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1. Introduction

This paper is concerned with the symmetric low-rank matriz completion problem. We begin with an
illustrative example. Suppose that we have a partially specified symmetric matrix f: Z , where a and b

are given, and our objective is to find the unknown entry *, so that the full matrix has minimal rank. Unless
a and b are both zero, any completion will have rank at least 1, and if we are allowed complex entries, then
can always complete to rank 1 by setting * = v/ab. This situation is quite general: if we fix a pattern of
known and unknown entries and the entries are complex numbers, then outside of a low-dimensional subset
in the space of partial fillings (the point (0,0) in the (a,b)-space in our example), any partial filled matrix
can be completed to the same minimal rank, called the generic completion rank of the pattern. We note
that in general the exceptional low-dimensional set will contain matrices that are minimally completable to
ranks that are both higher and lower than the generic completion rank.
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If we consider our example when entries are restricted to be real numbers, then the situation is more
complicated. If ab > 0, then we can still complete to rank one, but if ab < 0, then we can only complete
to rank two. Notice that the set of matrices that are completable to rank two forms a full-dimensional
subset of the (a,b)-space of partial fillings. This brings us to a crucial definition: given a fixed pattern of
known and unknown entries, a rank r is called typical if the set of all matrices with real entries minimally
completable to rank r forms a full-dimensional subset of the vector space of partial fillings. As we see in the
above example, a given pattern can have more than one typical rank.

It is known that the generic completion rank of a pattern is equal to its lowest typical rank, and all
ranks between the maximal typical rank and the minimal typical rank are also typical [1,3]. We say that a
pattern of known entries of an n x n partial matrix is full-rank typical if n is a typical rank. The question
of characterizing full-rank typical patterns was raised in [3]. One of our main results, Theorem 2.2, is a
simple characterization of the full-rank typical patterns. We provide a semialgebraic description of the set
of generic partial matrices that can only be completed to full rank, in the case that the pattern of known
entries is full-rank typical (Theorem 2.17), and for one particular family of patterns, we give a semialgebraic
description of the open regions corresponding to each typical rank (Theorem 2.7). We also characterize the
typical rank behavior of patterns with generic completion rank one (Theorem 3.2), and of patterns with
generic completion rank two such that all diagonal entries are known (Theorem 3.3).

Generic completion rank for symmetric matrices has applications in statistics as a bound for the maximum
likelihood threshold of a Gaussian graphical model and in factor analysis [4,6,12,14]. If we restrict to positive
semidefinite completions, then maximal typical rank of a pattern (suitably defined) is known as the Gram
dimension, and is closely related to Euclidean distance realization problems [9,10]. We note that for the
positive semidefinite matrix completion, there are no partial matrices that can be completed only to full
rank as any entry of a positive definite matrix may be changed to make the matrix positive semidefinite
and drop rank. There is also a similarity to the investigation of generic and typical ranks for tensors and
symmetric tensors [1,5,7,8]. We now state and discuss our main results in detail.

1.1. Main results in detail

Matrices and partial matrices will be assumed to have entries in a field K, which will always be R or C.
Let S™(K) denote the set of n X n symmetric matrices with entries in K. To a pattern of known entries, we
associate a semisimple graph G = ([n], FE) (i.e. loops are allowed, but no multiple edges), where the edges
of G correspond to the known entries and non-edges of G correspond to the unknown entries (See Fig. 1).
Associated to each semisimple graph G is the set of G-partial matrices, which are elements of K¥. It is often
helpful to think of a completion of a G-partial matrix M as a function

M KPBENE L gn k)

that simply plugs in a set of values for the missing entries. Thus given a partial matrix M, we let M (x)
denote the matrix obtained by plugging in x for the missing entries of M.

We will use the term generic matriz to mean any matrix that lies outside of an (often unspecified)
algebraic subset of the space of all matrices. For instance, we can say that a generic matrix is invertible,
since non-invertible matrices lie inside the determinant hypersurface. Similarly, a generic square matrix has
distinct eigenvalues, since discriminant of the characteristic polynomial catches all matrices with repeated
eigenvalues. Specifying the algebraic subset explicitly is often omitted.

For any graph G there exists an integer r such that for any generic G-partial matrix M with complex
entries, there exists a complex x such that M (x) has rank r, and M cannot be completed to a rank below
r [3, Proposition 6.1(1)]. This r is called the generic completion rank of G and we denote it ger(G). If we
insist that x be real, then we lose the existence of generic completion rank and instead get typical ranks.
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Fig. 1. Partial matrices alongside their corresponding graphs.

More precisely, a typical rank of a graph G is an integer r such that there exists an open set U C R¥ in the
Euclidean topology of real G-partial matrices such that any M € U is completable to rank r, and cannot
be completed to a rank below r. In this case we say that M is minimally completable to rank r.

Proposition (c¢f. [3, Proposition 6.1]). Let G = ([n], E) be a semisimple graph. The minimum typical rank
of G is ger(G) and all integers between ger(G) and the mazimum typical rank of G are typical ranks of G.
In addition, the maximum typical rank of G is at most 2 - ger(QG).

Denote the n-clique with a loop at every vertex by K. The complement of a semisimple graph G =
([n], E), denoted G*¢, is the graph obtained by removing the edges in E from K?. A semisimple graph with
n vertices is called full-rank typical if n is a typical rank. Our first main result characterizes the full-rank
typical graphs, thus solving a problem posed in [3]. Note that a bipartite semisimple graph cannot have
loops.

Theorem (Theorem 2.2). A graph G is full-rank typical if and only if its complement G¢ is bipartite.

For any full-rank typical graph G, Theorem 2.17 describes the set of generic partial matrices that are
minimally completable to full rank.

Given graphs GG and H, we let G L H denote the disjoint union of G and H. For the full-rank typical
graphs G = K; U K,

o, we describe how to calculate the minimal completion rank of a generic G-partial

matrix. To state this theorem, we need the following definition.

Definition 1.1. For a real full-rank symmetric matrix A, let p4 and n4 denote the number of positive and
negative eigenvalues of A respectively. Given two real full-rank symmetric matrices A and B potentially of
different sizes, we define eigenvalue sign disagreement between A and B, denoted esd(A, B), as follows

esd(A, B) = 4 if (pa — pp)(na —np) >0
7 . min{|pa — pBl,[na —npl} otherwise

Theorem (Theorem 2.7). Let m,n > 0 be integers and G = K5, UK;. Let A be a full-rank m x m symmetric
matriz and B be a full-rank n X n symmetric matriz, and consider the following G-partial matrix

A x
M = < B) |
Then, M is minimally completable to rank max{n,m} + esd(A, B).

Our remaining results concern graphs with low typical ranks. Semisimple graphs with generic completion
rank 1 were characterized in [13]. We characterize their typical ranks.

Theorem (Theorem 5.2). Let G be a semisimple graph with generic completion rank 1. The mazimum typical
rank of G is 2 if G has at least two cycles, and 1 otherwise.
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A tree with at most one non-leaf vertex is called a star tree. A graph is called looped if every vertex has
a loop. Theorem 2.5 in [6] implies that a looped graph has generic completion rank at most 2 if and only if
it has no cycles (aside from loops). We build on this, characterizing the typical ranks of looped graphs with
generic completion rank at most 2.

Theorem (Theorem 3.3). Let G be a looped graph.

(1) The generic completion rank of G is at most 2 if and only if G is a looped forest. Equality is attained
if and only if G has at least one non-loop edge [6, Theorem 2.5].
(2) When G has generic completion rank 1 and at least two vertices, G also has 2 as a typical rank.
(3) When G has generic completion rank 2, the mazimum typical rank of G is
(a) 2 if G has exactly two vertices
(b) 3 if G has at least three vertices and is the union of a looped star tree and a looped set of isolated
vertices, and
(c) 4 otherwise.

2. Full-rank typical graphs

We first answer a question posed in [3], characterizing the graphs that are full-rank typical. We start
with a simple, but important, observation.

Remark 2.1. If G is full-rank typical, then any graph obtained by adding edges to G is also full-rank typical.
2.1. The characterization

We now state the main result of this subsection. Note that a bipartite semisimple graph cannot have
loops.

Theorem 2.2. A graph G is full-rank typical if and only if its complement G is bipartite.

Proof. We first show that if G° is not bipartite, then G is not full-rank typical. Remark 2.1 implies that
removing edges from a graph that is not full-rank typical produces another graph that is not full-rank typical.
Since every non-bipartite graph contains an odd cycle, it suffices to let G be a graph whose complement
consists of an odd cycle and an independent set of vertices, and then show that G is not full-rank typical.
So let M be a generic G-partial matrix. Then det(M (x)) is a polynomial in the indeterminates x, with odd
total degree, and thus has a real zero. So G is not full-rank typical.

Conversely, if G¢ is bipartite, then for some positive integers m,n, G contains K; U K, as a subgraph.
Therefore, G is full-rank typical by Remark 2.1 and Proposition 2.5 below. O

Corollary 2.3. The maximum typical rank of G is at least the maximum number of vertices in a bipartite
induced subgraph of the complement G¢.

One might ask whether the bound given by Corollary 2.3 is sharp. Unfortunately, this is not the case as
shown by the following example.

Example 2.4. Consider a looped complete bipartite graph Ky, ,, for m > 2 and n = (ZL) It is known that
the generic completion rank of K7, , is equal to m in [4, Theorem 2.5]. Note that the maximum size of a
bipartite induced subgraph of (Kp, )¢ is 4. Therefore, if we choose m > 4, then its maximum typical rank
is greater than 4.
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2.2. The disjoint union of two cliques

The main result of this subsection is Theorem 2.7 which explains how to determine the minimum rank
of a completion of a given generic G-partial matrix when G is the disjoint union of two cliques. We begin
with a special case of Theorem 2.7 that will be necessary for its proof.

Proposition 2.5. Let m,n > 0 be integers and let G = K, U K, . A G-partial matriz

A %
(2 5)
is minimally completable to full-rank if and only if A is positive definite (negative definite resp.) and B is
negative definite (positive definite resp.). In particular, G = K2, U K¢ is full-rank typical.

Proof. Throughout, we will view M (x) as a 2 x 2 symmetric block matrix. We denote the upper-right block,
whose entries are given by x, by X. Without loss of generality, let A be an m x m positive definite matrix
and B be an n x n negative definite matrix. Let y € ker M (x). We will write y as

y= (g;) where y1 € R™ and y, € R™.

Since y € ker M (x), we have Ay; = —Xys and XTy; = —Bys, and therefore yI Ay; = y2 By,. Since A is
positive definite and B is negative definite, this implies that y; and ys are both zero vectors and so M (x)
is full-rank for all x.

For the converse, assume that there are eigenvalues a of A and b of B such that ab > 0. If without loss
of generality A is not full rank, then we may complete to some M (x) so that the columns of X7 satisfy a
relation that the columns of A satisfy, thus making M (x) not have full rank. So assume ab > 0. Let C' and
D be orthogonal matrices such that CT AC and DT BD are diagonal matrices whose nonzero entries are the
eigenvalues of A and B, leading with a and b respectively. Treating x as a vector of indeterminates, moving

M _ A X ¢ cT o A X cC 0\ _ cTACc CTXD
(X)* xT B o o DT xT B 0 D)= \DT'XTc DTBD

corresponds to a linear change of variables when taking determinants, so we may without loss of generality

from

assume that A and B are diagonal matrices with a and b as the respective leading entries. Consider a
completion M (x) of M obtained by setting X717 = v/a1b; and X9 = -+ = X,,;; = 0. The rank formula for
Schur complements gives

rank(M (x)) = rank(A) 4+ rank(B — X7 A1 X).

Note that the entries of the first row of B — X7 A~1X are all zero. This means that rank(B — XTA71X)
is less than n and so we may complete M to have non-full rank. O

Before we can state Theorem 2.7, we need the following definition.
Definition 2.6. Given a real full-rank symmetric matrix A, let ps,na denote the number of positive and

negative eigenvalues of A. Given two real full-rank symmetric matrices A and B potentially of different
sizes, we define eigenvalue sign disagreement between A and B, denoted esd(A, B), as follows
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esd(A, B) i=  © i (pa — pp)(na —ng) >0
o min{|pa — ppl,|na —npl} otherwise

Theorem 2.7. Let m,n > 0 be integers and let G = K, LW K?. Let A be a full-rank m x m symmetric matriz
and B be a full-rank n x n symmetric matriz, and consider the following G-partial matriz

A %
= (4 )
Then, M is minimally completable to rank max{n,m} + esd(A, B).

Proof. Without loss of generality, assume that n > m. Let C, D be orthogonal matrices such that CTAC
and DT BD are diagonal. Conjugating the indeterminate matrix M (x) by

)
0 D)’
we may assume without loss of generality that A = diag(as,...,a,) and B = diag(by,...,b,).

We begin by showing that any completion M (x) has rank at least n + esd(A, B). In the case that
esd(A, B) = 0, this is implied by the fact that A is a rank-n submatrix of M (x). So assume without loss of
generality that 0 < esd(A, B) = |pa — pp|. If esd(A4, B) = pp — pa, then M (x) has a principal submatrix
M’ (x) of a 2 x 2 block form whose off-diagonal blocks are all indeterminates, whose upper-left block is an
na Xn 4 diagonal matrix whose nonzero entries are the negative diagonals of A, and whose lower-right block is
a pp X pp diagonal matrix whose nonzero entries are the positive diagonals of B. Proposition 2.5 implies that
any completion of M’ has rank n4+pp. But in this situation, ngo+pp = pa+na+(pp—pa) = ntesd(4, B).
If esd(A, B) = pa—pp, then pa —pp < np—na (note that here we are using that ps —pp and n4 —np have
opposite signs by definition of esd). This inequality cannot be strict, since otherwise it would contradict
n=ps+na>psg+ng=m. Soesd(4,B) =npg —nys and so we can proceed just as in the case where
esd(A, B) = pg — pa.

Now we show that we can complete M to rank n + esd(A4, B). Letting X denote the upper-right block of
M (x), we proceed by choosing x in a way such that

rank(B — XTA71X) = esd(4A, B).

This suffices because rank(M (x)) = rank(A) + rank(B — X7 A1 X) by the rank formula for Schur com-
plements. Let s be the maximum number such that a;b; > 0 for all ¢ < s, and assume that the ordering
of (a1,...,ay) and (by,...,b,) are chosen to maximize s. Note that s < m and that esd(4, B) = m — s.

The ijth entry of XTA71X is Y°)'_, 2™ Therefore, if we set xy), = ’/Z_k;; for 1 < k < s and all other

a
i = 0, B— XTA71X is a diagonal matrix with precisely esd(A4, B) nonzero entries and thus has rank
esd(4,B). O

Corollary 2.8. The typical ranks of K U K2, are max{n,m},...,n+m.
2.8. The space of G-partial matrices

In this subsection, we consider the following question: given a full-rank typical graph G and a generic
G-partial matrix M, when are all completions of M full-rank? Theorem 2.17 gives a complete answer to this

question. It is more or less a direct consequence of Lemma 2.9, which handles the case where G is obtained
from the complete semisimple graph by removing a single non-loop edge.
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Given a (partial) matrix M and subsets S,T of the row and column indices, we let Mg denote the
(partial) matrix obtained by removing the rows corresponding to the elements of S and the columns corre-
sponding to the elements of T'.

Lemma 2.9. Let M be a real partial symmetric n X n matriz where the (1,n)-entry is the only unknown.
Then M can be completed to rank n — 1 or less if and only if

(1) n=2 and det(M; 1) det(M, ) >0, or
(2) det(Mln’ln) # 0 and det(]\/[l,l) det(Mn,n) Z 0, or
(3) det(Min,1n) =0, and det(M(0)1,,) # 0 or det(A(0)) = 0.

Before proving Lemma 2.9, we need a lemma about relations among determinants of arbitrary square
matrices.

Lemma 2.10. Let A be a square, not necessarily symmetric, n X n matriz. Then
det(A) det(A1r,15) — det(A;1 1) det( A, ) + det(Aq ) det(Ay 1) = 0.
Proof. Define f : R"*"™ — R by
f(A) = det(A) det(A1n,1n) — det(Aq,1) det(Ay,,) + det(Aq ) det(Ay 1).

Our goal is to show that f is identically zero. Let B be the n x (n — 2) matrix obtained from A by removing
the first and last columns. Let g : R™ x R™ — R be the function given by

g(z,y) = f((z B y))

where (z B y) denotes the matrix obtained by adding  and y as columns to B on either side. We will
proceed by showing that g is identically zero. Note that g is bilinear and alternating, so it is enough to show
that g(e;, e;) = 0 where e; denotes the ith standard basis vector and i < j. Writing g(e;, e;) out explicitly,
we get

glei,ej) = (=1)"+7 (det(By; p) det(By,, p) — det(Byj ) det(Bin o) + det(By; p) det(Bjn p)) -
The above is a Grassmann-Pliicker relation, so it is identically zero [11, Chapter 4.3]. O
Proof of Lemma 2.9. We write det(M (m1,,)) as a quadratic polynomial in mq , as follows
det(M(mi,,)) = — det(Mlnyln)min + 2det(M(0)1,5,)m1 n + det(M(0)).

If det(Miy,1,) = 0, this is a linear or constant polynomial. It has a zero, which is real, if and only if
det(M(0)1,,) # 0 or det(M(0)) = 0.

If det(M1p,1n) # 0, then det(M (mq ,,)) has a real zero if and only if its discriminant is nonnegative. The
discriminant of det(M (mq,y,)) is

4det(M(0)1,,)* + 4 det(Myy, 1) det(M(0)).

Lemma 2.10 implies that the following polynomial is identically zero

det(M(0)1.,)% + det(My,.1,) det(M(0)) — det(M; 1) det(M,, ).
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Therefore the discriminant of det(M (mq,y,)) is det(M 1) det(M,,,). O

Definition 2.11. Let A be a symmetric matrix. Define pa,n4 be the number, counted with multiplicity, of
positive and negative eigenvalues of A. The inertia of A is the vector

In(A) := (pa,na,dimker A).

Proposition 2.12. Let G be any full-rank typical semisimple graph, and M be a real G-partial matriz. If M
is minimally completable to full-rank, then all completions of M have the same inertia.

Proof. Let M(x;) and M(x2) be completions of M such that In(M(x1)) # In(M(x2)). By continuity of
the function sending a matrix to its eigenvalues, there exists a point x¢ on the line segment from x; to xa
such that M (xg) has a zero eigenvalue, i.e. is rank deficient. O

Definition 2.13. Let G be a full-rank typical graph and let M be a G-partial matrix. We define sign(M) := 0
if det(M (x)) = 0 for some choice of real x, and otherwise, define sign(M) to be the sign of det(M (0)) (which
is the sign of det(M(x)) for any x by Proposition 2.12).

Remark 2.14. Let G be a full-rank typical graph. Then it follows from Theorem 2.2 that any subgraph obtained
from G by deleting vertices is also full rank typical. In particular, if M is a G-partial matriz and A is a
principal minor of M, then sign(A) is well-defined.

Lemma 2.15. Let G = ([n], E) be a full-rank typical graph, let M be a generic G-partial matriz, and let {4, j}
be a non-edge of G. Then M (x) is full-rank for all x if and only if n = 2 or sign(M;;,i;) # 0, and sign(M; ;)
and sign(M; ;) are nonzero and opposite.

Proof. Without loss of generality, let {4, j} = {1,n}. Assume n = 2 or sign(Miy, 1,) # 0. If one of sign(M; 1)
or sign(My, ) is zero, then Lemma 2.9 implies that M can be completed to rank n—1 or less. If not, then the
values of sign(Mj 1) and sign(M,, ) do not depend on how we complete the non-(1,n) entries. Lemma 2.9
then implies that M can be completed to rank n — 1 or less if and only if sign(M 1) = sign(M,.,,).

Now assume n > 3 and sign(Mip 1,) = 0. We show that M can be completed to rank n—1 or less. Assume
there exists a completion M (x) of M such that rank(M (x)1,,1n) = 7 — 3. Let y(¢) be obtained from x by
perturbing each entry in the first and nth row and replacing the (1,n) entry with the indeterminate ¢. Then
M (y(t)) is a partial matrix whose only unknown entry is (1,n) and det(M (y(¢))1n,1n) = 0. Since a generic
row (respectively column) vector of size n — 2 will not lie in the row span (column span) of M (X)1p,1n,
det(M(y(0))1,n) # 0. Lemma 2.9 then implies that M (y(¢)), and therefore M, has a completion to rank
n — 1. If there exists a completion M (x) of M such that rank(M (Xx)1n,1n) = n — 4, then there exists x’
obtained from x via a generic perturbation of a single entry such that rank(M(x')1p,1n) = n — 3. If there
exists a completion M (x) such that rank(M (x)in,1n) < n — 5, then rank(M(x)) <n—1. O

Given full-rank typical G and a G-partial matrix M, Lemma 2.15 gives us a recursive procedure for
determining whether or not M must be completed to full rank. We will use the following definition to

convert this recursive procedure into one where we just check the signs of various minors of M (0).

Definition 2.16. Let G = (V| E) be a full-rank typical graph. Let

O :={i1, 41} Lok, Je )
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Fig. 2. Various examples of (G, O) alongside G°. In all cases O is the lexicographic ordering of the non-edges.

be an ordering of the non-edges of G. Initialize 7(G, Q) := {V'}. Iteratively for I = 1,...,k and for each
inclusion-wise minimal element S of 7(G, O) such that {i;,5;} C S, add S\ {i;} and S\{ji} to 7(G, O). Note
that if we partially order 7(G, Q) by inclusion, then every non-minimal S € 7 covers exactly two elements.

Given an n x n symmetric (partial) matrix M and S C [n], let Ag denote the principal submatrix of A
with rows and columns indexed by S.

Theorem 2.17. Let G = (V, E) be full-rank typical, let M be a generic G-partial matriz, and let M (xq) be
a generic completion of M. Let O be an ordering of the non-edges of G. Then M (x) is full-rank for all
real x if and only if whenever Sy, S2 are the elements covered by some S € ©(G,0), sign(M(x0)s,) and
sign(M(xqg)s,) are nonzero and opposite.

Proof. Let S be a non-minimal element of 7(G,O) and let S; and S be the elements covered by S. If
sign(Ms, (xo)) = sign(Ms,(xo)), then Lemma 2.15 implies that Mg has a completion to less than full rank,
i.e. that sign(Mg) = 0. By Lemma 2.15, this implies that M has a completion to less than full rank.

Now assume sign(Mg, (x0)) and sign(Msg,(xg)) are nonzero and opposite whenever S; and Sy are the
elements covered by some S € (G, O). Whenever T’ € 7(G, O) is minimal, My is fully-specified. Lemma 2.15
therefore implies that whenever S covers two minimal elements of 7 (G, O), all completions of Mg are full-
rank. So in this case, Proposition 2.12 implies sign(Mg) = sign(Mg(xp)). It then follows by Lemma 2.15
and induction that sign(Mg) = sign(Ms(xp)) for all S € 7(G,O). In particular, sign(M) = sign(Mp,)) =
sign(det(M (x0))) is nonzero, i.e. all completions of M have rank n. O

Example 2.18. Fig. 2 shows three examples of 7 (G, Q) alongside the complement graph G°. In all cases, O
is the lexicographic ordering of the non-edges of G (i.e. the edges of G°).

2.4. Disjoint unions of full-rank typical graphs

In this subsection, we study the typical ranks of disjoint unions of full-rank typical graphs. Proposi-
tion 2.12 allows us to make the following definition.

Definition 2.19. Let G and H be full-rank typical graphs, and let M and N respectively be G- and H-partial
matrices which are minimally completable to full rank. Define esd(M, N) to be esd(M (x), N(x)) for any
completion A(x), B(x) of A and B.
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Proposition 2.20. Let G1 and G2 be full-rank typical graphs and define G := G, U G5. Let M be a G-partial
matriz, which we may write as

(M7
= (% )

where M; is a G;-partial matriz. If My and Ms are minimally completable to full rank, then M is minimally
completable to rank max{n,m} + esd(My, Mz).

Proof. This follows immediately from Proposition 2.12 and Theorem 2.7. O

We end this section with a characterization of the maximum typical ranks of disjoint unions of more than
two cliques.

Proposition 2.21. Let G be the disjoint union of k cliques where the ith clique has size n; and nqy > ng >
o« > ng. Then the maximum typical rank of G is ny + ns.

Proof. Corollary 2.3 implies that the maximum typical rank of G is at least n; + ny. To prove the other
direction, let M(x) be a generic G-partial matrix. We may write

= (45 563)
where
B N A
aoe= (3 2)me= | v (R ),
X;}I;g Xﬂ M,

where each M; is a n; X n; fully specified symmetric matrix and each X;; is a matrix of indeterminates. Just
as in the proof of Theorem 2.7, we may use the eigendecomposition of each M; to obtain a linear change of
variables so that each M; is diagonal. Therefore, without loss of generality, assume M; = diag(m1, ..., Min,)
foralli=1,... k.

First, consider the case that esd(Mj, M) = ns. Without loss of generality, assume that M is positive
definite and M5 is negative definite. We now describe a completion of M to rank my + ng, similar to the
construction given in the proof of Theorem 2.7. Denote (p, g)-entry of X;; by (Xj;)pe. For all X;; that are
not blocks of Y (i.e. ¢ > 3, or i =1 and j = 2), set X;; = 0. For the X;; that are blocks of ¥ (i.e. i = 1,2
and j > 3) set (X;j)pq = 0 when p # ¢, and specify the remaining entries as follows

Wi my, >0 W=z my, <0
(X1))pp = i Jp, (X2j)pp = mep ]p,
0 otherwise 0 otherwise.
This ensures that B(0) — YT A(0)~'Y is a zero matrix. The rank formula for Schur complements then gives
rank(M (x)) = rank(A(0)) + rank (B(0) — YTA(O)le) =n1 + no.

Now, consider the case that esd(My, Mz2) < ng. If esd(M;, M2) < esd(Miy, M;) for some i > 2, since
ny > --- > ng, we may proceed by relabeling the blocks so that esd(My, Ms) = 'ngaxkesd(Ml,Mi) and

i=2,...,
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exhibiting a completion of M (x) to rank ny + ng. Since ¢ = 2 maximizes esd(My, M;), after possibly re-
ordering rows and columns, we may assume that for any diagonal entry m;;, either m;my; > 0 or m;;meo; > 0.
Hence, we can complete X1; and Xo; as before to ensure that B(0) — YT A(0)~1Y is a zero matrix. Since
rank(A(0)) = ny + ng, the rank formula for Schur complements implies

rank (M (x)) = rank(A(0)) + rank (B(0) — YTA(0)'Y) =ny +np. O
3. Low maximum typical ranks
3.1. Generic completion rank one

We first look at the semisimple graphs which have generic completion rank one. There is a known
characterization for such graphs.

Proposition 3.1 ([13, Proposition 5.3]). The generic completion rank of a semisimple graph G is one if and
only if G is free of even cycles, and every connected component of G has at most one odd cycle.

Proposition 1 implies that if G has generic completion rank one, then the maximum typical rank of G is
at most two. The following proposition tells us when two is attained.

Theorem 3.2. Let G be a semisimple graph with generic completion rank 1. Then G has 2 as a typical rank
if and only if G has at least two odd cycles.

Proof. We begin by showing that if G has two odd cycles, then G has two as a typical rank. If each of these
cycles is a loop, then G has K7 UKY as an induced subgraph. Setting the two corresponding diagonal entries
to values with opposite signs yields a principal 2 x 2 minor that will have a strictly negative determinant
for any completion. If one of these odd cycles has size three, then any G-partial matrix M (x) has a sub

Ty a b
N(x):(a b c). (1)

partial matrix N of the form

b ¢ x3

Thus any rank-one completion of M (x) must set xo = 9°. If one of the cycles has size greater than three,
choose three edges in this odd cycle that form a path. We can write the corresponding sub partial matrix
N of M as

Zo a 1 X2

| a x3 b x4
N(x) = gy b w5 ¢ |- (2)

To T4 & Te

Thus any rank-one completion of M (x) must set x5 = 7. Let G’ be the graph obtained from G by deleting
two of the vertices in a three-cycle and adding a loop onto the remaining vertex, or by deleting the inner
vertices in a path of length three and adding an edge between the two outer edges. In both cases, let M’(x)
be the G’-partial matrix obtained from M (x) by deleting the corresponding rows and columns, and setting
x5 to §°. Note that G’ has generic completion rank one, and that if M’(x) is minimally completable to rank
2, then so is M(x). As a,b, and c range over R, 9¢ takes all real values. So if G’ has two as a typical rank,
then for some choice of x, M’(x) is minimally completable to rank two. That G’ has two as a typical rank
now follows by induction.
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We now show that if G has at most one odd cycle, then G only has 1 as a typical rank. Let M (x) be
a G-partial matrix. We begin by assuming that G is itself an odd cycle. The case that G is a l-cycle is
trivial, and if G is a 3-cycle, we have formulas for the diagonal entries of M(x) as in (1). If G has length
greater than 3, then we have formulas for all the off-diagonal entries of M (x) as in (2), then formulas for
the diagonal entries as in (1). Now assume that G is connected. If G has no odd cycle, add a loop and
set the corresponding diagonal entry of M (x) to a generic real number. Otherwise, construct a rank-one
completion of M (x) corresponding to the odd cycle as before, and add the corresponding edges to G. Now
all the remaining unknown diagonal entries can be completed to the same sign. To see this, note that if G
has an induced subgraph consisting an edge joining a vertex having a loop to a vertex with no loop, M (x)

e = (5 7)

. . 2 . . .
where z is unknown. In a rank-1 completion, we must have z = %, which will have the same sign as a.

has a sub partial matrix N(x) of the form

Thus when we complete the missing diagonals according to this formula, they will all have the same sign.
Then, we can complete the off diagonal entries over the reals.

If G is disconnected, then at most one connected component has an odd cycle. Complete the missing
entries of M (x) in this component with the odd cycle as in the previous case. On each remaining component,
set one of the diagonal entries to a generic real number whose sign is the same as the sign of the diagonal
entries. Then we can complete each connected component as before, and since the signs of all the diagonal
entries will be equal, we can then complete the remaining unknown off-diagonal entries. O

3.2. Looped graphs

A vertex v of a graph G is said to be looped if G has a loop at v. We say that a graph G is looped if every
vertex of GG is looped. The main result of this subsection is Theorem 3.3 below. It gives a combinatorial
characterization of the typical ranks of a looped graph that has generic completion rank at most 2. Recall
that a star tree is a tree with at most one non-leaf vertex.

Theorem 3.3. Let G be a looped graph.

(1) The generic completion rank of G is at most 2 if and only if G is a looped forest. Equality is attained
if and only if G has at least one non-loop edge.
(2) When G has generic completion rank 1 and at least two vertices, G also has 2 as a typical rank.
(3) When G has generic completion rank 2, the mazimum typical rank of G is
(a) 2 if G has exactly two vertices
(b) 3 if G has at least three vertices and is the union of a looped star tree and a looped set of isolated
vertices, and
(c) 4 otherwise.

Before proving Theorem 3.3, we give a handful of intermediate results. Recall that a suspension vertex
in a graph is a vertex that is adjacent to every other vertex. The relevance of the following lemma to
Theorem 3.3 comes from the fact that a star tree can be obtained from a set of isolated vertices by adding
a suspension vertex.

Lemma 3.4. Adding a looped suspension vertex to a semisimple graph increases all its typical ranks by 1.
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Proof. Let G = ([n], E) be a semisimple graph and let r be a typical rank of G. Let H = ([n + 1], E’)
be obtained from G by adding a looped suspension vertex and let N(x) be an H-partial matrix. We may
assume that N(x) is of the following form

N0 = (5 ari)

where M (x) is a G-partial matrix, v is a fully specified row vector and « is a nonzero real number. Given
a completion xg, the rank formula for Schur complements gives

rank (N (xg)) = 1 + rank (M(xo) — éﬂ;) .

Applying a linear change of coordinates on the space of G-partial matrices and a linear change of vari-
ables for the substitution, it is evident that we may choose a generic M such that the minimum of
rank (M (xo) — Lv7v) is r. Thus H has r + 1 as a typical rank. O

The characterization of looped graphs with generic completion rank at most two, given below, is an easy
consequence of a result of Gross and Sullivant.

Proposition 3.5. Let G be a looped graph. The generic completion rank of G is at most two if and only if G
is a looped forest, with equality attained if and only if G has at least one non-loop edge.

Proof. This follows from [6, Theorem 2.5]. O

Proposition 1 implies that the maximum typical rank of a graph with generic completion rank 2, which
in the looped case we now know to be trees, is at most 4. Lemma 3.6 below tells us that for looped star
trees, this inequality is strict.

Lemma 3.6. If G is a looped star tree with at least three vertices, then the typical ranks of G are 2 and 3.

Proof. By Proposition 3.1 and Theorem 3.2, we have that the generic completion rank of a union of isolated
looped vertices is 1 and its maximum typical rank is 2. The proposition then follows from Lemma 3.4. O

Proposition 3.8 below handles most of the heavy lifting in the proof of Theorem 3.3. It tells us exactly
which looped graphs have 3 as their maximum typical rank. Before we can prove that, we need Proposi-
tion 3.7 which gives an upper bound on the maximum typical rank of a graph in terms of the maximum
size of an independent set of vertices.

Proposition 3.7. Let G be a looped semisimple graph with n vertices. Let r be the maximum size of an
independent set of vertices of G. Then, the mazximum typical rank of G is at most 2 +n — r.

Proof. Let H be the graph obtained from G by removing all vertices not in a particular independent set
of vertices of size r. Proposition 3.5 implies that the maximum typical rank of H is at most 2. Let H' be
obtained from H by adding n — r looped suspension vertices. Lemma 3.4 implies that the maximum typical
rank of H’ is at most 2+mn —r. Since G is a subgraph of H’, the maximum typical rank of G is also at most
24+n—r. O

Proposition 3.8. Let G be a looped graph with at least three vertices and one non-loop edge. Then the
mazimum typical rank of G is 3 if and only if G is a looped triangle, or the disjoint union of a looped star
tree and a (possibly empty) set of looped isolated vertices.
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Proof. Since adding edges and vertices to a graph can only increase its maximum typical rank, Proposi-
tion 2.5 implies that if G has a pair of edges not sharing any vertex, then G has four as a typical rank. Thus
if the maximum typical rank of G is 3, then G is either a triangle, or the disjoint union of a star tree and a
(possibly empty) set of isolated vertices. It is clear that a triangle has 3 as a typical rank. In the other case,
the fact that G has 3 as a typical rank is implied by Lemma 3.6 when the star tree in G has at least three
vertices, and by Proposition 2.21 when the star tree in G has two vertices.

The proposition now follows by noting that the triangle cannot have four as a typical rank (it only has
three vertices), and Proposition 3.7 implies that neither can the disjoint union of a star tree and a set of
isolated vertices. 0O

We are now ready to prove the main result of this subsection.

Proof of Theorem 3.3. Proposition 3.5 is (1). Theorem 2.2 implies (2). If G has generic completion rank
two, then Proposition 1 implies that the maximum typical rank of G is at most 4. In this case, it is clear that
if G has two vertices, then 2 is the maximum typical rank of G. So assume that G has at least 3 vertices. If
G is the union of a looped star tree and a set of looped isolated vertices, then Proposition 3.8 implies that
the maximum typical rank of G is 3. In all other cases, G has K5 LI K5 as a subgraph. Any graph obtained
by adding a (possibly empty) set of edges to this subgraph has typical rank 4 by Theorem 2.2. In this case,
G has 4 as its maximum typical rank. O

4. Open problems

In this section, we list several open problems that seem like promising next steps for the study of typical
ranks of semisimple graphs. Theorem 3.3 gives us a relatively complete understanding of the typical rank
behavior of cycle-free looped forests, so a natural next step is to investigate the typical rank behavior of
cycles.

We know that every looped cycle has generic completion rank 3 [6, Theorem 2.5]. Moreover, if G is a
looped cycle of length 4 or greater, then Theorem 2.2 implies that G also has 4 as a typical rank since G
contains K35 LI K3 as a subgraph. Theorem 3.3 implies that every path has a maximum typical rank of at
most 4, so since a cycle can be obtained from a path by adding a single suspension vertex and deleting
edges, Lemma 3.4 implies that no looped cycle can have 6 as a typical rank. However, at this point, we do
not know whether 5 is a possible typical rank. Therefore we ask the following question.

Question 4.1. Does there exist a looped cycle with 5 as its maximum typical rank?

There is also much left to be done in understanding generic completion ranks. In particular, we do not
even know of a characterization of the semisimple graphs with generic completion rank two. We therefore
also pose the following question, whose answer is known for looped graphs [6] and bipartite graphs [2].
Question 4.2. Which semisimple graphs have 2 as their generic completion rank?

Given looped graphs G and H, the generic completion rank of any clique sum of G and H is the maximum
of the generic completion ranks of G and H [4, Theorem 1.12]. Proposition 2.20 gives us some information
about how typical rank behaves in the context of disjoint unions of full rank typical graphs. In light of this,

we ask the following more general question.

Question 4.3. What are the typical rank of a clique sums of two semisimple graphs?
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The following proposition gives yet another case study for the disjoint union of graphs. Its proof motivates
Question 4.5 which follows.

Proposition 4.4. The mazimum typical rank of the disjoint union of two looped 4-cycles C3 L CY is 4.

Proof. Let M(z,y) be a Cj-partial matrix, which we write as

T p
A
M(z,y) = . Y

By

B

where A = (a;;) and B = (b;;) are 2 x 2 fully specified matrices, A, v are specified entries and z,y are the
unspecified entries. Theorem 2.2 implies that C} is full-rank typical. We will show that if M is minimally
completable to rank 4, then In(M) = (2,2,0). The desired result then follows from Proposition 2.20.

We claim that a minimum rank completion of M cannot be definite. For the sake of contraction, assume
without loss of generality that a minimum rank completion of M is positive definite. Then, for any x, y, the
third leading principal minor of M (x,y) must be positive. This minor is a quadratic polynomial in z with
leading coefficient —agq. Since M (x,y) is positive definite, asa > 0. But then for large x, the third leading
principal minor becomes negative, thus contradicting that M (x,y) is positive definite.

Now, for the sake of contradiction, assume M is minimally completable to full rank, and that In(M) =
(3,1,0). Then, det(M (x,y)) is negative for any completion of M. Note that det(M) is a degree 4 polynomial
which has leading term 22y%. Thus, for large @ and y, it is clear that det(M (x,y)) > 0. This implies that
In(M(z,y)) cannot be (3,1,0) nor (1,3,0) since that would imply det(M (z,y)) < 0. The only remaining
possibility is In(M (z,y)) = (2,2,0). O

Recall from Proposition 2.12 that if G is full-rank typical and M is a G-partial matrix that is minimally
completable to full rank, then all completions of M have the same inertia, which we denote In(M ). The proof
of Proposition 4.4 suggests that for the purposes of determining the maximum typical rank of a disjoint
union of full-rank typical graphs, it could be helpful to characterize the possible values of In(M) as M
ranges over all G-partial matrices that are minimally completable to full rank. Thus we pose the following
question.

Question 4.5. Given a full-rank typical graph G, what are the possible values of In(M) as M ranges over
all G-partial matrices that are minimally completable to full rank?

Given a full-rank typical G, if G° has a proper two-coloring with color classes of size m and n, then there
exists a generic G-partial matrix M that is minimally completable to full rank and has In(M) = (m,n,0).
To see this, note that in this case G has K, U K° as a subgraph, and so Proposition 2.5 implies that if
in a G-partial matrix M, the entries corresponding to the edges of the K, form a positive definite matrix
and the entries corresponding to the edges of the K, form a negative definite matrix, then M is minimally
completable to full rank and In(M) = (m,n,0). Since we were unable to find a full rank typical graph G
and G-partial matrix M whose inertia did not correspond to a two-coloring of G¢ in this way, we make the
following conjecture.

Conjecture 4.6. Let G be a full-rank typical graph. Then there exists a G-partial matriz M, minimally
completable to full rank, such that In(M) = (m,n,0) if and only if there exists a proper bicoloring of G¢
with m red vertices and n blue vertices.
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