximation. We note that good behavior of low-degree sum
of squares relaxation is a subject of interest in theoretical computer science in relation
to the Unique Games Conjecture [24].

We also point out that a small LMI description does not necessarily lead to a
simple set of inequalities describing a given set. For instance, some cones of sums of
squares are known to have small LMI descriptions, but the semilagebraic inequalities
describing them have very large degree [1]. Therefore, the description of Theorem 4.2
is quite fortuitous and not guaranteed from general theory.
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The rest of the paper is structured as follows. In the next section, we present the
exact results, i.e., an analogue of the half-degree principle. In Sect. 3, we provide
the asymptotic approximation results. In Sect. 4, we dualize polynomial results to get
asymptotically tight criteria on moments. We conclude in Sect. 5 with an application
of our results to the case d = 3 and recover the necessary conditions shown in [37],
along a set of sufficient conditions.

2 Exact results

In this section, we provide an analogue of the half degree principle for the cone Pn,d .
More specifically, we show that to test nonnegativity of Q ∈ Vn,d on Kd

n we only need
to test that it takes nonnegative values on points x = (x1, . . . , xn) on Kd

n with at most
2d of them distinct. Observe that such points form a submanifold of Kd

n of dimension
2d(d − 1), and this is independent of n, while dimension of Kd

n is dn. As warm-up
and illustration we start with the one-dimensional case d = 1.

2.1 One dimensional case d = 1

As a simple first step we characterize the cones Cn,1 and Pn,1. The relevant unit ball is
D1 = [−1, 1]. A point in K 1

n is represented by (x1, x2, . . . , xn) where xi ∈ [−1, 1].
Quadratic polynomial Q ∈ Vn,1 has the form:

Q = A0 + A1s1 + A11s11.

Note that Q has only linear terms in each variable xi . Therefore, extreme values
of Q occur when xi = ±1. In other words, Q is nonnegative on K 1

n if and only
if it is nonnegative on the discrete hypercube Hn = {−1,+1}n . For a point x =
(x1, . . . , xn) ∈ Hn with k entries equal to −1 and n − k entries equal to +1 we have
s1(x) = n − 2k and s11(x) = (n − 2k)2 − n. We immediately obtain the following
Proposition:

Proposition 2.1 A polynomial Q = A0 + A1s1 + A11s11 ∈ Pn,1 if and only if

A0 + A1(n − 2k) + A11((n − 2k)2 − n) ≥ 0,

holds for k = 0, 1, . . . , n.

Each inequality represents a side of the polygon shown in Fig. 1. The dual cone
Cn,1 of moment sequences coming from measures is also a polyhedral cone defined
by n + 1 inequalities. The defining inequalities of Cn,1 follow from Proposition 2.1:

Corollary 2.2 A vector m = (m0,m1,m11) ∈ Cn,1 if and only if

m0(n − 1 + (n − 1 − 2k)2) − m1(n − 1 − 2k) + m11 ≥ 0,

holds for k = 0, 1, . . . , n.
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Thus, when d = 1, Cn,1 and Pn,1 are both basic semi-algebraic sets, and are given by
n + 1 linear inequalities.

2.2 General dimension

When d > 1, Cn,d is the conical hull of a semi-algebraic set. Indeed,

Cn,d = ConicalHull
{
(1, s1(x), . . . , sd(x), s11(x), . . . , sdd(x)) : x ∈ Kd

n

}
.

Kd
n is a basic semi-algebraic set and therefore, its image under a polynomial function

is semi-algebraic. A polynomial Q ∈ Pn,d is linear in each of its arguments and
therefore, it is nonnegative on Kd

n if and only if it is nonnegative on its boundary,
∂Kd

n = Sd−1 × · · · × Sd−1. Therefore, membership of a polynomial Q in Pn,d

is validated by verifying its non-negativity on an n(d − 1) dimensional manifold.
However, in theorem 2.3, we show that it suffices to verify its non-negativity on
finitely many copies (O(n2d−1)) of a 2d(d − 1) dimensional manifold. This theorem
is an analogue of the degree principle [29,36]. See also [12] and [30] for related results.

We now state and prove the main theorem of this section:

Theorem 2.3 A polynomial Q ∈ Vn,d is nonnegative on Sd−1 × · · · × Sd−1 if and
only if Q(x1, . . . , xn) is nonnegative for all sets of n points x1, . . . , xn on Sd−1 with
at most 2d of them distinct.

Proof We will prove this theorem via an application of Lagrange multipliers. Recall
that Q ∈ Vn,d has the form

Q = A0 +
d∑

α=1

(Aαsα + Aααsαα).

Observe that polynomials Q all of whose global minima on (Sd−1)n containmore than
2d distinct vectors form an open subset of Vn,d , since a sufficiently small perturbation
of a polynomial with all minima containing more than 2d distinct vectors results in a
polynomialwith allminima still containingmore than2d distinct vectors.Additionally,
polynomials with all coefficients Aα and Aαα distinct also form an open subset of Vn,d .
Therefore, if a counterexample to the Theorem exists, it can be chosen with Aα and
Aαα distinct, and thus it suffices to prove the Theorem for polynomials Q with all
coefficients Aα and Aαα distinct.

Let x∗ = (x∗
1, . . . , x

∗
n) be a global minimum of Q on

(
Sd−1

)n
and let x∗

i =
(ξi,1, . . . , ξi,d). Since the global minimum is a critical point, it satisfies the following
Lagrange multiplier equations for α = 1, . . . , d and i = 1, . . . , n:

Aα + 2Aααsα(x∗) = (λi + 2Aαα)ξi,α,
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where λi ∈ R are the Lagrange multipliers. Note that the left-hand side of the above
equation is independent of the index i . We therefore introduce

Rα = Aα + 2Aααsα(x∗), α = 1, . . . , d.

and see that

Rα = (λi + 2Aαα)ξi,α (1)

We first settle the simple case when Rα = 0 for α = 1, . . . , d. It follows from (1)
that ξi,α = 0 unless (λi + 2Aαα) = 0. The latter can hold for at most one value of α

for any given i since the coefficients Aαα are distinct. Thus, ξi,α = 0 for all but one
value, α = αi for which we must have ξi,αi = ±1, since

∑
α(ξi,α)2 = 1. Therefore,

it follows that at most 2d of the vectors x∗
i can be distinct.

Without loss of generality, we may now assume that R1 
= 0. This also implies that
ξi,1 
= 0 for i = 1, . . . , n. Eliminating λi from Eq. (1), we see that

(R1 + 2(Aαα − A11)ξi,1)ξi,α = Rαξi,1 (2)

Combining this together with the equations
∑d

α=1 ξ2i,α = 1, we see that t = ξi,1 is a
solution of following equation:

d∑

β=1

(Rβ t)
2

d∏

α 
=β

(R1 + 2(Aαα − A11)t)
2 =

d∏

α=1

(R1 + 2(Aαα − A11)t)
2

d∑

β=1

ξ2i,β =
d∏

α=1

(R1 + 2(Aαα − A11)t)
2.

In other words, ξi,1 is a root of the polynomial

P(t) =
d∑

β=1

(Rβ t)
2

d∏

α 
=β

(R1 + 2(Aαα − A11)t)
2 −

d∏

α=1

(R1 + 2(Aαα − A11)t)
2

for every i . Note that the leading term of P(t) is t2d × R2
1�

d
α=24(Aαα − A11)

2 and the
constant term is −R2d

1 . Therefore, P(t) has degree 2d, and thus ξi,1 can take at most
2d distinct values. Next we show how a vector x∗

i can be reconstructed from ξi,1.
Observe from (2) that ξi,α is determined by ξi,1 as

ξi,α = Rαξi,1

R1 + 2(Aαα − A11)ξi,1
.

unless R1 + 2(Aαα − A11)ξi,1 = 0 for some α. Such an α = α0, if it exists, has to
be unique for a given value of ξi,1 since all coefficients Aαα are distinct. Therefore,
if there is such an α0 for a given root ξi,1, the coordinate ξi,α is uniquely determined
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by ξi,1 for all α excluding α0. The coordinate ξi,α0 is determined up to a sign from
∑d

α=1 ξ2i,α = 1. Therefore, every root of P(t) produces at most two distinct vectors
xi . We next show that those roots that produce two vectors are indeed double roots.

As argued above, if ξi,1 is a root of P(t) that produces two vectors then there is one
α0 for which R1 + 2(Aα0α0 − A11)ξi,1 = 0 and Eq. (2) implies that Rα0 = 0. With
this, we can deduce that (R1 + 2(Aα0α0 − A11)t)2 divides P(t) and therefore, ξi,α is
a double root of P(t). Therefore, a simple root of P(t) produces a unique vector xi,
while a multiple root of P(t) produces at most two vectors xi. Since degree of P(t) is
at most 2d, it follows that at most 2d of vectors xi are distinct. ��
Remark 2.4 There are

(n+2d−1
n

)
distinct ways of populating a set {x1, . . . , xn} using

2d distinct points on Sd−1. Therefore, this theorem reduces the search space of non-
negativity of Q from an n(d − 1) dimensional manifold to

(n+2d−1
n

)
copies of a

2d(d − 1) dimensional manifold.

3 Sum of squares approximation of nonnegative polynomials

In this section, we develop an asymptotic approximation of Cn,d and its dual cone
Pn,d . We begin with the illustrative case of d = 1, where we develop the main ideas
of the proof.

3.1 The case d = 1

Although the case d = 1 has a complete solution, i.e., membership of a quadratic Q =
A0+ A1s1+ A11s11 in Pn,1 can be checked by the n+1 inequalities in Proposition 2.1,
it is a convenient platform to illustrate the ideas that lead us to the main result of this
section. As shown in Proposition 2.1, a quadratic Q lies in Pn,1 if and only if:

A0 − nA11 + √
nA1

(
n − 2k√

n

)

+ nA11

(
n − 2k√

n

)2

≥ 0

for k = 0, 1, . . . , n. Note that the above expression has been cast in a way that is
suggestive of introducing a new variable X to take the place of n−2k√

n
and a polynomial

PQ(X) = A0 − nA11 + √
nA1X + nA11X

2

We may rewrite the above conditions as PQ(X) ≥ 0 for X = −√
n,−√

n +
2/

√
n, . . . ,+√

n. In other words, Q ∈ Pn,1 if and only if PQ(X) ≥ 0 on n + 1
evenly spaced points in [−√

n,
√
n]. Given that the spacing 2/√n approaches zero as

n approaches infinity, we are prompted to define the following cone:

�n,1 = {(A0, A1, A11) : PQ(X) ≥ 0 for all X ∈ [−√
n,

√
n]}

Clearly we have �n,1 ⊆ Pn,1. Since �n,1 is a set of univariate quadratics nonnegative
on a closed interval, the cone �n,1 is easily characterized and inclusion in it provides
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a sufficient condition for inclusion in Pn,1. We next show that a necessary condition
can be obtained by slightly enlarging the cone �n,1.

�′
n,1 =

{

(A0, A1, A11) :
(

n

n − 1
A0, A1, A11

)

∈ �n,1

}

Clearly, �n,1 ⊂ �′
n,1. Further, we show, in Proposition 3.1, that �′

n,1 contains Pn,1.
In the limit of large n, the cones �n,1 and �′

n,1 converge.

Proposition 3.1 �n,1 ⊆ Pn,1 ⊆ �′
n,1

Proof We show that all the extreme rays of Pn,1 are in�′
n,1. Let Q = (A0, A1, A11) ∈

Pn,1 span an extreme ray. It follows that the corresponding polynomial PQ(X) takes
a zero value at two consecutive points in the set {−√

n,−√
n + 2/

√
n, . . . ,+√

n}.
The zeros of PQ are therefore separated by 2/

√
n. Consequently, the minimum value

of PQ is −A11. Therefore, PQ + A11 is nonnegative on [−√
n,

√
n]. Also it follows

from Proposition 2.1 that A11 ≤ A0
n−1 for any polynomial Q ∈ Pn,1. Thus, PQ + A0

n−1
is nonnegative on [−√

n,
√
n]. Thus, Q ∈ �′

n,1. ��
The cones �n,1 and �′

n,1 that sandwich Pn,1 are better understood after a rescaling.
Taking a cue from the definition of the polynomial PQ , let us define

P̃n,1 =
{

(B0, B1, B11) :
(

B0,
B1√
n
,
B11

n

)

∈ Pn,1

}

�̃n,1 =
{

(B0, B1, B11) :
(

B0,
B1√
n
,
B11

n

)

∈ �n,1

}

and

�̃′
n,1 =

{

(B0, B1, B11) :
(

B0,
B1√
n
,
B11

n

)

∈ �′
n,1

}

This rescaling enlarges them so that wemay visualize their limiting behavior. In partic-
ular, �̃n,1 = {(B0, B1, B11) : B0 − B11 + B1X + B11X2 ≥ 0, for all X ∈ [−√

n,√
n]} satisfies �̃n+1,1 ⊆ �̃n,1, i.e., they are nested and the limiting cone �̃ = ∩n�̃n,1

is the cone of all globally nonnegative quadratics, and has a simple characterization:
(B0, B1, B11) ∈ �̃ if and only if

[
B0 − B11

1
2 B1

1
2 B1 B11

]

� 0. (3)

Figure 1 shows the cross sections of Pn,1, as well as that of the rescaled cones P̃n,1,
�̃n,1, �̃′

n,1, �̃. Note that the cones �̃′
n,1 are also nested and the corresponding limiting

cone is also �̃. In this sense, the sufficient condition for inclusion in Pn,1, provided by
�n,1 and the necessary condition provided by�′

n,1 approach each other asymptotically.
In the next section we generalize the cones �n,1 and �′

n,1 to higher dimensions.
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Fig. 1 a Shows the cross sections of Pn,1 for n = 2 to n = 6. bShows the cross sections of the rescaled
cones P̃n,1 for n = 2 to n = 20 in blue and the cross section of the limiting cone �̃ in red. c Shows P̃5,1 in
blue and the corresponding approximation, �̃5,1 in red. The expanded cone, �̃

′
5,1 is shown in black (colour

figure online)

3.2 General dimension

We proceed along similar lines as for the d = 1 case to obtain a necessary and
asymptotically sufficient condition formembership in Pn,d .We refer to the polynomial
Q by its (2d + 1)-tuple of rescaled coefficients. Analogous to the variable X of the
previous section, we define variables X = (X1, . . . , Xd) and Y = (Y1, . . . ,Yd) as:

Xα =
n∑

i=1

ξi,α√
n

, α = 1, . . . , d,

Yα =
√√
√
√

n∑

i=1

ξ2i,α

n
− X2

α

n
, α = 1, . . . , d,

with x = (x1, . . . , xn) and xi = (ξi,1, . . . , ξi,d). Note that the Cauchy–Schwartz
inequality ensures that Yα are well defined real numbers. In terms of these variables,
we may re-write Q as:

Q(x1, . . . , xn) = A0 +
d∑

α=1

√
nAαXα + (n − 1)

d∑

α=1

AααX
2
α − n

d∑

α=1

AααY
2
α

= PQ(X ,Y ).

Note that PQ(X) is defined analogously to the previous section. For x ∈ Kd
n the

variables Xα and Yα satisfy

d∑

α=1

Y 2
α + 1

n
X2

α = ||Y ||2 + 1

n
||X ||2 ≤ 1,

which follows from the conditions ||xi || ≤ 1.
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We now consider a convex cone in Vn,d consisting of polynomials Q such that
PQ(X ,Y ) is nonnegative for all (X ,Y ) such that ||Y ||2+ 1

n ||X ||2 ≤ 1. From the above
discussion it follows that this cone lies inside Pn,d . We show in Theorem 3.2 that this
cone turns out to coincide with the sum-of-squares relaxation of Pn,d , defined as �n,d

in the Introduction. To recall this definition, for i = 1, . . . , n let pi = 1−∑d
j=1 ξ2j,i .

We defined the cone �n,d consisting of polynomials Q(x) which can be written as:

Q(x) =
r∑

i=1

	2i (x) +
d∑

i=1

λi (1 − pi (x)),

where 	i are linear polynomials and λi ≥ 0.

Theorem 3.2 A polynomial Q lies in �n,d if and only if PQ(X ,Y ) ≥ 0 for all X ,Y
such that ||Y ||2 + 1

n ||X ||2 ≤ 1.

Remark 3.3 By the S-Lemma [28] we can express the condition of nonnegativity
of PQ(X ,Y ) as a linear matrix inequality in the coefficients of P: P = A0 +
∑d

α=1
√
nAαXα + (n − 1)

∑d
α=1 AααX2

α − n
∑d

α=1 AααY 2
α is nonnegative for all

X ,Y such that ||Y ||2 + 1
n ||X ||2 ≤ 1 if and only if there exists c ≥ 0 such that:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0

√
n
2 A1 · · ·

√
n
2 Ad 0 · · · 0√

n
2 A1 (n − 1)A11 0 0 0 · · · 0
... 0

. . . 0 0 · · · 0√
n
2 Ad 0 0 (n − 1)Add 0 · · · 0
0 0 · · · 0 −nA11 · · · 0
... 0 · · · 0 0

. . . 0
0 0 · · · 0 0 0 −nAdd

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ c

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 · · · 0 0 · · · 0
0 1

n 0 0 0 · · · 0
... 0

. . . 0 0 · · · 0
0 0 0 1

n 0 · · · 0
0 0 · · · 0 1 · · · 0
... 0 · · · 0 0

. . . 0
0 0 · · · 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is positive semidefinite.

Proof We use symmetry reduction technique of [3,11]. Let V be the vector space of
linear polynomials in d ·n variables xi = (ξi,1, . . . , ξi,d), i = 1, . . . n. The symmetric
group Sn acts on V by permuting the vectors xi , or equivalently Sn permutes n groups
of αth coordinates, ξi,α . Recall that irreducible Sn-modules are indexed by partitions
of n. For more background on representation theory of Sn see [33].

It is not hard to see that V decomposes as follows into irreducible Sn-modules:

V = (d + 1)S(n) ⊕ dS(n−1,1).

The Sn-invariant part of V corresponding to the partition (n) is spanned by poly-
nomials 1 and sα for α = 1, . . . , d. For the partition (n − 1, 1) we can split the
isotypic component into d irreducible modules by considering for fixed α = 1, . . . , d
polynomials of the form
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n∑

i=1

ciξi,α with
∑

ci = 0.

Wepick d isomorphic representatives fα = nξ1,α −sα , i.e. these polynomials generate
the above irreducible modules, and can be mapped to each other under Sn-equivariant
maps.

Define polynomials pαβ = ∑n
i=1 ξi,αξi,β and qαβ = ∑

1≤i< j≤n ξi,αξ j,β , as well

as pαα =∑n
i=1 ξ2i,α . We will use sym to denote the Reynolds operator :

sym f = 1

n!
∑

σ∈Sn
σ( f ).

We observe that

sym

(
d∑

α=1

λα(1 − pα(x))

)

= λ1 + · · · + λd

n

(

n −
d∑

α=1

pαα

)

.

Now consider (d + 1) × (d + 1) matrix S given Sα,β = sym sαsβ with s0 = 1, and
d × d matrix F given by Fα,β = sym fα fβ . The symmetry reduction procedure tells
us that p ∈ �n,d if and only if there exist positive semidefinite symmetric matrices
G, H and c ≥ 0 such that

p = 〈S,G〉 + 〈F, H〉 + c

(

n −
d∑

α=1

pαα

)

.

Further examining matrices S and F , we have for α 
= β

sαsβ = pαβ + qαβ and sym fα fβ = 1

n − 1
qαβ − pαβ,

while

sym s2α = sαα + pαα and sym f 2α = n2 sym ξ21,α − s2α = npαα − s2α
= (n − 1)pαα − sαα.

We observe that in order to obtain p of the given form the coefficients of pαβ and qαβ

must cancel. However this can only happen if the corresponding entries in G and H
matrices are zero. Therefore we see that H is a diagonal matrix and G has non-zero
off-diagonal entries only in the first row and column.
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Let

G =

⎡

⎢
⎢
⎢
⎣

g0
1
2g1 · · · 1

2gd
1
2g1 g11 0 0
... 0

. . . 0
1
2gd 0 0 gdd

⎤

⎥
⎥
⎥
⎦

,

and H be a diagonal matrix with entries hαα . We now observe that p has a potentially
non-zero coefficient of pαα forα = 1, . . . , d. This coefficientmay be canceled only by
using n −∑d

α=1 pαα . Therefore the coefficient c must satisfy c = gαα + (n − 1)hαα ,
α = 1, . . . d. Solving for hαα we get hαα = c−gαα

n−1 , with the additional restriction
c ≥ gαα , since hαα ≥ 0.

By examining p = 〈S,G〉 + 〈F, H〉 + c(n −∑d
α=1 pαα), we see that

A0 = cn + g0, Aα = gα Aαα =
(
ngαα

n − 1
− c

n − 1

)

with c ≥ gαα.

Solving for g’s we get g0 = A0 − cn, gα = Aα and gαα = n−1
n Aαα + c

n . The
condition c ≥ gαα can be rewritten as c ≥ Aαα . Therefore p is a sum of squares if
and only there exists c ≥ 0 and c ≥ Aαα , α = 1, . . . , d such that the following matrix
is positive semidefinite:

⎡

⎢
⎢
⎢
⎣

A0
1
2 A1 · · · 1

2 Ad
1
2 A1

n−1
n A11 0 0

... 0
. . . 0

1
2 Ad 0 0 n−1

n Add

⎤

⎥
⎥
⎥
⎦

+ c

⎡

⎢
⎢
⎢
⎣

−n 0 · · · 0
0 1

n 0 0
... 0

. . . 0
0 0 0 1

n .

⎤

⎥
⎥
⎥
⎦

We incorporate condition c ≥ Aαα by enlarging the matrices so that the following
matrix is positive semidefinite for some c ≥ 0:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0
1
2 A1 · · · 1

2 Ad 0 · · · 0
1
2 A1

n−1
n A11 0 0 0 · · · 0

... 0
. . . 0 0 · · · 0

1
2 Ad 0 0 n−1

n Add 0 · · · 0
0 0 · · · 0 −A11 · · · 0
... 0 · · · 0 0

. . . 0
0 0 · · · 0 0 0 −Add

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ c

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−n 0 · · · 0 0 · · · 0
0 1

n 0 0 0 · · · 0
... 0

. . . 0 0 · · · 0
0 0 0 1

n 0 · · · 0
0 0 · · · 0 1 · · · 0
... 0 · · · 0 0

. . . 0
0 0 · · · 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We can multiply the above sum on both sides by a diagonal matrix with diagonal
(1,

√
n, . . . ,

√
n) to see that p ∈ �n,d if and only if there exists c ≥ 0 such that the
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following matrix is positive semidefinite:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0

√
n
2 A1 · · ·

√
n
2 Ad 0 · · · 0√

n
2 A1 (n − 1)A11 0 0 0 · · · 0
... 0

. . . 0 0 · · · 0√
n
2 Ad 0 0 (n − 1)Add 0 · · · 0
0 0 · · · 0 −nA11 · · · 0
... 0 · · · 0 0

. . . 0
0 0 · · · 0 0 0 −nAdd

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ c

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−n 0 · · · 0 0 · · · 0
0 1 0 0 0 · · · 0
... 0

. . . 0 0 · · · 0
0 0 0 1 0 · · · 0
0 0 · · · 0 n · · · 0
... 0 · · · 0 0

. . . 0
0 0 · · · 0 0 0 n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The Theorem now follows from the Remark 3.3 with c in the Remark replaced
by nc. ��

In the following, we prove that the sufficient condition for membership in Pn,d

provided by �n,d is asymptotically necessary, following the same line of arguments
as before. We define �′

n,d , by expanding �n,d :

�′
n,d = {(A0, Aα, Aαα) :

(
n

n − 1
A0, Aα, Aαα

)

∈ �n,d}

We show in Theorem 3.5 that, Pn,d ⊆ �′
n,d which provides a sufficient condition for

membership in Pn,d . To prove this theorem, we need a technical lemma, which we
prove at the end of this section:

Lemma 3.4 Let n ∈ N and X = (X1, . . . , Xd) ∈ R
d such that ||X ||2 = X2

1 + · · · +
X2
d ≤ n. There exists x = (x1, . . . , xn) ∈ Kd

n with xi = (ξi,1, . . . , ξi,d) such that:

n∑

i=1

ξi,α√
n

= Xα for α = 1, 2, . . . , d

n∑

i=1

ξ2i,α

n
− X2

α

n
= 0 for α = 1, 2, . . . , d − 1

∣
∣
∣
∣
∣

(
n∑

i=1

ξ2i,d

n
− X2

d

n

)

−
(

1 − ||X ||2
n

)∣∣
∣
∣
∣
≤ 1

n

We are now ready to state and prove our main result of this section.

Theorem 3.5 �n,d ⊆ Pn,d ⊆ �′
n,d

Proof The first inclusion is immediate. To show the second inclusion, let Q =
(A0, Aα, Aαα) ∈ Pn,d . Recall that the polynomial PQ(X ,Y ) was defined as

PQ(X ,Y ) = A0 +
d∑

α=1

√
nAαXα + (n − 1)

d∑

α=1

AααX
2
α − n

d∑

α=1

AααY
2
α .

123

Author's personal copy



G. Blekherman, B. H. Madhusudhana

In order to show that PQ + n
n−1 A0 ≥ 0 whenever ||Y ||2+ 1

n ||X ||2 ≤ 1, we pick a point
(X ,Y ) that satisfies the latter condition, and approximate it using x = (x1, . . . , xn)
with the help of Lemma 3.4.

If Aαα ≤ 0 for all 1 ≤ α ≤ d, then we choose x = (x1, . . . , xn) with xi = X√
n
for

all 1 ≤ i ≤ n. The condition ||Y ||2 + 1
n ||X ||2 ≤ 1 ensures that x ∈ Kd

n . It follows
now that

PQ(X ,Y ) ≥ A0 + √
n

d∑

α=1

AαXα + (n − 1)
d∑

α=1

AααX
2
α = Q(x) ≥ 0

The last inequality follows since Q(x) ∈ Pn,d .
If Aαα > 0 for at least one α, we assume without loss of generality that Add ≥ Aαα

for α = 1, 2, . . . d − 1. It also follows that Add > 0. Clearly,

PQ(X ,Y ) ≥ A0 + √
n

d∑

α=1

AαXα + (n − 1)
d∑

α=1

AααX
2
α − nAdd

(

1 − ||X ||2
n

)

(4)

We now use Lemma 3.4 to pick x′ = (x′
1, . . . , x′

n) such that

X ′
α =

n∑

i=1

ξi,α√
n

= Xα for sα = 1, 2, . . . , d

(Y ′
α)2 =

n∑

i=1

ξ2i,α

n
− X2

α

n
= 0 for α = 1, 2, . . . , d − 1

∣
∣
∣
∣(Y

′
d)

2 −
(

1 − ||X ||2
n

)∣∣
∣
∣ =

∣
∣
∣
∣
∣

(
n∑

i=1

ξ2i,d

n
− X2

d

n

)

−
(

1 − ||X ||2
n

)∣∣
∣
∣
∣
≤ 1

n
.

The above equations enable us to evaluate Q(x′) and we thus obtain

Q(x′) = A0 + √
n

d∑

α=1

AαXα + (n − 1)
d∑

α=1

AααX
2
α − nAdd(Y

′
d)

2 ≥ 0

Finally using Eq. (4), we obtain

PQ(X ,Y ) + Add ≥ Q(x′) ≥ 0

It follows from the d = 1 case that Add ≤ A0
n−1 and therefore, PQ + A0

n−1 ≥ 0 whenever
Q ∈ Pn,d . ��
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Remark 3.6 It follows from Remark 3.3 that (A0, A1, . . . Ad , A11, . . . Add) ∈ �′
n,d if

and only if there exists c ≥ 0 such that

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n
n−1 A0

√
n
2 A1 · · ·

√
n
2 Ad 0 · · · 0√

n
2 A1 (n − 1)A11 0 0 0 · · · 0
... 0

. . . 0 0 · · · 0√
n
2 Ad 0 0 (n − 1)Add 0 · · · 0
0 0 · · · 0 −nA11 · · · 0
... 0 · · · 0 0

. . . 0
0 0 · · · 0 0 0 −nAdd

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+c

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 · · · 0 0 · · · 0
0 1

n 0 0 0 · · · 0
... 0

. . . 0 0 · · · 0
0 0 0 1

n 0 · · · 0
0 0 · · · 0 1 · · · 0
... 0 · · · 0 0

. . . 0
0 0 · · · 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is positive semidefinite.

We now prove Lemma 3.4.

Proof of Lemma 3.4 We construct a point x ∈ Kd
n with the claimed properties. Let

xi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
X1√
n
, X2√

n
, . . .

Xd−1√
n

,

√

1 −∑d−1
α=1

(
Xα√
n

)2
)

for i = 1, 2, . . . k
(

X1√
n
, X2√

n
, . . .

Xd−1√
n

,−
√

1 −∑d−1
α=1

(
Xα√
n

)2
)

for i = k + 1, k + 2, . . . n − 1
(

X1√
n
, X2√

n
, . . .

Xd−1√
n

, z
)
for i = n

We make an appropriate choice of k and z in the following. We first observe that

√√
√
√1 −

d−1∑

α=1

(
Xα√
n

)2

≥ |Xd |√
n

Each ξi,d is equal to±
√

1 −∑d−1
α=1

(
Xα√
n

)2
we may choose k of them with the positive

sign so that the sum of all the ξi,d ’s is closest to
√
nXd . That is,

∣
∣
∣
∣
∣

√
nXd −

n−1∑

i=1

ξi,d

∣
∣
∣
∣
∣
≤
√√
√
√1 −

d−1∑

α=1

(
Xα√
n

)2

≤ 1

123

Author's personal copy



G. Blekherman, B. H. Madhusudhana

Let us now set z =
(√

nXd −∑n−1
i=1 ξi,d

)
. It follows from the above inequality

that this is a valid choice for a point on Kd
n . It also follows that

∑
i x

α
i√

n
= Xα for

α = 1, 2, . . . , d. It remains to show the last inequality in the lemma. Explicitly,

∑
i ξ

2
i,d

n
−
(
∑

i

ξi,d

n

)2

=
(

1 − 1

n
||X ||2

)

− 1

n

(
1 − ||xn||2

)
.

��

4 Necessary and sufficient criteria for moments

In this section, using the cones �n,d and �′
n,d , we develop a necessary condition and

a sufficient condition for membership of a vector (z0, z1, . . . , zd , z11, z22, . . . , zdd) in
the moment cone Cn,d . We also show that these two conditions approach each other,
i.e., the necessary condition is asymptotically sufficient and the sufficient condition is
asymptotically necessary.

Let us also define (�
′
n,d)

∗ as the dual of �′
n,d . It follows from Theorem 3.5 that

�∗
n,d ⊇ Cn,d ⊇ (�

′
n,d)

∗

Thus, membership in �∗
n,d is a necessary condition and membership in (�

′
n,d)

∗ is a
sufficient condition for membership in Cn,d . In the following we develop inequality
criteria to check for membership in these two cones, expressed as Linear Matrix
Inequalities (LMI).

4.1 Dualizing sum of squares cones

Recall from Remark 3.3 that the cone �n,d can be characterized as (A0, Aα, Aαα) ∈
�n,d if and only if there exists c ∈ R such the followingmatrix is positive semidefinite

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0 − c
√
n
2 A1 · · ·

√
n
2 Ad 0 · · · 0 0√

n
2 A1 (n − 1)A11 + c

n 0 0 0 · · · 0 0
... 0

. . . 0 0 · · · 0 0√
n
2 Ad 0 0 (n − 1)Add + c

n 0 · · · 0 0
0 0 · · · 0 −nA11 + c · · · 0 0
... 0 · · · 0 0

. . . 0 0
0 0 · · · 0 0 0 −nAdd + c 0
0 0 · · · 0 0 0 0 c

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Here the condition c ≥ 0 has been absorbed into the last row and column. We
observe that we can write

M = cD + A0M0 +
d∑

α=1

AαMα +
d∑

α=1

AααMαα, M � 0,

where matrices D, Mα and Mαα are the coefficient matrices, whose entries depend
on n. Standard semidefinite programming duality [2, Chapter 1] tells us that the dual
cone of �n,d is given by: �∗

n,d is the set of all points (z0, z1, . . . , zd , z11, . . . , zdd)
such that there exists a positive semidefinite (2d + 2) × (2d + 2) matrix X such that

〈D, X〉 = 0, 〈M0, X〉 = z0, 〈Mα, X〉 = zα, 〈Mαα, X〉 = zαα.

Here 〈A, B〉 is the standard trace inner product 〈A, B〉 = trace AB. By simi-
lar considerations and Remark 3.6 the dual cone of �′

n,d is the set of all points
(z0, z1, . . . , zd , z11, . . . , zdd) such that there exists a positive semidefinite (2d + 2)×
(2d + 2) matrix X satisfying

〈D, X〉 = 0,
n

n − 1
〈M0, X〉 = z0, 〈Mα, X〉 = zα, 〈Mαα, X〉 = zαα.

Therefore we obtain the following characterization of Cn,d :

Theorem 4.1 A vector (z0, z1, . . . , zd , z11, z22, . . . , zdd) lies in Cn,d if there exists a
positive semidefinite matrix X and such that:

〈D, X〉 = 0,
n

n − 1
〈M0, X〉 = z0, 〈Mα, X〉 = zα, 〈Mαα, X〉 = zαα.

Moreover, if there doesn’t exist a positive semidefinite matrix X such that:

〈D, X〉 = 0, 〈M0, X〉 = z0, 〈Mα, X〉 = zα, 〈Mαα, X〉 = zαα,

then (z0, z1, . . . , zd , z11, z22, . . . , zdd) /∈ Cn,d .

Analyzing this formulation further and applying Schur complement [41], the above
conditions can be expressed as a set of 2d algebraic inequalities giving necessary and
sufficient conditions for membership in Cn,d , which asymptotically converge.

Theorem 4.2 A non-zero vector (z0, z1, . . . , zd , z11, z22, . . . , zdd) lies in Cn,d if z0 >

0 and

d∑

α=1

max

{
z0zαα

n
,
z2α
n

}

≤ z20

(
n − 1

n

)2

+
d∑

α=1

(n − 1)z0zαα

n2
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Moreover, if the inequalities below are violated:

z0 > 0 and
d∑

α=1

max

{
z0zαα

n − 1
,
z2α
n

}

≤ z20 +
d∑

α=1

z0zαα

n

Then a non-zero vector (z0, z1, . . . , zd , z11, z22, . . . , zdd) /∈ Cn,d .

Proof We may write a (2d + 2) × (2d + 2) matrix X that satisfies 〈M0, X〉 =
z0, 〈Mα, X〉 = zα and 〈Mαα, X〉 = zαα as

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z0
1√
n
z1 · · · 1√

n
zd 0 · · · 0 0

1√
n
z1 x11 · · · x1d 0 · · · 0 0

...
...

. . .
...

...
...

...
...

1√
n
zd x1d · · · xdd 0 0 0 0

0 0 · · · 0 n−1
n x11 − 1

n z11 0 0 0
...

... · · · ...
...

. . .
...

...

0 0 · · · 0 0 · · · n−1
n xdd − 1

n zdd 0
0 0 · · · 0 0 · · · 0 x0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Note that all the off-diagonal entries that can be chosen to be zero without disturbing
the condition X � 0 have been chosen to be zero. The final equation, 〈X , D〉 = 0
eliminates the variable x0 i.e., x0−z0+∑ xαα− 1

n

∑
zαα = 0.The numbers z0, zα, zαα

are moments only if the numbers xi j can be chosen that the matrix X is positive
semidefinite. We list down the constraints on xi j . Positive semidefiniteness of the
lower (d + 1) × (d + 1) block yields the following inequalities, the last of which is
an upper bound on

∑
xαα and the rest are lower bounds on xαα:

xαα ≥ 1

n − 1
zαα, for α = 1, . . . , d

∑
xαα ≤ z0 + 1

n

∑
zαα.

The above inequalities imply that

1

n(n − 1)

∑
zαα ≤ z0, and z0 + 1

n

∑
zαα ≥ 0.

Additionally we know that xαα ≥ 0 for 1 ≤ α ≤ d. If z0 = 0, then it is clear that
zα = 0 for α = 1, . . . , d, and the above inequalities taken together imply that if
z0 = 0, then zαα = 0 for α = 1, . . . , d. Therefore we may assume that z0 > 0.

Taking Schur complement with respect to z0 ( [41]) of the top (d + 1) × (d + 1)
block, we see that X � 0 if and only if :

z0 X̃ − 1

n
zzT � 0.
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Here, X̃ is the d × d block containing the variables xi j for i, j = 1, . . . , d and z is
the vector (z1, . . . , zd). We may now choose the off-diagonals of X̃ , xi j , for i 
= j so
that the off-diagonals of z0 X̃ − 1

n zz
T are all zero. That leaves us with the inequalities

that come from the non-negativity of the diagonal elements, providing d more upper
bounds on xαα:

xααz0 ≥ z2α
n

, for α = 1, . . . , d

We thus have two lower bounds each on x11, . . . , xdd , which are the only remaining
variables.We also have one upper bound on

∑
xαα .We can noweliminate the variables

xαα by setting the upper bound higher than every lower bound on
∑

xαα . There are
2d different lower bounds on

∑
xαα , coming from two lower bounds each on xαα .

Thus, after eliminating these variables, we are left with the following conditions, that
together form a necessary condition for membership in Cn,d :

z0 > 0 and
d∑

α=1

max

{
z0zαα

n − 1
,
z2α
n

}

≤ z20 +
d∑

α=1

z0zαα

n

For sufficient conditions we replace z0 by n−1
n z0 in the above inequality:

z0 > 0 and
d∑

α=1

max

{
z0zαα

n
,
z2α
n

}

≤ (n − 1)2

n2
z20 +

d∑

α=1

(n − 1)z0zαα

n2
.

��
Remark 4.3 The above inequalities can be naturally written in rescaled moment coor-
dinates z̃α = zα√

n
and z̃αα = zαα

n as:

z0 > 0 and
d∑

α=1

max

{
n

n − 1
z0 z̃αα, z̃2α

}

≤ z20 +
d∑

α=1

z0 z̃αα,

for necessary conditions and:

z0 > 0 and
d∑

α=1

max
{
z0 z̃αα, z̃2α

}
≤ (n − 1)2

n2
z20 + n − 1

n

d∑

α=1

z0 z̃αα,

for sufficient conditions.
We observe that that as n approaches infinity the necessary and sufficient condi-

tions approach each other, and in the (large particle) limit the cone Cn,d is given by
inequalities:

z0 > 0 and
d∑

α=1

max
{
z0 z̃αα, z̃2α

}
≤ z20 +

d∑

α=1

z0 z̃αα.
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Example 4.4 Examining the above limit for d = 1 we see that the limit of the cones
Cn,1 is characterized is given by inequalities:

z0 > 0, z̃21 ≤ z0(z0 + z̃11).

Thus the cone Cn,1 is dual (up to closure) to the characterization of the limit of
the cones Pn,1 given in Eq. (3) of Sect. 3.1, since the above inequalities characterize
positive semidefiniteness of the matrix

[
z0 + z̃11 z̃1

z̃1 z0

]

,

up to closure.

The above results generalize conditions on moments found in [37]. In the next section,
we show how the above equations reduce to the one found in [37] under the appropriate
constraints.

5 A physical example

As an example, we consider the case d = 3 and use the conditions of Theorem 4.2
to define a semialgebraic set of moments contained in the set of moments which
have a representing measure. Let z0, z1, z2, z3, z11, z22, z33 be a set of numbers. From
Theorem 4.2 the necessary conditions for membership in Cn,3 are given by z0 > 0
and the following eight inequalities:

z21
n

+ z22
n

+ z23
n

≤ z20 + z11z0
n

+ z22z0
n

+ z33z0
n

z21
n

+ z22
n

+ z33z0
n − 1

≤ z20 + z11z0
n

+ z22z0
n

+ z33z0
n

z21
n

+ z22z0
n − 1

+ z23
n

≤ z20 + z11z0
n

+ z22z0
n

+ z33z0
n

z21
n

+ z22z0
n − 1

+ z33z0
n − 1

≤ z20 + z11z0
n

+ z22z0
n

+ z33z0
n

z11z0
n − 1

+ z22
n

+ z23
n

≤ z20 + z11z0
n

+ z22z0
n

+ z33z0
n

z11z0
n − 1

+ z22
n

+ z33z0
n − 1

≤ z20 + z11z0
n

+ z22z0
n

+ z33z0
n

z11z0
n − 1

+ z22z0
n − 1

+ z23
n

≤ z20 + z11z0
n

+ z22z0
n

+ z33z0
n

z11z0
n − 1

+ z22z0
n − 1

+ z33z0
n − 1

≤ z20 + z11z0
n

+ z22z0
n

+ z33z0
n

(5)
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In the language of spins, as used in [7], the moments can be expressed in terms of the
spin expectation values as

z1 = 2〈Jx 〉
z2 = 2〈Jy〉
z3 = 2〈Jz〉
z11 = 4〈J 2x 〉 − n

z22 = 4〈J 2y 〉 − n

z33 = 4〈J 2z 〉 − n

The first of the conditions (5) reads 2
J 2x + 2
J 2y + 2
J 2z ≥ n where 
J 2x =
〈J 2x 〉 − 〈Jx 〉2. The last one reads 4〈J 2x 〉 + 4〈J 2y 〉 + 4〈J 2z 〉 ≤ n(n + 2). These two
conditions are trivial, i.e., satisfied by all quantum states, including entangled states.
The remaining six inequalities can be viewed as two sets of permutatively related
related inequalities:

4(n − 1)(
J 2y + 
J 2z ) ≥ n(n − 2) + 4〈J 2x 〉,
4(n − 1)(
J 2x + 
J 2z ) ≥ n(n − 2) + 4〈J 2y 〉,
4(n − 1)(
J 2y + 
J 2x ) ≥ n(n − 2) + 4〈J 2z 〉,

and

4(n − 1)
J 2x ≥ 4(〈J 2y 〉 + 〈J 2z 〉) − 2n

4(n − 1)
J 2y ≥ 4(〈J 2x 〉 + 〈J 2z 〉) − 2n

4(n − 1)
J 2z ≥ 4(〈J 2y 〉 + 〈J 2x 〉) − 2n

This is a set of necessary conditions for non-entanglement, which appeared in [37].
Violation of at least one of the above inequalities is sufficient for entanglement. The
necessary conditions for entanglement are obtained by the violation of the sufficient
conditions for membership in the moment cone, which are given by replacing z0 by
n−1
n z0. The resulting conditions can also be arranged with regards to permutative

relations:

4(n − 1)(
J 2y + 
J 2z ) ≥ n2 − n − 1 + 4(〈J 2x 〉 + 〈Jy〉2 + 〈Jz〉2),
4(n − 1)(
J 2x + 
J 2z ) ≥ n2 − n − 1 + 4(〈J 2y 〉 + 〈Jx 〉2 + 〈Jz〉2),
4(n − 1)(
J 2y + 
J 2x ) ≥ n2 − n − 1 + 4(〈J 2z 〉 + 〈Jy〉2 + 〈Jx 〉2),

And
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4(n − 1)
J 2x ≥ 4(〈J 2y 〉 + 〈J 2z 〉 + 〈Jx 〉2) − (n + 1),

4(n − 1)
J 2y ≥ 4(〈J 2x 〉 + 〈J 2z 〉 + 〈Jy〉2) − (n + 1),

4(n − 1)
J 2z ≥ 4(〈J 2y 〉 + 〈J 2x 〉 + 〈Jz〉2) − (n + 1).

In conclusion, the relation between entanglement and real algebraic geometry and
the method presented in this paper are quite general and can be used to develop
entanglement criteria for other settings of many-body systems [38]. For instance one
can consider other physically relevant symmetries of the measure such as a system
with 2n atoms with an Sn × Sn symmetry, also known as mode-split entanglement
[18].
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