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In machine learning, we are given a dataset of the form {(xj, yj)}Mj=1, drawn as i.i.d. samples

from an unknown probability distribution µ; the marginal distribution for the xj’s being µ∗,

and the marginals of the kth class µ∗
k (x) possibly overlapping. We address the problem

of detecting, with a high degree of certainty, for which x we have µ∗
k (x) > µ∗

i (x) for all

i 6= k. We propose that rather than using a positive kernel such as the Gaussian for

estimation of these measures, using a non-positive kernel that preserves a large number

of moments of these measures yields an optimal approximation. We use multi-variate

Hermite polynomials for this purpose, and prove optimal and local approximation results

in a supremum norm in a probabilistic sense. Together with a permutation test developed

with the same kernel, we prove that the kernel estimator serves as a “witness function” in

classification problems. Thus, if the value of this estimator at a point x exceeds a certain

threshold, then the point is reliably in a certain class. This approach can be used to

modify pretrained algorithms, such as neural networks or nonlinear dimension reduction

techniques, to identify in-class vs out-of-class regions for the purposes of generative

models, classification uncertainty, or finding robust centroids. This fact is demonstrated

in a number of real world data sets includingMNIST, CIFAR10, Science News documents,

and LaLonde data sets.

Keywords: generative model, discriminative model, probability estimation, Hermite functions, witness function
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1. INTRODUCTION

A central problem in machine learning is the following. We are given data of the form {(xj, yj)}Mj=1,

where each xj is typically in a Euclidean space and yj is a label associated with xj. The data is assumed
to be sampled independently from an unknown probability distribution µ. The problem is to learn
either the generative model µ or a functional model for the unknown function x 7→ Eµ(y|x).
A problem germane to both of these interpretations is to learn the generative model for the
x-component; i.e., the marginal distribution µ∗ of x.

The problem of finding a functional model is essentially a regression problem, and it is
customary to assume smoothness on the target function to get good approximation results.
However, it is often used also for studying classification problems, where the labels yj are limited to
a finite set, which may be identified with {1, . . . ,m}, where m is the number of classes. Therefore,
the functional model should also have onlym possible values.
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We have proposed in earlier papers [1, 2] to approximate
the function

x 7→ arg max
1≤j≤m

χj(x),

where χj is 1 if the label associated with x is j, and 0 otherwise.
The functions χj are manifestly not continuous. Nevertheless,
the smoothness assumptions then hold only away from the
class boundaries. Using diffusion geometry [see [3] for an
early introduction], we can assume that the feature space is
selected judiciously to be a data-defined manifold on which the
supports of these functions are well separated; at least, the set of
discontinuities of χj is not too large. The use of localized kernels
developed in Maggioni and Mhaskar [2, 4] on the unknown
manifold is then expected to yield a good approximation to the
χj’s and hence, a good classification. A theory for this sort of
approximation is well-developed in many papers (e.g., Mhaskar
and Prestin [5], Maggioni and Mhaskar [2], Filbir and Mhaskar
[6], Mhaskar [7]), illustrated with some toy examples inMaggioni
and Mhaskar [2], Ehler et al. [8], and in connection with diabetic
blood sugar prediction in a clinical data set in Mhaskar et al.
[9]. A bottleneck in this approach is the construction of the
right eigensystem to approximate with. Another drawback of this
strategy is the lack of out-of-sample extension; i.e., the model
depends upon the data set at hand, the entire computation needs
to be repeated with the appearance of any new data.

In this paper, we explore another alternative. Corresponding
to each of these classes, say the j-th class, one can define a
probability distributionµ∗

j (x) giving the probability that the label

j is associated with x. Thesemeasures can also be thought of as the
discriminativemodelsµ(j|x)µ∗(x). The classification problem is
then equivalent to the approximation of the function,

W(x) = arg max
1≤j≤m

µ(j|x)µ∗(x).

Unlike the approach in Maggioni and Mhaskar [2], the
approximation of W needs to be done without knowing the
values of W even at training data points. Instead of these
values, we have labeled samples from the probability measure
µ∗. Further, we do not make any assumptions on the structure
of the support of the measures µ∗

j . In particular, it is possible

to have µ∗
j with overlapping support and differing, or even

equivalent, densities.
Our approach to this problem is use a generalized version

of the witness function between distributions Gretton et al. [10].
To motivate, we consider the problem of one-hot classification,
where we need to estimate µ∗

j as if there are two classes: labeled

1 if the actual class label is j and −1 otherwise; i.e., we treat
two measures at a time, ν1 = µ∗

j and ν−1 =
∑

k6=j µ
∗
j . In

this motivation, let us assume that the (closed) supports of these
measures are disjoint, and that µ∗ has a smooth density f on the
feature space R

q. We then consider a smooth function F that
takes the value 1 on the support of ν1, −1 on the support of
ν−1, and construct an approximation to Ff using the samples
from µ∗ and the labels associated with the samples. When this
approximation is reliably positive at point x, then x has the label
1, and if it reliably negative, then it has the label−1. Of course, if

the approximation is not reliably positive or negative at a point x,
then we cannot classify x confidently.

The main theoretical goal of this paper is to extend this
idea to multiclass classification, and to develop rigorous tests to
determine reliability. This can be thought of as investigating
where the function

µ(W(x)|x)µ∗(x)− arg max
j 6=W(x)

µ(j|x)µ∗(x)

is significantly greater than zero, given only finite samples of µ.
In general, the question of detecting where two distributions

deviate, and whether that deviation is significant, is already of
great interest both in machine learning and in various scientific
disciplines. The approach of building a kernel based witness
function has been developed by Gretton et al. [10]. In these
works, the witness function that identifies where two samples
deviate comes as a biproduct of determining the maximummean
discrepancy (MMD) between the two distributions and create a
measure of global deviation between the distributions. The paper
Cheng et al. [11] describes how the power of the global test is
affected by changing the definition of locality in the kernel. In
the present work, rather than using a data dependent orthogonal
system, we use the localized kernels developed in Mhaskar [12],
Chui and Mhaskar [13], based on Hermite polynomials. This has
several advantages.

1. The kernels are well-defined on the entire Euclidean space and
their theoretical properties are well-investigated. Therefore,
the use of these kernels obviates the problem of out-of-sample
extension. Indeed, we use this kernel to generate labels for
new, unseen possible points in the feature space.

2. Although the use of these kernels does involve some tunable
parameters, the constructions are more robust with respect to
the choice of these parameters, compared with the role of the
parameters in the diffusion geometry setting.

3. In view of the Mehler identity, these kernels can be computed
efficiently even in high dimensions using only the inner
products of the data points (cf. section A).

4. It is shown in Mhaskar [14], Chui and Mhaskar [15] that
these kernels can be implemented as Gaussian networks with
arbitrary accuracy.

This is important for a number of applications, where it
is important to highlight why two distributions deviate, and
determine whether specific bumps in the witness function are a
product of structure or of noise. Each experiment in section 5
relies on identifying these local deviations.

In section 5.1, we demonstrate experimentally that
introducing the localized kernel significantly increases the
power of detecting local deviations compared to the Gaussian
kernel traditionally used in MMD.

An important application of determining the local deviation
between distributions is in accurately determining the confidence
of predictions or generated points using neural networks. There
have beenmany reported cases of decisions being made by neural
networks for points that lie far away from the training data,
and yet are assigned high confidence predictive value Guo et al.
[16], Hendrycks and Gimpel [17]. Moreover, it has been recently
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shown that this is an inherent property of ReLU networks
Hein et al. [18]. While there have been a number of attempts
to alleviate the issue for predictive nets, there hasn’t been
nearly as much work for determining out-of-distribution regions
for generative networks and Variational Autoenconders, where
sampling from out-of-distribution regions leads to non-natural
images or blurring between multiple classes of images. We
discuss avoiding out-of-distribution and out-of-class sampling
of Variational Autoencoders in section 5.2. The use of a witness
function for model comparison of GANs is studied in Sutherland
et al. [19]. However, that paper only considers the raw size of
the witness function without establishing a local baseline, and
does not provide a theory of how the empirical witness function
deviates from the true witness function. Most approaches to
mitigating out-of-distribution high confidence prediction require
changing the training objective for the network. We instead
examine a pretrained VGG-16 network and determine a method
for detecting outliers and likely misclassified points in section 5.3.

Certain scientific applications also benefit from recognition
of the where two distributions deviate. The topic of clustering
documents based off of a co-occurrence of words has been a
topic of significant consideration Shahnaz et al. [20], Wang and
Mahadevan [21]. However, most approaches based on k-means
in an embedding space can be biased by outliers and clusters with
small separation. We examine the uses of the witness function
for determining in class vs out-of-training distribution points in
a term document embedding in section 5.4 using the localized
kernel, which exhibits better edges between close or overlapping
clusters. Another application is in propensity matching, in which
the problem is to identify bias in which groups received or
didn’t receive treatment in an observational trial. Propensity
matching boils down to modeling the probability of being in
one class vs the other, traditionally with a logistic regression,
and using such probability for subsequent matching of treated
and untreated patients Rosenbaum and Rubin [22]. The uses
of propensity matching in literature are too numerous to cite
here, but we refer readers to the following article outlining
both the importance and its drawbacks King and Nielsen
[23]. We instead consider a distance based matching using the
nonlinear localized kernel in section 5.5, and demonstrate that
viewing this problem as finding local deviations of the witness
function allows for the benefits of both an unsupervised distance
based algorithm like proposed in King and Nielsen [23] and a
simple 1D similar to a propensity score that describes the bias
in treatment.

To summarize, we illustrate our theory using the following
examples:

1. A toy example of detecting the differences, with low false
discovery rate, in support of a measure supported on a circle
verse one supported on an ellipse (section 5.1),

2. Discovering the boundaries between classes in the latent space
of a variational autoencoder, and generating “prototypical”
class examples in the MNIST data set (section 5.2),

3. Prospectively quantifying the uncertainty in classification of
the VGG-16 network trained on CIFAR10 (section 5.3),

4. Determining robust cluster centroids in a document-term
matrix of Science News documents (section 5.4), and

5. Discovering the propensity of treatment for people in the
LaLonde job training data set (section 5.5).

We develop the necessary background and notation for Hermite
polynomials and associated kernels and other results from the
theory of weighted polynomial approximation in section 6.1.
Our main theorems are discussed in section 3, and proved in
section 6. The algorithms to implement these theorems are given
in section 4, and the results of their application in different
experiments are given in section 5.

2. NOTATION

A good preliminary source of many identities regarding
Hermite polynomials is the book Szegö [24] of Szegö or the
Bateman manuscript Bateman et al. [25]. The univariate
Hermite polynomials are defined functionally using the
recurrence relations

xhj−1(x) =
√

j

2
hj(x)+

√
j− 1

2
hj−2(x), j = 2, 3, · · · ,

h0(x) = π−1/4, h1(x) =
√
2π−1/4x. (2.1)

We define the Hermite functions by ψj(x) = hj(x) exp(−x2/2),
x ∈ R, j ∈ Z+.

In multivariate case, we adopt the notation x = (x1, · · · , xq).
The orthonormalized Hermite function is defined by

ψk(x) =
q∏

j=1

ψkj (xj). (2.2)

In general, when univariate notation is used in multivariate
context, it is to be understood in the tensor product sense as

above; e.g., k! =
∏q

j=1 kj!, x
k =

∏q
j=1 x

kj
j , etc. The notation | · |p

will denote the Euclidean ℓp norm, with the subscript omitted
when p = 2.

We define

Projm(x, y) =
∑

|k|1=m

ψk(x)ψk(y) (2.3)

LetH :[0,∞) → [0, 1] be a C∞ function,H(t) = 1 if t ∈ [0, 1/2],
H(t) = 0 if t ≥ 1. We define the localized kernel by

8n(H; x, y) = 8n(x, y) =
∑

k∈Zq
+

H

(√
|k|1
n

)
ψk(x)ψk(y)

=
∞∑

m=0

H

(√
m

n

)
Projm(x, y). (2.4)

The localization property is made precise in (6.2).

Function space: For n > 0 (not necessarily an integer), let
5

q
n = span{ψk : |k|1 < n2}. An element of 5

q
n has the form

P(x) exp(−|x|2/2) for a polynomial P of total degree n2. If 1 ≤
p ≤ ∞, f ∈ Lp,

En,p(f) = min
P∈5

q
n

‖f − P‖p. (2.5)
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The symbolXp denotes the set of all f ∈ Lp for which En,p(f ) → 0
as n → ∞. Thus, Xp = Lp if 1 ≤ p < ∞, and X∞ = C0. For
γ > 0, the smoothness classWp,γ comprises f ∈ Xp for which

‖f ‖Wp,γ = ‖f ‖p + sup
n≥0

2nγ E2n,p(f ) < ∞. (2.6)

In Mhaskar [26], Mhaskar [27], we have given a characterization
of the spaces Wp,γ in terms of the constructive properties of f in
terms of divided differences and the bounds near∞.

Next, we describe local smoothness classes. If r > 0, x0 ∈ R
q,

we denote the ball of radius r around x0 by

B(x0, r) = {y ∈ R
q
: ‖x0 − y‖∞ ≤ r}. (2.7)

If x0 ∈ R
q, γ > 0 the local smoothness classWp,γ (x0) comprises

functions f ∈ Lp with the following property: There exists
a neighborhood U of x0 such that for every C∞ function φ

supported on U, φf ∈ Wp,γ . We note that the quantity γ is
expected to depend upon x0.

Constant convention: In the sequel, c, c1, · · · will denote positive
constants depending upon q, H, and other fixed quantities in the
discussion, such as the norm. Their values may be different at
different occurrences, even within a single formula.

3. RECOVERY OF MEASURES

In the two sample problem, one has samples Cj from distributions
µj, j = 1, 2, and associates the label 1 with C1, −1 with C2. The
task of a witness function is to determine if in the neighborhood
of a given point µ1 dominates µ2 or the other way round,
or if they are equal. If both the distributions are absolutely
continuous with respect to the Lebesgue measure on R

q with
smooth densities f1, f2, respectively, then Theorem 6.1 suggests
that σn(f1 − f2), or its Monte-Carlo estimator using the samples
should work as a witness function. If the Lebesgue measure were
a probability distribution on R

q, then it would be easy to put
probabilistic bounds to make this more precise. Since this is not
the case, we take the viewpoint that C1 ∪ C2 is a sample from a
ground probability distribution µ∗ with smooth density f , and
F is another smooth function that takes approximately the value
1 on C1, −1 on Cj. Then a candidate for the witness function is
given by

σn(Ff )(x) =
∫

Rq
F(y)f (y)8n(x, y)dy =

∫

Rq
F(y)8n(x, y)dµ

∗(y).

With this re-formulation, we no longer need to restrict ourselves
to two classes, F can be chosen to approximate any number
of class values, or can even be just any smooth function. The
following theoremmakes these sentiments more precise in terms
of the Monte-Carlo approximation to the last integral above.

Next, we discuss the robustness of this witness function. For
this purpose, we assume noisy data of the form (y, ǫ), with a
joint probability distribution τ and with µ∗ being the marginal
distribution of y with respect to τ . In place of F(y), we consider a
noisy variant F(y, ǫ), and denote

F(y) = Eτ (F(y, ǫ)|y). (3.1)

It is easy to verify using Fubini’s theorem that if F is integrable
with respect to τ then for any x ∈ R

q,

σn(Ff )(x) = Eτ (F(y, ǫ)8n(x, y)). (3.2)

A part of our theorem below uses the Lambert function defined
by

W(zez) = z, W(z) > 1 if z ≥ 1. (3.3)

It is known that

W(x) = log x− log log x+ o(1), x → ∞. (3.4)

Theorem 3.1. Let τ be a probability distribution on R
q × �

for some sample space �, µ∗ be the marginal distribution of τ

restricted to Rq. We assume that µ∗ is absolutely continuous with
respect to the Lebesgue measure on R

q and denote its density by
f . Let F :R

q × � → R be a bounded function, and F be defined
by (3.1). Let x0 ∈ R

q, γ > 0, δ > 0, Ff ∈ W∞,γ (x0), and r
be chosen such that ‖Ff ‖∞,γ ,x0 ,r < ∞ [cf. (6.13)]. Let M ≥ 1,
Y = {(y1, ǫ1), · · · , (yM , ǫM)} be a set of random samples chosen
i.i.d. from τ , and define

F̂(x) = F̂(Y; x) =
1

M

M∑

j=1

F(yj, ǫj)8n(x, yj), x ∈ R
q. (3.5)

Then there exists c1 > 0 such that for every n ≥ 1 and r ≥ c1/n
2,

Probτ


∥∥̂F(Y; ◦)− Ff

∥∥
∞,B(x0 ,r)

≥ c2‖F‖∞nq

×

√
log(c3rq exp(q/r)n5q/δ)

M
+ n−γ ‖Ff ‖∞,γ ,x0 ,r


≤ δ(r/n)q.

(3.6)

In particular, writing B = c3r
q exp(q/r)/δ, Ŵ = (2γ +

2q)/(5q), and

n = C1B
−1/(5q) exp

(
1

2q+ 2γ
W

(
ŴBŴM

))
∼

(
M

logM

)1/(2q+2γ )

,

(3.7)
we obtain for r ≥ c1/n

2 that

Probτ

(∥∥̂F(Y; ◦)− Ff
∥∥
∞,B(x0 ,r)

≥ c4
‖F‖∞ + ‖Ff ‖∞,γ ,x0 ,r

nγ

)

≤ δ(r/n)q. (3.8)

Remark 3.1. In the case when Ff ∈ C∞[B(x0, r)], [in particular,
when Ff ≡ 0 on B(x0, r)], one may choose γ to be arbitrarily
large, although the constants involved may depend upon the
choice of γ .

Remark 3.2. We note that the critical cube [−
√
2n,

√
2n]q can be

partitioned into ∼ (n/r)q subcubes of radius r. On each of these
subcubes, say the subcube with center x0 the function Ff is in a
different smoothness class γ (x0). Therefore, Theorem 3.1 implies
an estimate for the entire critical cube with probability at least
1− δ.
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Remark 3.3. TakingF ≡ 1, F̂ approximates the generative model
µ∗. Thus, our construction can be viewed both as an estimator
of the generative model as well as a witness function for the
discriminative model.

4. ALGORITHMS

Our numerical experiments in section 5 are designed to illustrate
the use of F̂ defined in (3.5) as a discriminative model for
two classes, arising with probabilities with densities f1f and
f2f respectively; i.e., with F = f1 − f2. The quantity F

representing the difference between the corresponding class
labels is a noisy version of F. Intuitively, if F̂(x) is larger than a
positive threshold in a neighborhood of x0, then f1 dominates
f2 at x0, and we may take the label for x0 to be 1, and similarly
if F̂(x) is smaller than a negative threshold. When |̂F(x)| is
smaller than the threshold, then there is uncertainty in the
correct label for x0, whether because it belongs both to the
supports of f1 and f2 or because f (x0) is small, making the
point x0 itself anomalous. In theory, Theorem 3.1 establishes

this threshold as F(x0)f (x0) − c
‖F‖∞ + ‖Ff ‖∞,γ ,x0 ,r

nγ
. However,

it is not possible to estimate this threshold based only on the
given data.

For this reason, we introduce the use of the permutation
test Pesarin [28]. Permutation test is a parameter-free and
nonparametric method of testing hypotheses, namely in this case
the null hypothesis that Ff = 0 near x0. Theorem 3.1 shows
that if the null hypothesis is true then |̂F(x)| is smaller than
c‖F‖∞/nγwith high probability. In turn, it is easy to create a
F1 for which this is true. We randomly permute the labels of
all points yj across all classes, reassign these randomized labels
F1(yj, ǫj). Since F1 represents the class label, this ensures that
we know ‖F1‖∞ is the same as ‖F‖∞, but for its expected
value F1, F1f = 0. Informally, this means we are mixing
the distributions of the classes so that when we redraw new
collections of points, each collection is being drawn from the
same distribution. The benefit of this test in our context is that
we can sample this randomized distribution a large number of
times, and use that distribution to estimate cn−γ . This threshold
we call T(xj), as this is the decision threshold associated to
the local area around x0. If the two classes had equal sampling
density around yj (i.e. if Ff = 0), then if we estimated T(x0)
correctly, Theorem 3.1 tells us that the probability ‖̂F‖∞,B(x0 ,r)

exceeds T(x0) is small. If, on the other hand, if ‖̂F‖∞,B(x0,r) >

A · T(x0) for some constant A associated with ‖Ff ‖∞,γ ,x0 ,r

and ‖F‖∞, then the hypothesis that Ff = 0 near x0 can
be rejected.

This suggests two parametric choices in our algorithm,
estimating T(x0) and A. Estimating T(x0) comes down to
estimating the threshold that ‖Ff ‖∞,γ ,x0 ,r(x0, r) exceeds only
δ(r/n)q fraction of the time. Because each random permutation
is independent, the probability of failure for any permutation
to exceed cn−γ over N permutations is (1 − δ(r/n)q)N . One
can choose a desired probability of failure α and compute

a number of permutations N. The statistic T(x0) in this
case would be the maximum size of the local infinity norm
across all permutations. If we wish to avoid taking the
maximum of N random variables, it is also possible to increase
the size of N and take the 1 − δ(r/n)q quantile of the
random variables.

For now, we take A to be a parameter of choice, with the
fact that A ≥ 1, rejection of the Ff = 0 assumption scales
continuously with A, and A much larger than 1 becomes far
too restrictive. Details of the entire algorithm can be found in
Algorithm 1 for the two class test, and Algorithm 2 for the
multiple class test. This algorithm returns the empirical witness
function F̂(Z), as well as a decision D(Z) as to whether F̂(Z) is
significantly nonzero [i.e., whether f1(zi) = f2(zi) or f1(zi) 6=
f2(zi)].

For all the experimental sections, we will specify several
parameters that are necessary to the algorithm. One parameter
is the degree deg of the polynomials used. Note that the
parameter n in the kernel 8n is given by n =

√
deg. We also

specify A (the tunable parameter to set the level of confidence
for determining significant regions), and the scaling factor on
the data σ . The scaling factor rescales the data so that X̃ =
X/σ . One way to consider this scaling is in analogy with the
bandwidth of a Gaussian kernel, where exp(−‖xi − xj‖2/σ 2) =
exp(−‖̃xi − x̃j‖2); i.e., the variable X is renormalized to have a
variance 1. In the context of the witness function, σ no longer
represents a variance parameter, but serves the same role as
a free parameter.

Algorithm 1: Algorithm for determining significance of
empirical witness function using label permutation. F̂(zj) is
notation for the empirical witness function at zj, and D(zj) is an
indicator for whether F̂(zj) is significantly nonzero.

a) Input: Data sets X and Y , points Z = {z1, ..., zK} at which to
inspect significance, level of confidence A

b) Output: Estimate of F̂(zj) for all zj ∈ Z and estimate of
whether F̂(zj) 6= 0.

1: α ← 0.05
2: y ← X ∪ Y
3: M ← |X| + |Y|

4: cj ←

{
1, if yj ∈ X

−1, if yj ∈ Y

5: F̂(zj) ← 1
M

∑M
ℓ=1 cℓ8n(zj, yℓ)

6: ρ ← minimal separation between zj
7: p ← 1− α(ρ/n)q

8: N ← log(α)/ log(p)
9: for k = 1 to N do

10: π ← Permutation(M)
11: Fk(zj) ← 1

M

∑M
ℓ=1 cπ(ℓ)8n(zj, yℓ)

12: end for

13: T(zj) ← Percentile({Fk(zj)}, p)
14: D(zj) ← 1

(
|̂F(zj)| > A · T(zj)

)

15: Return:̂F(zj), D(zj)
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Algorithm 2: Algorithm for determining significance of class
identifier function using label permutation. Along with returning
F̂(zj) and D(zj), it also returns Lj, which is the predicted class
for zj.

a) Input: Data sets {Xi}Ci=1, points Z = {z1, ..., zK} at which to
inspect significance, level of confidence A

b) Output: Estimate of F̂(zj) for all zj ∈ Z and estimate of
whether the region is dominated by one class

1: α ← 0.05
2: y ← ∪C

i=1Xi

3: M ←
∑C

i=1 |Xi|

4: c
(i)
j ←

{
1, if yj ∈ Xi

0, otherwise

5: F̂(i)(zj) ← 1
M

∑M
ℓ=1 c

(i)
ℓ 8n(zj, yℓ)

6: Lj ← argmaxi F̂
(i)(zj)

7: F̂(zj) = F̂(Lj)(zj)−maxi6=L F̂
(i)(zj)

8: ρ ← minimal separation between zj
9: p ← 1− α(ρ/n)q

10: N ← log(α)/ log(p)
11: for k = 1 to N do

12: π ← Permutation(M)

13: F̂
(i)
k
(zj) ← 1

M

∑M
ℓ=1 c

(i)
π(ℓ)

8n(zj, yℓ)

14: L ← argmaxi F̂
(i)
k
(zj)

15: Fk(zj) = F̂
(L)
k

(zj)−maxi6=L F̂
(i)
k
(zj)

16: end for

17: T(zj) ← Percentile({Fk(zj)}, p)
18: D(zj) ← 1

(
|̂F(zj)| > A · T(zj)

)

19: Return: F̂(zj), Lj, D(zj)

5. EXPERIMENTS

5.1. Toy Examples
We begin the set of experiments with a toy model to demonstrate
the benefits of determining the significant regions for the
witness function, as well as the benefits of using the localized
kernel versus using the Gaussian kernel. We generate two data
sets. The first is of the form (cos t + ǫ1, sin t + ǫ2), where
t is distributed uniformly on [0, 2π) and ǫ1, ǫ2 are normal
random variables with mean 0 and standard deviation 0.01.
The second data set is of the form [(1 + ̺) cos t + ǫ3, (1 −
̺) sin t + ǫ4], where t is distributed uniformly on [0, 2π) and
ǫ3, ǫ4 are normal random variables with mean 0 and standard
deviation 0.01. See Figure 1 for visualizations of the data sets
with various ̺. We make random draws of 1, 000 points of
the first form and 1, 000 points of the second form for various
sizes of ̺, and use Algorithm 1 to determine the regions of
significant deviation. For this data, we set deg = 32, A = 2,
and σ = 0.5.

Figure 1 shows the significant areas for varying radii, where
the witness function is measured at random points in a ring
surrounding the two distributions. Not only does the localized
kernel begin to detect significant regions earlier than the
Gaussian kernel, the localized kernel is also the only kernel to
detect the shorter radii of the ellipse. Also, observe the gap

of significance around the points of interaction, in which both
distributions are locally similar.

5.2. Data Generation Through VAE
The next set of experiments revolve around estimating regions of
space corresponding to given classes, and sampling new points
from that given region. This problem has been of great interest
in recent years with the growth of generative networks, namely
various variants of generative adversarial networks (GANs)
Goodfellow et al. [29] and variational autoencoders (VAEs)
Kingma and Welling [30]. Each has a low-dimensional latent
space in which new points are sampled, and mapped to R

q

through a neural network. While GANs have been more popular
in literature in recent years, we focus on VAEs in this paper
because it is possible to know the locations of training points in
the latent space. A good tutorial onVAEs can be found inDoersch
[31].

Our first example is the well-known MNIST data set LeCun
et al. [32]. This is a set of handwritten digits 0 · · · 9, each scanned
as a 28× 28 pixel image. There are 50, 000 images in the training
data set, and 10, 000 in the test data.

In order to select the “right” features for this data set, we
construct a three layer VAE with encoder E(x) with architecture
784 − 500 − 500 − 2 and a decoder/generator G(z) with
architecture 2 − 500 − 500 − 784, and for clarity consider
the latent space to be the 2D middle layer. In the 2D latent
space, we construct a uniform grid on [−5, 5]2. Each of these
points can be mapped to the image space via G(z), but there is
no guarantee that the reconstructed image appears “real” and
no a priori knowledge of which digit will be generated. We
display the resulting images G(z) in Figure 2, with each digit
location corresponding to the location z in the 2D latent space.
However, we also have additional information about the latent
space, namely the positions of each of the training points and
their associated classes. In other words, we know z = E(x) for
all training data x. The embedding of the training data E(x) is
displayed in Figure 2 as well as the resulting images G(z) for
each z in the 5 × 5 grid. As one can see, certain regions are
dominated by a single digit, other regions contain mixtures of
multiple digits, and still other regions are completely devoid of
training points (meaning one should avoid sampling from those
regions entirely).

We use Algorithm 2 to determine the “significant region”
in the embedding space of each class. In other words, we run
Algorithm 2 on {E(xi)}xi∈X . For this data, we set deg = 128,
A = 2, and σ = 1. In Figure 2, we display the resulting
decoded images D(x) for points zi ∈ R

2 deemed significant by
the localized kernel. Note that most of the clearly fake images
from Figure 2 have been removed as non-significant by the
witness function. Figure 2 also computes the same notion of
significance with the Gaussian kernel of the same scaling, which
clearly has less ability to differentiate boundaries. We can see
in Figure 2 that the Gaussian kernel struggles to differentiate
boundaries of classes, and keeps a number of points at the
tails of each class distribution. These points are exactly the
points that are poorly reconstructed by the model, as the
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FIGURE 1 | (Top) Examples of the two data sets with varying ̺, the difference between the principle axis lengths. (Middle) Points deemed significant by the Gaussian

witness function for given ̺. (Bottom) Points deemed significant by the Hermite witness function for given ̺. In all figures, green corresponds to 0, meaning neither

distribution dominates.

FIGURE 2 | Left to right: (1) Embedding of training data into 2D VAE latent space. (2) Reconstructed images from grid sampling in 2D VAE latent space. (3)

Reconstructed images only of grid points that are deemed “significant” by the witness function with the localized kernel (4) Reconstructed images only of grid points

that are deemed “significant” by the witness function with the Gaussian kernel.

decoder net hasn’t seen a sufficient number of points from the
tail regions.

We can also use the significance regions to define
“prototypical points” from a given class. We do this by
fitting the data from each class with a Gaussian mixture model
with five clusters. The means and covariance matrices of each
Gaussian are computed through the standard expectation
maximization algorithm Reynolds [33]. Figure 3 shows the
centroid values in the embedding of the training data, computed
in two different ways. The first approach is to build the mixture
model on all points in a given class. In other words, we build
a Gaussian mixture model with five clusters on the data
{E(xi) : zi = j} for each of j ∈ {0, 1, ..., 9}. The second approach

is to build the mixture model for each class using only those
points that are deemed significant by the witness function
test. In other words, a mixture model on the restricted dataset
{E(xi) : zi = j and D(xi) = 1} for each of j ∈ {0, 1, ..., 9}. Due
to the structure of the two-dimensional embedding, some of
the mixtures for entire classes are pulled toward the origin by
a few outliers from the class that are spread across the entire
space. This causes overlap between the centroids of the classes
considered more difficult to separate in a 2D embedding (4’s, 6,’s,
9’s), and causes problems in the reconstruction. The centroids of
the mixtures for significant regions, on the other hand, have a
tendency to remain squarely within neighborhoods of the same
class, and their reconstructions G(zi) are much clearer.
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FIGURE 3 | Prototypical points from each class of MNIST digits, computed from 2D VAE embedding.

5.3. Determining Significant Class Regions
for CNNs
In this section, we consider learning regions of uncertainty in
hidden layers of a convolutional neural network. Assessing the
uncertainty of classification is an important aspect of machine
learning, as certain testing points that are far away from training
data, or on the boundary of several classes, should not receive a
classification. Even at the last hidden layer of the neural network,
there exist points that fall into uncertain regions or boundaries
between regions. Our goal is to examine this last hidden layer
and prospectively remove uncertain points. In doing so, the goal
would be to reduce the set of testing points without a priori
knowledge of ground truth on the testing data in a way that
reduces to final classification error on the test set.

We use the last layer of the VGG-16 pretrained CNN that
has been rescaled to the CIFAR10 data set, where the last layer
contains q = 512 dimensions. The CIFAR10 data set is a
collection of 60,000 32 × 32 color images in 10 classes (airplane,
bird, cat, deer, etc.), with 6,000 images per class. There are 50,000
training images and 10,000 test images Krizhevsky et al. [34].
VGG-16 is a well known neural network trained on a large set of
images called Imagenet, which is rescaled to apply to CIFAR10.
VGG-16 has 12 hidden layers, and the architecture and trained
weights can be easily downloaded and used Simonyan and
Zisserman [35]. VGG-16 attains a prediction error of ∼ 6% on
the testing data. Our goal is to detect the fraction of images that
are going to be misclassified prior to getting their classification,
and thus reduce the prediction error on the remaining images.

We create the witness function on the testing data embedded
into this final hidden layer, and determine the threshold by
permuting the known labels of the training data. For this data,

we set deg = 128 and σ = 7 (σ was chosen as the median
distance to the 100th nearest neighbor in the training data). The
parameter A is not set in this section as we are varying it across
the data. Figure 4 shows the decay of the classification error as a
function of A, which has a direct correspondence to the overall
probability of error. While there is a reduction of the overall
number of testing points, the set of points that remain have a
smaller classification error than the overall test set. We also show
on this reduced set that the label attained by the final layer of the
CNN and the estimated label attained by taking the maximum
estimated measure across all 10 classes are virtually identical.

Figure 4 also compares the decay of the classification error
to the uncertainty in classification as defined by the last layer

of the CNN. A CNN outputs a vector, which we call g(x), of

the probability a point lies in each of the classes. A notion
of uncertainty in the network can be points that have the

smallest gap between the prediction of the most likely class
L = argmaxi gi(x) and the second highest classification score,
which yields an certainty score gL(x) − maxj 6=L gj(x). We sort
the testing points by this gap, and remove the first k points
with the smallest gap. The larger this gap is, the more certain
the CNN should be about the correct classification. As shown
in Figure 4, our witness function method yields a quicker decay
in the classification error as a function of the number of
points removed.

A benefit of our approach to quantifying uncertainty is that it
explicitly demonstrates that the points classified poorly are those
that sit at the boundary between class clusters in the last hidden
layer of the network. This means that even at the last layer of the
network, misclassified points are still considered “outliers” by the
class distributions to which they lie closest.
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FIGURE 4 | (Left) Classification error on points deemed “significant” as a function of A. (Middle) Classification error as a function of the number of points removed for

being “uncertain,” for both the witness function and the size of gap of CNN outputs. These two measures are placed on the same scale by considering the number of

points removed. (Right) The relationship between the number of points dropped and parameter A in our algorithm.

5.4. Term Document Significance
In this section, we consider term-document organization and
characterizing types of words that are indicitive of a class of
documents. We use the Science News dataset, which consists
of 1,046 articles across 8 categories, and their use of 1,153
popular words that appear in the magazine. The categories are:
Anthropology, Space, Behavioral Psych, Environmental Science,
Life Science, Math/CS, Medicine, and Physics/Tech. There are
obvious overlaps of these categories, so not every article in
a category will necessarily contain “indicative words” of that
category alone.

We begin by taking the top three principle components of the
words, and generating a hierarchical topic modeling by splitting
the words into four levels of 4, 8, 16, and 32 clusters, respectively.
Each document at a given clustering level is encoded by the
fraction of its words that fall into a given cluster, and the new
features of a document become these histograms across all four
levels of word splits. From here, we take the top three principle
components of the documents to create a low-dimensional
embedding of all documents. This embedding is displayed in
Figure 5. We then run Algorithm 2 to determine the significant
regions for each class. For this data, we set deg = 32, σ = 1, and
A = 2.

We sample the embedding at 10,000 random grid points
in the embedding space, and display the significant region in
Figure 5. It is important to note the meaning of these regions
of significance, namely that rejection of the null hypothesis at a
given point indicates that the concentration of points from one
class in that region is well beyond any concentration that would
occur due to chance.

In an effort to quantify the significant regions and their
benefits, we designed the following simple experiment. For every
point, we compare its class to the class of its nearest neighbor,
and we record the average classification score across all classes.
Namely, for data X and corresponding labels Y , we compute

Exi∈X[δ(yi, y{NN of xi in X})],

and Exi∈X[δ(yi, y{NN of xi in centroids from X})],

where δ(·, ·) is a dirac delta function. We run this experiment
for X being all documents, and for X being “significant”

documents as deemed by the witness function. The results are in
Table 1. Clearly, restricting ourselves to the documents deemed
significantly within one class greatly increases the reliability of
the neighborhood and the computed centroids of the classes.

5.5. Propensity Matching and
Non-experiment Sampling
As a final example, we consider the problem of propensity
matching and scoring. In this setting, we consider two sets of
observable (e.g., non-randomized) data in which one set was
given a treatment and the other was not (which serves as a control
set). There exists questions around how to determine exactly
where these two datasets disagree with one another, and which
data points to remove because they are biasing either the treated
or control groups (i.e., with their features, they were virtually
guaranteed to be either in treatment or in control, and we can’t
extrapolate treatment effectiveness for them). This is traditionally
done with different versions of logistic regression and matching
observations with approximately equivalent probabilities of
treatment Rubin and Thomas [36].

We address this problem in the context of the canonical
LaLonde data set LaLonde [37]. This is a data set of men in the
National Supported Work Demonstration who were either given
(or not given) on job training for> 9 months. The ultimate goals
of this data are to determine themonetary benefits of job training,
but we will focus on detecting differences between the groups
that were and were not treated. The pre-treatment features of the
people are age, education, Black (1 if black, 0 otherwise), Hispanic
(1 if Hispanic, 0 otherwise), married (1 if married, 0 otherwise),
nodegree (1 if no degree, 0 otherwise), RE74 (earnings in 1974),
and RE75 (earnings in 1975). We choose a subset of the data
that has information on RE74 following the work of Dehejia-
Wahba Dehejia and Wahba [38]. This leaves us with 260 control
observations and 185 treated observations.

After z-scoring the 8 dimensional data (i.e., subtract mean and
divide by standard deviation), we apply Algorithm 1 comparing
the data to itself (rather than constructing a grid in 8D space).
We use deg = 16, σ = 1, and A = 2. Here we take
F̂ > 0 to be treated and F̂ < 0 to be control. Table 2 shows
the means of SigTreat = {xj : F̂(xj) > 0 and D(xj) = 1} and
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FIGURE 5 | (Left) Hierarchical topic embedding of documents. (Right) Embedding highlighted by grid points deemed significantly within one class.

TABLE 1 | Nearest neighbor classification of Science News documents across all

documents and across only significant documents.

Neighbor in given set

of docs

Centroid computed from

given set of docs

All documents 0.5143 0.5344

Sig. documents 0.7156 0.7635

SigControl = {xj : F̂(xj) < 0 and D(xj) = 1}, as well as themeans
of the treated and control groups independent of significance of
the witness function.

Table 2 tells a clear story, namely that the people unlikely to be
given job training (i.e., people in SigControl) are young, average
educated, Hispanic men that are not married, likely don’t have a
degree, and dropped considerably in income between 1974 and
1975. On the other hand, people that were almost guaranteed to
be given job training (i.e., people in SigTreat) are older, above
average educated, black men that are unmarried, have a degree,
and previously made well above average income. These results
are consistent with the biases being offered job training that are
identified in previous research on propensity matching Dehejia
and Wahba [38].

We also display in Figure 6 the balancing that occurs after
removing those people that fall significantly into one group or
the other, and display this as a function of A in Algorithm 1.
We compare the mean of the remaining control group and the
mean of the remaining treated group, and plot the ℓ2 norm
difference between these mean vectors. This demonstrates that,
as we remove observations deemed to be significantly in one class
or the other, the remaining groups move closer together in mean
and become more balanced.

6. PROOFS

The basic idea behind the proof of Theorem 3.1 is the following.
Theorem 6.1 gives a deterministic estimate on ‖σn(Ff ) −
Ff ‖B(x0 ,r). In turn, (3.2) expresses σn(Ff ) as an expected value

expression, and F̂ is clearly an estimator of this expression.
Therefore, at each point x, one can estimate F̂(x) − σn(Ff )(x)
using Hoeffding’s inequality. We note that this difference is a
weighted polynomial of degree < n2. To convert this estimate
into a norm estimate, we need to obtain a finite subset of the
ball around x0 so that the norm of any weighted polynomial of
degree< n2 is of the same order of magnitude as the norm on the
points of this finite subset, which is therefore called a norming
subset. While Corollary 6.1 gives an insight in this direction, a
main technical difficulty here is that the norm of the gradient of a
weighted polynomial on a cube needs to be estimated by the norm
of the polynomial on the cube itself. If one allows the bounds to
depend upon the point x0, then this is a trivial consequence of the
Markov inequality. A much deeper argument is needed to obtain
the bound independent of x0. An inequality of this sort is known
as the Videnskii inequality proved in the context of trigonometric
polynomials on arcs of a circle [39, Chapter 5.1, E.19]. We are not
aware of an analog for weighted polynomials.

We prefer to discuss the choice of the norming subset in a
greater generality. This is done in section 6.2. The probabilistic
estimates on the norms of polynomials are obtained in a more
general context as well in section 6.3. The proof of the Videnskii
inequality (Theorem 6.3) and Theorem 3.1 are given in section 6.

6.1. Background on Hermite Functions and
Weighted Polynomial Approximation
One has the orthogonality relation for k, j ∈ Z+,

∫

R

ψk(x)ψj(x)dx =
{
1, if k = j,
0, if k 6= j.

(6.1)

The following lemma [13, Lemma 4.1] lists some important
properties of 8n (the notation in Chui and Mhaskar [13] is
somewhat different; the kernel 8n above is n

q8n in the notation
of Chui and Mhaskar [13]).

Lemma 6.1. Let S > q be an integer.
(a) For x, y ∈ R

q, n = 1, 2, · · · ,

|8n(x, y)| ≤
cnq

max(1, (n|x− y|)S)
. (6.2)
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TABLE 2 | Mean value of each feature for the control group and treated group as a whole, and for the subsets of the groups that are deemed to be definitively within one

class.

Age Years Ed. Black Hispanic Married No degree RE74 RE75

Control means 25.1 10.1 0.83 0.11 0.15 0.83 2107.0 1266.9

SigControl means 20.7 10.4 0.33 0.67 0.00 0.89 6325.9 1658.2

Treated means 25.8 10.3 0.84 0.06 0.19 0.71 2095.6 1532.1

sigTreat means 30.6 12.4 1.00 0.00 0.00 0.00 9351.8 2525.9

FIGURE 6 | (Left) Difference of means of control and treated groups for LaLonde data after removing points with D(Z) = 1 for varying A. (Right) Fraction of

observations left in control and treated groups for LaLonde data after removing points with D(Z) = 1 for varying A. For both plots, A closer to 1 imples we are liberal

with the points being removed, meaning the sets of points remaining will be small but much more similar between treated and control.

In particular,

|8n(x, y)| ≤ cnq. (6.3)

(b) For x ∈ R
q, n = 1, 2, · · · , 1 ≤ p < ∞

∫

Rq
|8n(x, y)|pdy ≤ cnq(1−1/p). (6.4)

The following proposition lists a few important properties of the
spaces 5

q
n (cf. Mhaskar [26], Mhaskar [40], Mhaskar [12]).

Proposition 6.1. Let n > 0, P ∈ 5
q
n, 1 ≤ p ≤ ∞.

(a) (Infinite-finite range inequality) For any δ > 0, there exists
c = c(δ, p) such that

‖P‖p,Rq\[−
√
2n(1+δ),

√
2n(1+δ)]q ≤ c1e

−cn2‖P‖p,[−√
2n(1+δ),

√
2n(1+δ)]q

(6.5)
(b) (MRS identity)We have

‖P‖∞ = ‖P‖∞,[−
√
2n,

√
2n]q . (6.6)

(c) (Bernstein inequality) There is a positive constant B depending
only on q such that

‖|∇P|‖p ≤ Bn‖P‖p. (6.7)

In view of Proposition 6.1, we refer to the cube [−
√
2n,

√
2n]q

as the critical cube. When q = 1, it is often called the MRS
(Mhaskar-Rakhmanov-Saff) interval. The following corollary is
easy to prove using Proposition 6.1, parts (b) and (c).

Corollary 6.1. Let n > 0, C ⊂ In,q = [−
√
2n,

√
2n]q be a finite

set satisfying

max
x∈In,q

min
y∈C

‖x− y‖ ≤ 1/(2Bn). (6.8)

Then for any P ∈ 5
q
n,

max
y∈C

|P(y)| ≤ ‖P‖∞ ≤ 2max
y∈C

|P(y)|. (6.9)

There exists a set C as above with |C| ∼ n2q.

We define

σn(f )(x) =
∫

Rq
8n(x, y)f (y)dy, f ∈ L1+L∞, n > 0, x ∈ R

q.

(6.10)
The following proposition is routine to prove using
Lemma 6.1(b) with p = 1:

Proposition 6.2. (a) If n > 0 and P ∈ 5n/
√
2, then σn(P) = P.

(b) If f ∈ Lp, n > 0, then

‖σn(f )‖p ≤ c‖f ‖p, En,p(f ) ≤ ‖f − σn(f )‖p ≤ cEn/
√
2,p(f ).

(6.11)
(c)We have

‖f ‖Wp,γ ∼ ‖f ‖p + sup
n≥0

2nγ ‖f − σ2n (f )‖p

∼ sup
n≥0

2nγ ‖σ2n−1 (f )− σ2n (f )‖p. (6.12)

The following characterization of local smoothness classes can be
obtained by imitating arguments in Mhaskar [12].

Theorem 6.1. Let 1 ≤ p ≤ ∞, f ∈ Xp, γ > 0, x0 ∈ R
q. The

following statements are equivalent:
(a) f ∈ Wp,γ (x0).
(b) There exists r = r(f , x0, p, γ ) > 0 such that

sup
n≥0

nγ ‖f − σn(f )‖p,B(x0 ,r) < ∞.
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(c) There exists r1 = r1(f , x0, p, γ ) > 0 such that

sup
n≥0

2nγ ‖σ2n−1 (f )− σ2n (f )‖p,B(x0 ,r1) < ∞.

If x0 ∈ R
q, 1 ≤ p ≤ ∞, f ∈ Wp,γ (x0), and part (b) of

Theorem 6.1 holds with B(x0, r) for some r > 0, we define

‖f ‖p,γ ,x0 ,r = ‖f ‖p + sup
n≥0

nγ ‖f − σn(f )‖p,B(x0 ,r), (6.13)

where we note that this defines a norm since we have used the
norm of f on the entire Rq as one of the summands above.

6.2. Norming Sets
If X is a topological space, we denote by C0(X) the space of
all continuous real valued functions on X vanishing at infinity,
equipped with the supremum norm.

Definition 6.1. Let X be a topological space, W ⊂ C0(X). A set
C ⊂ X is called a norming set forW if there exists a finite number
c > 0 such that

sup
x∈X

|f (x)| ≤ c sup
y∈C

|f (y)|, f ∈ W. (6.14)

We denote by n(W, C) the infimum of all the numbers c that
work above.

Definition 6.2. Let Y be a metric space with metric ρ. If ǫ > 0, a
subset V ⊆ Y is called an ǫ-cover of Y if

sup
f∈Y

inf
g∈V

ρ(f , g) ≤ ǫ.

Proposition 6.3. Let X be a topological space, W be a linear
subspace of C0(X).
(a) If there exists a finite norming set C for W then W is finite
dimensional, and dim(W) ≤ |C|.
(b) Let W be finite dimensional,

BW = {f ∈ W : ‖f ‖∞,X = 1},

and {f1, · · · , fN} be a 1/4-cover for BW . Then there exists a
norming set C for W with |C| ≤ N, and n(C,W) ≤ 2.
(c) Let X be a compact metric space with metric ρ, W be a finite
dimensional linear subspace of C0(X), and there exist L = L(W) >

0 such that

|f (x)− f (y)| ≤ L‖f ‖∞,Xρ(x, y), f ∈ W. (6.15)

If C is a 1/(2L)-cover for X, then C is a norming set for W with
n(C,W) ≤ 2.

PROOF.
If C is a finite norming subset for W then the mapping W →

R
|C| given by f 7→ (f (x))x∈C is injective. This proves part (a).
To prove part (b), let {f1, · · · , fN} be a 1/4-cover for BW .

Since each of the functions fj ∈ C0(X), there exists xj ∈ X

(not necessarily distinct) for which |fj(xj)| = ‖fj‖∞,X. We let
C = {x1, · · · , xN}. If f ∈ BW , and ‖f − fj‖∞,X ≤ 1/4, then

1 = ‖f ‖∞,X ≤ ‖f − fj‖∞,X + ‖fj‖∞,X ≤ 1/4+ |fj(xj)|
≤ 1/4+ |fj(xj)− f (xj)| + |f (xj)| ≤ 1/2+ max

1≤j≤N
|f (xj)|.

This proves part (b).
Let the hypothesis of part (c) be satisfied, and C be a 1/(2L)

covering for X. If f ∈ W and ‖f ‖∞,X = |f (x∗)|, then there exists
z ∈ C with ρ(x∗, z) ≤ 1/(2L). Then (6.15) implies that

‖f ‖∞,X ≤ |f (z)| + |f (x∗)− f (z)| ≤ max
y∈C

|f (y)| + Lρ(x∗, z)‖f ‖∞,X

≤ max
y∈C

|f (y)| + (1/2)‖f ‖∞,X.

This proves part (c).

6.3. Probabilistic Estimates
We recall Hoeffding’s inequality [41, Appendix A(3)]:

Proposition 6.4. If Y1, · · · ,YM are independent random variables
with mean 0 such that aj ≤ Yj ≤ bj for j = 1, · · · ,M, then for
η > 0,

Prob




∣∣∣∣∣∣
1

M

M∑

j=1

Yj

∣∣∣∣∣∣
≥ η


 ≤ 2 exp

(
−

M2η2

∑M
j=1(bj − aj)2

)
.

(6.16)

Next, we wish to develop a general theorem estimating the
probability of a lower bound on the supremumnorm of a random
family of functions analogous to [42, Lemma 6.2].

Theorem 6.2. LetX be a topological space,W be a linear subspace
of C0(X). We assume that there is a finite norming set C for W.
Let (�,B,µ) be a probability space, and Z :� → W. We assume
further that for any x ∈ X, ω ∈ �, |Z(ω)(x)| ≤ R for some R > 0.
Then for any δ > 0, integer M ≥ 1, and independent sample
ω1, · · · ,ωM , we have

Probµ


sup

x∈X

∣∣∣∣∣∣
1

M

M∑

j=1

Z(ωj)(x)

− Eµ(Z(◦)(x))
∣∣ ≥ 4n(W, C)R

√
log(2|C|/δ)

M

)
≤ δ. (6.17)

PROOF. Let x ∈ X, and Yj = Z(ωj)(x) − Eµ(Z(◦)(x)). Then
|Yj| ≤ 2R, and Hoeffding’s inequality implies that for any η > 0,

Probµ




∣∣∣∣∣∣
1

M

M∑

j=1

Z(ωj)(x)− Eµ(Z(◦)(x))

∣∣∣∣∣∣
≥

η

2n(W, C)




≤ 2 exp

(
−

Mη2

16n(W, C)2R2

)
. (6.18)
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We observe that since W is a finite dimensional linear space,
the functions

x 7→
1

M

M∑

j=1

Z(ωj)(x)− Eµ(Z(◦)(x))

are inW for all choices of the ωj’s. We now apply (6.18) with each
y ∈ C in place of x to conclude that

Probµ


sup

x∈X

∣∣∣∣∣∣
1

M

M∑

j=1

Z(ωj)(x)− Eµ(Z(◦)(x))

∣∣∣∣∣∣
≥ η




≤
⋃

y∈C

Probµ




∣∣∣∣∣∣
1

M

M∑

j=1

Z(ωj)(y)− Eµ(Z(◦)(y))

∣∣∣∣∣∣
≥

η

2n(W, C)




≤ 2|C| exp
(
−

Mη2

16n(W, C)2R2

)
.

We set the last expression above to δ and solve for η to obtain
(6.17).

The following lemma states the asymptotics in (3.4) for the
Lambert function in (3.3) in a form that is easily applicable in the
proof of (3.8) in Theorem 3.1.

Lemma 6.2. Let y,α,β ,A,B > 0. The solution of the equation

Axα log(Bxβ ) = y (6.19)

is given by

x = B−1/β exp

(
1

α
W

(
Bα/β

A

α

β
y

))

≈
(

α

βA

)1/α





y

log y+ log

(
αBα/β

βA

)





1/α

, (6.20)

where≈ denotes an asymptotic relationship.

PROOF. We multiply both sides of (6.19) by α/β , and write z =
log

(
Bα/βxα

)
to obtain

ez = Bα/βxα , zez =
α

β

Bα/β

A
y.

The solution of this equation leads to the first expression on the
right hand side of (6.20). The asymptotic expression in (3.4) leads
to the second expression.

6.4. Proof of Theorem 3.1
We wish to obtain a Videnskii inequality for weighted
polynomials; i.e., an analog of (6.7) for derivatives on a ball. We
note that the following bound is much worse than (6.7), but is
adequate for our purpose.

Theorem 6.3. Let n ≥ 1, 0 < r < n3/2, x0 ± 2r ∈ [−2n, 2n]q,
P ∈ 5

q
n. Then there exists constant C > 0 independent of r, n, and

x0, and depending linearly on q such that

‖|∇P|‖∞,B(x0,r) ≤ Cn4‖P‖∞,B(x0,r)

×

{
re1/r , if r ≥ c/n2,

(1/r) exp(8n2r) ≤ c1/r, otherwise.
(6.21)

PROOF. It is sufficient to prove (6.21) for q = 1; the general case
follows by applying the univariate inequality one component at
a time. We will simplify our notation by writing m = n2 in
this proof. Let P ∈ 51

n, and Q be a (univariate) polynomial of
degree < m such that P(x) = Q(x) exp(−x2/2). Without loss of
generality, let ‖P‖∞,[x0−r,x0+r] = 1.

Let ‖Q‖∞,[x0−r,x0+r] = |Q(x∗)|. In view of Markov’s inequality
([43, Chapter VI, section 6]), we obtain for x ∈ [x0 − r, x0 + r]

|P′(x)| = |Q′(x)− xQ(x)| exp(−x2/2)

≤
m2

r
‖Q‖∞,[x0−r,x0+r] exp(−x2/2)+ 2

√
m

≤ 2
√
m+

m2

r
|Q(x∗)| exp(−(x∗)2/2) exp

(
1

2
|x∗ − x||x∗ + x|

)

≤ 2n+
n4

r
exp(4nr). (6.22)

Thus,

‖P′‖∞,[x0−r,x0+r] ≤ 2
m2

r
exp(4nr), 0 < r < n3/2. (6.23)

This proves, in particular, (6.21) in the case when 0 < r ≤ c/n2

for every c > 0.
We now assume that r ≥ c/n2 for c to be chosen later. We

consider the function G :C → C defined by

G(z) =

{
z − x0 +

√
(z − x0)2 − r2

r

}m

exp

(
−
(z + x0)

√
(z − x0)2 − r2

2

)
, (6.24)

where the principle branch of the square root is chosen (so that√
ζ → ∞ as ζ → ∞). The mapping

w =
z − x0 +

√
(z − x0)2 − r2

r
(6.25)

maps the exterior of [x0− r, x0+ r] to the exterior of the complex
unit disc, and obviously, |w| = 1 if z ∈ [x0 − r, x0 + r]. So,
|G(z)| = 1 if z ∈ [x0 − r, x0 + r]. Hence, the function

F(z) =
Q(z) exp(−z2/2)

G(z)

is analytic in C ∪ {∞} \ [x0 − r, x0 + r] and |F(z)| ≤ 1 on
[x0−r, x0+r]. Therefore, themaximummodulus principle shows
that

|P(z)| = |Q(z) exp(−z2/2)| ≤ |G(z)|, z ∈ C\ [x0− r, x0+ r].
(6.26)
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We wish to use this bound on the interior of the ellipse E defined
by |w| = 1+ 1/(rm). Since

z = x0 +
r

2
(w+ 1/w),

we calculate that

(z − x0)
2 − r2 =

r2

4

(
(w+ w−1)2 − 4

)
=

r2

4
(w− w−1)2,

so that

(z + x0)
√
(z − x0)2 − r2 = x0r(w− w−1)+

r2

4
(w2 − w−2).

Therefore, on the ellipse E parameterized by w = (1 +
(rm)−1) exp(iθ),

∣∣∣ℜe
(
(z + x0)

√
(z − x0)2 − r2

)∣∣∣

=
∣∣∣∣
(
2x0

m
cos θ +

4r

m
cos(2θ)

)
(1+ O(1/r2m2))

∣∣∣∣ ≤ c
|x0 + 2r|

m
.

Thus, if |x0 + 2r| ≤ 2
√
m, the estimate (6.26) shows that for z on

and inside E,

|P(z)| ≤ (1+ (rm)−1)m exp
(
c1/

√
m

)
. (6.27)

Now, let x ∈ [x0 − r, x0 + r]. It is easily calculated that the
minimum distance between E and [x0 − r, x0 + r] is at least
2c2(rm

2)−1 for a constant c2 independent of r and m as long
as rm ≥ c. Hence, the complex disc bounded by the contour
Ŵ :{ζ : |ζ − x| = c2(rm

2)−1} is contained in the interior of E. On
this disc, the bound (6.27) holds. Therefore, the Cauchy integral
formula leads to

|P′(x)| =
1

2π

∣∣∣∣
∮

Ŵ

P(ζ )

(ζ − x)2
dζ

∣∣∣∣ ≤ c3rm
2e1/r .

Recalling that m = n2, this leads to (6.21) when q = 1. As
explained earlier, this completes the proof.
PROOF OF THEOREM 3.1.

Let x0 ∈ R
q, n ≥ 1, r ≥ c/n2 where c is as in Theorem 6.3.

We apply Theorem 6.2 with X = B(x0, r), 5
q
n (restricted to X) in

place ofW, Rq × � in place of �, τ as in Theorem 3.1. We take

Z(z, ǫ)(x) = F(z, ǫ)8n(x, z),

where (z, ǫ) is a random sample from τ . Then the quantity R
in Theorem 6.2 can be chosen to be c1‖F‖∞nq. Moreover, (3.2)
shows that,

Eτ (Z)(x) = σn(Ff )(x).

In view of Theorem 6.3, there exists a norming set
C ⊂ B(x0, r) for W with |C| ∼ exp(q/r)(n4r2)q and
n(C,W) ≤ 2. Theorem 6.2 used with δ(r/n)q in place of δ

shows that

Probµ×τ




∥∥∥∥∥∥
1

M

M∑

j=1

F(yj, ǫj)8n(◦, yj)− σn(Ff )

∥∥∥∥∥∥
∞,B(x0 ,r)

≥ c1‖F‖∞nq

√
log(c3rq exp(q/r)n5q/δ)

M


 ≤ δ(r/n)q.

(6.28)

Since Ff ∈ W∞,γ (x0), Theorem 6.1 shows that

‖Ff − σn(Ff )‖∞,B(x0,r) ≤ n−γ ‖Ff ‖∞,γ ,x0 ,r . (6.29)

Therefore, (6.28) leads to (3.6).
To prove (3.8), we solve for n the equation

n2q+2γ log(Bn5q) = M,

where B is defined in the statement of Theorem 3.1. Lemma 6.2,
used with A = 1, α = 2q + 2γ , β = 5q shows that the solution
is given by (3.7). Therefore, with this choice of n, (3.6) implies
(3.8).
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A. IMPLEMENTATION OF THE KERNELS

In this sub-section, we describe the construction of the kernels
8n. We remark firstly that Next, we recall the Mehler identity (cf.
[45, Formula (6.1.13)] in the univariate case), valid for w ∈ C,
|w| < 1 and x, y ∈ R

q:

∑

k∈Zq

ψk(x)ψk(y)w
|k|1 =

∞∑

m=0

wmProjm(x, y)

=
1

(π(1− w2))q/2
exp

(
4wx · y− (1+ w2)(|x|2 + |y|2)

2(1− w2)

)
.

(A.1)

It is clear that the projections Projm(x, y) depend only on x · y,
x · x, and y · y; in particular, that they are rotation independent.
Denoting by θ the acute angle between x and y, we may thus write

Projm(x, y)

=
m∑

j=0

ψj(|x|)ψj(|y| cos θ)
m−j∑

ℓ=0

ψℓ(0)ψℓ(|y| sin θ)
∑

k∈Zq−2
+ ,

|k|1=m−j−ℓ

|ψk(0)|2.

(A.2)

Using the Mehler identity (A.1), we deduce that for q ≥ 3,

∞∑

r=0

w2r
∑

|k|1=2r

k∈Zq−2
+

|ψk(0)|2 = (π(1− w2))−(q−2)/2

= π1−q/2
∞∑

r=0

Ŵ(q/2+ r − 1)

Ŵ(q/2− 1)r!
w2r .

Hence,

Projm(x, y)

=
m∑

j=0

ψj(|x|)ψj(|y| cos θ)
m−j∑

ℓ=0

ψℓ(0)ψℓ(|y| sin θ)Dq−2;m−j−ℓ,

(A.3)

where

ψℓ(0) =





π−1/4(−1)ℓ/2
√

ℓ!

2ℓ/2(ℓ/2)!
, if ℓ is even,

0, if ℓ is odd,

(A.4)

and

Dq−2;r =





π1−q/2 Ŵ(q/2+ r/2− 1)

Ŵ(q/2− 1)(r/2)!
, if r is even, q ≥ 3,

0, if r is odd, q ≥ 3,

1, if q ≤ 2.
(A.5)

Remark A.1. A completion of squares shows that

(1+ w2)(|x|2 + |u|2)− 4wx · u

= (1+ w2)

∣∣∣∣x−
2w

1+ w2
u

∣∣∣∣
2

+
(1− w2)2

1+ w2
|u|2. (A.6)

With the choice w = 1/
√
3, the Mehler identity (A.1) then shows

that

∞∑

m=0

3−m/2Projm(x, u)

=
(

3

2π

)q/2

exp

(
−|x−

√
3

2
u)|2

)
exp(−|u|2/4).

It is now easy to calculate using orthogonality that

8n(x, y) =
(

3

2π

)q/2 ∫

Rq
exp

(
−|x−

√
3

2
y)|2

)

exp(−|y|2/4)8̃n(y, u)du, (A.7)

where

8̃n(y, u) =
∞∑

m=0

3m/2H

(√
m

n

)
Projm(y, u). (A.8)

A careful discretization of (A.7) using a Gauss quadrature
formula for Hermite weights exact for polynomials of degree 3n2

leads to an interpretation of the kernels 8n in terms of Gaussian
networks with fixed variance and fixed centers, independent of
the data. We refer to Mhaskar [14], Chui and Mhaskar [15] for
the details.

There is no training required for these networks.
However, the mathematical results are applicable only
to this specific construction. Treating the theorem
as a pure existence theorem and then trying to
find a Gaussian network by traditional training will
not work.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 16 August 2020 | Volume 6 | Article 31

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	A Witness Function Based Construction of Discriminative Models Using Hermite Polynomials
	1. Introduction
	2. Notation
	3. Recovery of measures
	4. Algorithms
	5. Experiments
	5.1. Toy Examples
	5.2. Data Generation Through VAE
	5.3. Determining Significant Class Regions for CNNs
	5.4. Term Document Significance
	5.5. Propensity Matching and Non-experiment Sampling

	6. Proofs
	6.1. Background on Hermite Functions and Weighted Polynomial Approximation
	6.2. Norming Sets
	6.3. Probabilistic Estimates
	6.4. Proof of Theorem 3.1

	Data Availability Statement
	Author Contributions
	Funding
	References
	A. Implementation of the kernels


