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We study the problem of low-rank matrix completion for symmetric matrices. The 
minimum rank of a completion of a generic partially specified symmetric matrix 
depends only on the location of the specified entries, and not their values, if complex 
entries are allowed. When the entries are required to be real, this is no longer the case 
and the possible minimum ranks are called typical ranks. We give a combinatorial 
description of the patterns of specified entries of n × n symmetric matrices that 
have n as a typical rank. Moreover, we describe exactly when such a generic partial 
matrix is minimally completable to rank n. We also characterize the typical ranks 
for patterns of entries with low maximal typical rank.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

This paper is concerned with the symmetric low-rank matrix completion problem. We begin with an 

illustrative example. Suppose that we have a partially specified symmetric matrix 
(
a ∗
∗ b

)
, where a and b

are given, and our objective is to find the unknown entry ∗, so that the full matrix has minimal rank. Unless 
a and b are both zero, any completion will have rank at least 1, and if we are allowed complex entries, then 
can always complete to rank 1 by setting ∗ =

√
ab. This situation is quite general: if we fix a pattern of 

known and unknown entries and the entries are complex numbers, then outside of a low-dimensional subset 
in the space of partial fillings (the point (0, 0) in the (a, b)-space in our example), any partial filled matrix 
can be completed to the same minimal rank, called the generic completion rank of the pattern. We note 
that in general the exceptional low-dimensional set will contain matrices that are minimally completable to 
ranks that are both higher and lower than the generic completion rank.
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If we consider our example when entries are restricted to be real numbers, then the situation is more 
complicated. If ab > 0, then we can still complete to rank one, but if ab < 0, then we can only complete 
to rank two. Notice that the set of matrices that are completable to rank two forms a full-dimensional 
subset of the (a, b)-space of partial fillings. This brings us to a crucial definition: given a fixed pattern of 
known and unknown entries, a rank r is called typical if the set of all matrices with real entries minimally 
completable to rank r forms a full-dimensional subset of the vector space of partial fillings. As we see in the 
above example, a given pattern can have more than one typical rank.

It is known that the generic completion rank of a pattern is equal to its lowest typical rank, and all 
ranks between the maximal typical rank and the minimal typical rank are also typical [1,3]. We say that a 
pattern of known entries of an n × n partial matrix is full-rank typical if n is a typical rank. The question 
of characterizing full-rank typical patterns was raised in [3]. One of our main results, Theorem 2.2, is a 
simple characterization of the full-rank typical patterns. We provide a semialgebraic description of the set 
of generic partial matrices that can only be completed to full rank, in the case that the pattern of known 
entries is full-rank typical (Theorem 2.17), and for one particular family of patterns, we give a semialgebraic 
description of the open regions corresponding to each typical rank (Theorem 2.7). We also characterize the 
typical rank behavior of patterns with generic completion rank one (Theorem 3.2), and of patterns with 
generic completion rank two such that all diagonal entries are known (Theorem 3.3).

Generic completion rank for symmetric matrices has applications in statistics as a bound for the maximum 
likelihood threshold of a Gaussian graphical model and in factor analysis [4,6,12,14]. If we restrict to positive 
semidefinite completions, then maximal typical rank of a pattern (suitably defined) is known as the Gram 
dimension, and is closely related to Euclidean distance realization problems [9,10]. We note that for the 
positive semidefinite matrix completion, there are no partial matrices that can be completed only to full 
rank as any entry of a positive definite matrix may be changed to make the matrix positive semidefinite 
and drop rank. There is also a similarity to the investigation of generic and typical ranks for tensors and 
symmetric tensors [1,5,7,8]. We now state and discuss our main results in detail.

1.1. Main results in detail

Matrices and partial matrices will be assumed to have entries in a field K, which will always be R or C. 
Let Sn(K) denote the set of n × n symmetric matrices with entries in K. To a pattern of known entries, we 
associate a semisimple graph G = ([n], E) (i.e. loops are allowed, but no multiple edges), where the edges 
of G correspond to the known entries and non-edges of G correspond to the unknown entries (See Fig. 1). 
Associated to each semisimple graph G is the set of G-partial matrices, which are elements of KE. It is often 
helpful to think of a completion of a G-partial matrix M as a function

M : K[n]�([n]
2 )\E → Sn(K)

that simply plugs in a set of values for the missing entries. Thus given a partial matrix M , we let M(x)
denote the matrix obtained by plugging in x for the missing entries of M .

We will use the term generic matrix to mean any matrix that lies outside of an (often unspecified) 
algebraic subset of the space of all matrices. For instance, we can say that a generic matrix is invertible, 
since non-invertible matrices lie inside the determinant hypersurface. Similarly, a generic square matrix has 
distinct eigenvalues, since discriminant of the characteristic polynomial catches all matrices with repeated 
eigenvalues. Specifying the algebraic subset explicitly is often omitted.

For any graph G there exists an integer r such that for any generic G-partial matrix M with complex 
entries, there exists a complex x such that M(x) has rank r, and M cannot be completed to a rank below 
r [3, Proposition 6.1(1)]. This r is called the generic completion rank of G and we denote it gcr(G). If we 
insist that x be real, then we lose the existence of generic completion rank and instead get typical ranks. 
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Fig. 1. Partial matrices alongside their corresponding graphs.

More precisely, a typical rank of a graph G is an integer r such that there exists an open set U ⊂ RE in the 
Euclidean topology of real G-partial matrices such that any M ∈ U is completable to rank r, and cannot 
be completed to a rank below r. In this case we say that M is minimally completable to rank r.

Proposition (cf. [3, Proposition 6.1]). Let G = ([n], E) be a semisimple graph. The minimum typical rank 
of G is gcr(G) and all integers between gcr(G) and the maximum typical rank of G are typical ranks of G. 
In addition, the maximum typical rank of G is at most 2 · gcr(G).

Denote the n-clique with a loop at every vertex by K◦
n. The complement of a semisimple graph G =

([n], E), denoted Gc, is the graph obtained by removing the edges in E from K◦
n. A semisimple graph with 

n vertices is called full-rank typical if n is a typical rank. Our first main result characterizes the full-rank 
typical graphs, thus solving a problem posed in [3]. Note that a bipartite semisimple graph cannot have 
loops.

Theorem (Theorem 2.2). A graph G is full-rank typical if and only if its complement Gc is bipartite.

For any full-rank typical graph G, Theorem 2.17 describes the set of generic partial matrices that are 
minimally completable to full rank.

Given graphs G and H, we let G � H denote the disjoint union of G and H. For the full-rank typical 
graphs G = K◦

n � K◦
m, we describe how to calculate the minimal completion rank of a generic G-partial 

matrix. To state this theorem, we need the following definition.

Definition 1.1. For a real full-rank symmetric matrix A, let pA and nA denote the number of positive and 
negative eigenvalues of A respectively. Given two real full-rank symmetric matrices A and B potentially of 
different sizes, we define eigenvalue sign disagreement between A and B, denoted esd(A, B), as follows

esd(A,B) :=
{

0 if (pA − pB)(nA − nB) ≥ 0
min{|pA − pB|, |nA − nB |} otherwise

Theorem (Theorem 2.7). Let m, n ≥ 0 be integers and G = K◦
m�K◦

n. Let A be a full-rank m ×m symmetric 
matrix and B be a full-rank n × n symmetric matrix, and consider the following G-partial matrix

M =
(
A ∗
∗ B

)
.

Then, M is minimally completable to rank max{n, m} + esd(A, B).

Our remaining results concern graphs with low typical ranks. Semisimple graphs with generic completion 
rank 1 were characterized in [13]. We characterize their typical ranks.

Theorem (Theorem 3.2). Let G be a semisimple graph with generic completion rank 1. The maximum typical 
rank of G is 2 if G has at least two cycles, and 1 otherwise.
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A tree with at most one non-leaf vertex is called a star tree. A graph is called looped if every vertex has 
a loop. Theorem 2.5 in [6] implies that a looped graph has generic completion rank at most 2 if and only if 
it has no cycles (aside from loops). We build on this, characterizing the typical ranks of looped graphs with 
generic completion rank at most 2.

Theorem (Theorem 3.3). Let G be a looped graph.

(1) The generic completion rank of G is at most 2 if and only if G is a looped forest. Equality is attained 
if and only if G has at least one non-loop edge [6, Theorem 2.5].

(2) When G has generic completion rank 1 and at least two vertices, G also has 2 as a typical rank.
(3) When G has generic completion rank 2, the maximum typical rank of G is

(a) 2 if G has exactly two vertices
(b) 3 if G has at least three vertices and is the union of a looped star tree and a looped set of isolated 

vertices, and
(c) 4 otherwise.

2. Full-rank typical graphs

We first answer a question posed in [3], characterizing the graphs that are full-rank typical. We start 
with a simple, but important, observation.

Remark 2.1. If G is full-rank typical, then any graph obtained by adding edges to G is also full-rank typical.

2.1. The characterization

We now state the main result of this subsection. Note that a bipartite semisimple graph cannot have 
loops.

Theorem 2.2. A graph G is full-rank typical if and only if its complement Gc is bipartite.

Proof. We first show that if Gc is not bipartite, then G is not full-rank typical. Remark 2.1 implies that 
removing edges from a graph that is not full-rank typical produces another graph that is not full-rank typical. 
Since every non-bipartite graph contains an odd cycle, it suffices to let G be a graph whose complement 
consists of an odd cycle and an independent set of vertices, and then show that G is not full-rank typical. 
So let M be a generic G-partial matrix. Then det(M(x)) is a polynomial in the indeterminates x, with odd 
total degree, and thus has a real zero. So G is not full-rank typical.

Conversely, if Gc is bipartite, then for some positive integers m, n, G contains K◦
n �K◦

m as a subgraph. 
Therefore, G is full-rank typical by Remark 2.1 and Proposition 2.5 below. �
Corollary 2.3. The maximum typical rank of G is at least the maximum number of vertices in a bipartite 
induced subgraph of the complement Gc.

One might ask whether the bound given by Corollary 2.3 is sharp. Unfortunately, this is not the case as 
shown by the following example.

Example 2.4. Consider a looped complete bipartite graph K◦
m,n for m ≥ 2 and n =

(
m
2
)
. It is known that 

the generic completion rank of K◦
m,n is equal to m in [4, Theorem 2.5]. Note that the maximum size of a 

bipartite induced subgraph of (K◦
m,n)c is 4. Therefore, if we choose m > 4, then its maximum typical rank 

is greater than 4.
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2.2. The disjoint union of two cliques

The main result of this subsection is Theorem 2.7 which explains how to determine the minimum rank 
of a completion of a given generic G-partial matrix when G is the disjoint union of two cliques. We begin 
with a special case of Theorem 2.7 that will be necessary for its proof.

Proposition 2.5. Let m, n ≥ 0 be integers and let G = K◦
m �K◦

n. A G-partial matrix

M =
(
A ∗
∗ B

)

is minimally completable to full-rank if and only if A is positive definite (negative definite resp.) and B is 
negative definite (positive definite resp.). In particular, G = K◦

m �K◦
n is full-rank typical.

Proof. Throughout, we will view M(x) as a 2 ×2 symmetric block matrix. We denote the upper-right block, 
whose entries are given by x, by X. Without loss of generality, let A be an m ×m positive definite matrix 
and B be an n × n negative definite matrix. Let y ∈ kerM(x). We will write y as

y =
(
y1
y2

)
where y1 ∈ Rm and y2 ∈ Rn.

Since y ∈ kerM(x), we have Ay1 = −Xy2 and XT y1 = −By2, and therefore yT1 Ay1 = yT2 By2. Since A is 
positive definite and B is negative definite, this implies that y1 and y2 are both zero vectors and so M(x)
is full-rank for all x.

For the converse, assume that there are eigenvalues a of A and b of B such that ab ≥ 0. If without loss 
of generality A is not full rank, then we may complete to some M(x) so that the columns of XT satisfy a 
relation that the columns of A satisfy, thus making M(x) not have full rank. So assume ab > 0. Let C and 
D be orthogonal matrices such that CTAC and DTBD are diagonal matrices whose nonzero entries are the 
eigenvalues of A and B, leading with a and b respectively. Treating x as a vector of indeterminates, moving 
from

M(x) =
(

A X
XT B

)
to

(
CT 0
0 DT

)(
A X
XT B

)(
C 0
0 D

)
=

(
CTAC CTXD
DTXTC DTBD

)

corresponds to a linear change of variables when taking determinants, so we may without loss of generality 
assume that A and B are diagonal matrices with a and b as the respective leading entries. Consider a 
completion M(x) of M obtained by setting X11 =

√
a1b1 and X21 = · · · = Xn1 = 0. The rank formula for 

Schur complements gives

rank(M(x)) = rank(A) + rank(B −XTA−1X).

Note that the entries of the first row of B −XTA−1X are all zero. This means that rank(B −XTA−1X)
is less than n and so we may complete M to have non-full rank. �

Before we can state Theorem 2.7, we need the following definition.

Definition 2.6. Given a real full-rank symmetric matrix A, let pA, nA denote the number of positive and 
negative eigenvalues of A. Given two real full-rank symmetric matrices A and B potentially of different 
sizes, we define eigenvalue sign disagreement between A and B, denoted esd(A, B), as follows
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esd(A,B) :=
{

0 if (pA − pB)(nA − nB) ≥ 0
min{|pA − pB|, |nA − nB |} otherwise

Theorem 2.7. Let m, n ≥ 0 be integers and let G = K◦
m �K◦

n. Let A be a full-rank m ×m symmetric matrix 
and B be a full-rank n × n symmetric matrix, and consider the following G-partial matrix

M =
(
A ∗
∗ B

)
.

Then, M is minimally completable to rank max{n, m} + esd(A, B).

Proof. Without loss of generality, assume that n ≥ m. Let C, D be orthogonal matrices such that CTAC

and DTBD are diagonal. Conjugating the indeterminate matrix M(x) by

(
C 0
0 D

)
,

we may assume without loss of generality that A = diag(a1, . . . , an) and B = diag(b1, . . . , bm).
We begin by showing that any completion M(x) has rank at least n + esd(A, B). In the case that 

esd(A, B) = 0, this is implied by the fact that A is a rank-n submatrix of M(x). So assume without loss of 
generality that 0 < esd(A, B) = |pA − pB |. If esd(A, B) = pB − pA, then M(x) has a principal submatrix 
M ′(x) of a 2 × 2 block form whose off-diagonal blocks are all indeterminates, whose upper-left block is an 
nA×nA diagonal matrix whose nonzero entries are the negative diagonals of A, and whose lower-right block is 
a pB×pB diagonal matrix whose nonzero entries are the positive diagonals of B. Proposition 2.5 implies that 
any completion of M ′ has rank nA+pB . But in this situation, nA+pB = pA+nA+(pB−pA) = n +esd(A, B). 
If esd(A, B) = pA−pB , then pA−pB ≤ nB−nA (note that here we are using that pA−pB and nA−nB have 
opposite signs by definition of esd). This inequality cannot be strict, since otherwise it would contradict 
n = pA + nA ≥ pB + nB = m. So esd(A, B) = nB − nA and so we can proceed just as in the case where 
esd(A, B) = pB − pA.

Now we show that we can complete M to rank n + esd(A, B). Letting X denote the upper-right block of 
M(x), we proceed by choosing x in a way such that

rank(B −XTA−1X) = esd(A,B).

This suffices because rank(M(x)) = rank(A) + rank(B − XTA−1X) by the rank formula for Schur com-
plements. Let s be the maximum number such that aibi > 0 for all i ≤ s, and assume that the ordering 
of (a1, . . . , an) and (b1, . . . , bm) are chosen to maximize s. Note that s ≤ m and that esd(A, B) = m − s. 
The ijth entry of XTA−1X is 

∑n
k=1

xkixkj

ak
. Therefore, if we set xkk =

√
bk
ak

for 1 ≤ k ≤ s and all other 
xkl = 0, B − XTA−1X is a diagonal matrix with precisely esd(A, B) nonzero entries and thus has rank 
esd(A, B). �
Corollary 2.8. The typical ranks of K◦

n �K◦
m are max{n, m}, . . . , n + m.

2.3. The space of G-partial matrices

In this subsection, we consider the following question: given a full-rank typical graph G and a generic 
G-partial matrix M , when are all completions of M full-rank? Theorem 2.17 gives a complete answer to this 
question. It is more or less a direct consequence of Lemma 2.9, which handles the case where G is obtained 
from the complete semisimple graph by removing a single non-loop edge.
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Given a (partial) matrix M and subsets S, T of the row and column indices, we let MS,T denote the 
(partial) matrix obtained by removing the rows corresponding to the elements of S and the columns corre-
sponding to the elements of T .

Lemma 2.9. Let M be a real partial symmetric n × n matrix where the (1, n)-entry is the only unknown. 
Then M can be completed to rank n − 1 or less if and only if

(1) n = 2 and det(M1,1) det(Mn,n) ≥ 0, or
(2) det(M1n,1n) 
= 0 and det(M1,1) det(Mn,n) ≥ 0, or
(3) det(M1n,1n) = 0, and det(M(0)1,n) 
= 0 or det(M(0)) = 0.

Before proving Lemma 2.9, we need a lemma about relations among determinants of arbitrary square 
matrices.

Lemma 2.10. Let A be a square, not necessarily symmetric, n × n matrix. Then

det(A) det(A1n,1n) − det(A1,1) det(An,n) + det(A1,n) det(An,1) = 0.

Proof. Define f : Rn×n → R by

f(A) = det(A) det(A1n,1n) − det(A1,1) det(An,n) + det(A1,n) det(An,1).

Our goal is to show that f is identically zero. Let B be the n × (n −2) matrix obtained from A by removing 
the first and last columns. Let g : Rn ×Rn → R be the function given by

g(x, y) = f ((x B y))

where (x B y) denotes the matrix obtained by adding x and y as columns to B on either side. We will 
proceed by showing that g is identically zero. Note that g is bilinear and alternating, so it is enough to show 
that g(ei, ej) = 0 where ei denotes the ith standard basis vector and i < j. Writing g(ei, ej) out explicitly, 
we get

g(ei, ej) = (−1)i+j+n
(
det(Bij,∅) det(B1n,∅) − det(B1j,∅) det(Bin,∅) + det(B1i,∅) det(Bjn,∅)

)
.

The above is a Grassmann-Plücker relation, so it is identically zero [11, Chapter 4.3]. �
Proof of Lemma 2.9. We write det(M(m1,n)) as a quadratic polynomial in m1,n as follows

det(M(m1,n)) = − det(M1n,1n)m2
1,n + 2 det(M(0)1,n)m1,n + det(M(0)).

If det(M1n,1n) = 0, this is a linear or constant polynomial. It has a zero, which is real, if and only if 
det(M(0)1,n) 
= 0 or det(M(0)) = 0.

If det(M1n,1n) 
= 0, then det(M(m1,n)) has a real zero if and only if its discriminant is nonnegative. The 
discriminant of det(M(m1,n)) is

4 det(M(0)1,n)2 + 4 det(M1n,1n) det(M(0)).

Lemma 2.10 implies that the following polynomial is identically zero

det(M(0)1,n)2 + det(M1n,1n) det(M(0)) − det(M1,1) det(Mn,n).
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Therefore the discriminant of det(M(m1,n)) is det(M1,1) det(Mn,n). �
Definition 2.11. Let A be a symmetric matrix. Define pA, nA be the number, counted with multiplicity, of 
positive and negative eigenvalues of A. The inertia of A is the vector

In(A) := (pA, nA,dim kerA).

Proposition 2.12. Let G be any full-rank typical semisimple graph, and M be a real G-partial matrix. If M
is minimally completable to full-rank, then all completions of M have the same inertia.

Proof. Let M(x1) and M(x2) be completions of M such that In(M(x1)) 
= In(M(x2)). By continuity of 
the function sending a matrix to its eigenvalues, there exists a point x0 on the line segment from x1 to x2

such that M(x0) has a zero eigenvalue, i.e. is rank deficient. �
Definition 2.13. Let G be a full-rank typical graph and let M be a G-partial matrix. We define sign(M) := 0
if det(M(x)) = 0 for some choice of real x, and otherwise, define sign(M) to be the sign of det(M(0)) (which 
is the sign of det(M(x)) for any x by Proposition 2.12).

Remark 2.14. Let G be a full-rank typical graph. Then it follows from Theorem 2.2 that any subgraph obtained 
from G by deleting vertices is also full rank typical. In particular, if M is a G-partial matrix and A is a 
principal minor of M , then sign(A) is well-defined.

Lemma 2.15. Let G = ([n], E) be a full-rank typical graph, let M be a generic G-partial matrix, and let {i, j}
be a non-edge of G. Then M(x) is full-rank for all x if and only if n = 2 or sign(Mij,ij) 
= 0, and sign(Mi,i)
and sign(Mj,j) are nonzero and opposite.

Proof. Without loss of generality, let {i, j} = {1, n}. Assume n = 2 or sign(M1n,1n) 
= 0. If one of sign(M1,1)
or sign(Mn,n) is zero, then Lemma 2.9 implies that M can be completed to rank n −1 or less. If not, then the 
values of sign(M1,1) and sign(Mn,n) do not depend on how we complete the non-(1, n) entries. Lemma 2.9
then implies that M can be completed to rank n − 1 or less if and only if sign(M1,1) = sign(Mn,n).

Now assume n ≥ 3 and sign(M1n,1n) = 0. We show that M can be completed to rank n −1 or less. Assume 
there exists a completion M(x) of M such that rank(M(x)1n,1n) = n − 3. Let y(t) be obtained from x by 
perturbing each entry in the first and nth row and replacing the (1, n) entry with the indeterminate t. Then 
M(y(t)) is a partial matrix whose only unknown entry is (1, n) and det(M(y(t))1n,1n) = 0. Since a generic 
row (respectively column) vector of size n − 2 will not lie in the row span (column span) of M(x)1n,1n, 
det(M(y(0))1,n) 
= 0. Lemma 2.9 then implies that M(y(t)), and therefore M , has a completion to rank 
n − 1. If there exists a completion M(x) of M such that rank(M(x)1n,1n) = n − 4, then there exists x′

obtained from x via a generic perturbation of a single entry such that rank(M(x′)1n,1n) = n − 3. If there 
exists a completion M(x) such that rank(M(x)1n,1n) ≤ n − 5, then rank(M(x)) ≤ n − 1. �

Given full-rank typical G and a G-partial matrix M , Lemma 2.15 gives us a recursive procedure for 
determining whether or not M must be completed to full rank. We will use the following definition to 
convert this recursive procedure into one where we just check the signs of various minors of M(0).

Definition 2.16. Let G = (V, E) be a full-rank typical graph. Let

O := ({i1, j1}, . . . , {ik, jk})
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Fig. 2. Various examples of π(G,O) alongside Gc. In all cases O is the lexicographic ordering of the non-edges.

be an ordering of the non-edges of G. Initialize π(G, O) := {V }. Iteratively for l = 1, . . . , k and for each 
inclusion-wise minimal element S of π(G, O) such that {il, jl} ⊆ S, add S\{il} and S\{jl} to π(G, O). Note 
that if we partially order π(G, O) by inclusion, then every non-minimal S ∈ π covers exactly two elements.

Given an n × n symmetric (partial) matrix M and S ⊆ [n], let AS denote the principal submatrix of A
with rows and columns indexed by S.

Theorem 2.17. Let G = (V, E) be full-rank typical, let M be a generic G-partial matrix, and let M(x0) be 
a generic completion of M . Let O be an ordering of the non-edges of G. Then M(x) is full-rank for all 
real x if and only if whenever S1, S2 are the elements covered by some S ∈ π(G, O), sign(M(x0)S1) and 
sign(M(x0)S2) are nonzero and opposite.

Proof. Let S be a non-minimal element of π(G, O) and let S1 and S2 be the elements covered by S. If 
sign(MS1(x0)) = sign(MS2(x0)), then Lemma 2.15 implies that MS has a completion to less than full rank, 
i.e. that sign(MS) = 0. By Lemma 2.15, this implies that M has a completion to less than full rank.

Now assume sign(MS1(x0)) and sign(MS2(x0)) are nonzero and opposite whenever S1 and S2 are the 
elements covered by some S ∈ π(G, O). Whenever T ∈ π(G, O) is minimal, MT is fully-specified. Lemma 2.15
therefore implies that whenever S covers two minimal elements of π(G, O), all completions of MS are full-
rank. So in this case, Proposition 2.12 implies sign(MS) = sign(MS(x0)). It then follows by Lemma 2.15
and induction that sign(MS) = sign(MS(x0)) for all S ∈ π(G, O). In particular, sign(M) = sign(M[n]) =
sign(det(M(x0))) is nonzero, i.e. all completions of M have rank n. �
Example 2.18. Fig. 2 shows three examples of π(G, O) alongside the complement graph Gc. In all cases, O
is the lexicographic ordering of the non-edges of G (i.e. the edges of Gc).

2.4. Disjoint unions of full-rank typical graphs

In this subsection, we study the typical ranks of disjoint unions of full-rank typical graphs. Proposi-
tion 2.12 allows us to make the following definition.

Definition 2.19. Let G and H be full-rank typical graphs, and let M and N respectively be G- and H-partial 
matrices which are minimally completable to full rank. Define esd(M, N) to be esd(M(x), N(x)) for any 
completion A(x), B(x) of A and B.
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Proposition 2.20. Let G1 and G2 be full-rank typical graphs and define G := G1 �G2. Let M be a G-partial 
matrix, which we may write as

M =
(
M1 ?
? M2

)

where Mi is a Gi-partial matrix. If M1 and M2 are minimally completable to full rank, then M is minimally 
completable to rank max{n, m} + esd(M1, M2).

Proof. This follows immediately from Proposition 2.12 and Theorem 2.7. �
We end this section with a characterization of the maximum typical ranks of disjoint unions of more than 

two cliques.

Proposition 2.21. Let G be the disjoint union of k cliques where the ith clique has size ni and n1 ≥ n2 ≥
· · · ≥ nk. Then the maximum typical rank of G is n1 + n2.

Proof. Corollary 2.3 implies that the maximum typical rank of G is at least n1 + n2. To prove the other 
direction, let M(x) be a generic G-partial matrix. We may write

M(x) =
(

A(x) Y (x)
Y (x)T B(x)

)
,

where

A(x) :=
(
M1 X12
XT

12 M2

)
B(x) :=

⎛
⎜⎜⎝

M3 X34 · · · X3k
XT

34 M4 · · · X4k
...

...
. . .

...
XT

3k XT
4k · · · Mk

⎞
⎟⎟⎠ Y (x) :=

(
X13 · · · X1k
X23 · · · X2k

)
,

where each Mi is a ni×ni fully specified symmetric matrix and each Xij is a matrix of indeterminates. Just 
as in the proof of Theorem 2.7, we may use the eigendecomposition of each Mi to obtain a linear change of 
variables so that each Mi is diagonal. Therefore, without loss of generality, assume Mi = diag(mi1, . . . , mini

)
for all i = 1, . . . , k.

First, consider the case that esd(M1, M2) = n2. Without loss of generality, assume that M1 is positive 
definite and M2 is negative definite. We now describe a completion of M to rank n1 + n2, similar to the 
construction given in the proof of Theorem 2.7. Denote (p, q)-entry of Xij by (Xij)pq. For all Xij that are 
not blocks of Y (i.e. i ≥ 3, or i = 1 and j = 2), set Xij = 0. For the Xij that are blocks of Y (i.e. i = 1, 2
and j ≥ 3) set (Xij)pq = 0 when p 
= q, and specify the remaining entries as follows

(X1j)pp =
{√

mjp

m1p
if mjp > 0

0 otherwise
(X2j)pp =

{√
mjp

m2p
if mjp < 0

0 otherwise.

This ensures that B(0) −Y TA(0)−1Y is a zero matrix. The rank formula for Schur complements then gives

rank(M(x)) = rank(A(0)) + rank
(
B(0) − Y TA(0)−1Y

)
= n1 + n2.

Now, consider the case that esd(M1, M2) < n2. If esd(M1, M2) < esd(M1, Mi) for some i > 2, since 
n1 ≥ · · · ≥ nk, we may proceed by relabeling the blocks so that esd(M1, M2) = max esd(M1, Mi) and 
i=2,...,k



D.I. Bernstein et al. / Journal of Pure and Applied Algebra 225 (2021) 106603 11
exhibiting a completion of M(x) to rank n1 + n2. Since i = 2 maximizes esd(M1, Mi), after possibly re-
ordering rows and columns, we may assume that for any diagonal entry mil, either milm1l > 0 or milm2l > 0. 
Hence, we can complete X1i and X2i as before to ensure that B(0) − Y TA(0)−1Y is a zero matrix. Since 
rank(A(0)) = n1 + n2, the rank formula for Schur complements implies

rank(M(x)) = rank(A(0)) + rank
(
B(0) − Y TA(0)−1Y

)
= n1 + n2. �

3. Low maximum typical ranks

3.1. Generic completion rank one

We first look at the semisimple graphs which have generic completion rank one. There is a known 
characterization for such graphs.

Proposition 3.1 ([13, Proposition 5.3]). The generic completion rank of a semisimple graph G is one if and 
only if G is free of even cycles, and every connected component of G has at most one odd cycle.

Proposition 1 implies that if G has generic completion rank one, then the maximum typical rank of G is 
at most two. The following proposition tells us when two is attained.

Theorem 3.2. Let G be a semisimple graph with generic completion rank 1. Then G has 2 as a typical rank 
if and only if G has at least two odd cycles.

Proof. We begin by showing that if G has two odd cycles, then G has two as a typical rank. If each of these 
cycles is a loop, then G has K◦

1 �K◦
1 as an induced subgraph. Setting the two corresponding diagonal entries 

to values with opposite signs yields a principal 2 × 2 minor that will have a strictly negative determinant 
for any completion. If one of these odd cycles has size three, then any G-partial matrix M(x) has a sub 
partial matrix N of the form

N(x) =
(
x1 a b
a x2 c
b c x3

)
. (1)

Thus any rank-one completion of M(x) must set x2 = ac
b . If one of the cycles has size greater than three, 

choose three edges in this odd cycle that form a path. We can write the corresponding sub partial matrix 
N of M as

N(x) =

⎛
⎜⎝
x0 a x1 x2
a x3 b x4
x1 b x5 c
x2 x4 c x6

⎞
⎟⎠ . (2)

Thus any rank-one completion of M(x) must set x2 = ac
b . Let G′ be the graph obtained from G by deleting 

two of the vertices in a three-cycle and adding a loop onto the remaining vertex, or by deleting the inner 
vertices in a path of length three and adding an edge between the two outer edges. In both cases, let M ′(x)
be the G′-partial matrix obtained from M(x) by deleting the corresponding rows and columns, and setting 
x2 to acb . Note that G′ has generic completion rank one, and that if M ′(x) is minimally completable to rank 
2, then so is M(x). As a, b, and c range over R, acb takes all real values. So if G′ has two as a typical rank, 
then for some choice of x, M ′(x) is minimally completable to rank two. That G′ has two as a typical rank 
now follows by induction.
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We now show that if G has at most one odd cycle, then G only has 1 as a typical rank. Let M(x) be 
a G-partial matrix. We begin by assuming that G is itself an odd cycle. The case that G is a 1-cycle is 
trivial, and if G is a 3-cycle, we have formulas for the diagonal entries of M(x) as in (1). If G has length 
greater than 3, then we have formulas for all the off-diagonal entries of M(x) as in (2), then formulas for 
the diagonal entries as in (1). Now assume that G is connected. If G has no odd cycle, add a loop and 
set the corresponding diagonal entry of M(x) to a generic real number. Otherwise, construct a rank-one 
completion of M(x) corresponding to the odd cycle as before, and add the corresponding edges to G. Now 
all the remaining unknown diagonal entries can be completed to the same sign. To see this, note that if G
has an induced subgraph consisting an edge joining a vertex having a loop to a vertex with no loop, M(x)
has a sub partial matrix N(x) of the form

N(x) =
(
a b
b x

)

where x is unknown. In a rank-1 completion, we must have x = b2

a , which will have the same sign as a. 
Thus when we complete the missing diagonals according to this formula, they will all have the same sign. 
Then, we can complete the off diagonal entries over the reals.

If G is disconnected, then at most one connected component has an odd cycle. Complete the missing 
entries of M(x) in this component with the odd cycle as in the previous case. On each remaining component, 
set one of the diagonal entries to a generic real number whose sign is the same as the sign of the diagonal 
entries. Then we can complete each connected component as before, and since the signs of all the diagonal 
entries will be equal, we can then complete the remaining unknown off-diagonal entries. �
3.2. Looped graphs

A vertex v of a graph G is said to be looped if G has a loop at v. We say that a graph G is looped if every 
vertex of G is looped. The main result of this subsection is Theorem 3.3 below. It gives a combinatorial 
characterization of the typical ranks of a looped graph that has generic completion rank at most 2. Recall 
that a star tree is a tree with at most one non-leaf vertex.

Theorem 3.3. Let G be a looped graph.

(1) The generic completion rank of G is at most 2 if and only if G is a looped forest. Equality is attained 
if and only if G has at least one non-loop edge.

(2) When G has generic completion rank 1 and at least two vertices, G also has 2 as a typical rank.
(3) When G has generic completion rank 2, the maximum typical rank of G is

(a) 2 if G has exactly two vertices
(b) 3 if G has at least three vertices and is the union of a looped star tree and a looped set of isolated 

vertices, and
(c) 4 otherwise.

Before proving Theorem 3.3, we give a handful of intermediate results. Recall that a suspension vertex
in a graph is a vertex that is adjacent to every other vertex. The relevance of the following lemma to 
Theorem 3.3 comes from the fact that a star tree can be obtained from a set of isolated vertices by adding 
a suspension vertex.

Lemma 3.4. Adding a looped suspension vertex to a semisimple graph increases all its typical ranks by 1.
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Proof. Let G = ([n], E) be a semisimple graph and let r be a typical rank of G. Let H = ([n + 1], E′)
be obtained from G by adding a looped suspension vertex and let N(x) be an H-partial matrix. We may 
assume that N(x) is of the following form

N(x) =
(

α v
vT M(x)

)

where M(x) is a G-partial matrix, v is a fully specified row vector and α is a nonzero real number. Given 
a completion x0, the rank formula for Schur complements gives

rank(N(x0)) = 1 + rank
(
M(x0) −

1
α
vT v

)
.

Applying a linear change of coordinates on the space of G-partial matrices and a linear change of vari-
ables for the substitution, it is evident that we may choose a generic M such that the minimum of 
rank

(
M(x0) − 1

αv
T v

)
is r. Thus H has r + 1 as a typical rank. �

The characterization of looped graphs with generic completion rank at most two, given below, is an easy 
consequence of a result of Gross and Sullivant.

Proposition 3.5. Let G be a looped graph. The generic completion rank of G is at most two if and only if G
is a looped forest, with equality attained if and only if G has at least one non-loop edge.

Proof. This follows from [6, Theorem 2.5]. �
Proposition 1 implies that the maximum typical rank of a graph with generic completion rank 2, which 

in the looped case we now know to be trees, is at most 4. Lemma 3.6 below tells us that for looped star 
trees, this inequality is strict.

Lemma 3.6. If G is a looped star tree with at least three vertices, then the typical ranks of G are 2 and 3.

Proof. By Proposition 3.1 and Theorem 3.2, we have that the generic completion rank of a union of isolated 
looped vertices is 1 and its maximum typical rank is 2. The proposition then follows from Lemma 3.4. �

Proposition 3.8 below handles most of the heavy lifting in the proof of Theorem 3.3. It tells us exactly 
which looped graphs have 3 as their maximum typical rank. Before we can prove that, we need Proposi-
tion 3.7 which gives an upper bound on the maximum typical rank of a graph in terms of the maximum 
size of an independent set of vertices.

Proposition 3.7. Let G be a looped semisimple graph with n vertices. Let r be the maximum size of an 
independent set of vertices of G. Then, the maximum typical rank of G is at most 2 + n − r.

Proof. Let H be the graph obtained from G by removing all vertices not in a particular independent set 
of vertices of size r. Proposition 3.5 implies that the maximum typical rank of H is at most 2. Let H ′ be 
obtained from H by adding n − r looped suspension vertices. Lemma 3.4 implies that the maximum typical 
rank of H ′ is at most 2 +n − r. Since G is a subgraph of H ′, the maximum typical rank of G is also at most 
2 + n − r. �
Proposition 3.8. Let G be a looped graph with at least three vertices and one non-loop edge. Then the 
maximum typical rank of G is 3 if and only if G is a looped triangle, or the disjoint union of a looped star 
tree and a (possibly empty) set of looped isolated vertices.
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Proof. Since adding edges and vertices to a graph can only increase its maximum typical rank, Proposi-
tion 2.5 implies that if G has a pair of edges not sharing any vertex, then G has four as a typical rank. Thus 
if the maximum typical rank of G is 3, then G is either a triangle, or the disjoint union of a star tree and a 
(possibly empty) set of isolated vertices. It is clear that a triangle has 3 as a typical rank. In the other case, 
the fact that G has 3 as a typical rank is implied by Lemma 3.6 when the star tree in G has at least three 
vertices, and by Proposition 2.21 when the star tree in G has two vertices.

The proposition now follows by noting that the triangle cannot have four as a typical rank (it only has 
three vertices), and Proposition 3.7 implies that neither can the disjoint union of a star tree and a set of 
isolated vertices. �

We are now ready to prove the main result of this subsection.

Proof of Theorem 3.3. Proposition 3.5 is (1). Theorem 2.2 implies (2). If G has generic completion rank 
two, then Proposition 1 implies that the maximum typical rank of G is at most 4. In this case, it is clear that 
if G has two vertices, then 2 is the maximum typical rank of G. So assume that G has at least 3 vertices. If 
G is the union of a looped star tree and a set of looped isolated vertices, then Proposition 3.8 implies that 
the maximum typical rank of G is 3. In all other cases, G has K◦

2 �K◦
2 as a subgraph. Any graph obtained 

by adding a (possibly empty) set of edges to this subgraph has typical rank 4 by Theorem 2.2. In this case, 
G has 4 as its maximum typical rank. �
4. Open problems

In this section, we list several open problems that seem like promising next steps for the study of typical 
ranks of semisimple graphs. Theorem 3.3 gives us a relatively complete understanding of the typical rank 
behavior of cycle-free looped forests, so a natural next step is to investigate the typical rank behavior of 
cycles.

We know that every looped cycle has generic completion rank 3 [6, Theorem 2.5]. Moreover, if G is a 
looped cycle of length 4 or greater, then Theorem 2.2 implies that G also has 4 as a typical rank since G
contains K◦

2 �K◦
2 as a subgraph. Theorem 3.3 implies that every path has a maximum typical rank of at 

most 4, so since a cycle can be obtained from a path by adding a single suspension vertex and deleting 
edges, Lemma 3.4 implies that no looped cycle can have 6 as a typical rank. However, at this point, we do 
not know whether 5 is a possible typical rank. Therefore we ask the following question.

Question 4.1. Does there exist a looped cycle with 5 as its maximum typical rank?

There is also much left to be done in understanding generic completion ranks. In particular, we do not 
even know of a characterization of the semisimple graphs with generic completion rank two. We therefore 
also pose the following question, whose answer is known for looped graphs [6] and bipartite graphs [2].

Question 4.2. Which semisimple graphs have 2 as their generic completion rank?

Given looped graphs G and H, the generic completion rank of any clique sum of G and H is the maximum 
of the generic completion ranks of G and H [4, Theorem 1.12]. Proposition 2.20 gives us some information 
about how typical rank behaves in the context of disjoint unions of full rank typical graphs. In light of this, 
we ask the following more general question.

Question 4.3. What are the typical rank of a clique sums of two semisimple graphs?
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The following proposition gives yet another case study for the disjoint union of graphs. Its proof motivates 
Question 4.5 which follows.

Proposition 4.4. The maximum typical rank of the disjoint union of two looped 4-cycles C◦
4 � C◦

4 is 4.

Proof. Let M(x, y) be a C◦
4 -partial matrix, which we write as

M(x, y) =

⎛
⎜⎜⎜⎝

A
x μ

λ y

x λ

μ y
B

⎞
⎟⎟⎟⎠

where A = (aij) and B = (bij) are 2 × 2 fully specified matrices, λ, μ are specified entries and x, y are the 
unspecified entries. Theorem 2.2 implies that C◦

4 is full-rank typical. We will show that if M is minimally 
completable to rank 4, then In(M) = (2, 2, 0). The desired result then follows from Proposition 2.20.

We claim that a minimum rank completion of M cannot be definite. For the sake of contraction, assume 
without loss of generality that a minimum rank completion of M is positive definite. Then, for any x, y, the 
third leading principal minor of M(x, y) must be positive. This minor is a quadratic polynomial in x with 
leading coefficient −a22. Since M(x, y) is positive definite, a22 > 0. But then for large x, the third leading 
principal minor becomes negative, thus contradicting that M(x, y) is positive definite.

Now, for the sake of contradiction, assume M is minimally completable to full rank, and that In(M) =
(3, 1, 0). Then, det(M(x, y)) is negative for any completion of M . Note that det(M) is a degree 4 polynomial 
which has leading term x2y2. Thus, for large x and y, it is clear that det(M(x, y)) > 0. This implies that 
In(M(x, y)) cannot be (3, 1, 0) nor (1, 3, 0) since that would imply det(M(x, y)) < 0. The only remaining 
possibility is In(M(x, y)) = (2, 2, 0). �

Recall from Proposition 2.12 that if G is full-rank typical and M is a G-partial matrix that is minimally 
completable to full rank, then all completions of M have the same inertia, which we denote In(M). The proof 
of Proposition 4.4 suggests that for the purposes of determining the maximum typical rank of a disjoint 
union of full-rank typical graphs, it could be helpful to characterize the possible values of In(M) as M
ranges over all G-partial matrices that are minimally completable to full rank. Thus we pose the following 
question.

Question 4.5. Given a full-rank typical graph G, what are the possible values of In(M) as M ranges over 
all G-partial matrices that are minimally completable to full rank?

Given a full-rank typical G, if Gc has a proper two-coloring with color classes of size m and n, then there 
exists a generic G-partial matrix M that is minimally completable to full rank and has In(M) = (m, n, 0). 
To see this, note that in this case G has K◦

m � K◦
n as a subgraph, and so Proposition 2.5 implies that if 

in a G-partial matrix M , the entries corresponding to the edges of the K◦
m form a positive definite matrix 

and the entries corresponding to the edges of the K◦
n form a negative definite matrix, then M is minimally 

completable to full rank and In(M) = (m, n, 0). Since we were unable to find a full rank typical graph G
and G-partial matrix M whose inertia did not correspond to a two-coloring of Gc in this way, we make the 
following conjecture.

Conjecture 4.6. Let G be a full-rank typical graph. Then there exists a G-partial matrix M , minimally 
completable to full rank, such that In(M) = (m, n, 0) if and only if there exists a proper bicoloring of Gc

with m red vertices and n blue vertices.
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