IEEE TRANSACTIONS ON BIG DATA, VOL. XXX, NO. XX, NOV 2020

High-Ratio Lossy Compression: Exploring the
Autoencoder to Compress Scientific Data

Tong Liu, Jinzhen Wang, Qing Liu, Shakeel Alibhai, Tao Lu, Xubin He, Senior Member, IEEE

Abstract—Scientific simulations on high-performance computing (HPC) systems can generate large amounts of floating-point data per
run. To mitigate the data storage bottleneck and lower the data volume, it is common for floating-point compressors to be employed. As
compared to lossless compressors, lossy compressors, such as SZ and ZFP, can reduce data volume more aggressively while
maintaining the usefulness of the data. However, a reduction ratio of more than two orders of magnitude is almost impossible without
seriously distorting the data. In deep learning, the autoencoder technique has shown great potential for data compression, in particular
with images. Whether the autoencoder can deliver similar performance on scientific data, however, is unknown. In this paper, we for the
first time conduct a comprehensive study on the use of autoencoders to compress real-world scientific data and illustrate several key
findings on using autoencoders for scientific data reduction. We implement an autoencoder-based compression prototype to reduce
floating-point data. Our study shows that the out-of-the-box implementation needs to be further tuned in order to achieve high
compression ratios and satisfactory error bounds. Our evaluation results show that, for most of the test datasets, the tuned
autoencoder outperforms SZ by up to 4X, and ZFP by up to 50X in compression ratios, respectively. Our practices and lessons learned
in this work can direct future optimizations for using autoencoders to compress scientific data.

Index Terms—Lossy data compression, autoencoder, machine learning, scientific data

1 INTRODUCTION

UE to the information explosion in recent years, data
Dreduction techniques such as data deduplication and
lossless/lossy data compression are being widely used in
storage systems to lower the cost of storage and I/O. In
particular, data deduplication [1] is a special data reduction
technique that eliminates duplicate copies of data. Lossless
compression, meanwhile, refers to a class of data compres-
sion algorithms in which the original data can be exactly
reconstructed from the compressed data. These include the
well-known ZIP [2], gzip [3], FPC [4], and LZ4 [5]. Accord-
ing to recent reports [6], [7], although higher potential (e.g.
16x in some cases) exists, most practical lossless compres-
sion techniques on general benchmarks achieve a compres-
sion ratio of around 2x, with some up to 4x. While dedupli-
cation and lossless compression can perfectly reconstruct the
original data without any data loss, they can only achieve
relatively low compression ratios. On the other hand, lossy
data compression schemes, at the expense of losing some
data accuracy, usually achieve a higher compression ratio
of 200x to 500x [8] and can even reach up to 10,000x [9].
In scenarios where file sizes can be significantly reduced
before degradation is noticed by end users (such as in the
case of multimedia data), lossy compression is usually the
best choice. Popular lossy compression techniques include
JPEG for images [10], MPEG for videos [11], and MP3 for
audio [12].

e T Liu, S. Alibhai, and X. He are with the Department of Computer and
Information Sciences at Temple University, Philadelphia, PA, 19122.
E-mail: {tongliu, shakeel.alibhai, xubin.he}@temple.edu

o J. Wang, Q. Liu and T. Lu are with the Department of Electrical and
Computer Engineering, New Jersey Institute of Technology, Newark, NJ,
07102.

E-mail: {jw447, qing.liu, lut}@njit.edu

It has been reported [13], [14], [15], [16] that HPC scien-
tific simulations can generate terabytes or even petabytes
of data per run. In this case, deduplication and lossless
compressors may not serve as good choices due to their
relatively low compression ratios. It has been indicated [17]
that deduplication can only achieve compression ratios of
around 1.5 ~ 3 on HPC data. Lossless compressors cannot
achieve a much better result either: the lossless compres-
sor FPC [4], for example, which is specifically designed
to compress scientific data, can only reach a compression
ratio of around 15x. Lossy compressors’ high compression
ratios, conversely, make them a much better solution to
deal with the storage overhead challenge in HPC storage
systems. However, because lossy compressors usually in-
clude a degree of data loss, lossy compression cannot be
applied to cases where it is important that the original and
decompressed data be identical or where huge deviations
from the original data would be unfavorable. For HPC data
compression, some data loss is acceptable; therefore, besides
lossless compression methods [18], [19], lossy compression
of HPC data has thus attracted a great deal of attention from
researchers [20], [21], [22], [23], [24]. The data loss must be
strictly contained within an error bound, however; to that
end, some lossy, error-bounded compressors for floating-
point scientific data, such as ISABELA [25], ZFP [26], and
SZ [27], have recently been proposed for HPC scientific data
compression.

An autoencoder [29] is a type of unsupervised artificial
neural network commonly used to learn efficient data fea-
tures. By taking advantage of its ability to conduct dimen-
sion reduction, several works have applied autoencoders
to various forms of lossy data compression, such as image
compression [30], [31], quantum data compression [32], and
biometric patterns compression [33]. These works indicate

IEEE TRANSACTIONS ON BIG DATA, VOL. XXX, NO. XX, NOV 2020

TABLE 1: Typical compressor/algorithm description

Compressor Lossless/Lossy | Principle/Algorithm Typical compression ratio
Deduplication | Lossless Eliminate duplicate data chunks | 10 ~ 20, 1.5 ~ 3 for scientific data [17]
gzip Lossless DEFLATE algorithm 1.5 ~ 2 for scientific data [28]

FPC Lossless Sequentially predicting 1.2 ~ 15 for scientific data [4]

SZ Lossy Curve fitting model 3.3 ~ 436 for scientific data [27], [28]
ZFP Lossy Block transform 3.2 ~ 226 for scientific data [26], [28]
ISABELA Lossy Curve fitting, sorting 2.1 ~ 88 for scientific data [25], [28]

that, in certain scenarios, autoencoders possess the features
of a lossy compressor. For example, Sento [31] shows that
by using an autoencoder for image compression, image
dimensionality can be reduced by around 60x. However,
none of the previous work has explored how autoencoders
work as a lossy compressor for HPC scientific data. In
this paper, we conduct a comprehensive study on applying
autoencoders to compress real-world HPC scientific data
and aim to give guidance on how to use autoencoders from
a user’s perspective.
The contributions of this paper include:

1) To the best of our knowledge, we are the first to conduct
a comprehensive evaluation of using an autoencoder as
a lossy compressor for scientific data.

2) We perform experiments on 18 real-world HPC scien-
tific datasets and show that, after our tuning operations,
for most of the datasets, the autoencoder can achieve
much higher compression ratios than the state-of-art
HPC lossy compressors SZ (up to 4X) and ZFP (up to
50X) under common relative error-bounds.

3) We present observations and findings to help users
better understand the compression autoencoder and
use it wisely.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the background and our motivation.
In Section 3, we introduce our compression autoencoder
prototype for scientific data and conduct preliminary exper-
iments on it. In Section 4, we add our tuning methods and
then present the compression ratio evaluation results after
tuning. In Section 5, we report several observations and offer
guidance for using an autoencoder as a lossy compressor. In
Section 6, we discuss related work. The conclusion is given
in Section 7.

2 BACKGROUND AND MOTIVATION

To meet the steadily increasing demand for HPC data stor-
age, many lossy and lossless compressors and algorithms
have been applied in practice. Table 1 shows the typical
compression ratios of several commonly-used lossless and
lossy scientific data compressors and algorithms. As men-
tioned in Section 1, HPC scientific simulations can produce
terabytes or even petabytes of data per run, which is a huge
challenge for storage systems. A 1.5 ~ 15 compression ratio
is not enough to relieve this storage stress. Although lossy
compressors such as SZ, ZFP, and ISABELA can sometimes
reach compression ratios in the hundreds, previous research
[28] has found that, under reasonable error bounds, it is hard
for these compressors to achieve a compression ratio up to
100x in general cases. As a result, there exists an urgent need
to find a compressor with a much higher compression ratio
while still satisfying the compression requirements of HPC

scientific data.

An autoencoder is a popular type of neural network
commonly used for feature learning and dimension reduc-
tion. The simplest form of an autoencoder is a feedforward,
non-recurrent neural network that aims to copy its inputs
to its outputs. The structure of an autoencoder with three
fully-connected hidden layers is shown in Figure 1. In this
simple example, there are three layers Ly, L, and L3, which
represent the input, an intermediate hidden layer, and the
output, respectively. In addition, an autoencoder always
consists of two parts, the encoder and decoder, which can
be defined as transitions ¢ and 1, respectively. Assuming
we have a set of training examples X = {1, 2, z3, 74, 75},
a set of code layer neurons Z = {21, 22,23}, and a set of
trained output as X = {:c/l, xlz, x;, x;, :1:;}, then we have:

p: X =2 1)
viZ X @)

In this simple example, there is only one hidden layer, so we
have:
Z=0c(WX+Db) 3)

where o is an element-wise activation function, such as a
sigmoid function or a rectified linear unit; W is a weight
matrix; and b is a bias vector. The Z layer is usually referred
to as a code layer, which can be regarded as a compressed
representation of the input X . After encoding, we then have
the following mapping from Z to the reconstruction X y
which is the same shape as the input X:

X = (WZ+b) 4)

Essentially, we want the output to be equal to the input:
X' = X. However, due to the inner property of the neural
network, there are almost always some data loss during
the reconstruction. Usually, an autoencoder’s reconstruction
error (also known as a cost function) is defined as squared
erTors:

N
T=1X = X2 =) llwn — 2,)
n=1

In the case where there are fewer hidden units m in
Layer Ly than input units n in Layer L, the network is
forced to learn a compressed representation of the input.
Thus, a compression autoencoder (CAE) is formed. For
example, if some of the input features are correlated, then
the CAE is able to learn those correlations and reconstruct
the input data from a compressed representation. This im-
plies that the CAE has excellent potential to be applied for
data compression. Several works have applied CAEs in the
lossy data compression field (such as for image compression
[30], quantum data compression [32], and biometric patterns

IEEE TRANSACTIONS ON BIG DATA, VOL. XXX, NO. XX, NOV 2020

Encoder Decoder

‘4
<7 &
S DI r
P N

LA LD
e S

Layer L2

Layer L1

Layer L3

Fig. 1: A fully-connected three-layer autoencoder.

compression [33]), and they all achieve promising perfor-
mance. From this, we believe that autoencoders may also
perform well as a lossy compressor for HPC scientific data,
providing a much higher compression ratio than existing
lossy compressors. To test this, we implement and configure
a prototype autoencoder, as discussed below.

3 PRELIMINARY EVALUATION

In this section, we first give a detailed introduction to
the autoencoder prototype we will use in the evaluation.
Then, based on the autoencoder prototype, we configure a
CAE specifically used for scientific data lossy compression.
Finally, we introduce the HPC scientific datasets we use in
this work and give some preliminary experiment results.

3.1 CAE Prototype Implementation

To evaluate an autoencoder’s compression performance
on HPC scientific data, we implement an autoencoder
prototype specifically designed for large-scale, double-
precision floating-point data based on the open-source
TensorFlow [34] machine learning framework. As shown
in Figure 2, the autoencoder has seven layers with three
layers Lj o,L2 ¢, L3 . in the encoder part, three layers
L1 4, Ly g, L3 4 in the decoder part, and one code layer Z.
Before the input file I (which contains the scientific data)
enters the neural network, it is divided into several batches
b; € I. After the input is divided into batches, each batch
b;, containing a part of the original scientific data, will go
into the input layer L; .. When a batch enters the input
layer, each element of the original scientific data becomes
one neuron in the layer. Each point in each batch contains
x original data points, where z is the number of neurons in
Li . In the encoder part, the number of neurons decreases
as the layer goes from the input layer L; . to the code layer
Z. Each layer in the encoder part has a weight matrix and
bias vector that are used to accomplish dimension reduction.
After three layers of compression, the information stored
in Ly_ is represented in layer Z with significantly fewer
neurons. The decoder is similar to the encoder in that each
layer has a weight matrix and bias vector. The information
in the Z layer goes through the three decoder layers and is
then written to the output file. If the whole autoencoder

O]
O]

. AN
: . output
: : file

— Z
O L O
| | 3e L1 g W
I 2/ Lae ind\g
Lie L3d

Fig. 2: The seven-layer compression autoencoder.

is regarded as a compressor, then layer L; . is the orig-
inal file, layer Z is the compressed file, layer L3 4 is the
decompressed file, and the encoder and decoder represent
compression and decompression, respectively. More details
of the implementation can be found at the link provided in
Section 7.

Assume the size of the input file is .S;, the sum of all the
Z layer sizes are S, and there are N numbers in the input
dataset X and the output dataset X " (as they should have
the same size). The theoretical compression ratio, C' Ry,
would then be: g

CRy, = = 6

=g (6)

If any other files (having a combined size F') need to be

stored to assist in the decompression process, then the actual
compression ratio, C R,., would be defined as:

S
S, +F
In addition, let the point-wise error for each input data
point be e;. Then the average point-wise relative error F,

which usually serves as the measurement criteria of an
error-bounded compressor, will be:!

CRye = (7)

’
Ti—T,

N
E = IS _ s 8)
N N

In the following evaluation part, these metrics are used
as the criteria for the lossy compression performance.

3.2 CAE for Scientific Data

In this paper, we aim to evaluate the performance of au-
toencoders as lossy compressors for HPC scientific data.
All experiments are conducted on a server running Ubuntu
16.04.5 LTS with an Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10GHz and 32 GB of memory (clock: 2133MHz). We also
use the online Google Colaboratory environment [35] for
some preliminary experiments. The datasets we use for test-
ing come from open-source HPC scientific data benchmarks,

U1f the original value is zero, then we do not apply the error formula
to the predicted value, as the point-wise relative error function on a zero
value would be undefined. However, the zero values will still be error-
bounded by our delta-value and delta-index mechanism proposed in
Section 4.

IEEE TRANSACTIONS ON BIG DATA, VOL. XXX, NO. XX, NOV 2020

TABLE 2: Detailed descriptions of the HPC scientific datasets

Dataset Benchmark | Size Description

blast2 FLASH 4631KB | Strong shocks and narrow features

maclaurin_p | FLASH 2134KB | MacLaurin spheroid pressure (gravitational potential at the surface/inside a spheroid)
maclaurin_t | FLASH 2134KB | MacLaurin spheroid temperature (gravitational potential at the surface/inside a spheroid)
sedov FLASH 625KB | Hydrodynamical test code involving strong shocks and non-planar symmetry

md_seg GROMACS | 4800KB | Molecular dynamics simulation of Lysozymein protein in water

s3d_p MCERI 1552KB | A 3D streamline simulator for tracer flow and two-phase displacement

2d_annulus | NEKS5k 2910KB | Simulation of natural convection between two concentric cylinders

astro NEK5k 524KB Velocity magnitude in a supernova simulation

bump NEK5k 400KB Flow density of an axisymmetric bump

eddy NEK5k 2160KB | 2D solution to Navier-Stokes equations with an additional translational velocity

fish NEK5k 524KB | Velocity magnitude in a CFD calculation of cooling air being injected into a mixing tank
rarefaction NEK5k 1600KB | Simulation of a two-dimensional box with walls on all sides and a subsonic outflow
swept NEK5k 1234KB | Swept particles in a triply periodic 3D domain

vortex NEK5k 1600KB | Inviscid Vortex Propagation: tests the problem in earlier studies of finite volume methods
yf17_p NEK5k 776KB Pressure in a computational fluid dynamics calculation

yf17_t NEK5k 776KB | Temperature in a computational fluid dynamics calculation

such as NEK5000, MCERI, GROMACS, and FLASH?. De-
tailed descriptions of the datasets are presented in Table 2.
After generating the scientific data, we convert it into
double-precision floating-point data (8 bytes per number)
and then write the data to a binary file. On average, each
binary file has around 400,000 data numbers. We divide
this binary file into two equal parts. The first part serves as
the training dataset, which goes to the encoder part of the
autoencoder for training over multiple epochs. During each
epoch, the weight matrices and bias vectors are updated by
the optimizer. After the entire training process completes,
we are left with the final weight matrices and bias vectors.

Then the second part of the binary file, which serves as the

testing dataset, enters the encoder part of the autoencoder.

It uses the final weight matrices and bias vectors generated

from the training step to proceed through the autoencoder’s

encoder and decoder. If we consider the testing step as the
compression process, then we can think of the testing input
file as the original data file which needs to be compressed,
the encoder part of the testing step as the compression
process, the Z layer as the compressed file, the decoder part
of the testing step as the decompression process, and the
testing output file as the decompressed file. What we mainly
focus on in the autoencoder is the testing prediction error,
which displays the prediction accuracy of the autoencoder.

Within the autoencoder, there are several important pa-
rameters that we can configure.

o Number of layers: The number of layers in a neural network
could have a significant impact on the training perfor-
mance. In order to find a suitable number of layers for our
autoencoder prototype, we choose, without loss of gener-
ality, three datasets, yf17_t, maclaurin-p, and swept, to test
their actual compression ratios under different numbers
of layers with error bounds 0.1, 0.01, and 0.001. We tested
the datasets with a theoretical compression ratio of 512;
the results (provided at this link as well as in the supple-
mental document) indicate that, under all error bounds,
a seven-layer autoencoder is the best option in general.
More layers may give worse performance because of the

2Nek5000: https:/ /nek5000.mcs.anl.gov /files/2015/09/NEK_doc.pdf;

MCERL: http:/ /www.pe.tamu.edu/mceri/software.html;
GROMACS: http:/ /www.gromacs.org/About_Gromacs/Benchmarks;
FLASH: http:/ /flash.uchicago.edu/site/flashcode/user_support/

S 1.0E+10

G 1.0E+08

2 1.0£+06

© 1.0E+04

o 1.0E+02

S 1.0E+00

£ 1.0E-02

S Y3 FT S ELE L8 TP S B Y
5 3858 npsiceeliseg
© z = = Ss=¢eg """
$ - 8 8 =

<< N £ =

Fig. 3: The raw performance regarding the average point-
wise relative error of the autoencoder under a theoretical
compression ratio of 512 on a logarithmic scale.

overfitting problem [36]: the risk that, when we try too
hard to find the very best model for the training data,
we end up fitting to the noise in the training dataset by
memorizing its various peculiarities rather than finding a
general predictive rule.

o Number of neurons in each layer: Autoencoders can achieve
different theoretical compression ratios depending on the
number of neurons in each layer. The theoretical com-
pression ratio between two consecutive layers, such as
Ly ¢ and Lo, is the quotient of their neuron numbers,
nr, ./nr, .. The theoretical compression ratio determines
the strength of the dimension reduction.

e Batch size: The batch size defines the number of samples
that are propagated through the network. In our tests, we
split each input file into multiple batches (normally 64)
before it enters the encoder part of the autoencoder.

o Training epochs: The number of training epochs determines
how many times a training dataset will be trained by the
neural network.

Loss function: An important part of an artificial neu-
ral network is its loss function, which is used to mea-
sure the inconsistency between the predicted and actual
values. The original loss function is loss_original =
tf.reduce_mean(tf.pow(prediction —true, 2)). To ensure
that the loss function we choose does not negatively im-
pact the compressor performance, we select another three
loss functions for comparison. Without loss of generality,
we choose three datasets, yf17_t, maclaurin-p, and swept,

https://www.dropbox.com/s/9ujfbca68n7ufz0/multiple-layer-new.pdf?dl=0

IEEE TRANSACTIONS ON BIG DATA, VOL. XXX, NO. XX, NOV 2020

with theoretical compression ratios of 512 to test the actual
compression ratios under different loss functions with
error bounds 0.1, 0.01, and 0.001. The detailed results
(provided at this link as well as in the supplemental
document) clearly show there is no significant difference
among the various loss functions.

To test the raw compression performance with respect
to the prediction error of the autoencoder, we use the
compression model to conduct preliminary experiments on
the 16 HPC datasets listed in Table 2 under a theoretical
compression ratio of 512. The results, shown in Figure 3,
indicate that if an input file is directly put into the au-
toencoder, the testing error could be as high as 1.0E+10;
this is not acceptable for HPC scientific data compression.
We also studied the activation functions and optimizers in
TensorFlow, but found that none of these significantly help.
Thus, in order to make the autoencoder practical for HPC
data compression, we must explore some other methods to
improve the prediction accuracy.

e D

Finding 1: Simply using an autoencoder out-of-the-
box to compress HPC scientific data may lead to
unacceptably high compression error, and merely
tuning the prototype parameters cannot rectify this
problem.

4 TUNING THE AUTOENCODER FOR SCIENTIFIC
DATA COMPRESSION

In this section, we first propose two prediction accuracy
tuning schemes which make the autoencoder satisfy the
error-bound requirements for HPC data compression. We
then propose two storage-reduction tuning schemes which
improve the compression ratio of the autoencoder.

4.1 Prediction Accuracy
4.1.1 Data normalization

After examining the original datasets, we find that different
HPC scientific datasets may have numbers in very different
orders of magnitude; normally, they could be anywhere
from 108 ~ 108. When these numbers proceed through the
autoencoder, they go through the sigmoid activation func-
tion in both the encoder and the decoder parts. The sigmoid
function maps all the numbers into the range (0, 1). In order
to make datasets with different magnitudes suitable for the
autoencoder, we implement a data normalization scheme.
Before an input file enters the autoencoder, we map all
numbers into the range [0.01, 0.1).*We store the normalized
numbers NV,, and the corresponding exponential numbers
N. The normalized numbers then go into the encoder
part of the autoencoder. When we need to decompress the
datasets, we use the corresponding exponential numbers to
convert the numbers back to their original magnitude before
writing the final output. To test the performance of this data
normalization scheme, we implement it in the prototype and
test all 16 datasets we have in Table 2.

Figure 4 shows the average point-wise relative testing
errors for the 16 experimental datasets with and without
data normalization. This figure indicates that, after adopting
this scheme, all the average point-wise relative errors for

5

these datasets are under 1.00, and most are under 0.1.
This makes the autoencoder practical for compressing HPC
scientific data.

4.1.2 Delta numbers

Simply having a low average prediction error is not enough
to make autoencoders applicable for lossy compression on
HPC scientific data; we also need to have the autoencoder
error-bounded. For example, if the average prediction error
of a compression test is 0.05, and the error bound require-
ment Eg, is 0.1, then it could be the case 80% of the output
numbers have a testing error of 0.01, but the rest have testing
errors as high as 200%, if not higher. To solve this problem,
we examine every predicted number NV;. If its prediction e;
is lower than E;, then nothing will be done; otherwise, if ¢;
is higher than EF.;, we store the difference between the input
number and the output number as the delta number d; and
the index for this number i. When we need to decompress
the file, we read the delta number files and the index files
to add the delta numbers to the predicted values. The delta
numbers are sequentially matched to the delta indices. If
is the position in the delta number file that a delta number
n appears at, then the index of n in the original dataset is
the value in position z in the delta index file. By adding the
delta numbers to the predicted values, the error bound will
be met.

e D

Finding 2: Normalizing the data and saving the
delta values can significantly reduce the predic-
tion error and enable the autoencoder to be error-
bounded, thus making it practical for compressing
HPC scientific data.

4.2 Storage Overhead

By storing the delta numbers, the error bound requirement
is met. However, this involves storing extra files containing
the delta numbers and the indices of the delta numbers.
Sometimes these files can be extremely large; they may even
be several hundred times the size of the compressed Z
file. The main storage overhead comes from two files: the
delta-value file f4,, which stores the deltas (the differences
between the input and output numbers), and the delta-index
file fq4;, which stores the indices of the numbers that have a
delta number stored.

e The delta-value file f4, stores the difference d; between
the number in the input file and the predicted value for
the numbers whose prediction errors are greater than the
error bound. To reduce the size of fy,, we employ two
solutions. 1) For the input and output files, if the numbers
are stored as double-precision floating-point data, each
number will be 8 bytes. As these delta values are meant
to correct the predicted data, their first 2 ~ 3 digits are
typically the most important. As a result, instead of using

3Note that if an input value is 0, then it would not be normalized
into the specified range; the range is thus more accurately described
as 0 U [0.01, 0.1). In addition, a different order of magnitude (e.g.
[0.1, 1)) may be used, as long as it is in the range (0, 1). Choosing a
different order of magnitude, however, may affect the accuracy of the
autoencoder.

https://www.dropbox.com/s/8679ojteg6jiupm/loss-function-new.pdf?dl=0

IEEE TRANSACTIONS ON BIG DATA, VOL. XXX, NO. XX, NOV 2020

1.0E+11 ™ With data normalization Without data normalization

S
§1.0E+o9
2 1.0E+07
§ LOE+05
g LOE+03
S 1.0E+01
£ 1.0E-01 II I
c
3_1,05_03" |I lllllllll
[J] N > > X 0 £ 9o +¥ Q9O v 9o +¥ W c = o
2 o035 g s e T Jeg =2 0y o g
J EESER D052 EE08 83
j>(’ o o S ;”‘;—D%ggggmm
\Ur_g bl
R g e e

Fig. 4: Comparison of the average point-wise relative errors
with and without the data normalization scheme on a loga-
rithmic scale.

double-precision, we use half-precision to store these delta
numbers, thus reducing the size of each number to 2
bytes. Therefore, the delta-value file size is one-fourth its
original size. 2) We can also use lossy compression to
further compress the file. If we use the SZ compressor to
compress the delta numbers with an error-bound of 0.1,
they can be further compressed by 10 ~ 20 times.*

o The delta-index file stores the indices of the numbers whose
prediction errors are higher than the error bound. Unlike
the delta-value file, the indices have to be completely
correct after decompression, because we have to add the
delta values to the correct input numbers. To reduce the
size of the delta-index file, we also adopt two applications:
1) Instead of storing every index number, we implement
a bitmap to store, for every number, either a 1 (indicating
a delta correction) or a 0 (indicating no delta correction).
Thus, for each double-precision number, we only need 1
bit to indicate whether or not it needs delta correction. 2)
After the bitmap file is generated, we further compress it
using the lossless compressor bzip2 [37]. By applying the
bzip2 compression, the bitmap can be further compressed
by 5 ~ 20 times.

After applying these storage optimization schemes, we
conduct experiments on the 16 datasets to compare the com-
pression performance of the autoencoder with the state-of-
the-art error-bounded HPC scientific data lossy compressors
SZ and ZFP. The two metrics we mainly focus on in the
comparison tests are the compression ratio and the error
bound.

4.3 Compression Ratio Comparison After Tuning
4.3.1 Compression ratio calculation

In general, the compression ratio is defined as the ratio
of the original dataset size to the output (compressed) file
size. This is how SZ and ZFP calculate compression ratios.
Calculating the compression ratio for the autoencoder is
slightly more complicated, as there is extra metadata that

4Based on our experiments, the predicted values are always close
to the original values, which implies that the delta value is always
smaller than the original value. Thus, further compression of the delta
value will not make the final predicted number exceed the error bound.
However, there may exist extreme cases in which the delta value may
be much higher than the original value. This rare case may occur if the
dataset is considered an CAE-bad dataset, as discussed in Section 5.1.

6

needs to be stored in addition to the compressed file. In this
paper, we use two types of compression ratios (as described
in Section 3.2): the theoretical compression ratio and the
actual compression ratio. All the compression ratios we will
compare with SZ and ZFP are the actual compression ratios
that an autoencoder can achieve. When calculating the
actual compression ratio of the autoencoder, the output file
size is the sum of the compressed file (the Z layer), the data
normalization metadata, the weight and bias metadata, and
the error-bound metadata (the delta-index and delta-value
files). For the data normalization metadata, since most of
the numbers are in the same or close magnitudes in most of
the HPC scientific datasets, we only store the exponential
numbers and the number of sequential data points that
have the same exponent. This is usually only around 10
bytes.

For all the experiments in this work, we use the same
neural network (the seven-layer autoencoder) to compress
the datasets. The size of the weight and bias metadata files
only depend on the neural network and is fixed if the same
neural network is used. This is because the metadata saves
the graph’s weight and bias information so that, after the
training process, they can be restored and used to perform
compression or decompression. In our case, the combined
size of these files is 272KB.

There are two important points to note here. First, in this
paper, we use a total of 18 real-world datasets. As listed in
Table 2, 16 of them have small sizes (i.e, less than 10MB); the
two large datasets are discussed separately in Section 5.2.
Second, we do not include the weight and bias metadata
files when calculating the actual compression ratios of the
small datasets. The first point is a result of most of our
available datasets being small in size, as well as the fact that
small datasets generally take a more acceptable amount
of time to train in our current experimental environment.
More importantly, the size of the file to be compressed
is not the determining factor of the compression ratio;
rather, the data features (such as the value distribution)
play a larger role. As for the second point: in Section 5.2,
we conduct tests on large datasets to show that when
the dataset size is large (i.e. over 1000MB), which is more
practical for HPC datasets, the weight and bias metadata
files” impact on the actual compression ratio are negligible.
It is fine to disregard the weight and bias files here, on small
datasets, because these compression ratios are meant to be
representative of the compression ratios we would get on
larger files. Since we can get the same compression ratios
(excluding weights and biases) on small and large datasets,
our compression ratios on small datasets (without weights
and biases) are very similar to what we would get in the real
world on large datasets (with weights and biases included).’

Another factor impacting the compression ratio is the
error bound. The error bound limits the accuracy loss during
compression. There are two commonly used error bound
measurements: absolute error and relative error. Assume a
data point from the input file is n; and the error bound is
set as a. Then a point-wise absolute error bound means the

5Tt is also relevant to mention that many related works [27], [28]
also use these small datasets for testing, so using them here as well
makes comparisons easier and more reasonable.

IEEE TRANSACTIONS ON BIG DATA, VOL. XXX, NO. XX, NOV 2020

(0]
o O
o O

Compression ratio
N B O
o
o

o
o &

]

|

BN S ™ T ——
Q N 3\ S+ o SN Q
& N $ & S g A
NG & > < % & ’ R\
600
.0
& 500
< 400
RS
2 300
g
g 200
S 100 I
0 m_ S - | [] —m -
g S N 3 © o Q
& £ S & & A A“’;\ ’ A“\:\
2 400
o=
e
- 300
Re]
2 200
I
g 100
& S N 2l © & 2
& £ & & c A A\\/’\ ’ 3

BAutoencoder M SZ

Error bound = 0.1

X &) X X
> Q@Q Q\)\o © 9 &7 N L)Q,OO é\o(‘ $Q,Q o,b s
S ’b(\ \’bo \,b\) & 4 Q;/(zy) =3
>/ e & o
v & <& <
‘l Error bound =0.01
[| | I [| I [| | . I - | [I [|
N > < bl L0 o 3~ <
&S N 4 & ¥
N > N & 5
X O &
o7 & L &

- _ |- |
b1 Q g < o < & Q
4 Qo@ (\3\) &7 & > & &° & D7
7? \’b° \,b\) & Qs}’b))
>/ & & 2
v & <& <
zZFP

Fig. 5: The comparison of the compression ratios among the autoencoder, SZ, and ZFP compressors under the same three

error bounds (0.1, 0.01, and 0.001).

decompressed data point n; will be in the range [n; — o,
n; + o], and a point-wise relative error bound means n; will
be in the range [n; - (1 — «), n; - (1 + «)]. We use point-
wise relative error when testing the autoencoder, SZ, and
ZFP, which is a commonly used metric in related HPC lossy
compression works [38], [39], [40].

4.3.2 Result comparison

By setting the number of neurons in each layer of the
autoencoder, we can determine the theoretical compression
ratio. The prediction error, on the other hand, will be de-
termined after the compression process. For the SZ and
ZFP compressors, the error bound will be given before the
compression as one parameter and the compression ratio
will be calculated after the compression process. To ensure
a fair comparison with respect to compression performance,
we implement the error-bounded function in the autoen-
coder so that we can set a common error bound for the
autoencoder, SZ, and ZFP and then compare their respective
compression ratios.

Due to the properties of the autoencoder, a very strict
error-bound may not be practical now; that is one of our
future research interests. In addition, for the autoencoder,
we need to first set a theoretical compression ratio; the actual
compression ratio will then be calculated based on the pre-
diction performance. However, as we will discuss in Section
5.3, there is no clear relationship between the theoretical

compression ratio and the prediction performance. As a
result, in this comparison we choose three error-bounds, 0.1,
0.01, and 0.001, and in the autoencoder prototype, we set the
theoretical compression ratio to 512 for most of the datasets.
(For SZ and ZFP, a compression ratio of 512 is usually hard
to achieve with an error bound of 0.1 to 0.001.) The one
exception to this is the 2d_annulus dataset: as it can achieve
a compression ratio of 600.06 with an error bound of 0.1
on the SZ compressor, we set its theoretical compression
ratio on the autoencoder to 2048 in order to make it possible
for the autoencoder to outperform SZ. Figure 5 shows the
comparison results.

This figure indicates that, for most of these test datasets
(13 out of 16), the autoencoder has a higher compression
ratio than SZ and ZFP compressors under these three
common error-bound requirements. The best improvement
comes from the yfl7_t dataset: the autoencoder achieves a
compression ratio of 467.47, 3.92x the SZ compression ratio
of 119.15. As for ZFP: since its main advantage is high
compression throughput and strict error-bound, and since
it can only take absolute error bound as input, it has a
much lower compression ratio than the autoencoder and
SZ under the same point-wise relative error bound in most
cases. Since we set most of the theoretical compression ratios
to 512 for this experiment, some of the datasets actually do
not yet achieve their highest possible compression ratios.
As we will see in Section 5.3, there is a trade-off between the

IEEE TRANSACTIONS ON BIG DATA, VOL. XXX, NO. XX, NOV 2020

compression ratio and the prediction accuracy. By tuning the
parameters of the autoencoder prototype, there exists a high
probability that some of the datasets can achieve an even
higher compression ratio under the demanded error-bound
requirement. Since the tuning schemes are particularly fo-
cused on each data point and have no dependency on the
original file size, there is no scalability issue with the CAE.
As a result, when the original file size is much larger, the
CAE can still provide similar compression performance.

Finding 3: For most of the real-world scientific
datasets (13 out of 16), the tuned autoencoder out-
performs the compression ratios of SZ by 2 to 4X,
and ZFP by 10 to 50X, respectively, under common
error bounds.

4.4 A Case Study on CAE

In addition to the direct comparison of compression ratios,
we also conduct experiments to evaluate the CAE’s perfor-
mance with respect to the application error. CGNS®provides
the unstructured mesh for the Northrop YF-17 fighter air-
craft so that we can use the dataset yf17_f for the visual-
ization application tests. In this test, we choose three actual
compression ratios, 30x, 50x, and 100x, and then examine
the visualization performance of the CAE and SZ. Figure
6 indicates that the CAE and SZ can both almost perfectly
reconstruct the mesh topology of the dataset under a com-
pression ratio of 30x. When the compression ratio increases
to 50x and 100x, the CAE can still maintain most of the
features of the mesh topology. With respect to SZ, however,
the visualization becomes distorted when the compression
ratio reaches 50x and 100x. This evaluation validates our
theory that the autoencoder technique is promising to com-
press HPC data by two orders of magnitude while still
maintaining the usefulness of the data.

5 OBSERVATION

From the previous section, we notice that while our autoen-
coder provides a higher compression ratio than SZ and ZFP
under a common error-bound for most of the datasets, some
of the datasets perform worse. In this section, we first at-
tempt to explore the inner data features of the experimental
datasets and aim to find a rule that can be referenced for
when an autoencoder is used for compressing HPC scientific
data. We then offer guidance on the relationships among the
compression metrics of the autoencoder.

5.1 Data Features of Experimental Datasets

To discover which data features are good indicators for lossy
compression via an autoencoder, we look at the following
metrics on the datasets:

o Cumulative distribution function: The cumulative distribu-
tion function (CDF) curve shows the distribution of num-
bers in a dataset, as well as the range and skewness of the
dataset.

6CGNS: https:/ /cgns.github.io/index.html

8

e Byte entropy: Byte entropy is the number of bits per
character. It is in the range [0, 8] and is used to gauge
the information density of dataset content. The higher the
information density is, the lower the compressibility is.

o Coreset size: Coreset size is the number of unique symbols
(bytes in our case) that compose the majority of a dataset
(e.g., 90% of all symbols). A small coreset size means
there exist considerable repeated symbols in a dataset. The
range of the coreset size is [0, 8] on a logarithmic scale.

e Serial correlation: Serial correlation measures the extent
to which each byte depends on the previous byte in a
dataset. For random data, this value is expected to be close
to zero; for highly correlated data, it approaches one. The
theoretical values of serial correlation coefficients range
in [-1, 1]. This metric may distinguish random data from
data that bear patterns.

o Coefficient of variation: The coefficient of variation (CV),
defined as the ratio of the standard deviation to the mean,
measures the dispersion of a frequency or probability
distribution. CVs are often expressed as percentages; the
higher the percentage is, the higher the extent of variabil-
ity relative to the mean of the population is.

We have listed all the datasets under two categories,
CAE-good and CAE-bad. CAE-good means that, after
all the tunings, the dataset can have a relatively
good raw autoencoder prediction accuracy (average
point-wise relative error under 10%) under a certain
theoretical compression ratio. (In these tests, the theoretical
compression ratio is 512.) CAE-bad means that the dataset
has an unacceptable raw autoencoder prediction accuracy
(average point-wise relative error greater than 10%). Figures
7 and 8 show the detailed data features of the 16 datasets.

These two figures indicate that the CDFE byte entropy,
coreset size, and serial correlation are not good indicators
for autoencoder-suitable datasets. For a given dataset, each
of these four metrics can be either high or low, regardless
of whether that dataset belongs to the CAE-good or the
CE-bad category. However, there is one metric, CV, which,
in most of the cases, matches well with the autoencoder’s
prediction accuracies. If a dataset’s CV is low (meaning the
dataset is very smooth), then the autoencoder can produce
a good error prediction for that dataset. If, however, the CV
is high (indicating that the data may jump a lot), then the
autoencoder’s error predictions are poor for that dataset.
From the experimental results, we can roughly estimate
that if the CV is lower than 0.40, then, using a theoretical
compression ratio of 512, our autoencoder can provide an
average point-wise relative error bound lower than 0.1.

Finding 4: The coefficient of variation (CV) can, in
most cases, serve as a good indicator to quickly
determine whether a dataset is suitable for compres-
sion by an autoencoder. The lower the CV is (i.e. the
smoother the dataset is), the better the autoencoder
can perform.

However, from these datasets, we can find an exception
to this rule: yf17_p. This dataset has a bad autoencoder
prediction error of 0.92, even though it has a very low

IEEE TRANSACTIONS ON BIG DATA, VOL. XXX, NO. XX, NOV 2020 9
1.5 1.5 . 15
10 - & 10 -— BE 10 - 348
310.27 4 310.27 310.27
0.5 e 1307.66 0.5 - %8;8? 0.5 ggggg
0.0 - %ggg% 0.0 - gg%g% 0.0 - 302:42
-0.5 297.22-0.5 297.22-0.5 %8?%3
-1.0 3383:86-1.0 533:86-1.0 533:80
29 -8 -7 -6 -5 -4 -3 -2 -1 : 29 8 -7 -6 -5 -4 -3 -2 -1 : 29 -8 -7 -6 -5 -4 -3 -2 -1 :
(a) CAE 30x compression. (b) CAE 50x compression. (c) CAE 100x compression.
1.5 1.5 15
315.49 315.49 g}ggg
. 312.88 1. 1 . 1.0 d .
Lo e o e | iy < Wy e
0.5 . . 0.5 - - 307/.66 0.5 8 e . — 30/.66
305.05 1305.05 T L Y 305.05
B B . B g ~ \ !
0.0 - %852)%% 0.0 - « 302.44 0.0 (‘ / N v Tl ¢ 4 302'44
-0.5 297.22-05 33953 o5 r—— - 33953
-1.0 333:86-1.0 383:86-1.0 383:86
29 -8 -7 -6 -5 -4 -3 -2 -1 : 29 8§ -7 -6 -5 -4 -3 -2 -1 ' 29 -8 -7 -6 -5 -4 -3 -2 -1 :

(d) SZ 30x compression.

(e) SZ 50x compression.

(f) SZ 100x compression.

Fig. 6: Unstructured mesh visualization of the yf17_t dataset with CAE and SZ compression. ZFP results are not shown
here because it cannot reach 30x, 50x, and 100x compression ratios for the yf17_t dataset. (These compression ratios are also
hard to reach for any other typical dataset with ZFP.) The original yf17_t dataset visualization is provided at this link as

well as in the supplemental document.

1.0 2d_annulus 1.0 astro 1.0 s3dp
En=5.!
En=6.67 Crcl =559987
Co=7.52 SC:-d 02
0.5 En=4.59 0.5 5€=0.11 0571 cv=003
Co=3.81 CV=0.068
SC=-0.35
Cv=0.21
3‘39&08 1.00e-07 0‘00.00 1.00 02818.28 3219.83
1.0 bump 1.0 maclaurin_p 1.0 maclaurin_t
En=7.28 B
Co=776 En=274 E:n - ggg
. =2. 0=2.
0.5 i&: g'(l): 0.5 Co=2.32 0.5] sc=-0.10
: SC=-0.23 Cv=0.27
Cv=0.37
O'00.66 1.11 q.ﬂgGe—lO 4.86e-09 %%Ge—ls 1.20e-08
1.0 md_seg 1.0 yfl7_t 1.0 rarefaction
En=7.42
Co=7.78
5C=0.07 En=4.01 En=6.99
05 Cv=022 0.5 Co=6.06 05 Co=7.48
SC=0.44 SC=0.05
CV =0.007 CV =0.04
0'01.61 5.28 0‘5)96.16 344.78 %.30e—03 8.82e-03
10 swept
En=6.98
0.5 Co=7.60
SC=0.17
Cv=0.12
O'0211 5.49

Fig. 7: The ten datasets with good CAE compression error
predictions. The curves in the figures show the CDFs of
data values. En, Co, SC, and CV stand for byte entropy,
coreset size, serial correlation, and coefficient of variance,
respectively.

CV of 0.02. This is because almost all the elements in
this dataset hover around 100,000, and this could lead to
a prediction problem for the autoencoder. By selecting a
small part of this dataset, for example, we get four con-
tiguous numbers {99528.03906, 99230.46875, 110569.96093,
109720.05468}. Directly looking at these four numbers may
give the impression that this dataset is very smooth. How-
ever, after data normalization, these four numbers are
normalized to {0.9952803906, 0.9923046875, 0.11056996093,

1.0 sedov 10 fish 1.0 eddy
0.5 En=4.87 0.5 En=1.81 0.5 En=7.46
Co=7.22 Co=5.04 Co=7.73
SC=0.36 SC=0.73 SC=0.06
- V=23 cv=28
a9 CV =0.866 0.0 00
.08e-09 5.75e-07 ~0.00 130.05 .99 10404.00
1.0 vortex 1.0 yfl7 p 10 blast2
0.5 Enl=7.33 0.5 En=4.23 0.5
Co=7.73 Co=6.63
SC=-0.08 5€=038
V=080 V=002
O‘OOAOO 0.28 9:92e+04 1.71e+05 0‘00.()1 1000.00

Fig. 8: The six datasets with bad CAE compression error
predictions. The curves in the figures show the CDFs of
data values. En, Co, SC, and CV stand for byte entropy,
coreset size, serial correlation, and coefficient of variance,
respectively.

0.10972005468}. Tt is clear that the data smoothness is now
seriously broken, as the numbers jump directly from 0.99 to
0.11. Within the entire dataset, this type of jump happens
thousands of times, and thus the CV of the normalized
numbers entering the encoder part of autoencoder is very
high. A more accurate method to determine whether a
dataset is good for compression via the autoencoder may
thus be to calculate its CV after normalization; however, this
would come with the additional overhead of normalizing
the data first.

5.2 Impact of Weight and Bias Metadata on Compres-
sion Ratios

In the autoencoder prototype, we use TensorFlow’s API
tf.train.Saver() to save the weights and biases into three
metadata files: checkpoint, .ckpt.index, and .ckpt.data. (There
is another .ckpt.meta file that contains neural network infor-
mation, but it is not necessary since that information is con-
tained within the autoencoder code. TensorFlow includes an
option to prevent this file from being saved.) In this paper,
since all our tests are conducted with the same autoencoder
neural network and a theoretical compression ratio of 512,

https://www.dropbox.com/s/29tethezist7np6/yf17_temp_orig.pdf?dl=0

IEEE TRANSACTIONS ON BIG DATA, VOL. XXX, NO. XX, NOV 2020

we have a fixed metadata file size, 272KB. In all previous
tests, since the dataset sizes are small, we do not include the
weight and bias metadata files with the compressed files.
The purpose of those tests is to show that among multiple
datasets, the autoencoder has a high possibility to achieve a
higher compression ratio than SZ and ZFP. In this section,
we will use both mathematical analysis and real dataset
experiments to prove that when dataset size is large (i.e.
over 1000MB), the weight and bias metadata files” impact
is very small and can be ignored. We do not use large
datasets for the experiments in Sections 3 and 4 because
the training/testing process for such datasets usually takes
a long time.

5.2.1 Analysis of dataset size impact

Assume the original data size is .S, the compressed file size
without WB (weight and bias) metadata files is S;, and the
WB metadata file size is S,». Then we have the compression
ratio without WB metadata,

S,
CRy =2 9
1=)
and the compression ratio with WB metadata,
So
CRy = —%— 10
* 7 S+ Sup 10

Since S is fixed, as S, and S. becomes larger, CR; and
CRy will become closer. Figure 9 shows the difference
between CR; and C'R; when the actual compression ratio
is set as 100, 50, and 10 with error bounds 0.1, 0.01, and
0.001, respectively. The two curves merge quickly when the
original dataset size is greater than 200MB.

5.2.2 Real-world dataset evaluation

We choose two large datasets from the Scientific Data Re-
duction Benchmarks’, SCALE-LETKF and HACC, with file
sizes 3.39GB and 1.69GB, respectively. Again, we compare
the compression ratio of the autoencoder with SZ and ZFP
under three error bounds: 0.1, 0.01, and 0.001. The results
are shown in Figure 10. The figure indicates that, for large
datasets, the autoencoder’s compression ratios with and
without the weight and bias metadata files are very close,
and both of them show significant superiority over SZ and
ZFP. These results match our previously reported results
for the small datasets, on which the autoencoder produces
compression ratios 2 to 4 times those of SZ and ZFP. We
also show the breakdown of the compressed data for these
two datasets in Figure 11 (error bound set to 0.001). The
results indicate that the WB metadata (dark blue part on the
top of each bar) only represents less than 3% of the total
compressed data.

Our analysis and evaluation of the autoencoder’s com-
pression performance on large files confirm that when the
dataset is big, the weight and bias metadata files have a
negligible impact, and therefore it is reasonable to disregard
them when performing the evaluation in Section 4.

7SDR Benchmarks: https:/ /sdrbench.github.io/

10

120

o 100 e - - - —————=<= === ===w= 0
'ﬁ /
o 80 é
c
o
2 60
g —9 & -
g 4 ¢
8

20

0

0 500 1000 1500 2000

Original Dataset Size (MB)

—e—CR1(EB=0.1) —@—CR1 (EB=0.01) —e—CRI (EB=0.001)
—e- CR2 (EB=0.01) CR2 (EB=0.001)

Fig. 9: The difference between the compression ratio with
(dashed line) and without (solid line) WB metadata files as

the original dataset size increases.

— e CR2(EB=0.1)

SCALE-LETKF

80
9
€ 60
c
o
2 40
o
Q.
€ 20
o
o
0)
0.1 0.01
Error bound

B CAE without WB meta ! CAE with WB meta mSZ ZFP

(a) SCALE-LETKF with 846,720,000 single-precision floating-
point numbers.

HACC
300

2 250
e
< 200
RS
9 150
(]
S 100
g 50
s} [=5es o

0 . [-

0.1 0.01 0.001
Error bound
W CAE without WB meta = CAE with WB meta m SZ ZFP

(b) HACC with 421,430,799 single-precision floating-point num-
bers.

Fig. 10: Compression ratios with and without WB metadata
files for two big datasets.

5.3 Prediction Accuracy Under Different Compression
Ratios and Training Epochs

In Section 3.2, we briefly introduced the definitions of com-
pression ratios and training epochs. We believe it would
be helpful for users to know the relationships between the
prediction accuracy and these two parameters when they
set up the prototype to compress the datasets.

5.3.1

Intuitively, if the compression ratio is higher, then more
information about the data will be lost, thus leading to a

Compression ratio

IEEE TRANSACTIONS ON BIG DATA, VOL. XXX, NO. XX, NOV 2020

100% — —
80%
60%
40%
20%
0% | | || |
SCALE-LETKF, SCALE-LETKF, HACC, without HACC, with WB
without WB with WB WB
m z file normalization metadata dvale dindex ®WB metadata

Fig. 11: The breakdown of the compressed data for datasets
SCALE-LETKF and HACC when error bound is 0.001.

1.5
1 ESS
05 — rema

. &S
0 —_——_— - _

Average point-wise testing error
N

R © v N > © o g D> © 4% ™
N) © NV ,f) &Y \9’11 q/gb‘ VQO’ %\,0) \ig’%
Compression ratio
—=@=sedov bump yfl7_t yfl7_p
—@=Dlast2 —=@=53d_p —@=—cddy —@—md_seg
—@=—2astro =@ \ortex —@—fish —@—2d_annulus
maclaurin_p maclaurin_t rarefaction swept

Fig. 12: The relationship between compression ratio and
average point-wise relative testing error. The x-axis shows
the theoretical compression ratio and the y-axis shows the
average point-wise relative error for the testing process.

25

—o—sedov bump blast2 s3d_p =e=yfl7_p —e=—yfl7_t

_ 2 ~
g ——————— —a
T 15
oo
C
£
T
[t

05 —$om

B o aamn T S PP VD W S N

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Training epochs(k)

Fig. 13: The relationship between training epochs and train-
ing errors. The x-axis shows the number of epochs (each n
in the y-axis means n - 1000 epochs) and the y-axis shows
the average training error.

higher prediction error. To verify this, we run experiments
on all 16 small datasets. The results of these tests are
shown in Figure 12, which indicates that, unlike traditional
compressors, an autoencoder’s compression ratio and pre-
diction error do not have a positive correlation. The results
also show that, when the theoretical compression ratio is
between 128 ~ 1024, the CAE can usually perform well.

11

Finding 5: Autoencoders, unlike conventional com-
pressors, do not have a positive correlation between
compression ratio and prediction error. In general,
a theoretical compression ratio of 128 ~ 1024 can
result in a low prediction error.

5.3.2 Training epochs

Intuitively, if we set a higher number of training epochs,
then we will get better testing results, which means that
the predictions will be more accurate. The drawback to this
is that training a neural network can be extremely time
consuming. If, however, the number of epochs is set very
low, then the testing results will have very high prediction
errors. To explore the relationship between the prediction
error and the training epochs, we again run experiments on
the six randomly chosen datasets, as shown in Figure 13.
This figure shows that, at first, prediction errors decrease
as the number of training epochs increases. After a cer-
tain point (normally around 15,000 epochs), however, the
prediction errors should stabilize. To ensure that we have
a low prediction error, all the experiments in this work
are conducted with 25,000 training epochs unless otherwise
mentioned.?

5.4 Training Time and Compression Throughput

Throughout the evaluation process, we notice that while the

autoencoder can achieve very high compression ratios, it has

a potential drawback: the lengthy training time. We record

the training time when conducting previous tests, and the

results are shown in Figures 14.

From Figure 14, we usually need at least one hour
to train the autoencoder with 25,000 epochs. This can go
up dramatically when a high compression ratio, such as
8,192 or 16,384, is desired. This is because the computa-
tion resource requirements of matrix calculation increase
quadratically.

Conducting a training process for every dataset com-
pression seems to be very time-consuming. However, we
notice that for scientific data within the same applica-
tion/benchmark, different variables (such as temperature,
pressure, and velocity) share similar data features. This
implies that the training time can be significantly reduced by
reusing the knowledge from the other variables or timesteps
of the same application/benchmark. We take advantage of
this feature and use two new training methods to improve
the training speed:

e Reuse variable knowledge: When compressing a variable,
we reuse the training knowledge from another variable
(from the same application/benchmark), which has al-
ready been trained. Assume an application generates N
variables, then reusing variable knowledge can poten-
tially improve the training speed by up to IV times.

o Reuse timesteps knowledge: When compressing a variable,
we only train part of the timesteps within that variable.

8When training the two large datasets mentioned in Section 5.2,
we only use 10,000 epochs for training in order to reduce the training
time. Figure 13 shows that, for most of the datasets, there is not too
significant of a difference between the training errors with 10,000 and
25,000 epochs.

IEEE TRANSACTIONS ON BIG DATA, VOL. XXX, NO. XX, NOV 2020

For the rest timesteps, we reuse the training knowl-
edge from the previously trained timesteps. Assume the
timesteps to train is 1. of the total timesteps in the vari-
able, then reusing timesteps knowledge can improve the
training speed by 1" times.

In section 5.2.2, since the datasets (SCALE-LETKF and
HACC) that we are testing have relatively large dataset
sizes: 3.39GB and 1.69GB, when we conduct the training
processes, we reuse the training knowledge from both
variables and timesteps. In Figure 15, we record the training
time with different combinations of N and 7" when we
train the datasets SCALE-LETKF and HACC. The figure
shows that, after reusing the training knowledge, the
training time is reduced to around 155 of the original total
training time for SCALE-LETKF when we choose (N,T)
to be (12,100); and the training time is reduced to around
3—(1)0 of the original total training time for HACC when we
choose (N, T) to be (3,100). For the final training of the
two datasets, when reusing timestep knowledge, for both
of the datasets, we use 1% of the total timesteps of the same
variable; when reusing variable knowledge, we only train
one variable and reuse the training knowledge for other
variables within the dataset (SCALE-LETKF and HACC
have 12 variables and three variables, respectively). The
compression ratio results shown in Figure 10 indicates that
after using the new training methods, our compression
autoencoder still has a 2 to 4X compression ratio gain
over SZ, and a 10 to 50X compression ratio gain over ZFP.
In our future work, we will conduct further research on
how different variables and number of 7" would influence
the prediction accuracy and compression ratio of the
compression autoencoder; we will also investigate how
to choose the appropriate variable and number of T to
achieve an optimal tradeoff between the training time and
compression ratio.

Finding 6: The compression autoencoder’s training
overhead can be significantly alleviated by reusing
the training knowledge from both variables and
timesteps in the same application/benchmark.

When compressing the datasets, our autoencoder has an
average compression throughput of around 30 MB/s. This
throughput is less than SZ or ZFP, which can achieve a com-
pression throughput of around 60 MB/s on the same file.
Table 3 shows the comparison of compression throughput
and compression ratio of datasets SCALE-LETKF and HACC
under relative error bound 0.1. From the table, SZ has a
compression throughput gain over CAE for 1.72 and 1.69,
but CAE has a compression ratio gain over SZ for 2.21 and
5.81 for the two datasets, respectively; Likewise, ZFP has a
compression throughput gain over CAE for 4.08 and 1.33,
but CAE has a compression ratio gain over ZFP for 32.62
and 115.63 for the two datasets, respectively. In conclusion,
the autoencoder can achieve a higher compression ratio than
SZ or ZFP for more than up to 100 times, while SZ and ZFP
have a compression throughput gain over CAE for up to 4
times. Also, it is worth noting that all the experiments in this
paper are conducted on a single machine without GPU sup-
port, as the training and testing performance of the machine

12
20 —o—sedov bump yfl7_t
. iz yfl7_p —o—Dlast2 —o—s3d_p
ey
o 14
En
o 10
£ 38
c
£
[//

)

o

8 16 32 64 128 256 512 1024 2048 4096 8192 16384
Compression ratio

Fig. 14: Training time. The x-axis shows the theoretical
compression ratio and the y-axis shows the training time

in hours.
10000
<
£ 1000
Q
£ 100
oo
£
£ 10
; I
) H
(1L1) (21 (22 (3,4 (3,100 (3,100) (12,100)

Number of (N, T)

B SCALE-LETKF HACC

Fig. 15: The training time for datasets SCALE-LETKF and
HACC. The x-axis shows the different combinations of N
and T" when reusing variable knowledge and timestep
knowledge for training. N means one variable’s training
knowledge is used for N variables; T means only + of the
total timesteps are used for training.

learning process is not our focus in this paper. However, we
can provide several possible solutions to address this issue
further.

The future trend [41], [42], [43] indicates that while im-
proving storage space is hard to achieve, there remain lots of
potentials to improve computational power, especially with
the upsurge of supercomputers and hardware acceleration
(such as FPGA, GPU, and TPU) [44], [45]. For example,
Heeswijk et al. [46] and Raina et al. [47] find that, depending
on the application, speedups of up to 300 times are possible
by executing code on a single GPU instead of a typical
CPU; it is possible to obtain even higher speedups by using
multiple GPUs. Another typical way to accelerate the ma-
chine learning training process is by utilizing the parallelism
of supercomputers/multi-machines, related work [48], [49]
indicates that this technique can provide a speedup of up to
450.65x. A further possible solution that has been proposed
to alleviate the training overhead is transfer learning [50],
which has the potential to vastly reduce training times.
In addition, recent research [51] indicates that computer
speeds are increasing much faster than storage technology
capacities and I/O rates.

As a result, we believe that the issue of relatively low
compression throughput for autoencoder is addressable and
that the compression autoencoder is promising for high-
ratio scientific data reduction.

IEEE TRANSACTIONS ON BIG DATA, VOL. XXX, NO. XX, NOV 2020

13

TABLE 3: The comparison of compression throughput and compression ratio of datasets SCALE-LETKF and HACC.
CAE/SZ and CAE/ZFP show the ratio of CAE’s performance over SZ and ZFP for each corresponding metric in the

table.
Metrics Datasets Raw Performance Ratio
CAE SZ ZFP CAE/SZ | CAE/ZFP
Compression throughout | SCALE-LETKE | 156 (MB/s) | 26.95 (MB/s) | 63.71 (MB/s) 0.58 024
p &hp HACC 55.39 (MB/s) | 92.7 (MB/s) | 73.33 (MB/s) 0.60 0.76
Compression ratio SCALE-LETKE 72.10 3251 221 222 32.62
HACC 241.67 4157 2.09 5.81 115.63

6 RELATED WORK

In order to improve the compression ratio of HPC scientific
data, many lossy data compressors have been proposed in
recent years. SZ [27] aims to accurately approximate the
original data by deploying multiple curve-fitting models
to encode data streams. Another common HPC lossy com-
pressor that also involves curve fitting is ISABELA [25].
ISABELA converts the multi-dimensional floating-point ar-
rays in snapshots to sorted data-series before performing
data compression by B-spline interpolation. Unlike SZ and
ISABELA, ZFP [26] is motivated by fixed-rate encoding and
random access. ZFP follows the classic texture compression
for image data and involves fixed-point integer conversion,
block transform bit-plane encoding, and more.

As a type of artificial neural network typically used for
dimensionality reduction, autoencoders have the potential
to address an increasing need for flexible lossy compression
algorithms. Recently, researchers in various fields have ap-
plied autoencoders for compression. In the image compres-
sion field, Theis et al. [30] aim at directly optimizing the rate-
distortion tradeoff produced by an autoencoder. Romero et
al. [32] apply the autoencoder to compress quantum data.
Testa et al. [33] attempt to deploy autoencoders to compress
biosignals generated by IoT devices at low computational
costs while also providing a high compression ratio. To the
best of our knowledge, this paper is the first work to explore
the autoencoder as a lossy compressor for scientific data
compression.

7 CONCLUSION AND FUTURE WORK

In this paper, we conduct comprehensive evaluations on us-
ing an autoencoder as a lossy compressor on HPC datasets.
We perform experiments on 18 real-world HPC scientific
datasets and show that simply using an autoencoder to com-
press the datasets likely leads to very large prediction errors.
However, we explain that this can be largely solved by the
tuning schemes we propose regarding the prediction accu-
racy and storage overhead. After our tuning operations, the
autoencoder can achieve much higher compression ratios
than those of the state-of-art HPC lossy compressors SZ (2
to 4X) and ZFP (10 to 50X) under common error-bounds. In
addition, we present users with guidance on how to quickly
determine whether a dataset is suitable for compression via
an autoencoder. We also show the relationships between
several important metrics (namely compression ratios, train-
ing epochs, and prediction errors) that can be used to guide
users to configure the autoencoder to their preferences when
training the autoencoder and compressing files. We also
present two remaining challenges for using an autoencoder
as a lossy compressor: the relatively loose error-bound as

well as the relatively low compression throughput. In the
future, we plan to explore lossy data compression with
the autoencoder under stricter error bounds and attempt to
use hardware acceleration techniques, such as GPU parallel
computing, to improve computation performance.

The source codes for our autoencoder prototype as well
as the scientific datasets we used are publicly available at
https:/ / github.com/tobivcu/autoencoder.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable com-
ments and feedback. This work was partially supported
by the US National Science Foundation NSF-1828363, NSF-
1813081, CCF-1718297, CCF-1812861, and NIJIT research
startup fund. The authors also wish to acknowledge the
support from the NSF Chameleon cloud which is used for
some of the experiments.

REFERENCES

[1] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua, M. Fu,
Y. Zhang, and Y. Zhou, “A comprehensive study of the past,
present, and future of data deduplication,” Proceedings of the IEEE,
vol. 104, no. 9, pp. 1681-1710, 2016.

[2] “Zip (file format) — Wikipedia, the free encyclopedia,” https:
/ /en.wikipedia.org/wiki/Zip_(file_format), [Online; accessed 8-
July-2018].

[3] “GNU gzip,” https:/ /www.gnu.org/software/gzip/, [Online; ac-
cessed 8-July-2018].

[4] M. Burtscher and P. Ratanaworabhan, “Fpc: A high-speed com-
pressor for double-precision floating-point data,” IEEE Transac-
tions on Computers, vol. 58, 2009.

[5] “LZ4, extremely fast compression.” https://github.com/1z4/1z4.

[6] S. Mittal and J. S. Vetter, “A survey of architectural approaches
for data compression in cache and main memory systems,” IEEE
Transactions on Parallel and Distributed Systems, 2016.

[7] L. Whitehouse, “Understanding data deduplication ratios in
backup systems,” https:/ /searchdatabackup.techtarget.com/tip/
Understanding-data-deduplication-ratios-in-backup-systems,
2015.

[8] G.]J. Sullivan, J.-R. Ohm, W.-]. Han, T. Wiegand et al., “Overview
of the high efficiency video coding(hevc) standard,” IEEE Transac-
tions on circuits and systems for video technology, 2012.

[9] U. Hafner, “Fiasco-an open-source fractal image and sequence
codec,” Linux Journal, vol. 2001, no. 81es, p. 3, 2001.

[10] G. K. Wallace, “The jpeg still picture compression standard,”
Communications of the ACM, vol. 34, no. 4, pp. 3044, 1991.

[11] D. Le Gall, “Mpeg: A video compression standard for multimedia
applications,” Communications of the ACM, 1991.

[12] K. Brandenburg, “Mp3 and aac explained,” in Audio Engineering
Society Conference: 17th International Conference: High-Quality Audio
Coding. Audio Engineering Society, 1999.

[13] T. Lu, E. Suchyta, D. Pugmire, J. Choi, S. Klasky, Q. Liu, N. Pod-
horszki, M. Ainsworth, and M. Wolf, “Canopus: A paradigm shift
towards elastic extreme-scale data analytics on hpc storage,” in
Cluster Computing (CLUSTER), 2017 IEEE International Conference
on. IEEE, 2017, pp. 58-69.

https://en.wikipedia.org/wiki/Zip_(file_format)
https://en.wikipedia.org/wiki/Zip_(file_format)
https://www.gnu.org/software/gzip/
https://github.com/lz4/lz4
https://searchdatabackup.techtarget.com/tip/Understanding-data-deduplication-ratios-in-backup-systems
https://searchdatabackup.techtarget.com/tip/Understanding-data-deduplication-ratios-in-backup-systems

IEEE TRANSACTIONS ON BIG DATA, VOL. XXX, NO. XX, NOV 2020

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving
lossy compression for scientific data sets based on multidimen-
sional prediction and error-controlled quantization,” in Parallel and
Distributed Processing Symposium (IPDPS), 2017 IEEE International.
W. Austin, G. Ballard, and T. G. Kolda, “Parallel tensor com-
pression for large-scale scientific data,” in Parallel and Distributed
Processing Symposium, 2016 IEEE International, 2016.

J. Zhang, X. Zhuo, A. Moon, H. Liu, and S. W. Son, “Efficient en-
coding and reconstruction of hpc datasets for checkpoint/restart,”
in IEEE... Symposium on Mass Storage Systems and Technologies, 2019.
D. Meister, J. Kaiser, A. Brinkmann, T. Cortes, M. Kuhn, and
J. Kunkel, “A study on data deduplication in hpc storage systems,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. ~ IEEE Computer
Society Press, 2012, p. 7.

E. R. Schendel, Y. Jin, N. Shah, J. Chen, C.-S. Chang, S.-H. Ku,
S. Ethier, S. Klasky, R. Latham, R. Ross et al., “Isobar preconditioner
for effective and high-throughput lossless data compression,” in
2012 IEEE 28th international conference on data engineering.

N. Shah, E. R. Schendel, S. Lakshminarasimhan, S. V. Pendse,
T. Rogers, and N. F. Samatova, “Improving i/o throughput with
primacy: preconditioning id-mapper for compressing incompress-
ibility,” in 2012 IEEE international conference on cluster computing.
IEEE, 2012, pp. 209-219.

J. Wang, T. Liu, Q. Liu, X. He, H. Luo, and W. He, “Compres-
sion ratio modeling and estimation across error bounds for lossy
compression,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 7, pp. 1621-1635, 2019.

D. Tao, S. Di, X. Liang, Z. Chen, and E. Cappello, “Fixed-psnr
lossy compression for scientific data,” in 2018 IEEE International
Conference on Cluster Computing (CLUSTER). 1EEE, 2018.

X. Zou, T. Lu, W. Xia, X. Wang, W. Zhang, H. Zhang, S. Di, D. Tao,
and F. Cappello, “Performance optimization for relative-error-
bounded lossy compression on scientific data,” IEEE Transactions
on Parallel and Distributed Systems, vol. 31, no. 7, 2020.

H. Luo, D. Huang, Q. Liu, Z. Qiao, H. Jiang, J. Bi, H. Yuan,
M. Zhou,]. Wang, and Z. Qin, “Identifying latent reduced
models to precondition lossy compression,” in Proceedings of the
33rd IEEE International Parallel & Distributed Processing Symposium
(IPDPS'19), 2019.

Y. Jin, S. Lakshminarasimhan, N. Shah, Z. Gong, C.-S. Chang,
J. Chen, S. Ethier, H. Kolla, S--H. Ku, S. Klasky ef al., “S-
preconditioner for multi-fold data reduction with guaranteed
user-controlled accuracy,” in 2011 IEEE 11th International Confer-
ence on Data Mining. 1EEE, 2011, pp. 290-299.

S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham,
R. Ross, and N. E. Samatova, “Compressing the incompressible
with isabela: In-situ reduction of spatio-temporal data,” in Euro-
pean Conference on Parallel Processing. Springer, 2011, pp. 366-379.
P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
transactions on visualization and computer graphics, vol. 20, no. 12,
pp. 2674-2683, 2014.

S. Di and E. Cappello, “Fast error-bounded lossy hpc data com-
pression with sz,” in 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 1EEE, 2016, pp. 730-739.

T. Lu, Q. Liu, X. He, H. Luo, E. Suchyta, J. Choi, N. Podhorszki,
S. Klasky, M. Wolf, and T. Liu, “Understanding and modeling
lossy compression schemes on hpc scientific data,” in 2018 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
H. Kamyshanska and R. Memisevic, “The potential energy of
an autoencoder,” IEEE transactions on pattern analysis and machine
intelligence, vol. 37, no. 6, pp. 1261-1273, 2014.

L. Theis, W. Shi, A. Cunningham, and F. Huszar, “Lossy im-
age compression with compressive autoencoders,” arXiv preprint
arXiv:1703.00395, 2017.

A. Sento, “Image compression with auto-encoder algorithm using
deep neural network (dnn),” in Management and Innovation Tech-
nology International Conference (MITicon), 2016. IEEE, 2016.

J. Romero, J. P. Olson, and A. Aspuru-Guzik, “Quantum au-
toencoders for efficient compression of quantum data,” Quantum
Science and Technology, vol. 2, no. 4, p. 045001, 2017.

D. Del Testa and M. Rossi, “Lightweight lossy compression of
biometric patterns via denoising autoencoders,” IEEE Signal Pro-
cessing Letters, vol. 22, no. 12, pp. 23042308, 2015.

“Tensorflow, an open source machine learning framework for
everyone.” https:/ /www.tensorflow.org/.

[35]
[36]

(37]

[38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

(49]

[50]

[51]

14

“Google Colaboratory Environment,”
google.com/notebooks/welcome.ipynb.

https:/ /colab.research.

T. Dietterich, “Overfitting and undercomputing in machine learn-
ing,” ACM computing surveys (CSUR), vol. 27, no. 3, 1995.

“bzip2, a freely available, high-quality data compres-
sor.” https:/ /web.archive.org/web/19980704181204 / http:
/ /www.muraroa.demon.co.uk/.

X. Liang, S. Di, D. Tao, Z. Chen, and E. Cappello, “An efficient
transformation scheme for lossy data compression with point-
wise relative error bound,” in 2018 IEEE International Conference
on Cluster Computing (CLUSTER). IEEE, 2018, pp. 179-189.

X. Zou, T. Lu, S. Di, D. Tao, W. Xia, X. Wang, W. Zhang,
and Q. Liao, “Accelerating lossy compression on hpc datasets
via partitioning computation for parallel processing,” in 2019
IEEE 21st International Conference on High Performance Computing
and Communications; IEEE 17th International Conference on Smart
City; IEEE 5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). 1EEE, 2019, pp. 1791-1797.

S. Di and F. Cappello, “Optimization of error-bounded lossy
compression for hard-to-compress hpc data,” IEEE transactions on
parallel and distributed systems, vol. 29, no. 1, pp. 129-143, 2017.

S. Binkley, “Future trends in advanced scien-
tific computing for open science,” https://science.
energy.gov/~/media/hep/hepap/pdf/20150406/day2/
2015-0407-HEPAP-future-directions-01Binkley.pdf.

S. Kaisler, F. Armour, J. A. Espinosa, and W. Money, “Big data: Is-

sues and challenges moving forward,” in System sciences (HICSS),
2013 46th Hawaii international conference on. 1EEE, 2013.

M. Padgavankar and S. Gupta, “Big data storage and challenges,”
International Journal of Computer Science and Information Technologies,
vol. 5, no. 2, 2014.

S. Jin, P. Grosset, C. M. Biwer, J. Pulido, J. Tian, D. Tao,
and]. Ahrens, “Understanding gpu-based lossy compression
for extreme-scale cosmological simulations,” in Proceedings of the
33rd IEEE International Parallel & Distributed Processing Symposium
(IPDPS’20). IEEE, 2020.

J. Tian, S. Di, C. Zhang, X. Liang, S. Jin, D. Cheng, D. Tao, and
F. Cappello, “wavesz: a hardware-algorithm co-design of efficient
lossy compression for scientific data,” in Proceedings of the 25th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2020, pp. 74-88.

M. Van Heeswijk, Y. Miche, E. Oja, and A. Lendasse, “Gpu-
accelerated and parallelized elm ensembles for large-scale regres-
sion,” Neurocomputing, vol. 74, no. 16, pp. 2430-2437, 2011.

R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsuper-
vised learning using graphics processors,” in Proceedings of the 26th
annual international conference on machine learning. ACM, 2009.

Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun et al., “Dadiannao: A machine-learning supercom-
puter,” in Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society, 2014.

C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, K. Olukotun,
and A. Y. Ng, “Map-reduce for machine learning on multicore,” in
Advances in neural information processing systems, 2007, pp. 281-288.

T. Liu, S. Alibhai, J]. Wang, Q. Liu, X. He, and C. Wu, “Explor-
ing transfer learning to reduce training overhead of hpc data
in machine learning,” in 2019 IEEE International Conference on
Networking, Architecture and Storage (NAS). 1EEE, 2019, pp. 1-7.

I. Foster, M. Ainsworth, B. Allen, J. Bessac, F. Cappello, J. Y. Choi,
E. Constantinescu, P. E. Davis, S. Di, and W. Di, “Computing just
what you need: online data analysis and reduction at extreme
scales,” in European Conference on Parallel Processing. — Springer,

2017, pp. 3-19.

-

Tong Liu received the B.S. degree in computer
science from Huazhong University of Science
and Technology, China, in 2015. He is currently
a fifth-year PhD student at Temple University.
His research interests include computer sys-
- tems, data storage, cloud computing, high per-
formance computing, and data reliability.

https://www.tensorflow.org/
https://colab.research.google.com/notebooks/welcome.ipynb
https://colab.research.google.com/notebooks/welcome.ipynb
https://web.archive.org/web/19980704181204/http://www.muraroa.demon.co.uk/
https://web.archive.org/web/19980704181204/http://www.muraroa.demon.co.uk/
https://science.energy.gov/~/media/hep/hepap/pdf/20150406/day2/2015-0407-HEPAP-future-directions-01Binkley.pdf
https://science.energy.gov/~/media/hep/hepap/pdf/20150406/day2/2015-0407-HEPAP-future-directions-01Binkley.pdf
https://science.energy.gov/~/media/hep/hepap/pdf/20150406/day2/2015-0407-HEPAP-future-directions-01Binkley.pdf

IEEE TRANSACTIONS ON BIG DATA, VOL. XXX, NO. XX, NOV 2020

Jinzhen Wang is currently a third-year PhD stu-
dent in the Department of Electrical and Com-
puter Engineering at NJIT. He received his B.S.
q‘r from Shandong University, China, in 2015 and
his M.S. in Electrical Engineering from NJIT in
2017. His research interests include High Per-
formance Comptuting and Cloud Computing.

Qing Liu is an Assistant Professor in the Depart-
ment of Electrical and Computer Engineering at
NJIT and Joint Faculty with Oak Ridge National
Laboratory. Prior to that, he was a staff scien-
tist at Computer Science and Mathematics Divi-
sion, Oak Ridge National Laboratory for 7 years.
He received his Ph.D. in Computer Engineering
from the University of New Mexico in 2008, M.S.
and B.S., from Nanjing University of Posts and
Telecom, China, in 2004 and 2001, respectively.

Shakeel Alibhai received the B.S. degree in
computer science from the Computer and Infor-
mation Science department of Temple Univer-
sity in 2020. In addition to computer science,
he minored in mathematics and completed a
certificate in data science. His research interests
include data storage, high-performance comput-
ing, and machine learning.

Tao Lu received the B.S. and M.S. degrees
in Computer Science from Huazhong Univer-
sity of Science and Technology, China, in 2009
and 2012, respectively, and the Ph.D. degree in
Electrical and Computer Engineering from Vir-
ginia Commonwealth University, in 2016. He is
currently a senior software engineer in Marvell
Semiconductor Inc. His research interests in-
clude computer systems, virtualization and cloud
computing, high performance computing, and
computer system security.

Xubin He received the BS and MS degrees in
computer science from Huazhong University of
Science and Technology, China, in 1995 and
1997, respectively, and the PhD degree in elec-
trical engineering from University of Rhode Is-
land, Kingston, RI, in 2002. He is currently a
professor in the Department of Computer and In-
formation Sciences, Temple University, Philadel-
phia, PA. His research interests include com-
puter architecture, data storage systems, virtu-
alization, and high availability computing. Dr. He
received the Ralph E. Powe Junior Faculty Enhancement Award in 2004
and the Sigma Xi Research Award (TTU Chapter) in 2005 and 2010.
He is a senior member of the IEEE, a member of the IEEE Computer
Society and USENIX.

15

	Introduction
	Background and Motivation
	Preliminary Evaluation
	CAE Prototype Implementation
	CAE for Scientific Data

	Tuning the Autoencoder for Scientific Data Compression
	Prediction Accuracy
	Data normalization
	Delta numbers

	Storage Overhead
	Compression Ratio Comparison After Tuning
	Compression ratio calculation
	Result comparison

	A Case Study on CAE

	Observation
	Data Features of Experimental Datasets
	Impact of Weight and Bias Metadata on Compression Ratios
	Analysis of dataset size impact
	Real-world dataset evaluation

	Prediction Accuracy Under Different Compression Ratios and Training Epochs
	Compression ratio
	Training epochs

	Training Time and Compression Throughput

	Related Work
	Conclusion and Future Work
	References
	Biographies
	Tong Liu
	Jinzhen Wang
	Qing Liu
	Shakeel Alibhai
	Tao Lu
	Xubin He

