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Abstract

Quantum states are represented by positive semidefinite Hermitian operators with unit
trace, known as density matrices. An important subset of quantum states is that of sep-
arable states, the complement of which is the subset of enfangled states. We show that
the problem of deciding whether a quantum state is entangled can be seen as a moment
problem in real analysis. Only a small number of such moments are accessible exper-
imentally, and so in practice the question of quantum entanglement of a many-body
system (e.g, a system consisting of several atoms) can be reduced to a truncated moment
problem. By considering quantum entanglement of n identical atoms we arrive at the
truncated moment problem defined for symmetric measures over a product of n copies
of unit balls in R?. We work with moments up to degree 2 only, since these are most
readily available experimentally. We derive necessary and sufficient conditions for
belonging to the moment cone, which can be expressed via a linear matrix inequality
of size at most 2d + 2, which is independent of n. The linear matrix inequalities can be
converted into a set of explicit semialgebraic inequalities giving necessary and suffi-
cient conditions for membership in the moment cone, and show that the two conditions
approach each other in the limit of large n. The inequalities are derived via consider-
ing the dual cone of nonnegative polynomials, and its sum-of-squares relaxation. We
show that the sum-of-squares relaxation of the dual cone is asymptotically exact, and
using symmetry reduction techniques (Blekherman and Riener: Symmetric nonnega-
tive forms and sums of squares. arXiv:1205.3102, 2012; Gatermann and Parrilo: J Pure
Appl Algebra 192(1-3):95-128. https://doi.org/10.1016/j.jpaa.2003.12.011, 2004), it
can be written as a small linear matrix inequality of size at most 2d + 2, which is inde-
pendent of n. For the cone of symmetric nonnegative polynomials with the relevant
support we also prove an analogue of the half-degree principle for globally nonnegative
symmetric polynomials (Riener: J Pure Appl Algebra 216(4): 850-856. https://doi.
org/10.1016/j.jpaa.2011.08.012, 2012; Timofte: J Math Anal Appl 284(1):174-190.
https://doi.org/10.1016/S0022-247X(03)00301-9, 2003).
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1 Introduction

We consider a problem that lies in the intersection of real analysis, real algebraic
geometry and quantum entanglement. We begin with a brief introduction to quantum
entanglement, explaining how it is related to real analysis and algebraic geometry. We
then define and motivate the problem considered in this paper.

In quantum mechanics, the state of a physical system is represented by a density
matrix, which is, by definition, a positive semi-definite, Hermitian operator with trace
one. As a convention, we drop the trace condition so that the space of density matrices
is a convex cone. Since any positive semidefinite matrix can be rescaled to have trace
one, this does not affect the results of the paper. Let 7, be the convex cone of all positive
semi-definite Hermitian operators acting on C". By our convention, an element of 7},
can be rescaled to an n x n density matrix. Physical systems that correspond to n = 2
are known as qubits.

A natural way to construct larger density matrices is by using tensor products. In
physics this corresponds to combining several subsystems into a large system. As
an example, we will consider a system with two subsystems represented by density
operators in T, and T,, respectively. The tensor product gives amap T, x T;, = Tpun,
where p1 € Ty, and py € T, are mapped to p1 @ p2 € T, for m, n € N. A convex
subset 2, of Ty, is generated by the conical hull of the image of this map:

Qun = conical.hull{p; ® p2 : p1 € T, p2 € Tp,}.

An element p € €2, can be obtained from a measure w over 7,, x T, via
p= f T, %T, P1OP2 d . The density matrices in 7,, are states of an m-dimensional sys-
tem; the density matrices in 7}, are states of an n-dimensional system, and the density
matrices in T}, are states of the composite of the two systems. The subset €2,,,, C Ty,
consists of separable states. That is, a density matrix in €2,,, represents a separable
state and a density matrix in Ty, \ $2,,, represents an inseparable state, also known as
an entangled state of the two subsystems. While the notion of quantum non-locality
[27,40] is different from inseparability, the latter is used synonymously with entan-
glement (see for instance, the recent review [17]). Quantum entanglement is not only
fundamental to quantum physics, it also has applications in quantum communications,
quantum metrology and quantum computation [17].

One of the basic problems in quantum entanglement is the characterization of the
cone 2,,,. In the special case of rank-1 density matrices, also known as pure states,
this problem has a complete solution [9]. The mn elements of the vector in the range
of arank-1 matrix p € T, can be written as a m x n matrix in a natural way. p €
iff this matrix also has rank-1. The general problem of deciding whether an element
p € Ty is in 2y, has been shown to be NP-hard in the complexity parameter
mn [14]. However, several special instances of this problem can be solved exactly.
When m = 2,n = 2 and when m = 2,n = 3, the cone 2,,, has been completely
characterized [16,26], using positive partial transpose criterion. The general case of
larger dimensions, or greater number of subsystems, is open, although there are a
number of partial results [6,13,21,31,35,39].
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Our approach is to convert the study of quantum entanglement into a truncated
moment problem. The relation between quantum entanglement and the truncated
moment problem has been recognised rather recently [4,8,23] and therefore, the full
potential of the state of the art in the truncated moment problem has not been utilized to
address the entanglement problem. The elements of p € 2,,, are quadratic moments
of a measure over 7, x T,, where each quadratic monomial has one variable from
T, and one variable from 7,,. Therefore, characterizing the cone €2,,, can be viewed
as a truncated moment problem. In fact, this equivalence between deciding whether a
quantum state is entangled and a truncated moment problem generalizes to quantum
systems with arbitrary number of subsystems. Although quantum entanglement has
been studied extensively over the past few decades, this formulation, which allows
us to bring in the tools of real algebraic geometry, has not been sufficiently explored.
In this work, we consider a class of truncated moment problems that arise from the
study of quantum entanglement and show that the resulting criteria on entanglement
are stronger than the existing ones.

The most commonly studied physical system is the so-called “two-level system”
or a “qubit”, described by a density matrix in 7,. Theoretically, this is the simplest
non-trivial example of quantum mechanical systems, and experimentally, there have
been several platforms to realize such systems including trapped atoms, photons, and
circuit QED systems. Therefore, we consider a truncated moment problem that arises
from the study of entanglement in a system consisting of n subsystems, each described
by a density matrix in 7>. The space of all density matrices of the composite system
is To». The subspace of separable states is

Qon = conical.hull{p; ® 2 ® --- ® pu : pi € T2}

From the above discussion we see that £2,» is a moment cone of measures defined over
T» x --- x T, where we take degree n moments, and each moment monomial has one
variable from the coordinates of each 7. We observe that 7> has a simple description:
any self-adjoint 2 x 2 complex matrix can be written as

_(w+z x—iy

o (x +iy w-—z ) ’
for x,y,z, w € R and w > 0. The positive semidefiniteness condition is given by
w? —x2— y2 —72>0.Dueto multilinearity of tensors, we may restrict ourselves to
measures defined on the compact section 75 of 7> with the hyperplane w = 1. We see
from above that 75 is D3, the closed unit ball in R? also known as the Bloch sphere.
Since we dehomogenized by setting w = 1 we now consider moments up to degree
n on T2”, where each moment monomial has at most 1 variable from the coordinates
of each fz. Therefore, 257 is a moment cone of such moments for measures defined
over the space K} = D3 x --- x D3,

There are two characteristics of a real physical situation that simplify this problem.
First, in a laboratory, not every element of a density matrix p € T»» can be retrieved.
Therefore, the decision of whether p can be in 27» has to be made based on a subset of
the elements of p. In other words, the problem requires characterization of a projection
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of the cone of moments over K ;f, usually consisting of very few moments. We do not
consider the characterization of the cone £2,» here; instead, we consider the charac-
terization of its projection. That is, corresponding to a linear space L, we consider the
decision problem of deciding whether a point in I1 (7») is in 17 (€227). The linear
space L is defined by taking all the relevant quadratic moments, since these are most
readily measured in the lab [15,32]. And secondly, the atoms used in such experiments
are called bosons, meaning, they possess an exchange symmetry. That is, the density
matrix p is invariant under the action of the symmetric group S,,, which permutes the
atoms, and so is any measure p that generates the density matrices in 2». Therefore,
the problem is to characterize the moment cone of symmetric measures defined over
K>

We now consider a generalized version of the above problem in physics. In particular
we use D? instead of D3, although the structure is not physically relevant for any value
of d other than 3.

1.1 Problem statement and results

Let D¢ ¢ R< be the closed unit ball in a d dimensional real vector space. That is,
DY ={v: veR? |v|| <1}. We define K,‘f as the product of n such unit balls:

Kj:Ddx'--deC]R"d.

Pointsin K ff can be represented by a n-tuple of d-dimensional vectors (vi, V2, ..., Vj),
where, v; = (v 1,Vi2...Vi4) € D4 The symmetric group S, (i.e., the group of all
permutations of the set {1,2,...,n}) acts on K ,‘f by permuting the vectors v;. For
o € §,, its action on Kff isgivenby o o (vi, V2, ..., V) = (Vo (1), Vo (2)s - - - » Vo))
We refer to a measure u defined on K ,‘f as a symmetric measure if it is invariant under
the action of . That is, if A C K¢,

HW(A) =u(coA), Yo € 85,.

In this work, we consider the truncated K-moment problem for symmetric measures
over K. Moments of symmetric measures are also invariant under coordinate permu-
tations.

Let V, 4 the vector space of real square-free polynomials in d - n variables
X1, ..., Xn, Xi = (.1, ..., & 4) which is spanned by the following symmetric poly-
nomials:

n
Su=) &g 1<a<d and Sea=Y Eiokjo 1 <a<d
i=1 i)

A polynomial Q in V), 4 can be uniquely written as

d d
O(x) = A9+ ZAasa + Z AgaSaa-
a=1 a=1
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The dimension of V,, 4 is therefore 2d + 1. This choice of basis polynomials s, and
Sqq 18 dictated by the underlying physics. The moments are symmetric because the
particles are bosons, possessing exchange symmetry, they are square-free since tensor
product of different vector spaces only include multilinear (or square-free) monomials,
and we only look at quadratic moments because the corresponding moments can be
measured in a laboratory [15,32].

We sometimes refer to polynomials in V), 4 by the (2d 4 1)-tuple of coefficients
(Ao, Ay, Aaa)-

We use m, mg and myq to denote the corresponding moments:

mo:/ ldp, mg Z/ Sedpt, Myy Z/ Soa AL
Kkd K4 K4

n

The moment sequence B, = (o, Mg, Mqq) lies in R24+!. We define C, 4 C R>+!
to be the set of all moment sequence coming from measures on K ,‘f . Since the product
of the unit balls K ,f is compact, it follows that C, 4 is a closed convex cone (cf. [2,
Exercise 4.17]).

The dual cone of C, 4 is the cone P, 4 of symmetric polynomials in V,, 4 nonneg-
ative on K ,’f : [2, Chapter 4].

Pod = [Q €Vpa: Ox) =0forallx e K;j}.

We consider the problem of characterizing the cones Cy, 4 and P, 4. Our main result
are four explicit Linear Matrix Inequalities (LMI) of size 2d + 2, which give necessary
and sufficient conditions for belonging to C,, 4 and P, 4 (Theorems 3.2 and 3.5 for
Py.4, and Theorem 4.1 for C,, 4). The linear matrix inequalities for C, 4 and P, 4 are
dual to each other. These necessary and sufficient criteria can be seen to approach the
same limit as the number # of unit balls approaches infinity (see Remark 4.3). For the
cone C, 4 we were able to convert the linear matrix inequality into an explicit set of
24 + 1 semialgebraic inequalities describing necessary and sufficient conditions for
membership in Cy, 4.

Theorem (Theorems4.1and4.2)A non zero vector (2o, 21, - - - » Zd> 211> 222+ - - - » 2dd)
liesin Cp q if zo0 > 0 and

- 202 22 n—1\2 d (n — 1)zoz
10704 o 2 - - 10704
E max | ——, — ¢ < E —_—

a=1 a=1

Moreover, if the inequalities below are violated:

d 2 d
20< Z 202
z0 >0 and E max{ oo —“}513+E o

n—1" n n

a=1 a=1
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Then the non zero vector (2o, 21, - - -, Zd» 211, 222, - - - » Zdd) & Cn,a. Each of the above
systems of inequalities may also be expressed by a linear matrix inequality of size
2d 4 2.

conditions in the physically relevant case of d = 3 appeared in [37] in the language
of spin moments (see Sect. 5 for more details). For other related results from physics,
see [7], [34] and [38]. As we explain below the necessary conditions are obtained from
the sum-of-squares approximation to the cone P, 4. The sufficient conditions are new,
and they allow us to estimate the tightness of approximation for large n, which was
previously unknown.

We now give a more detailed description of our results. First we show that nonneg-
ativity on K,f of a polynomial Q € V,, 4, can be established by testing its values on
much smaller subset of KZ. It is easy to see that Q € V,, 4 is nonnegative on K¢ if
and only if Q is nonnegative on the product of unit spheres (S¢~')". Furthermore we
show that Q(x) > 0 for all X = (xq, ..., Xq) € (S9~1" if and only if Q(x) > 0 for
all x with at most 2d of x; distinct.

Theorem (Theorem 2.3) A polynomial Q € V), 4 is nonnegative on §d=1x ... x gd-1
if and only if Q(X1, ..., X;) is nonnegative for all sets of n points X1, ..., X, on §d-1
with at most 2d of them distinct.

The above theorem is in the spirit of the half-degree principle for globally non-
negative symmetric polynomials [29,36]. Our problem is different in two ways. First,
we are concerned here nonnegativity of polynomials over a compact subset, K ,‘f, and
second, the symmetry in our problem permutes only d-tuples of coordinates. This is a
smaller group of transformations, compared to the usual symmetric case. Symmetries
of such type have also been considered in [12], where such polynomials were called
mutlisymmetric. However our bounds are sharper than those of [12].

Secondly, we provide an asymptotically tight characterization of the cones C, 4
and P, 4 using sums of squares approximations. Fori = 1,...,n define p; = 1 —
Z?=] 512’ ;- If Q € V,, 4 can be written as

r d
0) =) G+ Y hi(l— pi(x),
i=1 i=1

where ¢; are linear polynomials and A; > 0, then Q is clearly nonnegative on K,‘f .
Define %, 4 to be the cone of such polynomials, whose nonnegativity can be certified
via sums of squares. One can view %, 4 as the first level of the Lasserre (or Sum-of
Squares) hierarchy for K,‘f [19,20,22,25]. See Sect. 1.2 for more details. We have the
inclusion:

En,d - Pn,d-

As we show in Sect. 3 the containment is already strict when d = 1. Using this,
strict containment for larger d also follows by considering polynomials with A, and
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Ay equal to O for @ > 2. For the analogous results on equality between globally
nonnegative symmetric polynomials and sums of squares see [10].

Using symmetry reduction techniques [3,11] we show that 3, 4 can be character-
ized by a linear matrix inequality (LMI), of size 2d + 2, which is independent of 7.
Now define E;;, 4 as aslightly expanded version of X, 4:

d d
n—1 n—1
2;/1,d = {(Ao, Ag, Aaa) © Ao+ " E letsoz + 0 E AaaSaa € Tn,d}-
a=

a=1

Our main result on sum of squares approximations is that the reverse inclusion
holds for X/ , and P, 4 :

Theorem (Theorem 3.5) We have the following inclusions:
En,d - Pn‘d c E;,,d‘

Moreover, both cones %, 4 and X/, , can be described by a linear matrix inequality
of size at most 2d + 2.

As the number of unit balls n grows the cones X, 4 and X , approach each other

at the rate % and therefore, they give an asymptotically exact characterization of P, 4.
Therefore sums of squares give an asymptotically tight approximation of nonnegative
polynomials. A similar result for fully symmetric globally nonnegative polynomials
of degree 4 was established in [3], and for fully symmetric even degree 6 polynomials
in [5]. Using semidefinite duality and Schur complement we derive the LMI and
semialgebraic descriptions of the cone C, 4 in Theorems 4.1 and 4.2.

1.2 Relation to previous work on Lasserre/sum of squares hierarchies

The cone Z,, 4 is simply the first level of the Lasserre or sum of squares hierarchy for
K ,‘f [19,20,22,25]. We observe that the size of the linear matrix inequalities produced
by the standard hierarchy grows with the number n of unit balls. However, after
we apply the symmetry reduction technique, we find an explicit LMI whose size is
independent of n, and depends only on.the dimension d of the unit ball. In principle,
one can use higher levels of the hierarchy to obtain a tighter inner approximation
of P, 4. Unfortunately, symmetry reduction gets quite complicated if we go above
degree 2. However, as we show, the first level of the hierarchy unexpectedly provides
an asymptotically tight approximation. We note that good behavior of low-degree sum
of squares relaxation is a subject of interest in theoretical computer science in relation
to the Unique Games Conjecture [24].

We also point out that a small LMI description does not necessarily lead to a
simple set of inequalities describing a given set. For instance, some cones of sums of
squares are known to have small LMI descriptions, but the semilagebraic inequalities
describing them have very large degree [1]. Therefore, the description of Theorem 4.2
is quite fortuitous and not guaranteed from general theory.
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The rest of the paper is structured as follows. In the next section, we present the
exact results, i.e., an analogue of the half-degree principle. In Sect. 3, we provide
the asymptotic approximation results. In Sect. 4, we dualize polynomial results to get
asymptotically tight criteria on moments. We conclude in Sect. 5 with an application
of our results to the case d = 3 and recover the necessary conditions shown in [37],
along a set of sufficient conditions.

2 Exact results

In this section, we provide an analogue of the half degree principle for the cone P, 4.
More specifically, we show that to test nonnegativity of Q € V,, 4 on K ,‘f we only need
to test that it takes nonnegative values on points X = (X1, ..., X;) on K ,‘f with at most
2d of them distinct. Observe that such points form a submanifold of K¢ of dimension
2d(d — 1), and this is independent of n, while dimension of K ff is dn. As warm-up
and illustration we start with the one-dimensional case d = 1.

2.1 One dimensional cased = 1

As a simple first step we characterize the cones C,, 1 and P, 1. The relevant unit ball is
D'=[-1,1]. A point in K,{ is represented by (xy, x2, ..., x,) where x; € [—1, 1].
Quadratic polynomial Q € V,, 1 has the form:

0 = Ao+ Ars1 + Anisir.

Note that Q has only linear terms in each variable x;. Therefore, extreme values

of QO occur when x; = =+1. In other words, O is nonnegative on K Jl if and only
if it is nonnegative on the discrete hypercube H, = {—1,+1}". For a point x =
(x1,...,x,) € H, with k entries equal to —1 and n — k entries equal to +1 we have

s1(X) =n — 2k and 511(x) = (n — 2k)2 — n. We immediately obtain the following
Proposition:

Proposition 2.1 A polynomial Q = Ao + A1s1 + A11511 € Pn,1 if and only if
Ao + Ai(n = 2k) + A ((n = 2k)* — n) = 0,

holds fork =0,1, ..., n.

Each inequality represents a side of the polygon shown in Fig. 1. The dual cone
C,.1 of moment sequences coming from measures is also a polyhedral cone defined
by n + 1 inequalities. The defining inequalities of C,, | follow from Proposition 2.1:

Corollary 2.2 A vector m = (mq, m1, m11) € Cy.1 if and only if
mon—1+m—1-2k>) —mi(n—1-2k)+my >0,

holds fork =0,1,...,n.

@ Springer



Quantum entanglement, symmetric nonnegative quadratic...

Thus, whend = 1, C,,1 and P, are both basic semi-algebraic sets, and are given by
n + 1 linear inequalities.

2.2 General dimension

When d > 1, Cy, 4 is the conical hull of a semi-algebraic set. Indeed,
Cp.¢ = ConicalHull {(1, S1X), -+, 52(X), $11(%), - . -, Saa(X)) : X € K;f} .

K ;‘f is a basic semi-algebraic set and therefore, its image under a polynomial function
is semi-algebraic. A polynomial Q € P, 4 is linear in each of its arguments and
therefore, it is nonnegative on K ,‘f if and only if it is nonnegative on its boundary,
8K§l = §971 x ... x §971 Therefore, membership of a polynomial Q in P, 4
is validated by verifying its non-negativity on an n(d — 1) dimensional manifold.
However, in theorem 2.3, we show that it suffices to verify its non-negativity on
finitely many copies (O (n*¢~1)) of a 2d(d — 1) dimensional manifold. This theorem
is an analogue of the degree principle [29,36]. See also [12] and [30] for related results.
We now state and prove the main theorem of this section:

Theorem 2.3 A polynomial Q € V, 4 is nonnegative on =1 x ..o x S if and
only if Q(X1, ...,Xy) is nonnegative for all sets of n points X1, . .., X, on S4~1 with
at most 2d of them distinct.

Proof We will prove this theorem via an application of Lagrange multipliers. Recall
that Q € Vj, 4 has the form

d
0=A)+ Z(Aasa + AgaSaa)-

a=1

Observe that polynomials Q all of whose global minima on (S?~!)" contain more than
2d distinct vectors form an open subset of V;, 4, since a sufficiently small perturbation
of a polynomial with all minima containing more than 2d distinct vectors results in a
polynomial with all minima still containing more than 2d distinct vectors. Additionally,
polynomials with all coefficients A, and A distinct also form an open subset of V, 4.
Therefore, if a counterexample to the Theorem exists, it can be chosen with A, and
Ay distinct, and thus it suffices to prove the Theorem for polynomials Q with all
coefficients A, and Ay distinct.

Let x* = (x{,...,x}) be a global minimum of O on (S?~!)" and let x} =
(&i.1,...,& 4). Since the global minimum is a critical point, it satisfies the following
Lagrange multiplier equations fore =1,...,dandi =1, ..., n:

Ay +2A00Sq (X*) = (A + 2Aaa)€i,a7
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where A; € R are the Lagrange multipliers. Note that the left-hand side of the above
equation is independent of the index i. We therefore introduce

Ry = Ag + 240050 X%), a=1,...,d.
and see that
Roz = ()\i + 2Aaa)‘§i,ot (])

We first settle the simple case when Ry = 0 for o = 1,...,d. It follows from (1)
that &; o = O unless (A; + 2Ay«) = 0. The latter can hold for at most one value of o
for any given i since the coefficients A, are distinct. Thus, &; , = 0 for all but one
value, o« = o; for which we must have &; ,, = %1, since Za (Ei’m)2 = 1. Therefore,
it follows that at most 2d of the vectors X" can be distinct.

Without loss of generality, we may now assume that Ry # 0. This also implies that
&1 #0fori =1, ..., n. Eliminating A; from Eq. (1), we see that

(R1 + 2(Aga — A11)&i,1)6i0 = Roéin (2)

Combining this together with the equations Zgzl El.za =1,weseethatr =& jisa
solution of following equation:

d d d
D Rt TT R+ 2(Awa — A1) = [[(R1 +2(Aaa — A1)1)?
=1 a#p a=1
d d
> ety = [[(RI +2(A0e — A11)1)
B=1 a=1

In other words, &; 1 is a root of the polynomial

d d d
P(t) =Y (Rgt)* [[(R1 +2(Aae — A1)1)* = [[(R1 + 2(Aew — A1D)1)?
p=1 a#p a=1

for every i. Note that the leading term of P(¢) is 1>? x R?T1¢_,4(Age — A11)? and the

constant term is —R12d. Therefore, P(t) has degree 2d, and thus &; | can take at most

2d distinct values. Next we show how a vector X;‘ can be reconstructed from &; ;.
Observe from (2) that §;  is determined by &; | as

_ Rasi,l
Ri +2(Aga — A1&i 1

";:i,oz

unless Ry + 2(Aqe — A11)&i,1 = 0 for some «. Such an o = «p, if it exists, has to
be unique for a given value of &; | since all coefficients Ay are distinct. Therefore,
if there is such an ¢ for a given root &; 1, the coordinate &; ,, is uniquely determined
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by &; 1 for all « excluding c«rg. The coordinate &; o, is determined up to a sign from
Zi: 1 Sﬁ o = 1. Therefore, every root of P(#) produces at most two distinct vectors
x;. We next show that those roots that produce two vectors are indeed double roots.

As argued above, if &; | is aroot of P () that produces two vectors then there is one
ag for which Ry + 2(Aggey — A11)&i,1 = 0 and Eq. (2) implies that Ry, = 0. With
this, we can deduce that (Ry + 2(Agga — A11)1)? divides P(¢) and therefore, i is
a double root of P (t). Therefore, a simple root of P (¢) produces a unique vector Xj,
while a multiple root of P (¢) produces at most two vectors X;. Since degree of P () is
at most 2d, it follows that at most 2d of vectors x; are distinct. O
Remark 2.4 There are (”+2nd_l) distinct ways of populating a set {xi, ..., X, } using
2d distinct points on S?~!. Therefore, this theorem reduces the search space of non-
negativity of Q from an n(d — 1) dimensional manifold to ("*>*~!) copies of a
2d(d — 1) dimensional manifold.

3 Sum of squares approximation of nonnegative polynomials

In this section, we develop an asymptotic approximation of C, 4 and its dual cone
Py,.q. We begin with the illustrative case of d = 1, where we develop the main ideas
of the proof.

3.1 Thecased =1

Although the case d = 1 has a complete solution, i.e., membership of a quadratic Q =
Ap+Ars;+Aq1s11 in P, 1 can be checked by the n 4 1 inequalities in Proposition 2.1,
it is a convenient platform to illustrate the ideas that lead us to the main result of this
section. As shown in Proposition 2.1, a quadratic Q lies in P, ; if and only if:

Ao — nAjl + JnA (”_Zk +nA n=2%Y
0 —NnA1I1 nAj nAaii =
Jn Jn

for k = 0,1, ..., n. Note that the above expression has been cast in a way that is

suggestive of introducing a new variable X to take the place of ”:[2'( and a polynomial

n

Po(X) = Ag — nA1; + /nA1 X +nAp X2

We may rewrite the above conditions as Po(X) > 0 for X = —/n,—/n +
2//n, ..., ++/n. In other words, Q € P, if and only if Po(X) > O onn + 1
evenly spaced points in [—+/n, /n]. Given that the spacing 2/+/n approaches zero as
n approaches infinity, we are prompted to define the following cone:

Xp1 = {(A(),A],AU) i Po(X) >=0forall X [—/n, \/ﬁ]}

Clearly we have ¥, 1 € P, 1. Since X, | is a set of univariate quadratics nonnegative
on a closed interval, the cone X, ; is easily characterized and inclusion in it provides
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a sufficient condition for inclusion in P, 1. We next show that a necessary condition
can be obtained by slightly enlarging the cone X, ;.

n
= {(Ao, Ay, A (n — le,Ah A11> € En,l}

Clearly, ¥, 1 C E . Further, we show, in Proposition 3.1, that E 1 contains P, 1.
In the limit of large n, the cones ¥, 1 and X/ | converge.

Proposition3.1 £, C P, C X/ ,

Proof We show that all the extreme rays of P, | are in E;M .Let Q = (Ag, Ay, Aqy) €
Py,1 span an extreme ray. It follows that the corresponding polynomial Pg(X) takes
a zero value at two consecutive points in the set {—/n, —/n + 2//n, ..., +/n}.
The zeros of Py are therefore separated by 2/./n. Consequently, the minimum value
of Py is —Aj;. Therefore, Py + Ay is nonnegative on [—/n, /n]. Also it follows
from Proposition 2.1 that Ay < nAT"l for any polynomial Q € P, ;. Thus, Pg + nA—"l
is nonnegative on [—+/n, \/n]. Thus, Q € E;l,l' O

The cones %, 1 and En | that sandwich P, ; are better understood after a rescaling.
Taking a cue from the definition of the polynomial Py, let us define

5 B B
Py 1 = {(Bo, B1, Bi1) : | Bo, —= S € Py

NG

N ) By By
21 =1 (Bo, B1, B11) : | Bo, — — € Zni

T

and

< B1 By ,
%, 1 = 1(Bo. B1, Bi1) : Bo,ﬁ, ) € Xna

This rescaling enlarges them so that we may visualize their limiting behavior. In partic-
ular, £, 1 = {(Bo. B1. Bi1) : Bo— Bi1+BiX+ B X? >0, forall X e[—yn,
ﬁ]} satisfies fl,,H,l C f],,,l, i.e., they are nested and the limiting cone > = Ny fln,l
is the cone of all globally nonnegative quadratics, and has a simple characterization:
(Bo, Bi, Bi1) € ¥ if and only if

Bo — By %31:|
> 0. 3
|: %Bl By |~ S

Flgure 1 shows the cross sections of P, 1, as well as that of the rescaled cones Pn 1,
Z,“ s > n1> 3. Note that the cones E’ jare also nested and the corresponding limiting

cone is also 3. In this sense, the sufficient condition for inclusion in Py,.1, provided by
¥,,1 and the necessary condition provided by X/ | approach each other asymptotically.
In the next section we generalize the cones %, 1 and X | to higher dimensions.
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(a) (b) (c)
0.5 1.5 15
1 1
0.5
0 0.5
0
-0.5 0
-0.5 -1 -0.5
-1 -0.5 0 0.5 1 -2 -1 0 1 2 -2 -1 0 1 2

Fig. 1 a Shows the cross sections of P, | forn = 2 to n = 6. bShows the cross sections of the rescaled
cones ﬁn,l for n = 2 to n = 20 in blue and the cross section of the limiting cone ¥ in red. ¢ Shows 135’1 in

blue and the corresponding approximation, 2571 in red. The expanded cone, f)g | is shown in black (colour
figure online) ,

3.2 General dimension

We proceed along similar lines as for the d = 1 case to obtain a necessary and
asymptotically sufficient condition for membership in P, 4. We refer to the polynomial
O by its (2d + 1)-tuple of rescaled coefficients. Analogous to the variable X of the
previous section, we define variables X = (X1, ..., Xg) and Y = (Y1, ..., Yy) as:

n
é}'ia
Xa=2—‘, a=1,...,d,
i=1\/ﬁ

XZ
Yo, = ——: 4 =1,...,d,
n
with x = (X1,...,X,) and x; = (& 1,...,& 4). Note that the Cauchy—Schwartz

inequality ensures that Y,, are well defined real numbers. In terms of these variables,
we may re-write Q as:

d d d
OQX1, .. X)) = Ao+ Y VnAeXe + (1= 1)) AwaXs =1 Awe¥y

a=1 a=1 a=1

= Po(X, ).

Note that Py (X) is defined analogously to the previous section. For x € K,‘f the
variables X, and Y,, satisfy

d 1 1
Y vZ+-X2=|YIP+-|IXIF <1,
el n n

which follows from the conditions ||x;|| < 1.
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We now consider a convex cone in V, 4 consisting of polynomials Q such that
Po (X, Y)isnonnegative for all (X, Y) such that || Y| REE % [|X|? < 1.From the above
discussion it follows that this cone lies inside P, 4. We show in Theorem 3.2 that this
cone turns out to coincide with the sum-of-squares relaxation of P, 4, defined as ¥, 4
in the Introduction. To recall this definition, fori = 1,...,nlet p; =1 — Z?: 1 5]2,1'-
We defined the cone X, 4 consisting of polynomials Q(x) which can be written as:

r d
0x) =Y 2@+ Y ai(l — pi(x),
i=1 i=1

where ¢; are linear polynomials and ; > 0.

Theorem 3.2 A polynomial Q lies in ¥, 4 if and only if Po(X,Y) > 0 forall X, Y
such that ||Y|]> + 1[|X|? < L.

Remark 3.3 By the S-Lemma [28] we can express the condition of nonnegativity
of Pp(X,Y) as a linear matrix inequality in the coefficients of P: P = Ao +
S VA Xe + (1= DY Aga X2 — Y0 Age Y2 is nonnegative for all
X, Y such that ||Y]|? + rll||X||2 < 1 if and only if there exists ¢ > 0 such that:

[ Ao JTEAI ‘/TﬁAd 0 0 r—10---00---07
\/TﬁAl(n—l)AuO 0 0 0 0 %0()()...0
: 0 0 0 0 0700440
1
0 0 .0 —nAp-- 0 00---01---0
: 0 0 0o .0 S 0---00°-.0
L 0O 0 0 0 0 —nAgg L0 0---0001

is positive semidefinite.

Proof We use symmetry reduction technique of [3,11]. Let V be the vector space of
linear polynomials in d - n variables x; = (§;.1,..., & 4),i = 1,...n. The symmetric
group S, acts on V by permuting the vectors X;, or equivalently S, permutes n groups
of ath coordinates, &; . Recall that irreducible S,,-modules are indexed by partitions
of n. For more background on representation theory of S, see [33].

It is not hard to see that V decomposes as follows into irreducible S, -modules:

V=d+DS"@ds" V.
The S,-invariant part of V corresponding to the partition (n) is spanned by poly-
nomials 1 and sy for « = 1,...,d. For the partition (n — 1, 1) we can split the

isotypic component into d irreducible modules by considering for fixedow =1, ..., d
polynomials of the form
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n
> citia with Y ¢ =0.
i=1

We pick d isomorphic representatives f, = n&| o —Sq, i.€. these polynomials generate
the above irreducible modules, and can be mapped to each other under S,,-equivariant
maps.

Define polynomials pys = - &iwbip and gop = 215i<j5n &ia&j.p. as well
as Pea = Y iy 51'2, o+ We will use sym to denote the Reynolds operator :

1
sym f = | Z o(f).
€Sy,
We observe that
d d
A+t Ag
sym (Z ha(1 = pa(x») == (n - paa) :
a=1 a=l1
Now consider (d + 1) x (d + 1) matrix S given Sy g = sym sy sg with so = 1, and
d x d matrix F given by Fy g = sym f, fg. The symmetry reduction procedure tells

us that p € %, 4 if and only if there exist positive semidefinite symmetric matrices
G, H and ¢ > 0 such that

d
p:(S,G)+(F,H)+c<n—ZPaa>.
a=l1

Further examining matrices S and F, we have for a # B

1
SaSg = Dap —|—qaﬁ and sym fafﬁ = m%xﬁ — Pap>

while

2 2 2 2 2 2
Syms, = Sea + Pae and sym f; =n Syméj , — Sy = NPaa — Sy

= — 1D paa — Saa-

We observe that in order to obtain p of the given form the coefficients of pyg and gqg
must cancel. However this can only happen if the corresponding entries in G and H
matrices are zero. Therefore we see that H is a diagonal matrix and G has non-zero
off-diagonal entries only in the first row and column.
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Let

1 1
80 381 58d

78181 0 0

G = . )
o . 0
184 0 0 gaa

and H be a diagonal matrix with entries /,,. We now observe that p has a potentially

non-zero coefficient of py, fora = 1, ..., d. This coefficient may be canceled only by
using n — ZZ:] Pao- Therefore the coefficient ¢ must satisfy ¢ = goo + (1 — 1) hgq,
a = 1,...d. Solving for hyy We get hyy = 24, with the additional restriction

C > gaa» SINCe Mgy > 0.
By examining p = (S, G) + (F, H) + c(n — Zzzl Daa), We see that

N8aa
n—1 n-—1

Ag=cn+go, Aq = &u Aaaz( ) with ¢ > ggq.

Solving for g’s we get go = Ag — cn, go = Ay and goo = ””;IAW + . The
condition ¢ > guo can be rewritten as ¢ > Ay. Therefore p is a sum of squares if
and only there exists ¢ > O and ¢ > Ayy, @ = 1, ..., d such that the following matrix
is positive semidefinite:

Ap %A] %Ad —n0---0
1A =1A 0 0 0loo
) . +c .

: 0 .0 S 0.0
TAd 0 0 =LAy 000 L

We incorporate condition ¢ > Ay, by enlarging the matrices so that the following
matrix is positive semidefinite for some ¢ > 0:

[ Ao 14 1Aa 0 0 7] [—n0---00---0]
A=A 0 0 0 0 010000
: 0 0 0 0 0 .00---0
1A 0 0 =LA, O 0 |+clo0o00to..0
0 0 0 —Aj 0 00---01---0
: 0 0 0 . 0 ©0---00".0
L 0 0 0 0 0 —Agg| | 00---000 1]

We can multiply the above sum on both sides by a diagonal matrix with diagonal
(1, /7, ..., /n) to see that p € X, 4 if and only if there exists ¢ > 0 such that the
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following matrix is positive semidefinite:

[ Ao JTEAI ‘/TEAd 0 -~ 0 | F—70---00---0]
LA (= DA 0 0 0 0 01000---0
: 0 0 0 0 0°-.00---0
LAy 0 0 (n—DAg O 0o |Te 880(1)0 "8
O 0 . O l’lA]] O . n---
: 0 0 0o -. o0 £ 040070
L0 0 0 0 0 —ndgg] LOO--000n]

The Theorem now follows from the Remark 3.3 with ¢ in the Remark replaced
by nc. O

In the following, we prove that the sufficient condition for membership in P, 4
provided by X, 4 is asymptotically necessary, following the same line of arguments
as before. We define X ;, by expanding %, 4:

n
Eé,d = {(Ag, Au, Ane) - (n — Ay, Ay, Aaa) € Zpd}

1

We show in Theorem 3.5 that, P, 4 € 2;/1 4 Which provides a sufficient condition for
membership in P, 4. To prove this theorem, we need a technical lemma, which we
prove at the end of this section:

Lemma3.4 Letn € Nand X = (X1, ..., Xq) € RY such that || X||* = X%—}-“-—i—
X§ < n. There exists X = (X{,...,X,) € K,‘f withx; = (&1, ..., & q) such that:

Zgla =Xqfora=1,2,...,d

2 2

X
g’—“———Oﬁ;m_lz ,d—1

el n n

n 2 2 2
(Z&_ﬁ>_<1_ 11 )‘51
iz n n n n

We are now ready to state and prove our main result of this section.

Theorem3.5 %, ,C P, s C 2/,

Proof The first inclusion is immediate. To show the second inclusion, let Q =
(Ao, A, Aaw) € Py q. Recall that the polynomial Py (X, Y) was defined as

d d d
Po(X,Y) = Ag+ Z VA Xy +(m—1) ZAWXg —n ZAWY;

a=1 a=1 a=1
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In order to show that PQ—l—n’Tlle > (0 whenever ||Y||2+%||X||2 < 1, we pick a point

(X, Y) that satisfies the latter condition, and approximate it using X = (X1, ..., X;)
with the help of Lemma 3.4.
If Aye < Oforalll <o <d,then we choose x = (X1, ..., X,) withx; = % for

all 1 < i < n. The condition ||Y||*> + %||X||2 < 1 ensures that x € K,‘f. It follows
now that

d d
Po(X,Y) = Ag+/n ) AaXa+(n—1)) AwXe=0(x) >0
a=1 a=1

The last inequality follows since Q(X) € Py 4.
If Aye > O for at least one «, we assume without loss of generality that Agg > Agyg
fora =1,2,...d — 1. It also follows that Azs > 0. Clearly,

d d 2
b'e
Po(X.Y) = Ao+ Y AuXa+ (1 —1)) AgaXg —nAag (1 | n” )(4)

a=1 a=1

We now use Lemma 3.4 to pick X' = (x'1, ..., X';) such that

n
I’;:ioc
X&:Z—’:Xu for s« =1,2,...,d
i—1‘/ﬁ

no g2
§ia X2

Y=Y - =0 for a=12,....d—1
n

i=1 n
Z@ RAY <1 ~ ||X||2>
n n n

o IXIP|
- (= 50)- (2

The above equations enable us to evaluate Q(x") and we thus obtain

1
<-.
“n

d d
QX)) =Ag+ V1Y AuXa+ (0 —1)) " Awa Xy —nAa(Y))* =0

a=1 a=1

Finally using Eq. (4), we obtain
Po(X,Y)+ Ags > O(x) >0

It follows from the d = 1 case that Agy < nATOI and therefore, Pg+ nATO] > (0 whenever

Q S Pn,d~ O
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Remark 3.6 1t follows from Remark 3.3 that (Ag, A1, ... Aq, A11,...Adqq) € E;’d if
and only if there exists ¢ > 0 such that

_nnTlAO JTEAl \/TEAd o ... 0
LA (= DA 0 0 0 0
: 0 0 0 0
Ny 0 0 (n— DAz O 0
0 0 0 —nA11 0
: 0 0 0 0
) 0 0 0 0 —nAgg
—10---00---07]
010000
©0°.00---0
+c| 000100
00---01---0
©0---00".0
| 00---000 1

is positive semidefinite.
We now prove Lemma 3.4.

Proof of Lemma 3.4 We construct a point x € K ,‘f with the claimed properties. Let

X X X_

(ﬁ,ﬁ,... [))forz_IZ k

X; = Xa- d—1 { x,\? :

’ (fl %,.. e —\/1—&_1(%))forz=k+1,k+2,...n—
(%,%,...X\‘%l,z) fori =n

We make an appropriate choice of k and z in the following. We first observe that

2
Each &; 4 is equal to :I:\/l - Zi;{ (f;—%) we may choose k of them with the positive

sign so that the sum of all the & 4’s is closest to /7 X?. That is,
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Let us now set z = (ﬁXd — Z;:]l Ei,d>. It follows from the above inequality

that this is a valid choice for a point on K¢. It also follows that Z’—;C’a = Xq for
a=1,2,...,d. It remains to show the last inequality in the lemma. Explicitly,

2
zfé—(Zﬁ%>={}—%w%)—%@—mwﬁ.

i

4 Necessary and sufficient criteria for moments

In this section, using the cones %, 4 and 2,’1’ 4» We develop a necessary condition and
a sufficient condition for membership of a vector (2o, z1, - - -, Zds 211, 222, - - - » Zdd) I
the moment cone C, 4. We also show that these two conditions approach each other,
i.e., the necessary condition is asymptotically sufficient and the sufficient condition is
asymptotically necessary.

Let us also define (E;,, ) as the dual of 21/1, 4- It follows from Theorem 3.5 that

g 2Cha 2 (5, )"

Thus, membership in E;f’ 4 18 a necessary condition and membership in (Z;L DFisa
sufficient condition for membership in C, 4. In the following we develop inequality
criteria to check for membership in these two cones, expressed as Linear Matrix
Inequalities (LMI).

4.1 Dualizing sum of squares cones

Recall from Remark 3.3 that the cone X, 4 can be characterized as (Ag, Ay, Aga) €
¥,.q if and only if there exists ¢ € R such the following matrix is positive semidefinite

[Ag—c LAy o iy, O - 0 0]
AL (n—DAL+E 0 0 0 0 0

: 0 0 0 0 0

M= L4, 0 0 (n—DAg+< 0 - 0 0
0 0 0 —nAj+c--- 0 0

: 0 0 0 0 0

0 0 0 0 0 —nAgg+c0

L0 0 0 0 0 0 ]
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Here the condition ¢ > 0 has been absorbed into the last row and column. We
observe that we can write

d d
M =cD+ AoMo+ ) AaMa+ ) AvaMaa. M =0,

a=1 a=1

where matrices D, My, and M, are the coefficient matrices, whose entries depend
on n. Standard semidefinite programming duality [2, Chapter 1] tells us that the dual
cone of X, 4 is given by: E:,d is the set of all points (20, 21, - .-, 2d, 211 - - - » Zdd)
such that there exists a positive semidefinite (2d + 2) x (2d + 2) matrix X such that

(D,X):O, <M09X>:Z01 (MQ1X>=ZQH (MOZCMX)ZZOHX'

Here (A, B) is the standard trace inner product (A, B) = trace AB. By simi-
lar considerations and Remark 3.6 the dual cone of E;l, 4 18 the set of all points
(z0» 215 -+ » 2d» 2115 - - - » Zda) Such that there exists a positive semidefinite (2d 4 2) x
(2d + 2) matrix X satisfying

n
<D7X>:Oa TI(MO’X>:ZO’ <MOHX>:ZDH <MO(0£’X>=ZOZOI'
Therefore we obtain the following characterization of C, 4:

Theorem 4.1 A vector (2o, 21, - - - » Zd» 211, 222, - - - » 2dd) lies in Cy g if there exists a
positive semidefinite matrix X and such that:

n
(D9X>:Ov _1<M07X>:ZO’ <M(17X)=Z0tv (Mowux>=Zaa-

Moreover, if there doesn’t exist a positive semidefinite matrix X such that:
(D, X)=0, (Mo, X)=2z0, (Mo, X)=2a, (Mga,X) = Zoa:

then (20, 21, -+, 2d» 211,222, - - - » Z2dd) & Cn,a-

Analyzing this formulation further and applying Schur complement [41], the above
conditions can be expressed as a set of 2¢ algebraic inequalities giving necessary and
sufficient conditions for membership in C, 4, which asymptotically converge.

Theorem 4.2 A non-zero vector (20, 21, - - -+ 2ds 2115 222 - - - » Z2dd) lies in Cy 4 if 7o >
0 and
d
20Zaa 22 ,(n—1 (n— 1)zozaa
Zmax —, — 1 =2 Z
n n
a=1 a=1
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Moreover, if the inequalities below are violated:

d 2 d
20Zaa % 202
z0 > 0 and E max{ x —“}Sz%—i—g o
a=1

n—1 n n
a=1

Then a non-zero vector (2o, 21, - - - » 2d> 2115 222 -+ - » Z2dd) ¢ Cn.d-

Proof We may write a (2d + 2) x (2d + 2) matrix X that satisfies (Mp, X) =
20, (Mg, X) = zq and (Myq, X) = Zgq as

- | | -
110 Rl R 0 0 0

TRl XL e Xid 0 0 0

X = \/Lﬁzd X1d - Xdd 0 0 0 0
0 0 -+ 0 =lxy-1z,0 0 0

0 0 -~ 0 0 =gy = Yz4 0

|0 0O --- 0 0 0 x0 |

Note that all the off-diagonal entries that can be chosen to be zero without disturbing
the condition X > 0 have been chosen to be zero. The final equation, (X, D) = 0
eliminates the variable xp i.e., x0—z0+ . Xaq —% > Zge = 0. The numbers 2o, Z¢» Zaw
are moments only if the numbers x;; can be chosen that the matrix X is positive
semidefinite. We list down the constraints on x;;. Positive semidefiniteness of the
lower (d + 1) x (d + 1) block yields the following inequalities, the last of which is
an upper bound on ) x4, and the rest are lower bounds on X

Z-xaa = Z0+%Zzaa~

The above inequalities imply that

Xaa > _IZW’ fora =1,...,d

1 1
mZZaa <zp, and zo+ ;ZZO{O{ > 0.

Additionally we know that x4, > 0 for 1 < o < d.If zo = 0, then it is clear that
z¢ = 0fora = 1,...,d, and the above inequalities taken together imply that if
z0 = 0, then z44 = 0fora =1, ..., d. Therefore we may assume that zg > 0.

Taking Schur complement with respect to zo ( [41]) of the top (d + 1) x (d + 1)
block, we see that X > 0 if and only if :

-~ 1
70X — —zz7 > 0.
n
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Here, X is the d x d block containing the variables x;; fori, j = 1,...,d and z is
the vector (z1, ..., Z4). We may now choose the off-diagonals of X , Xij, fori # jso

that the off-diagonals of zoX — %ZZT are all zero. That leaves us with the inequalities
that come from the non-negativity of the diagonal elements, providing d more upper
bounds on xy:

Zz
XgaZ0 > —, fora=1,...,d
n
We thus have two lower bounds each on x11, ..., x44, Which are the only remaining

variables. We also have one upper bound on Y _ x4 . We can now eliminate the variables
Xqe by setting the upper bound higher than every lower bound on ) x4. There are
24 different lower bounds on > Xaa»> coming from two lower bounds each on xgq.
Thus, after eliminating these variables, we are left with the following conditions, that
together form a necessary condition for membership in C,, 4:

d d
202 2y 202
zo > 0 and Zmax{ O“I, } Z o
n—

a=1

For sufficient conditions we replace zg by "T_lz() in the above inequality:

d
zo > 0 and Zmax

0
n n
a=1

{ZOZaa Z } (n— 1)222 + Xd: (n — l)ZOZaa

O

Remark 4.3 The above inequalities can be naturally written in rescaled moment coor-
dinates 7, = \Z/—“ﬁ and Zyy = 2 as:

d d
n s 2 2 s
zo >0 and Z max lzozaa, 2o <29+ ZZOZaaa
a=1 n a=1
for necessary conditions and:
d
- (n— 1)2 L 1
zo0 >0 and Zmax {zozw, } < 2 ZZOZaas
n
a=1

for sufficient conditions.

We observe that that as n approaches infinity the necessary and sufficient condi-
tions approach each other, and in the (large particle) limit the cone C, 4 is given by
inequalities:

d d

z0 >0 and Zmax {Zozaa, Zi} <+ ZZofaa.
a=1 a=1
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Example 4.4 Examining the above limit for d = 1 we see that the limit of the cones
C,.1 is characterized is given by inequalities:

20 >0, Z7 < zo(zo+2Z11).

Thus the cone C, 1 is dual (up to closure) to the characterization of the limit of
the cones P, 1 given in Eq. (3) of Sect. 3.1, since the above inequalities characterize
positive semidefiniteness of the matrix

20+ 211 21
Z1 20|’

up to closure.

The above results generalize conditions on moments found in [37]. In the next section,
we show how the above equations reduce to the one found in [37] under the appropriate
constraints.

5 A physical example

As an example, we consider the case d = 3 and use the conditions of Theorem 4.2
to define a semialgebraic set of moments contained in the set of moments which
have a representing measure. Let zq, 21, 22, 23, Z11, 222, 233 be a set of numbers. From
Theorem 4.2 the necessary conditions for membership in C, 3 are given by zo > 0
and the following eight inequalities:

2 2 2
z Z Z Z1120 , 22220 | 23320
=243 <4+ + +
n n n n n n
2 2
Z z 23320 Z1120 . 22220 . 23320
L2y <z5+ - +
n n n—1 n n n
2 2
Z 22220 Z 21120 22220 23320
=43 <5+ + +
n n—1 n n n n
2
Z 22220 23320 21120 22220 23320
4 <z+ + +
n n—1 n-—1 n n n 5)
2 2
21120 Z Z 21120 22220 23320
+24+2 <5+ + +
n—1 n n n n n
2
21120 Z 23320 21120 22220 23320
e e - +
n—1 n n—1 n n n
2
21120 22220 Z 21120 22220 23320
3 <4+ - +
n—1 n-—1 n n n n
21120 22220 23320 21120 22220 23320
<+ + +
n—1 n—1 n-—1 n n n
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In the language of spins, as used in [7], the moments can be expressed in terms of the
spin expectation values as

=2(Jx)

22 =2(Jy)
723 = 2(J;)
=4(J7) —

= 4(13>
233 = 4(J2) —

~

The first of the conditions (5) reads ZAJX2 + ZAJ)% + ZAJZ2 > n where AJXZ =
(J2) — (Jy)?. The last one reads 4(J2) + 4(J2) + 4(J2) < n(n + 2). These two
conditions are trivial, i.e., satisfied by all quantum states, including entangled states.
The remaining six inequalities can be viewed as two sets of permutatively related
related inequalities:

4n = D(ATF + AT2) 2 n(n —2) +4(J5),
4(n — D(ATT + AJZ) = n(n — 2) + 4(J}),
4n — D(AT] + AT) = n(n — 2) + 4(J2),

and

4n — DAJF = 4((J7) + (J7) = 2n
4n — DAJ] = 4(J7) + (J2) — 2n
4 — DAJZ = 4((J]) + (J7) —2n

This is a set of necessary conditions for non-entanglement, which appeared in [37].
Violation of at least one of the above inequalities is sufficient for entanglement. The
necessary conditions for entanglement are obtained by the violation of the sufficient
conditions for membership in the moment cone, which are given by replacing zgp by
"n;lzo. The resulting conditions can also be arranged with regards to permutative
relations:

An — (AT} + AJ2) = n? —n— 1+ 40T + (1)) + (1)),
An — D(ATE+ AJ2) = n? —n— 1+ 402 + (1) + (1)),
An — D(ATE+ AT = n? —n— 1+ 4T3 + ()2 + (o)D),

And
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An — DATE = 4((J3) + (J2) + (J)D) — (n + 1),
An — DATE = 4((J2) + (J2) + (Jy)H) — (n + 1),
An — DAJZ = 4((J2) + (J) + (J)D) — (n + D).

In conclusion, the relation between entanglement and real algebraic geometry and

the method presented in this paper are quite general and can be used to develop
entanglement criteria for other settings of many-body systems [38]. For instance one
can consider other physically relevant symmetries of the measure such as a system
with 2n atoms with an S, x S, symmetry, also known as mode-split entanglement
[18].
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