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Abstract—Crossbar-based resistive RAM has been widely used
in deep learning accelerator designs because it largely eliminates
weight movement between memory and processing units. The
high-density storage and low leakage power make it a good fit
for edge/IoT devices. However, existing ReRAM designs for tra-
ditional neural networks cannot support Attention-based Neural
Networks, which are stacked with encoders and decoders instead
of convolutional layers or fully connected layers. In addition to
matrix-matrix multiplications in traditional neural networks, an
encoder or a decoder also includes the attention mechanism, the
layer normalization and the gaussian error linear unit. These
new characteristics make the data flow far more complicated
than that of a convolutional layer. Faulty ReRAM devices are
additional obstacles when mapping weights that severely degrade
computation accuracy. Existing hardware redundancy strategies
that are unaware of application characteristics usually result in
inefficient designs.

In this work, we analyze the data flow of these attention-
based neural networks and propose a ReRAM-based accelerator
with a dedicated pipeline design for Attention-based Neural
Networks. When considering cells with hard faults in crossbars,
we further propose NuXG, a non-uniform redundancy strategy,
to meet accuracy requirements and save energy consumption
by decreasing the redundancy ratio. Finally, we evaluate results
and demonstrate that the proposed can achieve more than two
times improved performance over existing redundancy schemes
in both power efficiency and throughput for Attention-based
Neural Networks. Moreover, it also significantly outperforms an
NVIDIA GPU.

Index Terms—Attention Neural Networks, Fault tolerance,
ReRAM accelerator

I. INTRODUCTION

Processing-in-Memory (PIM) platforms are more and more

popular in accelerating neural network applications due to

fewer data movements compared to FPGA and ASIC imple-

mentations [1]–[3]. Essentially, computations in both convolu-

tional layers and fully-connected layers can be transformed to

matrix-matrix and matrix-vector multiplications. These linear

algebra operations can be mapped to crossbars to achieve

excellent performance [4], [5]. Weight pruning on PIM is sel-

dom studied because mapping irregular computation patterns

to crossbars is challenging.

Attention-based Neural Networks (AttNNs) have been

proven to significantly outperform convolutional neural net-

works (CNNs) and recurrent neural networks (RNNs) in the

wide variety of Natural Language Processing (NLP) tasks [6]–

[9]. In general, it is impractical to deploy a deep learning

network to an accelerator designed for a different network.

Specifically for AttNNs, the gaussian error linear unit (gelu)

activation function [10] is unsupported on pre-existing plat-

forms. Additionally, it includes the multiplication between

intermediate matrices, shortcut-based layer normalization and

vector concatenation. Instead of simply concentrating on the

attention module [11], we analyze the AttNNs by identifying

the performance bottlenecks and then comprehensively design-

ing a hardware accelerator for AttNNs. We propose an archi-

tecture (ATT) for AttNNs which explores intra-layer pipelining

to fully utilize the on-chip hardware. Our pipeline design

addresses hardware hazards and includes modules for AttNN-

specific operations including attention-based mechanisms and

gelu. Resistive RAM (ReRAM) crossbars are leveraged to

implement weight stationary data flow (the multiplication

between the neuron matrix and the weight matrix). ATT goes

a step beyond previous in-situ computation works by taking

hard faults into consideration.
Hard faults in crossbars that are caused by current immature

fabrication and process variation have become a issue for

ReRAM accelerators. The most common hard faults are Stuck-

At-Faults (SAF) [12], which include Stuck-At-Zero (SA0)

and Stuck-At-One (SA1). Once a cell is identified as SAF,

its resistance cannot be changed. Hence, weights cannot be

programmed into the cell. A crossbar with the incomplete

matrix will definitely leads to accuracy degradation because

the inference accuracy is sensitive to the number of defective

memristors [13]. Some existing works have attempted to

recover the application accuracy through various methods:

software solutions [14] either explore re-training models or

other techniques to make the inference reliable; hardware

solutions [14] attempt to search for a trade-off between the

hardware overhead and accuracy requirements. While the

hardware solutions have better performance compared with

software approaches, they are still not efficient enough since

they do not consider characteristics of algorithms. In this

work, we design a heuristic hardware redundancy algorithm

to improve fault-tolerance of ATT by taking the algorithm’s

properties into account.
The contributions of this work can be listed as follows:

• A pipelined accelerator ATT for AttNNs is proposed.

Hardware hazards and AttNN-specific module designs

have been considered.
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(a) An encoder

(b) A decoder

Fig. 1: The data-flow of attention-based blocks

• We design a heuristic redundancy algorithm that takes

layer-wise sparsity into account and makes ATT fault

tolerant.

• We evaluate the performance and the power efficiency of

ATT and compare it to GPU and other redundancy work.

II. BACKGROUND

A. AttNN Algorithms

Deep neural networks are characterized by stacked layers,

including convolutional and fully connected layers. AttNNs

are stacked with two types of basic blocks: the encoder and

the decoder. They are briefly illustrated in Fig.1. Roughly, both

the encoder and the decoder consist of five sections: the Q-

K-V, the Attention, the Head Merge, the Layer Normalization

and the Fully Connected Layer sections.

⎧⎨
⎩

qihd
= W qi

hd
× xi−1

kihd
= W ki

hd
× xi−1

vihd
= W vi

hd
× xi−1

(1)

The Q-K-V section computes q,k,v vectors for each head

according to trained model weight matrices W qi
hd

, W ki

hd
and

W vi

hd
, where hd ∈ (1, D) and D is a hyper parameter that

represents the number of heads. The specific computation is

in equation (1). The computation of q,k,v vectors in one head

and across different heads are independent. In this notation,

xi−1 denotes the inputs of the (i-1)-th Xcoder 1, while qihd
, kihd

and vihd
denote the q,k,v vectors of the hd-th head belonging

to the i-th Xcoder.

The Attention section scores each word of the input sentence

against other words in the same sentence. The scores are

computed by softmax normalizing the dot products of the q

vectors and the k vectors, then the scores are multiplied by

the v vectors. As can be seen in equation (2), the matrices

1We use the Xcoder to denote the encoder or the decoder in following
sections.

involved in this step are intermediate results, which is one of

the different computation patterns from previous basic blocks.

V ini
hd

= Softmax(
qihd

× (kihd
)T√

D
)× vihd

(2)

The Head Merge section first concatenates output vectors

from different heads. Next, the concatenation vector is multi-

plied by a trained weight matrix W i
hm. Equation (3) defines

the operations in this step.

Xini = (V ini
h1
, V ini

h2
, · · · , V ini

hD
)×W i

hm (3)

The Fully connected layer is the same as previous SOTA

networks. There is one hidden layer in this step, so two

weight matrices W i
1 and W i

2 are required as shown in equation

(4). Here i denotes the i-th Xcoder. We should note that the

activation function is the gelu function [10], instead of the

sigmoid or ReLU functions used in traditional neural networks.

The gelu function is defined in equation (5).

xi = f(W i
2 × f(W i

1 ×Xini + bi1) + bi2) (4)

gelu(x) =
x

2
(1 +

e
√

2
π (x+0.044715x3) − e

√
2
π (x+0.044715x3)

e
√

2
π (x+0.044715x3) + e

√
2
π (x+0.044715x3)

)

(5)

.

As shown in equation (6), the Layer Norm performs layer

normalization on each elements of the matrix. For a 3D

matrix (batch size×seq length×model size), layer normal-

ization performs

y =
x− E[x]√
V ar[x] + ε

β + γ (6)

Popular AttNNs such as Transformer [6], Bert [7], XLNet

[8], XLM [9] and GPT2 are stacked with Xcoders. Trans-

former is composed of encoder layers and decoder layers,

while Bert, XLNet and XLM include only encoder layers.

GPT2 only contains decoder layers.

B. In-ReRAM Computation and Hard Faults

A ReRAM array consists of interconnected filamentary

ReRAM cells whose states can be switched between a High

Resistant State (HRS or OFF-state) and Low Resistant State

(LRS or ON-state) by the peripheral read/write circuit. Since

the state value can be seen as a matrix element, a matrix can

easily programmed into the ReRAM array. An input vector

(each component is 16 bits) can be converted to analog signals

bit by bit via 1-bit Digital-to-Analog Converters (DACs). The

voltage signals are applied to each word line, then the current

of each bit line can be regarded as the dot-product between

the voltage vector and the resistance vector. The current is

converted to digital signals by Analog-to-Digital Converters

(ADCs), then shifted and accumulated in the Shift&Add unit

to get the the final dot-product. For simplification, we use

a single crossbar model [15] to demonstrate the proposed

redundancy algorithm in this work. ReRAM can be designed
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as either a crossbar architecture or a grid architecture. Our

work focuses on the former, because it can overcome the sneak

current issue when a dedicated selector is inserted in each cell.

Limited by current immature fabrication and process varia-

tion, faulty devices and cells frequently appear. A filamentary

ReRAM cell structure is essentially a metal–insulator–metal

(MIM) structure, which is simply an oxide material sand-

wiched between two metal electrodes. Immature fabrication

causes variations in the oxide thickness of cells. Cells are

then initialized by applying a high voltage for a certain period

of time, known as forming. Over Forming (OF) defects or

reset failures lead to the Stuck-At-Zero (SA0) fault, whose

resistance is fixed at LRS. Stuck-At-One (SA1) faults instead

have the resistance fixed at HRS. However, it is important to

note that faulty cells with SAFs are still readable.

Fig. 2: Overall architecture

III. ATT ARCHITECTURE DESIGN

A series of words (a sentence) are first converted to a matrix

(this process is called embedding in the machine learning

community) on the CPU. Each word in the sentence accounts

for a row (each component is 16 bits), whose length depends

on the embedding algorithm. Hence, the width of the matrix is

the embedding size, while the height equals the length of the

sentence. For a batch of sentences, we can get a tensor with

three dimensions of which the third dimension is the batch

size. This tensor is stored in main memory, and our accelerator

takes it as input and outputs the results to main memory. The

CPU then translates the outputs to the objective sentence.

A. Pipeline Architecture

Fig.2 illustrates the architecture of the accelerator, which

fetches data from main memory through an external I/O

interface. The accelerator is equipped with eight on-chip

buffers to speed-up the access to different types of data from

different pipeline stages. These buffers are divided into two

sets (Buffer1∼4 and Buffer5∼8). The buffers in each set are

read and written in a round-robin manner to enable the pipeline

to avoid stalls incurred by buffer access conflict.

Q-K-V engine. This engine employs crossbar-based

ReRAM to perform the matrix-vector multiplication intro-

duced in equation (1). Weights W qi
hd

, W ki

hd
and W vi

hd
in equation

(1) are programmed in crossbars before inference. An input

matrix is fetched from main memory by the Q-K-V engine
1©. Each row (with 16-bit components) is converted to analog

signals by Digital-to-analog converters (DAC) bit by bit. These

analog signals are applied to word lines of crossbars. The

currents flowing out from each bit line are the partial sums

of the expected inner product. Analog-to-digital converters

(ADC) convert these analog signals back to digital signals.

DACs, ADCs and Shift&Add units are integrated into the Q-

K-V engine to enable the matrix-vector multiplication to be

calculated in the analog domain. At the end of this stage, the

q,k and v vectors are forwarded to the Attention engine 2©, and

the q vectors are stored to buffers 3©. This stage is represented

as qkv in the following discussion.

Mask issuer. The Mask issuer computes masks according to

the matrix fetched by the Q-K-V engine. Two different masks

are output from this module. One is forwarded to the Attention

engine, and the other is stored in the Mask cache to filter inputs

and outputs of the Fully Connected engine. the Mask issuer

work in parallel with the Q-K-V engine, so this stage can be

seen as a parallel stage with qkv.

Attention engine. This engine performs operations shown

in equation (2). As can be seen, the matrices involved in the

computation are all intermediate results, which are generated

by the previous qkv stage: Q-K-V engine. The v vectors

received from qkv are stored in a local cache. It is time

consuming to program matrices into the crossbar to execute

matrix related multiplication during the inference process.

Additionally, the matrices involved are very small. Hence, we

tailor a matrix-matrix multiplication engine to implement it.

There are three sub-stages in this engine. The first is comput-

ing the inner-product between q vectors and the transposition

of k vectors. The second is to softmax the previous inner-

product results. The third is multiplying the softmax results by

the v vectors. We denote this stage as atten in the following

discussion. The outputs of this stage are forwarded to the

Head-Merge engine 4©. Two Attention engines are deployed

to avoid structural hazards. Details will be discussed in the

next section.

Head-Merge engine. This engine executes operations

shown in equation (3). Weight matrix W i
hm in equation (3)

is programmed into crossbars prior to inference. Each head

generates one V ini
hd

. These V ini
hd

vectors are forwarded to

the Head-Merge engine ( 4©) and concatenated as one vector

first, then the components of this vector are truncated to 16

bits. Finally, they are multiplied by W i
hm in the same way as

the Q-K-V engine. The results are forwarded to the LayerNorm

engine 5©. We call the stage in the Head-Merge engine hm
hereafter.

LayerNorm engine. There are two LayerNorm engines

embedded on the accelerator. The first one works following the

Head-Merge engine. One input to this LayerNorm engine is

the output of the Head-Merge engine 5©, and the other input is
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(a) The encoder pipeline

(b) The decoder pipeline

Fig. 3: Pipeline analysis

the q vectors produced two stages before (qkv). The q vectors

are fetched from on-chip buffers 6©. One copy of outputs of

are forwarded to the Fully connected engine 7©. Another copy

of outputs are stored in buffers 9©. We use LN1 to denote this

first LayerNorm engine. The second LayerNorm engine carries

out the layer normalization the after fully connected layers. It

also takes in two inputs. One input is the output of the first

LayerNorm engine. This input must be loaded from buffers 11©.

The other input is the outputs of the Fully Connected engine
10©. LN2 is used to represent this step in the following sections.

Where the outputs of the second LayerNorm engine flow is

determined by whether or not there has an additional layer

next.

Fully Connected engine. There are two pipeline stages in

this engine. One stage is the fully connected layer correspond-

ing to the weight matrix W i
1 in equation (4). The other stage

is the fully connected layer characterized by weight matrix

W i
2 in equation (4). They are represented as FC1 and FC2

respectively hereafter. The engine takes in masks from the

Mask cache 8© and outputs from the LayerNorm engine 7©.

The activation function in this engine is gelu. The mechanism

of matrix-vector multiplication is the same as the Q-K-V

engine and the Head-Merge engine.

A specific pipeline of an encoder layer with four input

sentences is illustrated in Fig.3a. Fig.3b depicts a decoder layer

with four input sentences.

B. Hazard Analysis

Data hazards and structural hazards were taken into account

when we designed the pipeline. More specifically, Write after

Read hazards (WAR), the Attention engine conflict and the

LayerNorm engine conflict are considered in this section.

Data hazards. There are eight buffers deployed on the

chip. These buffers can be divided into two sets. The first set

include buffer1, buffer2, buffer3 and buffer4. The remaining

four buffers belong to the second buffer set. Let’s take the

encoder pipeline in Fig.3a for example. In the first cycle,

the q vector (represented as q1 in red) is produced by the

Q-K-V engine for the first input sentence, and is stored to

buffer1 ( 3© in Fig.2). The q vector will be used in the fourth

cycle. The size of the q vectors depends on models and is

proportional to the batch size, so deploying another three

buffers (buffer2, buffer3 and buffer4) for the following three

input sentences can eliminate overwrite issues. The q vectors

produced in the second, the third and the fourth cycle are

stored to buffer2, buffer3 and buffer4 respectively. In the fourth

cycle, the LayerNorm engine reads q1 from buffer1 ( 6© in

Fig.2), and writes its results (represented as fc in 1 in red) to

buffer5 ( 9© in Fig.2). In the fifth cycle, the q vector produced

by the Q-K-V engine for the fifth input sentence is able to

be written to buffer1 because there are no WAR hazards in

buffer1. Similarly, the second set of buffers (buffer5∼8) work

in the same way with the first buffer set.

To make the above idea work, data are arranged as a First-

In-First-Out (FIFO) queue in each buffer. For buffers in the

same set, they are accessed in a round-robin manner.

Structural hazards. Structural hazards appeared when

more than one encoder layers or decoder layers are stacked to a

network. Bubbling the pipeline once can not address this issue.

Deploying too many hardware modules is energy inefficient.

Through analysis, we find that two LayerNorm engines (one

for LN1 and the other for LN2) and two Attention engines

are good enough to eliminate structural hazards if we insert

a few stall cycles, such as 15 stall cycles for Transformer (6

encoders and 6 decoders).

C. Module Designs

For the Q-K-V engine, the Head-Merge engine and the Fully

connected engine, we feed crossbars one bit at a time for the

16-bit truncated input neurons. A 1-bit DAC is equipped to

each row of crossbars to transform digital signals to analog

signals. Each crossbar cell is four bits wide, so two adjacent

bit lines are used to represent weight values. The current in

each bit line is transformed back to digital signals by an 8-bit

ADC, then shifted and accumulated in Shift&Add units to get

the final dot product.

The layer normalization in equation (6) is applied to all the

elements of the sum matrix of the two input matrices. First, the

mean value E[x] and the variance V ar[x] is calculated along

the sentence axis (which means the mean and the variance are

different across sentences). The computation of the mean value

E[x] is essentially a sum reduction, and the variance V ar[x]
can be computed according to V ar[x] = E[x2]− (E[x])2. A

sum reduction tree is implemented in this unit. Partial sums are

accumulated in a register file. E[x2] and E[x] are computed

in in the same way. When both the mean and the variance

are ready, we can then perform the normalization for each

element. A set of parallel subtractors and dividers perform

normalization after the mean computation and the variance

computation.

From the equation (5),
√

2
π is a constant, so the basic

component in the gelu circuit is the exponent generator, which

we adapt from existing literature [16].

The softmax function is

softmax(xi) =
exi

Σj=0exj
(7)
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A sum reduction tree is implemented to compute the denom-

inator, and a set of dividers work in parallel afterwards. To

meet accuracy requirements, we use the following formula

exi

Σj=0exj
=

exi−xMAX

Σj=0exj−xMAX
(8)

to compute the softmax results. This idea is borrowed from

existing hardware literature [39].

IV. FAULT TOLERANT STRATEGY FOR RERAM ENGINES

Fig. 4: For simplicity, we use 8 bits to represent input neurons

in this example. The last cell in the 2nd bit-line of X1 can be

set to an extremely low conductance.

The Q-K-V engine, the Head-Merge engine and the Fully

Connected engine each play key roles in ATT. Accuracy

loss within these engines is significant if ATT does not

consider hard faults in ReRAM. However, vanilla redundancy

algorithms lead to energy-inefficient performance. This section

aims to propose a heuristic redundancy strategy: Non-uniform

Xbar Grouping algorithm (NuXG).

A. Preliminaries and Subroutines

As accuracy is limited by resistance precision, typically

more than one cell is used to store a weight. The cell resolution

of the ReRAM we utilized is 4 bits, the same as with PRIME

[1]. Hence, two adjacent cells on the same word line are

leveraged to store high 4 bits and low 4 bits of a 8-bit weight.

These cells can only be used to store weights if they are both

fault free. Without loss of generality, we use 4×4 crossbars

(X1∼X5, black dots represent faulty cells) in Fig.4.

Three terms need to be defined first. Virtual crossbar (Vc):
it refers to a virtual crossbar, which is made up of cells at the

best condition in that position, for a group of crossbars. For

example, the virtual crossbar of {X1, X3} is Y1. Similarly,

Y2 is the virtual crossbar of {X2, X5}. Storage capacity
(Sc): it refers to the maximum number of weights a crossbar

or a group of crossbars can store. As presented in Fig.4, the

storage capacity of X5 is 4, because at most four weights

can be stored in it. For {X2, X5}, the storage capacity of

this crossbar group equals that of its virtual crossbar, which

is 7 for Y2. Subgroup: it refers to a group of physical

crossbars corresponding to a Vc. For {{X1, X3}, {X2, X5}},

both {X1, X3} and {X2, X5} are subgroups.

With the constraint of accuracy requirements, the weight

sparsity differs across layers (a layer is an Xcoder in AttNNs).

Weights of AttNNs refers to weight matrices (W qi
hd

,W ki

hd
,W vi

hd

in equation(1), W i
hm in equation(3) and W i

1, W i
2 in equation

(4)) in an Xcoder, instead of weights between two neighboring

layers. If these weight matrices of an Xcoder are sparse, it is

unnecessary for the crossbars that store them to have large

storage capacity. On the other hand, for layers with dense

weight matrices, larger storage capacity results in less accu-

racy loss. For simplicity, we group layers according to their

sparsity. The Low group includes layers having low sparsity,

which means they are more sensitive to pruning than other

layers. Layers of which most weights can be pruned without

degrading the accuracy are grouped into the High group.

Algorithm 1: SeedSearch Subroutine

1 while exist Gi s.t. |Gi| < gi do
2 if the Sc of Gi’s last subgroup ≥ ri then
3 select the Xbar X∗ with the largest Sc from

Res, and append to Gi as the last subgroup;

4 remove X∗ from Res;

5 update the Vc of Gi;

6 update St by computing capacities between each Vc

and each Xbar in Res

The rest of the layers are grouped into the Medium group.

There are two things that should be noted here. First, the

sparsity value thresholds (or split points) for these groups are

configured manually. The configuration of thresholds affects

layer group results. Second, the configuration of split points

can be different from networks. One can view each individual

layer as a group. However, this strategy brings no accuracy

improvement and increases the complexity of the proposed

grouping algorithm. We have shown that three groups are

enough to meet the accuracy budget.

The redundancy process can be modeled as maximum-

weight matching in a bipartite graph. Suppose we have five

crossbars in Fig.4, namely X1,X2,X3,X4,and X5. If we need to

find redundancy crossbars for X1 and X2 respectively, a score

table (St) is constructed first. The content of the table denotes

the Sc when the corresponding two crossbars are combined

one group. For example, the first row of the score table in

Fig.4 stands for the Sc (8,7 and 6) when X3,X4 and X5 is

selected as the redundancy for X1 in a line. The objective is

to maximize Σscore(Xi,Xj) (i ∈ {1, 2} and j ∈ {3, 4, 5}),

where Xj can only appear once. Next, the problem is converted

to find the maximum sum of elements in different rows and

different columns in the score table. X1, X2 can be seen as

a set of points, and X3, X4, x5 is another set of points. The

capacity value in the score table represents the edge weight

between the two corresponding points in the above two sets.

Fortunately, this problem can be addressed using a Hungarian

matching algorithm (the Kuhn-Munkres algorithm) [18]. In

Fig.4, the outputs of Hungarian matching algorithm are edges

(X1,X3) and (X2,X5), so the redundancy pairing results are
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as follows: X3 acts as the redundancy for X1, and X5 acts as

the redundancy for X2. NuXG in the next section iteratively

call this subroutine to find an optimized grouping solution.

This subroutine is marked as MaximumWeightMatchings()
in line 7 of algorithm 2.

Another subroutine that will be used is SeedSearch(). The

example in Fig.4 can also be used to illustrate when this

subroutine is needed. After the above MaximumWeight-
Matchings(), two groups are identified: G1 = {{X1, X3}},

G2 = {{X2, X5}}, and the crossbar X4 is left. The capacity

of each subgroup is 8 and 7 respectively. Assuming G2 needs

another crossbar or crossbar group with Sc larger than 6, we

are supposed to add X4 to G2 and find redundancy crossbars

for X4 till they can meet the capacity requirement (larger than

6). This process is demonstrated in algorithm 1. Line 1 finds

Algorithm 2: NuXG algorithm

Input: Xbar matrices: X = {X1, X2, · · · , XN};

{(g1, r1), (g2, r2), · · · , (gM, rM)}, gi refers

to the required # for the Vc of the i-th group,

and ri is the minimum Sc of the Vc in the i-th
group

Output: Xbar-group sets: G = {G1, · · · , GM}
1 Res = X;

2 Sort crossbar matrices in X by the Sc;

3 Add crossbars with the Sc ≥ ri to Gi;

4 call SeedSearch();

5 while |Res| > 0 & ∃ |Gk| < gk do
6 /*Tp = {tp1, · · · , tpr}, tpi = (VGi ,X

i), Xi ∈ Res*/

7 Tp = MaximumWeightMatchings(St[][]);

8 for each tpi ∈ Tp do
9 Add Xi into the last subgroup of Gk ;

10 remove Xi from Res;

11 update the Vc of Gk;

12 call SeedSearch();

13 return: G;

that G2 requires an additional crossbar or crossbar group. Line

2 finds the Sc of {X2, X5} is larger than 6, so a new subgroup

will be built for G2. Line 3 is to make sure the current choice

is at least locally optimal. Line 4 updates Res, which is the

set of crossbars that have not been grouped.

B. Heuristic Redundancy Algorithm: NuXG

Given a set of M group specifications

{(g1, r1), (g2, r2), · · · , (gM, rM)} and a collection of physi-

cal crossbars X = {X1, X2, · · · , XN}, find a subset of X with

minimum cardinality (minimum number of physical crossbars)

and construct a set of virtual crossbars using the physical

ones in this subset to meet the M group specifications. Each

physical crossbar in this subset will be used in exactly one

constructed virtual crossbar.

Algorithm 2 takes in the required # for the Vc and the

minimum Sc of the Vc in each group. Given a set of crossbar

matrices X = {X1, X2, ..., XN}, algorithm 2 first sorts

TABLE I: ATT Configuration

ATT # Area(mmˆ2) Power(W)

Q-K-V
Engine

Crossbar 3456 0.0864 1.0368
ADC 3456 4.1472 6.912
DAC 3456 0.07344 1.728

Atten.
Engine

MM engine
(C L1 F)

2 1.527 0.0006

Softmax 2 0.388 0.00068

Head
Merge

Crossbar 864 0.0216 0.2592
ADC 864 1.0368 1.728
DAC 864 0.01836 0.432

L.N. LayerNorm 2 0.0065 0.0124

Fully
Connected

Engine

Crossbar 6912 0.1728 2.0736
ADC 6912 8.2944 13.824
DAC 6912 0.14688 3.456
gelu 2 0.015 0.0001

Mask Cache (8k) 1 0.0074 0.011
Buffer(64k) 8 0.835 0.249

eDRAM Bus 1 0.09 0.007
External I/O Interface 1 15.7 0.013

Total 32.57 31.74

TABLE II: Benchmark Configurations

Benchmarks
b s d m d i d k n h n l s l

Transformer [6] 64 512 2048 64 8 6 20∼40
Bert(base) [7] 8 768 3072 64 12 12 128
XLNet [8] 8 768 3072 64 12 12 128
XLM [9] 8 1024 4096 128 8 6 128

them according to their capacities in descending order in

line 2. Then, line 3 and 4 call SeedSearch() to initialize

the score table and virtual crossbars for each group. Lines

5∼12 are the main part of the proposed algorithm, which

terminates when no residual crossbars are left or each group

of G meets the corresponding required #. Line 6 calls Maxi-
mumWeightMatchings() to find the local optimal grouping

strategy according to the current score table. Lines 8∼11

update the set of remaining crossbars and current grouping

results G. Line 11 updates the Vc for each group. The final

step of each iteration is to update the score table St in line 12

(inside SeedSeach()).

V. METHODOLOGY

Power and Area Models. We use CACTI 7.0 [19] at 32

nm to model the power and area of the SRAM buffer and

the Mask Cache. The area and power for memristor-based

crossbars are adapted from ISAAC. The area and power of

DAC and ADC units are modeled from the analysis in [21].

One 1-bit DAC is used for each word line of the 128×128

crossbar. The power and area of the Shift&Add unit are so

small that we do not list them in Table I. For the power and

area of the MM units, Softmax, and LayerNorm Engines, we

scaled the results of existing literature ( [22] for MM unit

and [23] for a 16-bit truncated fixed-point multiplier and an

adder respectively) to 32nm according to a recently proposed

model [24]. We employ a Hyper Transport serial link model as

off-chip links. Roughly, the area and power breakdown of the

proposed accelerator is listed in Table I. The time consumption

of GPU implementations is measured using NVVP.
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Benchmarks. The benchmarks selected from SOTA works

are shown in Table II. Note that all the parameters (except s l

of Transformer) listed in the table are independent from data

sets. In the table, b s, d m, d i, d k, n h, n l and s l denote

the batch size, the embedding size, the inner layer size of fully

connected layers, the q,k,v vector length, the number of heads,

the number of layers and the sequence length respectively.

The data set for Transformer is the WMT‘16 Multi modal

Translation Task [25]. Transformer is implemented as an open

source tool using PyTorch [26]. Other baselines come from an

open source repository implemented using PyTorch: PyTorch-

Transformers-1.1.0 [27]. The data set for Bert, XLNet and

XLM is MRPC from GLUE data [28].

Fig. 5: Sparsity across layers with inference accuracy less than

2%

Performance Models. We developed an in-house simulator

based on data from NVSim [29] to model the forward propa-

gation process of attention-based neural networks. The cycle

time in the proposed accelerator is 50.88ns, which is consistent

with many existing PIM accelerators developed from NVSim.

We compare the simulated performance result with the same

neural networks running on a real GPU. The GPU platform is

an NVIDIA GTX 1080 Ti, and we use CUDA 10.1 to compile

the benchmarks. For energy saving, the metric we use is power

efficiency (PE, the number of 16-bit operations performed per

watt, GOPs/W ).

Reference Schemes. To verify the efficiency of the pro-

posed algorithm, we use two schemes as the reference: Ideal

and RX [14]. Ideal refers to crossbars without any faulty cells,

and it can be considered as the theoretical ideal case. The

RX scheme is selected for the reference due to the minimal

hardware overhead over other schemes in the paper. The

system-level redundancy ratio for the RX is 3 under 20%
SAFs because this configuration brings about the minimal

classification error.

VI. EVALUATION RESULTS

A. Benchmark Profiling

We first profile the benchmarks of SOTA AttNNs in the

community using an NVIDIA GTX 1080 Ti GPU to under-

stand the performance bottlenecks. qkv, Heads Merge and

TABLE III: Layer Grouping Configurations

High(<0.35) Medium(0.35,0.5) Low(>0.5)
Transformer 1∼4,7∼9 5,6,10,11 12
Bert base 1∼7,9 8 11∼13

XLNet 1∼9 10 11,12
XLM 1,2 3 4∼6

FC (Fully connected layers, FC1 and FC2 in Fig.1) account

for 81.5%, 75.79%, 74.2% and 83.69% of the computation

time for Transformer [6], Bert [7], XLNet [8] and XLM [9]

respectively. These modules are absolutely the bottlenecks and

need to be focused on. By contrast, the attn consumes at most

20% for XLNet and around 10% for other benchmarks.

Fig. 6: Throughput improvement

Fig. 5 shows weight sparsity across layers. The horizontal

axis denotes the layers. The vertical axis represents the per-

centage of pruned weights due to sparsity. From Fig.5, we can

observe that the layers close to the inputs are less sparse than

the remaining layers. For bert and XLNet, the sparsity of the

last few layers is nearly 100%. The largest accuracy loss is

1.9% which comes from Transformer.

B. Xbar Grouping Benefits

We should note that the layer sparsity configuration of the

four benchmarks in Fig.5 may be not the optimal configura-

tion, but layer-wise sparsity of benchmarks generally exists.

Finding the optimal sparsity configuration is not the focus of

this work.

According to Fig.5, we group the layers as shown in Table

III. We use 0.35 and 0.5 as sparsity thresholds to divide the

groups. Different split points impact the following crossbar

grouping results. The class describes how high or low the

redundancy requirements are for a given group of layers. The

storage capacity we use is 0.9,0.95 and 0.99 for the Low,

Medium and High groups respectively. For example, 0.9 means

that we can meet the accuracy requirements in the Low group

only if at least 90% of cells are fault free. As expected, the

redundancy ratio for the Low group will be smaller than that

of the other two groups.

To provide a fair comparison, we set the number of cross-

bars for the Ideal and ATT schemes to be equal to the RX.

The performance improvement showed in Fig.6 verifies the

benefits of the proposed algorithm, and as such only reflect
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the results from bottlenecks. The throughput for RX is only

a quarter of that of the Ideal. For the fixed crossbars, the RX

scheme can only store one copy of weight matrices, while

the ideal scheme has four times the storage capacity for all

benchmarks. Compared to RX, ATT can store around 2.5 times

the weight matrices. Therefore, ATT boosts the throughput by

about 2.5 times over RX for all benchmarks. We see the least

improvement with XLNet because its Q-K-V engine must store

an additional weight matrix that the others do not.

For the power efficiency improvement, the values for the

Ideal case are theoretical maximums. The RX achieves only

20%∼25% of the Ideal values. In contrast, ATT largely

improves the performance and reaches around 60% of the

theoretical values for all benchmarks.

Fig. 7: Energy breakdown

Fig. 8: Overall speedup

C. Overall Performance Improvement

Fig.7 compares energy consumption including a breakdown

into components. Although ADCs and DACs are still high-

energy-consuming components for all three schemes, we find

the total energy of ATT is significantly reduced compared to

RX. This is because our proposed algorithm decreases the

redundancy ratio, thus reducing the number of ADCs and

DACs. Overall, ATT consumes just around 1.5 times more

energy than the ideal case to achieve almost the same inference

accuracy for all benchmarks.

Fig. 8 provides a comparison of the speedup of both ATT

and GPU implementations to both baselines. In general, cross-

bar based accelerators perform tens of times faster than GPU.

ATT achieves better performance than the RX, but still worse

than the Ideal. The average speedup of the Ideal with respect

to the GPU is 202.78×, whereas the RX can only achieve

50.69×. This is because more than half of the crossbars are

used for redundancy purposes. The average speedup of ATT

reaches 125.28×. XLM gets the smallest speedup because it

has the largest q,k,v vector size, which imposes pressure on

the Attention and LayerNorm engines.

VII. RELATED WORK

Hardware accelerator for AttNNs has been recently studied

by researchers [11]. However, they only concentrate on the

attention module that doesn’t dominate the inference time.

Additionally, their proposed cannot adapt to the latest AttNNs,

such as XLNet, GPT and XLM. One of the reasons is that the

gelu function is not supported by the aforementioned work.

There are previous works [1]–[3], [30] developing tradi-

tional neural networks including CNNs and RNNs. The unique

characteristics of AttNNs make these accelerators cannot tai-

lored to AttNNs. Among these works, Processing-In-Memory

architectures [1]–[3] achieve better performance than FPGA

and ASIC.

Fault tolerance has been intensively investigated for soft

errors [31]–[35] and hard errors [36]–[38] in the field of

conventional processors. On the other hand, there are only

a few related studies on ReRAM accelerators. Chen et al.

[12] first propose Stuck-At-Fault issues and studies their

characteristics (percentage and distribution). Xia et al. [14]

imply that hard faults can only be solved by redundancy

in section II.B. Meanwhile, Zhang et al. [13], [41] also use

similar methods to handle this issue. Seong. [40] focus on the

SAFs of PCM, which has a different memristor cell structure

from ReRAM. Li et al. [39] tackle soft faults in ReRAM.

VIII. CONCLUSION

PIM accelerators for deep learning regardless of hard

faults result in significant accuracy loss. Hardware redun-

dancy strategies that are unaware of application characteristics

usually lead to inefficient architectures. The observation that

weight sparsity varies with layers offers us an opportunity to

design a heuristic redundancy algorithm to deploy crossbars.

The proposed algorithm can be adapted to PIM accelerators for

CNNs. In this work, we apply this algorithm to an accelerator

for AttNNs, achieving more than 60% of the theoretical peak

performance and more than two times as much throughput as a

SOTA redundancy work. Additionally, an intra-layer pipeline

is designed for the accelerator.
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