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Abstract—As high-performance computing (HPC) is being
scaled up to exascale to accommodate new modeling and sim-
ulation needs, I/O has continued to be a major bottleneck in
the end-to-end scientific processes. Nevertheless, prior work in
this area mostly aimed to maximize the average performance, and
there has been a lack of study and solutions that can manage I/O
performance variation on HPC systems. This work aims to take
advantage of the storage characteristics and explore application
level solutions that are interference-aware. In particular, we mon-
itor the performance of data analytics and estimate the state of
shared storage resources using discrete fourier transform (DFT).
If heavy I/O interference is predicted to occur at a given timestep,
data analytics can dynamically adapt to the environment by
lowering the accuracy and performing partial or no augmentation
from the shared storage, dictated by an augmentation-bandwidth
plot. We evaluate three data analytics, XGC, GenASiS, and
Jet, on Chameleon, and quantitatively demonstrate that both
the average and variation of I/O performance can be vastly
improved using our dynamic augmentation, with the mean and
variance improved by as much as 67% and 96%, respectively,
while maintaining acceptable outcome of data analysis.

Index Terms—High-performance computing, data analysis,
data storage

I. INTRODUCTION

As high-performance computing (HPC) systems are being
scaled up to exascale to accommodate new modeling and
simulation needs, I/O has continued to be a major bottleneck
in the end-to-end scientific processes. To allow science to
be done more efficiently and effectively, there has been a
multitude of research efforts addressing the I/O bottleneck
across the hardware and software stack, including the device,
system software and algorithmic level. Fundamentally, the I/O
issue on HPC systems is attributed to the design philosophy
that prioritizes the flops improvement, without fully balancing
the ratio between compute and storage resources that are
available on HPC systems [1]. For example, from the 27-
petaflop supercomputer Titan [2] to the current 200-petaflop
Summit [3] at Oak Ridge National Laboratory, the compute
capacity is increased by nearly 10X, whereas the peak file
system throughput remains approximately the same. The I/O

challenge is further exacerbated by the exponential growth of
data coming out of large-scale simulations that need to be
stored and analyzed efficiently. As a result, HPC applications
routinely suffer from subpar I/O performance, despite the
unparalleled compute capabilities empowered by accelerators.

Overall, to characterize the I/O performance, not only the
average I/O throughput and latency are relevant, but more
broadly the consistency of I/O performance would matter to
avoid over-stressing the storage system and unexpected job
termination, as well as achieve improved user experience for
interactive data exploration. Nevertheless, the majority of prior
work in this area aimed to maximize the average performance,
and there has been a lack of study and solutions that can
manage I/O performance variation on HPC systems. A root
cause of I/O variation on HPC systems is that large HPC
storage systems do not provide explicit quality of service
(QoS) mechanisms on a per application basis [4]. For example,
the Lustre parallel file system on Theta [5] at Argonne
National Laboratory is shared among all applications in a best-
effort manner. As such, if a particular application consumes
higher bandwidth, e.g., checkpointing more frequently on a
storage service [6], the perceived bandwidth from other users
will decrease commensurately. The rationale behind such QoS-
less designs is that HPC systems typically have high paral-
lelism (e.g., hundreds of thousands of cores), and designing
a scheduler that can sustain a large amount of concurrent
I/O requests while maintaining high performance is difficult.
As a result, prior work in this area are limited to reducing,
instead of completely eliminating, the variation via smart
data placement [7], [8], [9] and explicit coordination [10]
at the middleware level. Complementary to the prior work,
this paper aims to further explore what we can achieve at the
application level by co-designing data storage and analytics to
manage the I/O variation, acknowledging that the I/O variation
will continue to exist for the foreseeable future (e.g., on
Summit). In particular, this work is driven by the following
three observations.

First, HPC applications are shown to follow certain patterns
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in the form of I(CxW )∗F [11], [12]. Herein I and F are
the one-time initialization and finalization phases, respectively.
The iterative phase contains C, the compute phase, and W ,
the periodic I/O phase. Since the I/O interference is a result
of other concurrent applications competing for storage band-
width, we can treat the interference as

∑
i

Ii(C
x
i Wi)

∗Fi, where

the subscript denotes the i-th application. As such, we believe
the noise pattern exists and can be learned and predicted.

Second, to lower the I/O overhead, using the reduced accu-
racy for data analysis is acceptable for science production, e.g.,
using lossy compression [13], [14] and reduced computational
models [15] to make the problem more tractable. The rationale
behind this is that scientific simulations are often over-resolved
to ensure the stability of the calculation, and therefore a
reduced representation of data may suffice for many, if not
all, data analysis. Additionally, a lower accuracy may guide
the subsequent data analysis to be more targeted in the spatial
or temporal domains, thereby reducing the data movement
cost. If there are interesting phenomenon observed in the
low accuracy, they can be further augmented by fetching the
residuals from the storage system.

Third, HPC storage has become increasingly deep with the
addition of new memory devices (e.g., non-volatile memory)
and storage layers (e.g., burst buffer). The separation between
the local on-node and remote shared storage resources creates
a natural performance isolation opportunity for applications - if
an application desires performance consistency, it should stay
away from accessing the shared storage. On the other hand, we
recognize that the analysis data need to be further transformed
to fully utilize the speed and capacity characteristics of the
storage hierarchy, instead of being stored monolithically on
the parallel file system for capacity.

Motivated by the observations above, the work aims to
take advantage of the storage characteristics and adapt data
analytics in a way that is interference-aware. In particular,
we actively monitor and estimate the state of shared storage
resources. If heavy I/O interference is imminent, data analytics
will dynamically adapt to it by lowering the accuracy and
performing less or no enhancement from the shared storage.
In particular, this work makes the following contributions.

• We co-design data storage and data analytics to manage
the I/O performance variation on HPC systems. We
believe this work is among the first to explore appli-
cation level solutions to deal with I/O interference. In
particular, we leverage the fact that parallel applications
on HPC systems follow certain patterns, and therefore
the interference can be predicted, and data analysis over
the reduced representation can still produce acceptable
results.

• We propose a discrete fourier transform (DFT) based
online interference monitoring and estimation scheme,
exploiting the periodicity of I/O patterns in HPC appli-
cations, and demonstrate the efficacy of our approach.

• Based upon the estimated interference, we perform
dynamic augmentation based upon an augmentation-

bandwidth plot. This allows data analytics to trade ac-
curacy for performance when there is interference.

• We experimentally demonstrate the effectiveness of our
scheme on Chameleon [16] using realistic data analytics,
XGC, GenASiS, and Jet. The results show that the I/O
performance can be vastly improved with regard to both
mean and variance, e.g., by 67% and 96% for Jet, while
achieving acceptable analysis outcome.

The remainder of this paper is organized as follows. Sec-
tion II discusses the background and motivation of this work.
Section III presents our design of using refactorization and pre-
diction to manage I/O variation. Section IV demonstrates the
performance advantages of the proposed scheme. Section V
presents the most related works, along with conclusions in
Section VI.

II. BACKGROUND AND MOTIVATION

The periodicity of I/O interference. HPC applications
were shown to perform I/O in an iterative manner [11], [12].
Listing 1 shows a code snippet of XGC [17], one of the largest
applications on Summit at Oak Ridge National Laboratory.
During each iteration, XGC dumps hundreds of MBs to GBs to
storage for checkpointing and post-processing. To understand
the performance outcome as a result of interference, we co-
run a data analytics that retrieves and analyzes 64 MB of data
per iteration, alongside two other simulation I/O kernels that
perform periodic checkpointing to the Ceph file system on
Chameleon. In particular, the two simulations checkpoint 256
MB for every 10 and 20 seconds, respectively. For the sake
of convenience, we configure the Ceph file system (version
13.2.6) with a single shared pool with two object store dae-
mons (OSDs) (with one hard disk in each OSD), and measure
the perceived I/O throughput of data analytics in Fig. 1. Due
to the periodicity of the simulations, the perceived bandwidth
of the data analytics also exhibits a periodic pattern, and the
loss of performance is a result of bandwidth consumption from
the simulations.

do i s t e p =1 , sml mstep
. . . . . .
i f ( mod ( sml gs t ep , s m l r e s t a r t w r i t e p e r i o d ) ==0)

t h e n
c a l l m o n i t o r s t a r t (RESTART WRITE )
c a l l r e s t a r t w r i t e ( s p a l l ) ! p e r i o d i c c h e c k p o i n t
c a l l m o n i t o r s t o p (RESTART WRITE )

e n d i f
enddo ! end of main lo op

Listing 1: Checkpoint routine in XGC.

QoS in HPC file systems. State-of-the-art HPC file
systems, e.g., Ceph, Lustre, Spectrum Scale and OrgangeFS,
have shown very high performance as well as scalability.
However, they have provided limited or no support towards
application performance guarantee. Table I lists a few major
file systems deployed at large HPC centers along with their
QoS mechanisms.

In particular, there has been effort in Ceph [18] to integrate
dmClock [19], a distributed resource allocation algorithm, to
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Fig. 1: Performance degradation of data analytics as a result of
interference (Ceph). Here we co-run a data analytics that retrieves and
analyzes 64 MB of data per iteration, alongside two other simulation
I/O kernels that perform periodic checkpointing of 256 MB every 10
secs and 20 secs to Ceph on Chameleon.

TABLE I: QoS in HPC file systems.

File system HPC System QoS mechanism
Ceph (13.2.6) CERN cluster None. A new mechanism is under

development using dmclock.
Lustre (>2.6) Theta, Cori Token bucket filter. However, it can

only throttle I/O performance, with-
out providing performance guaran-
tee. Can only limit RPC rate, instead
bandwidth and IOPS.

Spectrum Scale
(5.0.4)

Summit QoS can only be controlled using
mmlsqos for each storage pool, in-
stead of for individual applications.

OrangeFS
(2.9.7)

AWS None.

provide QoS. However, a hardened solution with dmClock
is not available as of now, and in production environments
applications can somewhat reduce the performance variation
through load balancing. Ceph uses CRUSH [20] to distribute
data among storage devices. To avoid load imbalance, it dis-
tributes new data randomly, which intuitively should alleviate
the interference to some degree. However, this distribution
strategy is primarily capacity driven, instead of bandwidth
driven, and therefore plays a limited role in reducing the I/O
variation. In Fig. 2a, we test the effect of load balancing
using CRUSH with replication disabled. To achieve no load
balancing, we overwrite the same object across runs. As
such, the data placement is identical across the run. It is
shown that that with load balancing, the interference still
exists but appears less frequently. Fig. 2b further examines the
performance variation with replication enabled to achieve fault
tolerance. With one replica for each write, the interference
appears more frequently than no replication and the effect of
load balancing is diminished.

Lustre is a popular storage solution on extreme-scale sys-
tems and has demonstrated success in managing petabytes of
data for hundreds of thousands of clients. Despite its recent
improvement using a token bucket filter to provide QoS [21],
it suffers two major weaknesses. First, it can only throttle
I/O performance through limiting the RPC rate, as opposed
to providing performance guarantee for bandwidth and IOPS
that users are mostly concerned with [22]. Second, there is no
global QoS management that coordinates all storage devices.
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Fig. 2: Performance variation on Ceph. Herein the noise writes 1 GB
every 60 secs, and the data analytics retrieves and analyzes 64 MB
of data per iteration.

Therefore, the QoS management in production is cumbersome
and ad hoc [22]. Meanwhile, Spectrum Scale (formerly GPFS)
provides QoS through mmlsqos [23] on a per storage pool
basis, and there are no mechanisms in place to provide
application-level performance guarantee. Last, OrangeFS [24]
is a user-level file system that is specifically designed to
optimize MPI-IO in a parallel environment. OrangeFS relies
on the lower level file system to achieve QoS.

Impact of reduced accuracy to data analytics. A key
premise of this work is that a reduced representation of
data can be useful and achieve reasonable outcome for data
analysis. This is due to the fact that simulations are often
over-resolved to ensure the stability of the calculation after
many iterations, and therefore the resulting accuracy may be
excessive for many data analytics. Fig. 3a measures the peak
signal-to-noise ratio (PSNR) of the data products of three
applications, XGC, GenASiS, and Jet, versus various reduction
ratio. Herein, we use the uniform decimation (Section III-B)
to produce the reduced representation. For example, at the
decimation ratio of 2, we retain the first data point for every
two data points. It is found that the degradation of PSNR is
rather insignificant after decimation. Fig. 3b further shows the
deviation of analysis outcome from the ground truth. For XGC,
the analysis conducted is blob detection and we measure the
error regarding the number of blobs detected. For GenASiS,
we perform the 2D rendering of the velocity of core-collapse
and measure the structural similarity index (SSIM) [25]. For
Jet, we measure the error regarding the area with high pressure
area. More details regarding the data analytics can be found
in Section IV-A. Even with the decimation ratio of 512, the
relative error is still within 25%.
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Fig. 3: Accuracy of using the reduced representation.

HPC storage hierarchy. HPC storage systems have become
increasingly deep with the emergence of new memory systems,
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TABLE II: Storage hierarchy on large systems. Herein we describe the characteristics of only two tiers. The notion of local can be either
node local or cluster local. We broadly classify the intensity of interference to none, medium, and high. For Cori, since the high tier is only
accessible from a single system, instead of from multiple systems, we mark the interference as medium.

System High tier Low tier
Storage Interference Storage Inteference

Cori Cluster local HDD, Lustre Medium Shared Lustre High
Summit Node local NVMe, XFS None Shared Spectrum Scale High
Theta Node local SSD, ext3 None Shared Lustre High

Interference

R

Aug1-2 ST1

Aug0-1 ST0 Best effort zone

Performance 
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• Accuracy level #0:  R

• Accuracy level #1: R + Aug1-2

• Accuracy level #2: R + Aug1-2 + Aug0-1

Augmentation zone

Fig. 4: An illustration of the proposed work. Herein we assume the interference is over the shared ST 0. The data analytics can perform in
three accuracy levels. If there is interference experienced, the data analytics can adapt and lower the accuracy, so that there are less or no
data retrieved from ST 0.

such as die-stacked memory and NVRAM, as well as the
addition of burst buffer to the storage landscape. Table II
describes the storage tiers (with only two tiers due to the space
constraint) on large HPC systems. A critical gap in the current
scientific data management is that the analysis output from
simulations is monolithic and large in volume, and therefore
can only be accommodated from the disk based parallel file
system for persistent storage. We believe data refactorization
(Section III-B) that transforms data to a reduced representation
in conjunction with a series of residuals is needed to fully
leverage the hierarchical nature of HPC storage, and allow
users to trade accuracy for performance. More importantly,
the high storage tiers are often designed to the local (e.g.,
node or cluster local) and the low tiers tend to be shared.
Such a design provides a natural opportunity for performance
variation mitigation. When there is interference observed on
the shared storage, data analytics can access less or refrain
from accessing the share storage to reduce the I/O variation.

III. DESIGN

A. Overview

Fig. 4 provides an overview of the proposed work. The key
idea is to learn the pattern of interference, and dynamically
adapt the accuracy of data analytics by taking advantage of the
refactored data distributed across the storage tiers. By access-
ing less or no data from those shared storage tiers where there
is interference, the performance variation can be mitigated.
For the convenience of the discussion, we list the notations in
Table III. Without the loss of generality, we consider a storage
system with three tiers {ST 0, ST 1, ST 2}, with ST 0 being the
slowest tier and ST 2 being the fastest tier. As aforementioned,
high storage tiers on HPC systems, e.g., ST 2, tend to be node
local and will be reserved alongside compute resources once
a job is submitted. Therefore performance isolation can be
achieved using these tiers, referred to as performance isolation
zone. In contrast, for those cluster local storage, such as

Cori scratch [26], performance cannot be fully guaranteed,
but the interference will be relatively low as compare to the
remote shared storage. These tiers will be accessed only if the
accuracy of data analytics needs to be enhanced, here referred
to as augmentation zone. If the full accuracy is ultimately
desired, those lower tiers (e.g., ST 0), referred to as best effort
zone, will be accessed.

TABLE III: A list of notations.

Variable Description

Augl−(l+1) the augmentation that elevates the accuracy
from level l + 1 to l.

Aug
l−(l+1)
x

the x-th data point in the augmentation that
elevates the accuracy from level l + 1 to l.

Bandwidthlow

lower bandwidth threshold in the
augmentation-bandwidth plot. If the predicted

bandwidth is lower than this, storage is
deemed to be highly congested.

Bandwidthhigh

higher bandwidth threshold in the
augmentation-bandwidth plot. If the predicted

bandwidth is higher than this, storage is
deemed to be lightly congested.

Bandwidthpredicted predicted bandwidth at the target step.
dl decimation ratio of level l.
f(·) augmentation-bandwidth plot.

Estimate(·) A linear function that provides prolongation
and correction between levels

Ll the l-th level data representation.

Ll
x

the x-th data point in l-th level
data representation.

ST l the l-th storage tier.
thresh threshold of frequency amplitude.

R reduced data representation.

Assume that we offer three levels of accuracy to data anal-
ysis and the associated data representations are {L0, L1, L2}
with L0 being the original data. To take advantage of the three
tiers, the analysis data produced by simulations need to be
further refactored in the form of {R, Aug1−2, Aug0−1}, where
R = L2 is the reduced representation along with augmenta-
tions Aug1−2 and Aug0−1. In particular, Augl−(l+1) elevates
the accuracy from Ll+1 to Ll. As such, three levels of accuracy
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can be offered to data analysis: 1) the low accuracy L2 = R,
2) the medium accuracy using L1 = R+Aug1−2, and 3) the
high accuracy L0 = L1 +Aug0−1 = R+Aug1−2 +Aug0−1.
Note that “+” is a linear operator that builds a higher accuracy
via interpolation and correction (Section III-C). When the
interference over shared storage tier ST 0 is predicted to be
low, data analytics can retrieve {R, Aug1−2, Aug0−1} to
construct the high accuracy. Otherwise, data analytics can
retreat to the augmentation zone and fetch {R, Aug1−2}.
If performance isolation is desired instead, e.g., for those
interactive analytics, the data analytics can stay within the
performance isolation zone by fetching {R} only.

At the core of our method, we need to capture and estimate
the interference. To this end, we collect the performance
history of data analytics online at each iteration and use it
for prediction. This is done without either proactively probing
the shared storage (e.g., by periodically issuing I/O requests
to storage and measuring the performance), or retrieving those
internal performance counters maintained by the file system.
The former method is intrusive and costly for a storage system
with a large number of devices, while the latter is typically
unavailable to the general users due to security concerns.
Herein, driven by the periodic pattern of HPC applications,
we use a DFT-based approach to extract the frequency com-
ponents to estimate the interference from other applications.
The estimation is done and updated online as data analytics
progresses, and can adapt when the pattern of interference
changes (Section IV-C).

B. Refactorization

The goal of refactorization is to provide a series of data
representations to satisfy various data analysis. We comment
that a user may not know the analysis to be performed in
advance (a.k.a exploratory data analysis) when data needs to
be placed on storage. Therefore, our work adopts a generic
technique that decomposes data into various levels to allow
users to pick the level of data and augment it if needed. To
this end, we transform a dataset into its reduced representation
alongside a set of augmentations that can be readily mapped to
the storage hierarchy. Carefully note that data are refactored
once but will be retrieved many times by data analytics,
and therefore the benefits to the data analysis can amortize
the additional cost in data refactorization, as demonstrated
by prior work [27]. The refactorization process consists of
decimation and augmentation construction as described below.

1) Decimation: The goal of decimation is to produce a
set of representations {L0, L1, L2}. This work adopts a
simple refactoring technique based upon uniform decimation.
In particular, to build a reduced representation Ll, l = 1, 2,
we linearize the data into a 1D array and retain every dl-
th element starting from the first element, where dl is the
decimation ratio, a parameter that users can adjust so that
Ll satisfies the capacity requirement. The time complexity of
uniform decimation is O(N), which is more efficient than
other advanced techniques, such as the edge collapse based

topological decimation [28], while achieving similar outcome
for data analysis.

L01 L11

L00 L10

L21

L20 L30

Fig. 5: An example of the augmentation construction for Aug0−1

for a decimation ratio of d1 = 4.

2) Augmentation Construction: After decimation, we fur-
ther construct the two augmentations {Aug1−2, Aug0−1}. The
role of Aug1−2 and Aug0−1 during data analysis is to elevate
the accuracy from R to L1 and from L1 to L0, respectively,
when the interference is predicted to be low. Intuitively, an
augmentation is the difference between the adjacent levels of
representations. We use Ll

x and Aug
l−(l+1)
x to denote the x-th

data element in Ll and Augl−(l+1), respectively. Eq. (1)–(2)
specify the augmentation construction mathematically.

Aug1−2x = L1
x − Estimate(L2

i , L
2
i+1) (1)

Aug0−1x = L0
x − Estimate(L1

i , L
1
i+1) (2)

Estimate(·) is a linear function that involves the prolongation
and correction of the two neighboring data points Ll+1

i and
Ll+1
i+1 from level l + 1 to level l, leveraging that the two

levels are expected to be highly correlated, similar to the idea
of multigrid [29]. Fig. 5 shows an example of constructing
Aug0−1 for a decimation ratio of 4. In particular, Aug0−10 =
L0
0 − L1

0 = 0, Aug0−11 = L0
1 − Estimate(L1

0, L
1
1) =

L0
1 − ( 34L

1
0 + 1

4L
1
1), Aug0−12 = L0

2 − Estimate(L1
0, L

1
1) =

L0
2−( 12L

1
0+

1
2L

1
1), and Aug0−13 = L0

3−Estimate(L1
0, L

1
1) =

L0
3 − ( 14L

1
0 + 3

4L
1
1). We note that the augmentation may be

further reorganized so that it can be later retrieved efficiently
from a particular storage tier. For example if Aug0−1 is
mapped to hard disks, the data points will be further sorted by
their magnitude so that data points with high corrections can
be augmented first during a partial augmentation and retrieved
in large chunks to reduce the disk seek overhead.

C. Interference Estimation and Mitigation

The goal of interference estimation is to predict the charac-
teristics (frequency, intensity, phase) of interference, so that
we can determine the augmentation to be conducted from
the shared storage at a given timestep ti. The stronger the
interference is, the less the augmentation will be fetched. Fig. 6
illustrates the steps involved in interference estimation and
mitigation. The data analytics in the context of this work are
those that analyze the time evolution of a physical phenom-
ena in a simulation, typically spanning thousands of steps,
and therefore is iterative in nature. The idea of interference
estimation is to collect the performance of data analytics
in every N (e.g., 48) steps as it progresses, and perform
DFT to extract those frequency components that are higher
than a given threshold thresh. In doing so, the interference
from other simulations can be captured, while those random
noise, e.g., as a result of code compilation, user issued shell
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commands, and operating system noise, etc., can be filtered
out. Subsequently, we perform inverse DFT to convert the
measurements back to the time domain to obtain the available
bandwidth Bandwidthpredicted at a target step ti.

Collect the I/O performance 
for N consecutive steps DFT

Retain those frequency 
components with amplitude > 

thresh

Inverse DFTCalculate
f(Bandwidthpredicted) for ti

Re-order a level of 
augmentation by 

correction

Perform 
augmentation

Update performance 
measurement

Fig. 6: Interference estimation and mitigation. Note that f(·) is
augmentation-bandwidth plot.

Next, Bandwidthpredicted is mapped to a detailed augmen-
tation strategy, e.g., the degree and the regions to augment,
through an augmentation-bandwidth f(·) as shown in Fig. 7.
In general, the augmentation strategy is application dependent,
and in this work we consider a generic correction based
augmentation strategy, where we identify and prioritize the
augmentation for those regions with high corrections. The
degree of augmentation under interference is proportional to
Bandwidthpredicted, and can be determined by a simple
augmentation-bandwidth plot, as shown in Fig. 7. At ti, if
Bandwidthpredicted ≤ Bandwidthlow, the shared storage is
deemed to be highly congested, and therefore no augmentation
will be done to avoid further overloading the storage system,
i.e., f(Bandwidthpredicted) = 0. Such a design is chosen
given that the disk performance becomes rapidly degraded
once the load is high enough [30]. If Bandwidthpredicted ≥
Bandwidthhigh, the shared storage is deemed to be in low
congestion, and hence a full augmentation will be performed,
i.e., f(Bandwidthpredicted) = 1. Otherwise, a proportional
augmentation in the form of f(Bandwidthpredicted) = k ·
Bandwidthpredicted + b, where k and b are coefficients, will
be done. As such, the number of data points to be augmented
is proportional to the available bandwidth predicted at ti, and
the set of data points to be augmented is based upon the
correction at each point - a data point with a larger correction
will be augmented earlier than one with a smaller correction,
until we reach the augmentation degree. We note that the
coefficient k as well as the bandwidth thresholds affect the
sensitivity of augmentation to the available bandwidth (studied
in Section IV-C). Note that our approach is applicable to
storage systems that have different performance characteristics
(e.g., peak bandwidth, variation), and the only change that
a user may make is the parameter of the augmentation-
bandwidth plot (i.e., k and b). For example, as a rule of thumb,
for a storage system that experiences higher interference, one
can lower k to reduce the augmentation degree to reduce the
performance variation.
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Storage bandwidth
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0

1

Low congestion zoneLine
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Fig. 7: Augmentation-bandwidth plot. If the predicted bandwidth
is lower than Bandwidthlow, storage is deemed to be in conges-
tion, and therefore no augmentation is performed. If the predicted
bandwidth is higher than Bandwidthhigh, storage is deemed to be
in low congestion, and therefore a full augmentation is performed.
Otherwise, a partial augmentation is done.

Once the augmentation is fetched from a storage tier, the
target representation can be constructed by Eq.(3)-(4).

L1
x = Aug1−2x + Estimate(L2

i , L
2
i+1) (3)

L0
x = Aug0−1x + Estimate(L1

i , L
1
i+1) (4)

Once the augmentation is completed at ti, we update the per-
formance measurement, move the sliding window forward, and
proceed with a new around of estimation for ti+1. Note that
the complexity of DFT and inverse DFT is O(N log(N )). In the
event of high congestion where there is no I/O performed from
the shared storage, we instead use the predicted performance
for the new round of estimation.

IV. EVALUATION

A. Experimental Setup

In this work, we use Chameleon, a reconfigurable experi-
mental platform at University of Chicago and Texas Advanced
Computing Center, to set up the test environment. We config-
ure one client to run data analytics, and three clients to inject
noises concurrently mimicking the interfering applications, as
shown in Fig. 8. We use Ceph (13.2.6) as the underlying
object storage system that is configured with two storage
nodes. Based upon the hardware that is available, we build
a two-tier storage system with the fast tier being node local
SSDs, and the slow tier being hard disks (HDDs). In particular,
the latter is configured as a OSD pool shared between data
analytics and noises. Note that large-scale production systems
may have more storage capacity and throughput than our
testbed. However, this does not translate to less performance
variation, since they potentially may have even more sources
of interference. As demonstrated in early work [7], [8], [9],
[10] from other investigators, the interference on large HPC
systems, such as Titan, can be severe and can degrade the
I/O performance by an order of magnitude. In general, we
anticipate the interference on large systems to be heavy due
to the fact that a single storage device could be accessed by
many processors. Furthermore, the ratio of compute to storage
is generally increasing for HPC systems [1], and therefore the
intensity of interference may further increase. By default, the
decimation ratio used to construct the reduced representation is
1024, unless otherwise specified. Table IV details the hardware
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configuration and Table V describes the noises we inject to
Ceph. By default, we inject three concurrent noises to Ceph,
with the first one writing 256 MB (small) every 80 seconds, the
second writing 512 MB (medium) every 60 seconds, and the
third writing 768 MB (large) every 100 seconds respectively.
The reason to choose these high-velocity high-volume noises
as default is to study how well our scheme can perform
under high interferences, a scenario that particularly impacts
interactive data analytics, e.g., visualizations, while the less
intensive noise setup and the relationship between noise and
data analytics frequency are also studied in Section IV-D1 and
IV-D2 for comparison.

Noise #1 Noise #2 Noise #3Data analytics

Storage node 1 Storage node 2

Ceph HDD pool 
(shared)

Local SSD

Fig. 8: Test environment.

TABLE IV: Node configuration.

Node type Client node Storage node
Processor Intel Xeon 2.60 GHz Intel Xeon 2.30GHz

Number of cores 12 10

Storage device Samsung 240G
SATA SSD

Seagate 2TB
7200RPM SAS3 HDD

TABLE V: Noise injected to the shared storage.

Noise Period Checkpoint Size
Noise #1 80 secs 256 MB
Noise #2 60 secs 512 MB
Noise #3 100 secs 768 MB

Table VI shows the three data analytics we used for
evaluation. We note that the datasets examined here are the
periodic analysis outputs from the simulations (as opposed to
checkpoints) which will be retrieved by data analytics for post-
processing and visualization. For XGC, we apply this work to
the so-called blob detection [31], [17] for data produced by the
fusion XGC simulation. These blobs are plasma regions with
high electrostatic potential. When developed near the edge
of the fusion reactor, it can quickly dissipate the confined
particle that ultimately causes catastrophic disruptions. This
data analytics is to examine the characteristics of the dpot
quantity, which measures how the electric potential deviates
from background. The mesh of the XGC dataset consists of
9,984,141 triangles. GenASiS [32] is a multi-physics code de-
veloped for the simulation of astrophysical systems involving
nuclear matter. The data analytics is a simple 2D rendering
of the velocity magnitude of core-collapse. The mesh of
the dataset consists of 10,534,050 triangles. Jet studies and
analyzes the interaction of liquids with surfaces under certain
boundary conditions. This data analytics examine the pressure
near the front of a fighter jet. The mesh of the entire jet consists
of 2,278,854 triangles.

TABLE VI: Data analytics used in this paper.

Name Application Area Data Analytics
XGC Fusion Blob detection

GenASiS Astrophysics Rendering
Jet CFD Extracting high-pressure area

B. Justification of Methodology

As the very first step, Fig. 9 demonstrates the viability of
our DFT-based approach to capture the characteristics of in-
terference. We collect the I/O performance of XGC, GenASiS,
and Jet for a period of 20 mins, and use the performance data
to predict the available storage bandwidth for the subsequent
20 mins. For the sake of comparing the prediction to the actual
performance, we also record the storage performance during
the target prediction window. As aforementioned, we extract
those frequency components that are deemed to be high in
amplitude, i.e., with thresh=25% and 75% of the maximum
amplitude, respectively, and run the DFT-based algorithm. It is
clear that the results match the actual measurements well with
regard to the amplitude, frequency as well as phase, despite
the insignificant frequency components being discarded. Note
that a higher thresh will result in fewer frequency components
being extracted, thereby affecting the amplitude measured in
the time domain. This enables us to accurately estimate when
and how much the interference will be.

On the other hand, lowering the accuracy is acceptable and
should still produce meaningful, if not identical, outcome for
data analysis. As a case study, Fig. 10 provides a quantita-
tive analysis of blob detection results for XGC. Herein, we
manually vary the augmentation degree and assess the total
number of blobs detected, average blob diameters, total blob
area, and blob overlapping ratio. It is shown that even without
augmentation, each metric is still acceptable under such an
extreme decimation ratio. For example, the total blob area
detected only deviates from the ground truth by 20% using
less than 0.1% of the original data. As we further increase
the augmentation degree, all metrics improve and the false
positives of blobs reduce.

C. Dynamic Augmentation

We next evaluate the effectiveness of dynamically adjusting
the degree of augmentation dictated by the augmentation-
bandwidth plot. In Fig. 11, we measure the performance of
data analytics in the following three cases: case 1): there is
no prediction and a full augmentation is done by fetching
data from the shared Ceph HDD pool, here referred to as
best effort; case 2): the interference is predicted based upon
the performance data collected during the first 20 mins, and
the augmentation degree is determined by the augmentation-
bandwidth plot, here referred to as dynamic augmentation.
We also vary the coefficient k and b, and study their impact;
and case 3): we only retrieve the reduced representation from
SSDs and perform no augmentation to achieve performance
isolation, referred to as performance isolation, to show the
best possible scenario for variation reduction.
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(b) GenASiS.
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(c) Jet.

Fig. 9: DFT-based interference estimation. Herein we use the performance measurements during the first 20 mins, as shown in the left plane
of each plot, to predict the subsequent 20 mins, as shown in the right plane.
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Fig. 10: A quantitative evaluation of blob detection.

The results in Fig. 11 demonstrate that the dynamic aug-
mentation can avoid the interference very effectively. We note
that with dynamic augmentation, there are still data retrieved
from the shared storage to improve the accuracy of data
analytics when the interference is not at peak. As a result,
the variation is much lower but still exists. Meanwhile, in the
case of performance isolation, we only retrieve the reduced
representation from the node local SSDs and therefore the
performance is consistent. On the other hand, coefficient k
affects the aggressiveness of augmentation - a larger k will
result in a higher augmentation under the same intensity of
interference, thus being more susceptible to I/O performance
degradation. Fig. 12 further calculates the mean and variance
of the I/O performance. As compared to best effort, it is
evident that not only the average performance, but also the
consistency of I/O is significantly improved for dynamic
augmentation. For example, for Jet, the mean and variance
of I/O time is reduced by 67% and 96%, respectively, as
compared to best effort.

Meanwhile, the quality of data with regard to PSNR is
assessed in Fig. 13. Here the original data are deemed to
the reference signal and PSNR is calculated as the ratio of
the original data to the error as a result of partial or no
augmentation. The performance isolation yields the lowest

quality, and as the coefficient k increases, the quality improves
with dynamic augmentation. Similarly, Fig. 14 evaluates the
outcome of data analytics. For XGC, we evaluate the deviation
of blob features with regard to the number of blobs, average
blob diameter, total blob area, and blob overlapping ratio from
the ground truth. For GeASiS, we calculate the structural
similarity index (SSIM) [25] and Dice’s coefficient [33] to
assess the deviation of the rendering results. The SSIM is
a perceptual metric that quantifies image quality degradation
caused by the loss of accuracy, and the Dice’s coefficient is a
statistical tool to measure the similarity between two images.
For Jet, we evaluate the high pressure area and the total force
exerted on the high pressure area. It is evident that the dynamic
augmentation provides good trade-offs between performance
isolation and best effort so that domain scientists can make
more informed decisions between accuracy and performance
when there is interference.

In reality, the noise pattern is not static and will change
when a new simulation starts running or an existing simula-
tion terminates. Therefore, it is important to understand how
quickly our algorithm can adapt to the change of interfer-
ence. Fig. 15 shows the relative prediction error, measured
as |Bandwidthpredicted−Bandwidthreal|

Bandwidthreal
, when a new simulation

starts dumping 512 MB every 75 secs starting around 1600 sec.
Herein our DFT-based estimate is performed upon a sliding
window of 600 secs. Initially, the prediction error is high since
the sliding window still involves samples collected prior to
1600 sec when the noise pattern did not change. However, as
the sliding window moves forward in time, the overall trend is
that the prediction error is gradually reduced. After 2200 sec,
all samples in the sliding window reflect the new interference
pattern, and therefore, the prediction error is substantially
reduced. Overall, it takes the length of the sliding window
for our algorithm to adapt to new interference pattern.

D. Parametric Study

1) Intensity of Interference: To understand the impact of
interference, we evaluate how well the dynamic augmentation
performs under lighter interference. Table VII lists the param-
eters of the lighter noises, and Fig. 16 shows the mean and
variance of the I/O performance of XGC. For best effort, the
performance variation is sensitive to the intensity of interfer-
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Fig. 11: DFT-based interference estimation and dynamic augmentation. The noises we injected here are listed in Table V. The legend of best
effort denotes the case that there is no prediction and the full augmentation is done by fetching the augmentation from the shared storage.
The legend of dynamic aug. denotes the case that there is augmentation and the degree of it is determined by the augmentation-bandwidth
plot. The legend of perf. isolation denotes the case that we only retrieve the reduced representation from the node local SSDs, and therefore
there is no interference. Here we use the performance data collected during the first 20 mins to predict the subsequent 20 mins. Note k and
b are coefficients of the augmentation-bandwidth plot.
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ence and reduces by 80% as the interference becomes lighter.
With dynamic augmentation, the variation is less sensitive
to the noise intensity, since the degree of augmentation is
adjusted on-the-fly based upon the augmentation-bandwidth
plot, thus obtaining higher accuracy when the interference is
lighter.

TABLE VII: Small noise injected to the shared storage.

Noise Period Checkpoint Size
Noise #1 80 secs 128 MB
Noise #2 60 secs 256 MB
Noise #3 100 secs 512 MB

2) I/O period of data analytics: Given the design that
we collect the performance history of data analytics at each

iteration to make estimation, the frequency of data analytics
would matter - the less frequently the data analytics performs
I/O, the less information we can capture for the storage
state. Overall, to fully capture the noises on the storage
system, the I/O frequency of data analytics, fa, needs to
be greater than twice the highest frequency of noise fmax,
i.e., fa > 2fmax, a.k.a the Nyquist frequency, as per the
Nyquist-Shannon sampling theorem [34]. Therefore, for the
three noises we inject with the period of 80 secs, 60 secs, and
100 secs, the period of data analytics should be less than 30
secs in order to fully capture all three noises. Otherwise, as
the sampling period of data analytics drifts higher away from
30 secs, more frequency components related to the noises will
get lost during DFT, and thus the less effective the estimation
will be. Fig. 17 illustrates the impact of the period of XGC
data analytics. In particular, Fig. 17a measures the impact of
period on the I/O performance. For the period of 25 secs,
since it is less than the Nyquist frequency, it has the best
outcome of performance estimation, thus yielding the lowest
mean and variance of I/O time. Once the period is increased
beyond 30 secs (thus the frequency is lower than the Nyquist
frequency), the performance estimation becomes less accurate
and therefore the variation increases. In Fig. 17b, we calculate
the average PSNR vs. the I/O period. As the period increases,
the ability to capture the noises becomes lower, and therefore
the estimated bandwidth becomes increasingly higher than
what is actually available on the storage system. This results
in higher augmentation degree, and in turn higher PSNR.

3) Bandwidthlow and Bandwidthhigh: To further under-
stand how the bandwidth threshold would impact the I/O
performance of XGC data analytics, we test different com-
binations of Bandwidthlow and Bandwidthhigh in Fig. 18.
In particular, at Bandwidthlow = 60, when Bandwidthhigh

increases from 90 to 120, it essentially reduces the coefficient
k. Therefore, under the same interference, the latter would
retrieve less augmentation, thus resulting in lower mean and
variance. The combination of Bandwidthlow = 30 and
Bandwidthhigh = 120 yields further higher I/O time and
variation as a result of larger margin for augmentation.
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Fig. 14: Assessing data quality with regard to the outcome of data analytics.
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V. RELATED WORK

Scientific data management has been identified as one of the
top research challenges in exascale computing [35]. It is well
recognized that the major steps in scientific processes, includ-
ing data storage, analysis and visualization, can suffer greatly
from the worsening I/O bottleneck. To accelerate knowledge
discovery on HPC systems, there have been a multitude of
efforts to address this issue, ranging from enhancing the
HPC I/O systems, providing in-memory computing for data
analytics, to reducing data on HPC systems. We next discuss
each of these areas in great detail.

To significantly simplify and optimize data management on
large-scale systems, new data processing frameworks, such
as ADIOS [36] and Mochi [37], were proposed to allow
for specialized methods to be pluggable for a diverse set
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Fig. 18: Impact of Bandwidthlow and Bandwidthhigh (XGC).

of platforms, while maintaining simple declarative APIs for
applications. Meanwhile, various optimizations and techniques
have been proposed to further scale up I/O performance, with
the central idea of better organizing data and utilizing the
persistent storage [38], [39], [40]. However, most of these
prior work do not consider the consistency of performance
and are focused on improving either average or peak I/O
performance. This results in a lower system utilization and
subpar user experience for science production. Very recently,
the issue of performance variation on large HPC systems
has started to gain interest from the research community.
Prior work [8], [9], [7] take an opportunistic approach to
handling storage interference by offloading I/O requests from
busy to idle storage devices. CALCioM mitigates interference
through a cross-application coordination. However, it forces all
applications on a system to use CALCioM APIs, and therefore
is limited in wide adoption. Prior work [4] further provides in-
depth analyses for the root cause of I/O interference. By and
large, these work are mostly middleware level solutions. In
this work, we believe there are further research opportunities
in the application space to reduce the performance variation
via trading accuracy for performance. Further, Gong et al. [41]
attribute the network performance to be the combined effect
of the constant and volatility components, and the goal was
to only identify the constant component. In contrast, our goal
is to estimate the combined effect which will affect the data
analytics performance. Maricq et al. [42] estimate the number
of times an experiment needs to be ran to achieve a certain
confidence level. This work by itself does not reduce the
performance variation of a system. In contrast, the goal of
our work is to estimate the I/O performance and then reduce
the performance variation of data analytics.

Meanwhile, in-memory provides a new paradigm that allows
data to be analyzed while in-memory, thus avoiding the
expensive data movement to storage. In general, in-memory
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can be either in situ [43], [44], [45], [46] or in transit [47],
[48], [49], [50], [51], depending on how the simulation and
data analytics are coupled. For in situ, the simulation and data
analytics are allocated on the same node and share the physical
memory. As a result, there is no additional data movement.
However, the simulation will be interrupted when the analysis
occurs. In contrast, in transit ships data from the simulation
memory to a dedicated staging area where the data can be
further processed. While this approach involves explicit data
movement across nodes, a key advantage is that the simulation
can run asynchronously with the data analytics, thus posing
low impact to the simulation. Although this paper focuses on
the persistent storage, the idea can be broadly applied to in
transit, where the interference over the interconnect can be
mitigated in a similar fashion.

Data reduction has become increasingly important as the
forefront to manage the ever-increasing data volume and
velocity. Broadly speaking, data reduction can be either loss-
less compression or lossy compression. Lossless compression,
FPC [52], FPZIP [53], GZIP [54], requires data to be identical
after decompression, and is often used in the scenarios where
the accuracy is strongly enforced, such as checkpoint and
restart. However, the compression ratios achieved are often
low [55], greatly limiting its adoption to large applications that
can easily reach TBs or PBs. Meanwhile, lossy compression,
SZ [56], ZFP [57], ISABELA [58], achieves significantly
higher reduction ratios with low overhead by trading accuracy
for performance. More broadly, the data decimation that is
used by this paper to generate the reduced representation is
also a form of lossy compression by simply discarding selected
data points. A key drawback of decimation is the substantial
loss of information. This work addresses this weakness by
providing additional augmentation, if needed. Canopus [27] is
a recent work that utilizes decimation to map simulation data
to storage hierarchy. Our work differs in that we exploits the
HPC interference pattern to provide augmentation on-the-fly.

VI. CONCLUSION

This paper aims to address the I/O performance variation
issue on HPC systems. In contrast to the prior efforts that are
mostly done in the storage and file system level, we believe
there are opportunities in the application space, and data
analytics and storage need to be co-designed to mitigate I/O
variation. In particular, we propose the idea that data analytics
should adapt to the storage interference by trading accuracy
for performance - if there is strong interference experienced,
the data analytics can lower the accuracy by retrieving less
data from the storage system, thus reducing the performance
variation. To achieve this, we design a DFT-based estimation
scheme to predict the bandwidth consumption of HPC systems,
leveraging the fact that HPC applications follow the repetitive
patterns. The degree of augmentation is further determined by
an augmentation-bandwidth plot. We evaluate three applica-
tions, fusion XGC, astrophysics GenASiS, and computational
fluid dynamics Jet, on Chameleon, and the results show that
both the mean and variance of the I/O performance are vastly

improved, and at the same time the outcome data analytics are
acceptable. We envision that this work, which is an application
level solution, is orthogonal and complementary to many other
storage layer solutions, including the load balancing and other
advanced QoS solutions. We plan to further combine our
method with existing storage QoS solutions in the future work.
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