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Abstract. Variational autoencoders (VAEs) and generative adversar-
ial networks (GANSs) enjoy an intuitive connection to manifold learn-
ing: in training the decoder/generator is optimized to approximate a
homeomorphism between the data distribution and the sampling space.
This is a construction that strives to define the data manifold. A major
obstacle to VAEs and GANs, however, is choosing a suitable prior that
matches the data topology. Well-known consequences of poorly picked
priors are posterior and mode collapse. To our knowledge, no existing
method sidesteps this user choice. Conversely, diffusion maps automat-
ically infer the data topology and enjoy a rigorous connection to mani-
fold learning, but do not scale easily or provide the inverse homeomor-
phism (i.e. decoder/generator). We propose a method (https://github.
com/lihenryhfl/vdae) that combines these approaches into a generative
model that inherits the asymptotic guarantees of diffusion maps while
preserving the scalability of deep models. We prove approximation the-
oretic results for the dimension dependence of our proposed method.
Finally, we demonstrate the effectiveness of our method with various
real and synthetic datasets.

Keywords: Deep learning - Variational inference - Manifold learning -
Image and video synthesis + Generative models + Unsupervised learning

1 Introduction

Generative models such as variational autoencoders (VAEs, [19]) and gen-
erative adversarial networks (GANs, [10]) have made it possible to sample
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remarkably realistic points from complex high dimensional distributions at low
computational cost. While the theoretical framework behind the two methods
are different—one is derived from variational inference and the other from game
theory—they both involve learning smooth mappings from a user-defined prior
p(z) to the data p(zx).

When p(z) is supported on a Euclidean space (e.g. p(z) is Gaussian or uni-
form) and the p(x) is supported on a manifold (i.e. the Manifold Hypothesis, see
[8,30]), VAEs and GANs become manifold learning methods, as manifolds them-
selves are defined as sets that are locally homeomorphic to Euclidean space. Thus
the learning of such homeomorphisms may shed light on the success of VAEs
and GANs in modeling complex distributions.

This connection to manifold learning also offers a reason why these generative
models fail—when they do fail. Known as posterior collapse in VAEs [1,14,33,48]
and mode collapse in GANs [11], both describe cases where the learned mapping
collapses large parts of the input to a single point in the output. This violates the
bijective requirement of a homeomorphism. It also results in degenerate latent
spaces and poor generative performance.

A major cause of such failings is when the geometries of the prior and tar-
get data do not agree. We explore this issue of prior mismatch and previous
treatments of it in Sect. 3. Given their connection to manifolds, it is natural to
draw from classical approaches in manifold learning to improve deep generative
models. One of the most principled methods is kernel-based manifold learning
[4,36,38]. This involves embedding data drawn from a manifold X C Mx into
a space spanned by the leading eigenfunctions of a kernel on M x. We focus
specifically on diffusion maps, where [6] show that normalizations of the ker-
nel define a diffusion process that has a uniform stationary distribution over
the data manifold. Therefore, drawing from this stationary distribution samples
uniformly from the data manifold. This property was used in [24] to smoothly
interpolate between missing parts of the manifold. However, despite its strong
theoretical guarantees, diffusion maps are poorly equipped for large scale gener-
ative modeling as they do not scale well with dataset size. Moreover, acquiring
the inverse mapping from the embedding space—a crucial component of a gen-
erative model—is traditionally a very expensive procedure [5,21,28].

In this paper we address issues in variational inference and manifold learn-
ing by combining ideas from both. The theory in manifold learning allows us to
recognize and correct prior mismatch, whereas variational inference provides a
method to construct a generative model, which also offers an efficient approxi-
mation to the inverse diffusion map.

Our Contributions: 1) We introduce the locally bi-Lipschitz property, a nec-
essary condition of a homeomorphism, for measuring the stability of a map-
ping between latent and data distributions. 2) We introduce variational diffu-
sion autoencoders (VDAESs), a class of variational autoencoders that, instead of
directly reconstructing the input, have an encoder-decoder that approximates
one discretized time-step of the diffusion process on the data manifold (with
respect to a user defined kernel k). 3) We prove approximation theoretic bounds
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for deep neural networks learning such diffusion processes, and show that these
networks define random walks with certain desirable properties, including well-
defined transition and stationary distributions. 4) Finally, we demonstrate the
utility of the VDAE framework on a set of real and synthetic datasets, and show
that they have superior performance and satisfy the locally bi-Lipschitz property

(Fig. 1).
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Fig. 1. A diagram depicting one step of the diffusion process modeled by the variational
diffusion autoencoder (VDAE). The diffusion and inverse diffusion maps 1,¢%™", as
well as the covariance C of the random walk on Mz, are all approximated by neural
networks. Images on the leftmost panel are actually generated by our method.

2 Background

Variational inference (VI, [18,46]) combines Bayesian statistics and latent
variable models to approximate some probability density p(z). VI exploits a
latent variable structure in the assumed data generation process, that the obser-
vations x ~ p(x) are conditionally distributed given unobserved latent variables
z. By modeling the conditional distribution, then marginalizing over z, as in

polz) = / po(z]2)p(2)dz, (1)

we obtain the model evidence, or likelihood that x could have been drawn from
pe(x). Maximizing the model evidence (Eq. 1) leads to an algorithm for finding
likely approximations of p(x). The cost of computing this integral scales expo-
nentially with the dimension of z and thus becomes intractable with high latent
dimensions. Therefore we replace the model evidence (Eq. 1) with the evidence
lower bound (ELBO):

logPQ(I) > _DKL(q(Z|$)||p(Z)) + ]Ezmzq(z\z) [logp9($|z)], (2)

where ¢(z|x) is usually an approximation of pg(z|z). Maximizing the ELBO is
sped up by taking stochastic gradients [16], and further accelerated by learning
a global function approximator g4 in an autoencoding structure [19].
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Diffusion maps [6] refer to a class of kernel methods that perform non-linear
dimensionality reduction on a set of observations X C My, where My is
the assumed data manifold equipped with measure p. Let x,y € X; given
a symmetric and non-negative kernel k, diffusion maps involve analyzing the
induced random walk on the graph of X, where the transition probabilities
P(y|z) are captured by the probability kernel p(z,y) = k(z,y)/d(z), where
d(z) = [y k(x,y)du(y) is the weighted degree of x. The diffusion map itself
is defined as ¢p(z) := [Afi(2). A2f2(@), ..., Ap fp(2)], where {fi}1<i<p and
{Aiti<i<p are the first D eigenfunctions and eigenvalues of p. An important
construction in diffusion maps is the diffusion distance:

2 2 dp(u)

D) = [0l =o)L, Q)
where 7m(u) = d(u)/ )" ,cy d(2) is the stationary distribution of u. Intuitively,
D(z,y) measures the difference between the diffusion processes emanating from
x and y. A key property of ip is that it embeds the data X € R™ into the
Euclidean space R” so that the diffusion distance is approximated by Euclidean
distance (up to relative accuracy )/‘\—E]’) Therefore, the arbitrarily complex random
walk induced by k£ on Mx becomes an isotropic Gaussian random walk on

V(Mx).
SpectralNet [40] is a neural network approximation of the diffusion map ¥p
that enjoys a major computational speedup. The eigenfunctions f1, fo,..., fp

that compose ¥p are learned by optimizing a custom loss function that stochas-
tically maximizes the Rayleigh quotient for each f; while enforcing the orthogo-
nality of all f; € {f,,}2_, via a custom orthogonalization layer. As a result, the
training and computation of v is linear in dataset and model size (as opposed
to O(n3)). We will use this algorithm to obtain our diffusion embedding prior.

Locally Bi-Lipschitz Coordinates by Kernel Eigenfunctions. The con-
struction of local coordinates of Riemannian manifolds M x by eigenfunctions
of the diffusion kernel is analyzed in [17]. They establish, for all z € Mx, the
existence of some neighborhood U(z) and d spectral coordinates given U(x) that
define a bi-Lipschitz mapping from U(z) to R%. With a smooth compact Rie-
mannian manifold, we can let U(z) = B(z, dry,), where § is some constant and
the inradius 7, is the radius of the largest ball around z still contained in M x.
Note that § is uniform for all x, whereas the indices of the d spectral coordi-
nates as well as the local bi-Lipschitz constants may depend on x and are order
O(r;;"). For completeness we give a simplified statement of the [17] result in the
Appendix.

Using the compactness of the manifold, one can always cover the manifold
with m many neighborhoods (geodesic balls) on which the bi-Lipschitz property
in [17] holds. As a result, there are a total of D spectral coordinates, D < md (in
practice D is much smaller than md, since the selected spectral coordinates in
the proof of [17] tend to be low-frequency ones, and thus the selection on different
neighborhoods tend to overlap), such that on each of the m neighborhoods, there
exists a subset of d spectral coordinates out of the D ones which are bi-Lipschitz
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on the neighborhood. We observe empirically that the bi-Lipschitz constants can
be bounded uniformly from below and above (see Sect. 6.4) (Fig. 2).

Fig. 2. An example of the diffusion random walk simulated by our method on a 3D
loop dataset. t is the number of steps taken in the random walk.

3 Motivation and Related Work

In this section we justify the key idea of our method: diagnosing and correcting
prior mismatch, a failure case of VAE and GAN training when p(z) and p(x) are
not topologically isomorphic. Intuitively, we would like the latent distribution
to have three nice properties: (1) realizability, that every point in the data
distribution can be realized as a point in the latent distribution; (2) validity,
that every point in the latent distribution maps to a unique valid point in the
data distribution (even if it is not in the training set); and (3) smoothness,
that points in the latent distribution vary in the intrinsic coordinate system in
some smooth and coherent way.

These properties are precisely those enjoyed by a latent distribution that is
homeomorphic to the data distribution. Validity implies injectivity, realizability
implies surjectivity, smoothness implies continuity; and a mapping between topo-
logical spaces that is injective, surjective, and continuous is a homeomorphism.
Therefore, studying algorithms that encourage approximations of homeomor-
phisms is of fundamental interest.

Though the Gaussian distribution for p(z) is mathematically elegant and
computationally expedient, there are many datasets for which it is ill-suited.
Spherical distributions are known to be superior for modeling directional data
[9,26], which can be found in fields as diverse as bioinformatics [13], geology
[32], materials science [20], natural image processing [3], and many preprocessed
datasets'. For data supported on more complex manifolds, the literature is
sparse, even though it is well-known that data often lie on such manifolds [8,30].
In general, any manifold-supported distribution that is not globally homeomor-
phic to Euclidean space will not satisfy conditions (1-3) above.

Previous research on alleviating prior mismatch exists in various forms, and
has focused on increasing the family of tractable latent distributions for gen-
erative models. [7,47] consider VAEs with the von-Mises Fisher distribution,

1 Any dataset where the data points have been normalized to be unit length becomes
a subset of a hypersphere.
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a geometrically hyperspherical prior, and [43] consider mixtures of priors. [35]
propose a method that, like our method, also samples from the prior via a dif-
fusion process over a manifold. However, their method requires very explicit
knowledge of the manifold (including its projection map, scalar curvature con-
stant, and volume), and give up an exact estimation of the KL divergence. [34]
avoids mode collapse by lower bounding the KL-divergence term away from zero
to avoid overfitting. Similarly, [25] focuses on avoiding mode collapse by using
class-conditional generative models, however it requires label supervision and
does not provide any guarantees that the latent space generated is homeomor-
phic to the data space. Finally, [15] propose the re-scaling of various terms in the
ELBO to augment the latent space—often to surprisingly great effect on latent
feature discovery—but are restricted to the case where the latent features are
independent.

While these methods expand the repertoire of feasible priors, they all require
explicit user knowledge of the data topology. On the other hand, our method
allows the user to be agnostic to this choice of topology; they only need to specify
an affinity kernel k for local pairwise similarities. We achieve this by employing
ideas from both diffusion maps and variational inference, resulting in a fully
data-driven approach to latent distribution selection in deep generative models.

4 Method

In this section we propose the variational diffusion autoencoder (VDAE), a class
of generative models built from ideas in variational inference and diffusion maps.
Given the data manifold My, observations X C My, and a kernel k, VDAEs
model the geometry of X by approximating a random walk over the latent
diffusion manifold Mz := ¥(Mx). The model is trained by maximizing the
local evidence: the evidence (i.e. log-likelihood) of each point given its random
walk neighborhood. Points are generated from the trained model by sampling
from , the stationary distribution of the resulting random walk.

Starting from some point z € X, we can think of one step of the walk
as the composition of three functions: 1) the approximate diffusion map ,, :
Mx — My parameterized by w, 2) the stochastic function that samples from
the diffusion random walk 2/ ~ g4(2'|z) = N (¢ (z), Cy(z)) on My, and 3)

the approximate inverse diffusion map v, LM z — Mx that generates z’ ~
p@'|z') =N (159_ L(2"), cI) where c is a fixed, user-defined hyperparameter usually
set to 1.

Note that Euclidean distances in My approximate single-step random walk
distances on M x due to properties of the diffusion map embedding (see Sect. 2
and [6]). These properties are inherited by our method via the SpectralNet algo-
rithm, since Jw|/v1x : Mx — My satisfies the locally bi-Lipschitz property. This
bi-Lipschitz property also reduces the need for regularization, and leads to guar-
antees of the ability of the VDAE to avoid posterior and mode collapse (see
Sect. 5).
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In short, to model a diffusion random walk over Mz, we must learn the func-
tions dzw, we and C¢, that approximate the diffusion map, the inverse diffusion
map, and the covariance of the random walk on Mz, at all points 2 € Mz.
SpectralNet gives us @/} - To learn 1/19 and C¢, we use variational inference.

4.1 The Lower Bound

Formally, let us define U, := Bg(x,§) N Mx, where Bg(z, §) is the d-ball around
x with respect to d(+,-), the diffusion distance on M z. For each € X we define
the local evidence of x as

Ear p(at|a)|o, 10g po(@']2), (4)
where p(2’'|x)|y, restricts p(z'|x) to Uy. This gives the local evidence lower bound

log py (z|z) > —Drcr(ag(z'|2)|pe (2 |2)) + Ez/~q¢(z/\z)10gpe(1/\z/) ) (5)

divergence from true diffusion probabilities o Cqn L Gl er

which produces the empirical loss function Lypag = —Dxr(qs(2|x)||pe(2'|2)) +
log pg(2'|2}), where z! = gy 0(x,€), € ~ ./\/(O I). The function g4 e is deter-
ministic and differentiable, depending on ww and C¢, that generates g4 by the
reparameterization trick?.

4.2 The Sampling Procedure

Composing g4 (2'|x)(= pe(z'|x)) with pe(z'|2z’) gives us an approximation of
pg(2’|x). Then the simple, parallelizable, and fast random walk based sampling
procedure naturally arises: initialize with an arbitrary point on the manifold
xo € Mx (e.g. from the dataset X), pick suitably large N, and forn=1,..., N
draw z,, ~ p(z|r,—1). See Sect. 6.2 for examples of points drawn from this
procedure.

4.3 A Practical Implementation

We now introduce a practical implementation, considering the case where Jw (),
¢s(2'|x) and pg(a'|z’) are neural network functions.

The neighborhood reconstruction error K./, (.|.) log ps(2'[2’) should
be differentiated from the self reconstruction error in VAEs, i.e. reconstructing
x’ vs x. Since gy (2'|x) models the neighborhood of 1, (x), we may sample g4 to
obtain 2’ (the ncighbor of x in the latent space). Assuming 1! exists, we have
'~ po(2|z)(= 1/19 (g4(2'|z))). To make this practical, we can approximate
2’ by finding the closest data point to 2’ in random walk distance (due to the

2 Though ¢ depends on ¢ and w, we will use d¢ := go,. to be consistent with existing
VAE notation and to indicate that w is not learned by variational inference.
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aforementioned advantages of the latent space). In other words, we approximate
empirically by

o margmin [y (y) — 2[5, 2~ gp(2'|), (6)
yEA
where A C X is the training batch.

On the other hand, the divergence of random walk distributions,
—Dk1.(qs(2'|2)||pe(#'|x)), can be modeled simply as the divergence of two Gaus-
sian kernels defined on M z. Though pg(z’|z) is intractable, the diffusion map ¥
gives us the diffusion embedding Z, which is an approximation of the true distri-
bution of pg(z’|x) in a neighborhood around z = ¢)(z). We estimate the first and
second moments of this distribution in R” by computing the local Mahalanobis
distance of points in the neighborhood. Then, by minimizing the KL divergence
between g4 (2'|x) and the one implied by this Mahalanobis distance, we obtain
the loss:

’ ’ |0‘E* | —1
— Dir(qe(2'[2)|lps(2'|2)) = —log .l +d—tr{(aX.)"Cs},  (7)
¢

where (NJ(/)(Q:) is a neural network function, X, (z) = Cov(Bg(¥(x),d) N Z) is the
covariance of the points in a neighborhood of z = ¥(z) € Z, and « is a scaling
parameter controlling the random walk step size. Note that the covariance (~3¢(3:)
does not have to be diagonal, and in fact is most likely not. Combining Egs. 6
and 7 we obtain Algorithm 1.

Since we use neural networks to approximate the random walk induced by
the composition of g4(2’'|x) and py(z'|2’), the generation procedure is highly
parallelizable. This leads naturally to a sampling procedure for this random
walk (Algorithm 2). We observe that the random walk enjoys rapid mixing
properties—it only takes several iterations of the random walk to sample from
all of M z3.

Finally, we describe a practical method for computing the local bi-Lipschitz
property. (In Sect. 6.4 we then perform comparisons with this method.) Let
Z and X be the latent and generated data distributions of our model f (i.e.
f:Z — X). We define, for each z € Z and k € N, the function bilip,(2):

1 d z Z
bilip,(z) = min{K : 174 < % < K},
for all 2/ € U, N Z, where dx and dz are metrics on X and Z, and U, is
the k-nearest neighborhood of z. Intuitively, increasing values of K characterize
an increasing tendency to stretc.h or compress regions of space. By analyzing
statistics of the local bi-Lipschitz measure at all points in a latent space Z, we
gain insight into how well-behaved a mapping f is.

3 For all experiments in Sect. 6, the number of steps required to draw from 7 is less
than 10.
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w, @, 0 < Initialize parameters
Obtain parameters w for the approximate diffusion map v:bvu via SpectralNet [40]
while not converged do
A — Random batch from X
for x € A do
z— p¢(z/|7:bvw (z)) {Random walk step}
x’ — argmingc g\ (2} 9w (y) — 2’| {Find batch neighbors}
9 9+ a7 Vo0 logpe('z) {Compute Eq. (5)}
end for
Update ¢, 8 using g
end while

Algorithm 1: VDAE training

Xo « Initialize with points Xo C X; ¢t < 0
while p(Xo) # 7 do
for z: € X do _
2i41 ~ Py (2 |Yw (x1)) {Random walk step}
Zit1 ~ po(x|zi41) {Map back to input space}
end for
t—t+1
end while
Algorithm 2: VDAE sampling

4.4 Comparison to Variational Inference (VI)

Traditional VI involves maximizing the joint log-evidence of each data point z;
in a given dataset via the ELBO (see Sect. 2). Our method differs in both the
training and evaluation steps.

In training, our setup is the same as above, except our likelihood is a condi-
tional likelihood p(’|x)|v,, where 2’ is in the diffusion neighborhood of z. Thus
we maximize the local log-evidence of each data point Eg/p(z/|a,) log pe(2’|2:),
which can be lower bounded by Eq. (5). Thus our prior is p(z’|x) and our pos-
terior is p(2'|2’, x) = p(a’, 2'|x) /p(2’|z), and we train an approximate posterior
¢s(2'|x) and a recognition model pg(z’|2’).

In evaluation, we draw from the stationary distribution p(z’) of the diffusion
random walk on the latent manifold M, = ¢(M,). We then leverage the latent
variable structure of our model to draw a sample z = py(a’|z’)p(2'), where
po(x'|x;) is the recognition model.

5 Theory

In this section, we show that the desired diffusion and inverse diffusion maps
Y Mx — Mgand ™' : Mz — Mx can be approximated by neural networks,
where the network complexity is bounded by quantities related to the intrinsic
geometry of the manifold.
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The capacity of the encoder ¢ has already been considered in [39] and [29].
Thus we focus on the capacity of the decoder 1~!. The following theorem is
proved in Appendix A.3, based on the result in [17].

Theorem 1. Let Mx C R™ be a smooth d-dimensional manifold, »(Mx) C
R be the diffusion map for D > d large enough to have a subset of coordinates
that are locally bi-Lipschitz. Let X = [Xl, e Xm] be the set of all m extrinsic
coordinates of the manifold. Then there exists a sparsely-connected ReLU net-
work fn, with 4DCx, nodes in the first layer, 8dmN nodes in the second layer,
and 2mN nodes in the third layer, and m nodes in the output layer, such that

IX () — I (@) gy < VICu/ VN, (8)

where the norm is interpreted as ||F||2L2(¢(M)) = [|IF(¢(x))||3d¢(z). Here Cy

depends on how sparsely X(LZJ(I))|U can be represented in terms of the ReLU
wavelet frame on each neighborhood U, and Camy on the curvature and dimen-
sion of the manifold Mx .

Theorem 1 guarantees the existence and size of a decoder network for learning
a manifold. Together with the main theorem in [39], we obtain guarantees for
both the encoder and decoder on manifold-valued data. The proof is built on
two properties of ReLU neural networks: 1) their ability to split curved domains
into small, almost Euclidean patches, 2) their ability to build differences of bump
functions on each patch, which allows one to borrow approximation results from
the theory of wavelets on spaces of homogeneous type. The proof also crucially
uses the bi-Lipschitz property of the diffusion embedding [17]. The key insight of
Theorem 1 is that, because of the bi-Lipschitz property, the coordinates of the
manifold in the ambient space R™ can be thought of as functions of the diffusion
coordinates. We show that because each coordinate function X; is Lipschitz, the
ReLU wavelet coefficients of X; are necessarily ¢'. This allows us to use the
existing guarantees of [39] to complete the desired bound.

We also discuss the connections between the distribution at each point in dif-
fusion map space, gy (2|z), and the result of this distribution after being decoded
through the decoder network fw(z) for z ~ ¢4(2|X). Similar to [41], we char-
acterize the covariance matrix Cov(fn(2)) := E.eq, (2a) [/~ (2)fn (2)T]. The fol-
lowing theorem is proved in Appendix A.3.

Theorem 2. Let fn be a neural network approximation to X as in Theorem 1,
such that it approximates the extrinsic manifold coordinates. Let C € R™*"™ bpe
the covariance matriz C = B.cq, 210 [N (2) [N (2)T]. Let q4(z|z) ~ N(¢(x), X)
with small enough X that there exists a patch U,, C M around zy satisfying
the bi-Lipschitz property of [17], and such that Pr(z ~ q¢(z|x) & ¥(Us,)) < e.
Then the number of eigenvalues of C greater than € is at most d, and C =
Joo X JL + O(e) where J., is the m x D Jacobian matriz at z.

Theorem 2 establishes the relationship between the covariance matrices used
in the sampling procedure and their image under the decoder fy to approximate



Fig. 3. We consider the rotating bulldog example. Images are drawn from the latent
distribution and plotted in terms of the 2D latent space of each model. From left to
right: VDAE, SVAE, 5-VAE, WGAN.

=1, Similar to [41], we are able to sample according to a multivariate normal
distribution in the latent space. Thus, the resulting cloud in the data space is
distorted (to first order) by the local Jacobian of the map fn. The key insight
of Theorem 2 is from combining this idea with the observation of [17]: that ¢—!
depends locally only on d of the coordinates in the D dimensional latent space.

6 Experimental Results

In this section we explore various properties of the VDAE and compare it
against several deep generative methods on a selection of real and synthetic
datasets. Unless otherwise noted, all comparisons are against the Wasserstein
GAN (WGAN), 8-VAE, and hyperspherical VAE (SVAE). Each model is trained
with the same architecture across all experiments (see Sect. A.6).

6.1 Video Generation with Rigid-Body Motion

We first consider the task of generating new frames from videos of rigid-body
motion, and examine the latent spaces of videos with known topological structure
to demonstrate the homeomorphic properties of the VDAE. We consider two
examples, the rotating bulldog example [23] and the COIL-20 dataset. [31].

The rotating bulldog example consists of 200 frames of a color video (each
frame is 100 x 80 x 3) of a spinning figurine. The rotation of the bulldog
and the fixed background create a data manifold that is topologically circular,
corresponding to the single degree of variation (the rotation angle parameter) in
the dataset. For all methods we consider a 2 dimensional latent space. In Fig.
3 we present 300 generated samples by displaying them on a scatter plot with
coordinates corresponding to their latent dimensions z; and z3. In the Appendix
Table A.1, we evaluate the quality of the generated images using the Frechet
inception distance (FID).

The COIL-20 data set consists of 360 images of five different rotating objects
displayed against on a black background (each frame is 448 x 416 x 1). This
yields several low dimensional manifolds, one for each object, and results in
a difficult data set for traditional generative models given its small size and
the complex geometric structure. For all comparisons, we use 10 dimensional
latent space. The resulting images are embedded with tSNE and plotted in
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Fig. 4. From left to right, the first three scatterplots show examples of distributions
reconstructed from a random walk on Mz (via Algorithm 2) given a single seed point
drawn from X. The next three are examples of a single burst drawn from pg(z|z). The
distributions are a loop (a, d), sphere (b, e), and the Stanford bunny (c, f).

Fig. A.3. Note that, while other methods generate images that topologically
mimic the fixed latent distribution of the model (e.g. N'(0, I;), Uniform(0, 1)4),
our method generates images that remain true to the actual topological structure
of the dataset.

6.2 Data Generation from Uniformly Sampled Manifolds

In the next experiment, we visualize the results of the sampling procedure in
Algorithm 2 on three synthetic manifolds. As discussed in Sect. 4.2, we randomly
select an initial seed point, then recursively sample from pg(z’|z) to simulate a
random walk on the manifold.

In Fig. 4(a—c) for three different manifolds, the location of the initial seed
point is highlighted, then 20 steps of the random walk are taken, and the resulting
generated points are displayed. The generated points remain on the manifold
even after this large number of resampling iterations, and the distribution of
sampled points converges to a uniform stationary distribution on the manifold.
Moreover, we observe that this stationary distribution is reached quickly, within
5-10 iterations. In (d—f) of the same Fig. 4, we show pg(z’|x) by drawing a large
number of points from a single-step random walk starting from the same seed
point. As can be seen, a single step of pg(a’|x) covers a large part of the latent
space.

6.3 Cluster Conditional Data Generation

In this section, we deal with the problem of generating samples from data with
multiple clusters in an unsupervised fashion (i.e. no a priori knowledge of the
cluster structure). Clustered data creates a problem for many generative models,
as the topology of the latent space (i.e. normal distribution) differs from the
topology of the data space with multiple clusters.

First we show that our method is capable of generating new points from
a particular cluster given an input point from that cluster. This generation is
done in an unsupervised fashion, which is a different setting from the approach of
conditional VAEs [42] that require training labels. We demonstrate this property
on MNIST [22] in Fig. 5, and show that the newly generated points after a short
diffusion time remain in the same class as the seeded image.
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Fig. 5. An example of cluster conditional sampling with our method, given a seed
point (top left of each image grid). The VDAE is able to produce examples via the
random walk that stay approximately within the cluster of the seed point, without any
supervised knowledge of the cluster.

The problem of addressing differing topologies between the data and the
latent space of a generative model has been acknowledged in recent works on
rejection sampling [2,45]. Rejection sampling of neural networks consists of gen-
erating a large collection of samples using a standard GAN, and then designing
a probabilistic algorithm to decide in a post-hoc fashion whether the points were
truly in the support of the data distribution p(x).

In the following experiment, we compare to a standard example in the liter-
ature for rejection sampling in generative models (see [2]). The data consists of
nine bounded spherical densities with significant minimal separation, lying on
a b x b grid. A GAN struggles to avoid generating points in the gaps between
these densities, and thus requires the post-sampling rejection analysis described
in [2]. Conversely, our model creates a latent space that separates each of these
clusters into their own coordinates and generates only points that in the neigh-
borhood of the support of p(x). Figure 6 shows that this results in significantly
fewer points generated in the gaps between clusters. Our VDAE architecture is
described in Sect. A.6, GAN and DRS-GAN architectures are as described in [2].

6.4 Quantitative Comparisons of Generative Models

For this comparison, we consider seven datasets: three synthetic (circle, torus,
Stanford bunny [44]) four involving natural images (rotating bulldog, Frey faces,
MNIST, COIL-20). The § parameter in the S-VAE is optimized via a cross
validation procedure. see Appendix for a complete description of the datasets. We
report the mean and standard deviation of the Gromov-Wasserstein distance [27)
and median bi-Lipschitz over 5 runs in Table 1. We further evaluate the results
using kernel Maximum Mean Discrepancy [12], see Table A.2 in the Appendix.

By constraining our latent space to be the diffusion embedding of the data,
our method finds a mapping that automatically enjoys the homeomorphic prop-
erties of an ideal mapping, and this is reflected in the low values of the local
bi-Lipschitz constant. Conversely, other methods do not consider the topology
of the data in the prior distribution. This is especially apparent in the G-VAE
and SVAE, which must generate from the entirety of the input distribution X
because they minimize a reconstruction loss. Interestingly, the mode collapse
tendency of GANs alleviate the pathology of the bi-Lipschitz constant by allow-
ing the GAN to focus on a subset of the distribution—but this comes at the cost
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Fig. 6. Comparison of samples from our method against several others on a 5 x 5
Gaussian grid. Left-right are original data, GAN, DRS-GAN, and VDAE (our method).
GAN and DRS-GAN samples taken from [2].

Table 1. Left: means and standard deviations of the Gromov-Wasserstein (G-W) dis-
tance between original and generated samples. Right: medians of the bi-Lipschitz mea-
sure.

G-W |WGAN |8-VAE |SVAE |VDAE biLip |WGAN|G-VAE SVAE VDAE
Circle | 14.9 (6.8) [46.1 (9.7)| 7.9 (2.2)| 2.6 (1.3)  Circle |4.6 3.7 |36 | 3.1
Torus 6.4 (1.9) [11.7 (1.6)[23.4 (2.8)| 4.9 (0.5)  Torus (3.3 79 |95 |48

Bunny | 11.4 (3.9) [32.8 (5.9)[14.3 (5.5)| 2.9 (1.1) Bunny |5.6 34.4 |35.6 | 5.5
Bulldog [117.3 (8.4) [61.3 (9.7)|53.9 (7.6)|15.3 (1.7)  Bulldog |17.4 7.6 [12.9 | 6.8

Frey 18.1 (2.9) [19.8 (4.6)|13.4 (3.6)| 9.7 (3.3)  Frey 37 33.3 [39.4 |29.7
MNIST | 3.6 (0.9)[10.2 (3.3)/15.2 (4.9)[14.4 (3.5) MNIST (1.9 1.6 | 6.7 | 8.4
COIL-20| 16.5 (2.4) [23.8 (5.9)|32.1 (4.9)|11.8 (2.1)  COIL-20|4.7 38 |84 | 3.1

of collapse to a few modes of the dataset. Our method is able to reconstruct the
entirety of X while simultaneously maintaining a low local bi-Lipschitz constant.

7 Discussion

In this work, we have shown that VDAEs provide an intuitive, effective, and
mathematically rigorous solution to prior mismatch, which is a common cause
for posterior collapse in latent variable models. Unlike prior works, we do not
require user specification of the prior—our method infers the prior geometry
directly from the data, and we observe that it achieves state-of-the-art results on
several real and synthetic datasets. Finally, our work points to several directions
for future research: (1) can we leverage recent architectural advances to VAEs to
further improve VDAE performance, and (2) can we leverage manifold learning
techniques to improve latent representations in other methods?
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