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H I G H L I G H T S  

• Data driven algorithms used to predict the battery SOC in BEV applications. 
• Modeling method implemented for generating realistic data of BEV driving behavior. 
• Simulated formation/decomposition of SEI for modeling battery degradation. 
• Tesla S and Nissan Leaf vehicles considered as case studies.  
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A B S T R A C T   

State-of-charge (SOC) estimation in a lithium-ion battery (LIB) is a crucial task of the battery management system 
(BMS) in battery electric vehicle (BEV) applications. In this work, we propose a modeling framework for SOC 
estimation using different machine learning (ML) methods, i.e. support vector regressor (SVR), artificial neural 
network (ANN), and long-short term memory (LSTM) network. The necessary training data have been developed 
using Matlab/Simulink automotive simulations of BEV, integrated with an electrochemical Comsol Multiphysics 
model of LIBs. The developed multi-physics model of BEV and LIBs operation allows to investigate the effect of 
driving conditions on the electrochemical and degradation (i.e., the solid electrolyte interphase – SEI – formation 
and decomposition) processes occurring inside batteries of different chemistries adopted in the Tesla S and 
Nissan Leaf BEVs. Our study remarks also the importance of taking into account the different components of BEV 
in the development of informative datasets, which are required for the implementation of learning algorithms for 
SOC evaluation. Thus, the proposed work establishes a basis for the generation of realistic training data based on 
simulations of BEV and LIBs dynamic response, which allows a more precise SOC estimation based on data- 
driven approaches.   

1. Introduction 

Global warming is recognized worldwide as one of the most critical 
challenges nowadays. The emission of tons of CO2 gas during the 
operation of vehicles powered by internal combustion engines is one of 
the most harmful sources of environmental pollution in urban envi
ronments. To address these problems, the automotive industry is 
focusing more attention on electric vehicles [1], which are capable of 
integrating an electric motor as a propulsion system. Battery electric 
vehicles (BEVs) are particularly appealing due to the complete absence 
of a combustion engine and the usage of a battery pack as the primary 

energy source for the powertrain of the vehicle [2]. Nickel-metal hybrid 
(NiMH), nickel-cadmium (NiCd), lead-acid and lithium-ions (LIBs) are 
battery technologies typically adopted in automotive industry [3]. In 
particular, depending upon the chemistry, LIBs are capable of delivering 
high energy density or high power density and they have long lifetime 
and reduced cost compared to other technologies [4]. 

The functionality of LIBs in BEVs is dictated by the battery man
agement system (BMS). The BMS is a collection of hardware (i.e., sen
sors, controllers, actuators, etc.) and software, which equips the battery 
pack in BEVs and it is responsible for enhancing its safety, protecting its 
individual cells from damage, increasing its efficient usage and 

* Corresponding author. 
E-mail address: mashayek@uic.edu (F. Mashayek).  

Contents lists available at ScienceDirect 

Journal of Power Sources 

journal homepage: www.elsevier.com/locate/jpowsour 

https://doi.org/10.1016/j.jpowsour.2020.229108 
Received 24 August 2020; Received in revised form 3 October 2020; Accepted 18 October 2020   

mailto:mashayek@uic.edu
www.sciencedirect.com/science/journal/03787753
https://www.elsevier.com/locate/jpowsour
https://doi.org/10.1016/j.jpowsour.2020.229108
https://doi.org/10.1016/j.jpowsour.2020.229108
https://doi.org/10.1016/j.jpowsour.2020.229108
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpowsour.2020.229108&domain=pdf


Journal of Power Sources 483 (2021) 229108

2

extending its lifespan [5]. One of the main tasks of the BMS is to monitor 
the state-of-charge (SOC) and the state-of-health (SOH) of the battery 
pack and to provide immediate intervention in the case of abnormal 
behavior. The evaluation of the online SOC is a challenging task, mainly 
because of the non-linearities of the processes that characterize the 
electrochemical behavior of the battery. 

Several methods have been developed for SOC estimation in BEVs 
and they can be divided into different categories [6–8] such as con
ventional methods, model-based estimations methods, adaptive filtering 
methods, non-linear observers and learning algorithms. Conventional 
methods include open-circuit voltage (OCV) [9], electromotive force 
(EMF) [10], Coulomb counting [11] and internal resistance [12]. 
Model-based estimation methods are categorized as equivalent circuit 
models (ECM) [13], reduced-order models (ROM) [14], state-space 
models [15], electrochemical models (EM) [16] and electrochemical 
impedance spectroscopy models (EISM) [17]. On the other hand, the 
adaptive filter algorithm methods, also known as Bayesian frameworks, 
include Kalman Filters (KF) [18], Extended Kalman Filters (EKF) [19], 
Unscented Kalman Filters (UKF) [20] and Adaptive Unscented Kalman 
Filters (AUKF) [21]. Other approaches are non-linear observers methods 
[22], bi-linear interpolation (BI) techniques and particle filter (PF) 
method [23]. Learning algorithms for SOC estimation such as fuzzy logic 
(FL) [24], genetic algorithm (GA) [25], and machine learning (ML) 
[26–35], form a special group of methods, since they do not involve 
parameters estimation, modeling of physical processes within the bat
tery or its dynamic states. In fact, they exclusively rely on learning the 
non-linearities of the processes occurring within a cell through available 
training data of the battery characteristics (e.g., current, voltage and 
temperature) collected during laboratory tests. The state of knowledge 
of the application of ML models for battery’s SOC estimation is further 
reviewed and analyzed Supplementary Information. 

Despite the success in demonstrating the effectiveness of the data- 
driven models for the prediction of the SOC, the bottleneck of these 
approaches is that the data collected through laboratory experiments 
could not be fully representative of practical BEVs operation. First, the 
discharge is performed for few cells or even for a single cell, while a BEV 
is characterized by a battery pack comprising several modules of cells 
connected in series and in parallel. The full discharge of a cell in a 
laboratory results in a limited number of hours of operation, and it 
consequently turns into a reduced driving range compared to the dis
tance that can be achieved by the BEVs currently used on the market. For 
example, the Environmental Protection Agency (EPA) estimated that the 
Tesla S model is capable to cover a distance of 391 miles (630 km) [36] 
before recharging the battery, while Nissan Leaf has a driving range of 
226 miles (363 km) [37]. As a second reason, discharging a cell in a 
laboratory does not allow to take into account the characteristics of 
other components of the vehicle such as the electric motor, the power
train system or external conditions like the aerodynamic resistance of 
the air, which are dynamically coupled with the battery pack in the 
operation of the BEV and they consequently impact the discharge of the 
cell. Last but not least, in almost all the works reported in the prior 
literature, the data are collected from single cell chemistry. Since the 
relationship between the SOC and the battery characteristics is highly 
dependent on the electrochemical process and the reactions occurring 
inside the cell, a model trained on data obtained from particular 
chemistry cannot be able to predict accurately the SOC of a cell for a 
different chemistry and training should be repeated. 

In order to address these challenges, in this work we propose a multi- 
physics modeling framework to generate realistic training data for 
learning-based techniques applied to SOC estimation in BEVs. The 
developed model of BEV allows to compute the battery characteristics 
and a SOC with a high level of fidelity to practical driving conditions. 
Additional variables including the temporal variation of the mechanical 
power delivered by the electric motor and the power loss due to the 
aerodynamic resistance of the air are combined with the traditionally 
used electric current, voltage, and temperature to predict the SOC. The 

method has been applied to the Tesla S and Nissan Leaf models available 
in the BEV market, in order to obtain data reflecting up-to-date appli
cations. Modeling the different chemistries of the cells characterizing 
the battery packs of the two vehicles (i.e., Nickel–Manganese–Cobalt 
and Lithium–Manganese-Oxide cathode materials) and the different 
operation of the electric motors and powertrain systems allows to 
generate a more informative dataset for training a data-driven model 
applied to BEVs. The US06, Federal Test Procedure 75 (FTP75), Heavy 
Duty Urban Dynamometer Driving Schedule (HDUDDS), Highway Fuel 
Economy Test (HWFET), Supplementary Federal Test Procedure (SC03) 
and Los Angeles 92 (LA92) are the driving cycles (DCs) used to simulate 
the different driving patterns for the collection of the dataset. Then, the 
generated data are adopted to train and test a support vector regressor 
(SVR), an artificial neural network (ANN), and a long short-term 
memory (LSTM) network, which are the most effective learning 
models adopted in the prior literature for the final SOC estimation. 

In addition to the generation of data to be adopted in learning al
gorithms for SOC estimation, our study involves a numerical analysis of 
the degradation of the capacity of the battery during the BEVs operation, 
where formation/decomposition of the solid electrolyte interphase (SEI) 
is considered as a possible source of degradation. For this purpose, we 
have developed an electrochemical model for the cylindrical and pouch 
cells used in Tesla S and Nissan Leaf battery packs, where the discharge 
is simulated by applying the current computed through the automotive 
simulations. The growth of the SEI film has been monitored in the 
simulations. In this way, it is possible to explore how the BEV operation 
affects the degradation of the battery, which is one of the most serious 
challenges to be addressed in order to improve the performance of the 
existing battery pack in BEV. 

2. Model description 

The computational approach proposed in this work to investigate the 
battery SOC in BEVs combines automotive simulations, multi-physics 
electrochemical and thermal model of LIBs and ML models. Automo
tive simulations have been performed using the Matlab/Simulink plat
form [39]. The Matlab/Simulink library called Powertrain Blockset 
[40], which allows to build data-driven models of automotive power
trains such as gasoline, diesel and electric systems, is used. The main 
advantage of using blocks implemented in the Powertrain Blockset li
brary is the customization of the parameters of the vehicle’s components 
using appropriate look-up tables. In our problem, the blocks have been 
parametrized considering the technical specifications of Tesla S and 
Nissan Leaf models available in the Tesla and Nissan websites [36,37]. 

The battery degradation has been investigated using an electro
chemical‒thermal model of LIBs built in Comsol Multiphysics [41]. 
Comsol Multiphysics is well suited for the investigation of battery 
degradation since it incorporates dedicated libraries which allow to 
simulate the effect of electrochemical parameters such as the size of the 
particles of the electrode materials and the phases concentrations in the 
active materials and phenomena such as the charge transfer reactions at 
the interfaces between the electrodes and the electrolyte. The LIBs 
modeling in Comsol Multiphysics has been also used to generate the 
lookup tables for the parametrization of the battery block in the Mat
lab/Simulink model of the BEV. 

Then, using the data generated through the BEVs automotive simu
lations, we have trained and tested an SVR, an ANN and an LSTM 
network on our augmented dataset comprising the characteristics of the 
BEVs’ components. The implementation of the learning algorithms has 
been performed using the Scikit-Learn [42] and TensorFlow [43] li
braries for ML and Deep Learning (DL) model development. The work
flow of the presented modeling framework is illustrated in Fig. 1. 

2.1. Automotive simulations 

Herein, the technical description of the automotive simulations of 
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BEV implemented in Matlab/Simulink is reported. The model simulates 
the dynamic behavior of the battery pack, the electric motor, the dif
ferential, the wheels and brakes system and the vehicle body with 
dedicated blocks from the Powertrain Blockset library. A more detailed 
description of each module is provided in Supplementary Information 
(section 2), while only a brief summary is presented here. 

The battery pack is implemented using the Datasheet Battery block 
[44], which uses an ECM with parameters estimated through look-up 
tables built by interpolating the discharge curves of the cells at con
stant C-rates and constant temperatures. Specifically, the discharge 
curves at different C-rates of 1C, 2C, 3C, 4C and 5C at a constant tem
perature of 293 K, and different temperatures of 263 K, 273 K, 293 K, 
313 K at the constant 1C have been simulated using the developed 
electrochemical‒thermal model in Comsol Multiphysics. We have 
considered the different characteristics of the cells adopted in the Tesla S 
and Nissan Leaf vehicles (i.e., cylindrical NMC 18650 cell and pouch 
LMO cell with a nominal capacity of 2.86 A h and 56.3 A h respectively). 
The Datasheet Battery block is implemented to take into account the 
series-parallel connections characterizing the battery packs of Tesla S (i. 
e., 96s86p) and Nissan Leaf (i.e., 96s3p). In this way, it is possible to 
simulate the discharge of the full battery packs of the two vehicles with a 
total energy of 100 kWh and 62 kWh, respectively. The block calculates 
the SOC using the Coulomb counting method. 

The permanent magnet synchronous motor (PMSM) of Tesla S and 
Nissan Leaf is simulated using the Mapped Motor block [45]. The block 
controls the output shaft torque Tshaft to match the reference torque 
demand Treference ​ demand. The shaft torque Tshaft is computed through the 
characteristic curves of the motor at the specific angular speed.FX The 
reference torque Treference ​ demand takes into account the positive torque 
needed during the acceleration of the vehicle Tacceleration and the 
breaking torque Tregenarative ​ breaking responsible for the recuperation of 
the SOC during deceleration. The acceleration torque is obtained from 
the characteristic curve of the motor at the angular speed FX, and it is 
multiplied by the percentual acceleration a[%] computed by the Pro
portional Integral (PI) controller to match the demand of the driving 
cycle. 

The powertrain system of the vehicle is simulated by the Limited Slip 
Differential [46] and the Longitudinal Wheel [47] blocks, which 
compute the torque corresponding to the left and right axles (i.e., 
Tleft ​ axle and Tright ​ axle) and the net longitudinal forces applied to the rear 
and front wheels (i.e., F ​ rear,x and Ffront,x). The friction between the 
wheels and the tarmac is also considered. The dynamic of the vehicle is 
simulated using the Vehicle Body 1DOF Longitudinal [48] block. The 
block models the vehicle as one degree-of-freedom rigid body in 

longitudinal motion parallel to the ground, by taking into account the 
net longitudinal forces applied to the wheels and the aerodynamic drag 
force Fdrag applied to the windshield due to the aerodynamic resistance 
of the air. The balance of forces involving the mass of the vehicle 
mvehichleallows us to compute the acceleration afeedbackand then the 
resulting speed sfeedback. The feedback speed sfeedback is dynamically 
controlled by the PI controller to match the reference speed sreference of 
the applied DC. 

A more detailed explanation of the construction of the look-up tables 
and differential equations characterizing each block is provided in the 
Mathworks websites dedicated to the Powertrain Blockset modules [40]. 
A schematic of the BEV model is illustrated in Fig. 2. 

2.2. Multi-physics electrochemical and thermal modeling of lithium-ion 
battery 

The objective of the multi-physics model is to characterize the 
electro-thermal behavior of the battery during BEV’s operation taking 
into account the degradation phenomena due to the SEI formation. The 
finite element method (FEM) is used to simulate the cylindrical (Tesla S) 
and pouch (Nissan Leaf) cells, with a P2D model [49] including a 
degradation sub-model due to the SEI formation/decomposition [50, 
51], combined with a 3D thermal model to compute heat propagation 
within the cells. Here, we describe the P2D electrochemical, the 
degradation and the thermal models implemented in Comsol 
Multiphysics. 

The P2D model describes the so-called repeat unit consisting of the 
two current collectors (both negative and positive), a negative electrode, 
electrolyte and positive electrode. Since the electrochemical model is 
described in the prior literature only an overview is given here. The cell 
model is based on a 1D continuum description of reaction and transport 
along electrodes, electrolyte and current collectors, plus an additional 
dimension in the electrode particle (P2D) [49]. Electrochemical 
charge-transfer reactions only occur at the interfaces of the electrodes 
and the electrolyte and are modeled using the Butler-Volmer equation 
[49]. 

The ionic charge balances and material balance in the electrolyte are 
modeled according to the equations for binary electrolytes. Electrons 
transport is not explicitly modeled due to the fast delivery to the current 
collector in comparison to the other processes in the battery. We use a 
homogenization approach (the Bruggeman relation) to model the 
transport properties in the porous electrode. Detailed definitions of 
symbols and additional equations for local current densities and voltage 
are given elsewhere [49]. 

Fig. 1. Workflow of the modeling framework presented in this work. Automotive simulations of BEV combined with multi-physics modeling of LIBs have been used 
to generate the proper training data for the estimation of the SOC using ML algorithms. Training data reflect the DC, the environmental conditions, and realistic car’s 
and battery’s characteristics. 
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The degradation model is used to simulate the behavior of the SEI 
during the BEV’s operation. The SEI is used in the model to simulate the 
increase of the potential losses due to the resistance of the growing film 
on the electrode’s particles. In addition, the electrolyte charge transport 
as a result of the reduction of the electrolyte volume fraction due to the 
SEI is considered. The SEI formation/decomposition is modeled using 
the parasitic current forming during this process and it is described by 
the following equation [52]: 

iloc,SEI = − (1 + GE)
Jexciloc,C,ref

exp
(

αηSEIF
RT

)

+ qSEI fJexc
iloc,C,ref

, (1)  

where, iloc,C,ref is the local current density at particular C-rate, GE is a 
dimensionless graphite expansion factor, Jexc is dimensionless exchange 
current density for the parasitic reaction, α is the transfer coefficient of 
the electrochemical reduction reaction, η is the overpotential, qSEI is the 
local accumulated charge due to the SEI formation, and f is a lumped 
nondimensional parameter based on the properties of the SEI film. 

The thermal model simulates the heat generation and propagation 
within the cell. The generation of heat inside the battery is mainly 
triggered by charge transport and (electro-)chemical reactions during 
charge/discharge cycles [53]. The contributions to the heat losses 
within the cell are classified as irreversible due to the charge transfer 
reactions, reversible due the entropic changes during the lithium 
intercalation and Ohmic due to the current conduction in the solid and 
electrolyte phases. Thus, the energy conservation law is: 

ρlCl
p
∂T
∂t

= kl
in

∂2T
∂x2 + kl

in
∂2T
∂y2 + kl

th
∂2T
∂z2 + Ql

irr + Ql
rev + Ql

ohm, (2)  

where ρ is the density of materials; Cp is the specific heat capacity, and 
kin and kth are the in-plane and through-plane thermal conductivity 
coefficients. The superscript ‘l’ in Eq. (2) indicates layer-specific prop
erties. The last three terms in Eq. (2) define different heat generation 
mechanisms as described above (irreversible, reversible and ohmic). The 
details of these heat sources are given in Refs. [54,55]. The boundary 
condition for Eq. (2) is the convective heat transport through all the 
surfaces facing the ambient environment. In this way it is possible to 
model the cooling system present in the battery pack of the BEV, which 
is paramount to keep the temperature of the cells within the operating 
range of 298–312 K (25–40 ◦C). The thermal model is directly coupled to 
electrochemical and degradation sub-models and solved iteratively. 

2.3. Machine learning models 

The modeling data developed with the combined automotive and 
electrochemical models of BEV and LIBs described in the previous sec
tions, have been used to train and test different ML models for the 
prediction of the battery’s SOC. Here, we first introduce the variables 
used as input (features). Then, we briefly present the learning models we 

have selected for the estimation of the SOC. 
The variables characterizing the battery are the discharging current, 

the voltage, the temperature and the SOC. The current, voltage and SOC 
variation is calculated by the battery block of the BEV model, while the 
temperature profile is computed by the thermal model of the cell. The 
powertrain of the system is included in the dataset considering the 
mechanical power delivered by the electric motor FX, the mechanical 
power transferred through the differential FX, the mechanical power 
transferred from the axles to the wheels FX, the mechanical power loss 
due to the rolling resistance FXand the mechanical power required for 
breaking the vehicle FX. Finally, we have considered the power loss due 
to the aerodynamic resistance of the wind. As a result, the time series of 
nine variables characterizing the vehicle operation have been combined 
to estimate the SOC. Adding the data related to the variation of the 
characteristics of each block provides a more comprehensive charac
terization of the vehicle dynamic and more informative dataset in 
respect to the case of using only the variables related to the battery cell 
(i.e., current, voltage and temperature). We have considered the 
learning algorithms belonging to the different categories described in 
section 2: SVR [26], ANN [28] and LSTM models [35]. Since an exten
sive description of SVR, ANN and LSTM models is reported in the 
literature, including reports regarding the application of these models in 
the estimation of SOC in BEV [34,38,43] only a brief summary is re
ported here. 

SVR is the counterpart of the Support Vector Machine (SVM) clas
sifier for the regression purpose. SVR predicts a target variable using a 
regression curve built upon an appropriate hyperplane, computed 
through a kernelized combination of the input variables. The linear 
kernel, the Gaussian kernel defined by the Radial Basis Function (RBF), 
the polynomial kernel of a predefined degree and Sigmoid kernel are 
typically used in SVM and SVR models. The data points which lie inside 
a hyperplane margin of a controlled width are called support vectors, 
and they are responsible for the final estimation of the target. The width 
of the margin is controlled by the hyperparameters comprising a regu
larization parameter C and a penalty slack variable ξ. The different 
kernels and values of the hyperparameters have been investigated using 
cross-validation to optimize the prediction of the SOC. 

An ANN decomposes the relationships between the input variables 
and a target through a sequence of algebraic linear combinations built 
upon a deep architecture of so-called hidden layers comprising several 
activated neurons. The input variables and the target represent the input 
and the output layers of the network. The coefficients of the linear 
combinations are called weights and bias and they are calculated 
through an iterative optimization process based on the backpropagation 
and gradient descent algorithms. In our problem, we have adopted an 
ANN characterized by an input layer comprising nine neurons repre
senting values of the nine input variables at a specific time t*, with 
hidden layer and neurons activated by the Rectified Linear Unit (ReLu) 
activation function and an output layer with a single neuron for the final 
SOC prediction (Fig. 3a). The proper number of hidden layers and 

Fig. 2. Schematic of the BEV model built in Matlab/Simulink using dedicated blocks from the Powertrain Blockset library. The model takes as input a driving cycle 
which dictates the reference speed of the vehicle sreference and it simulates the dynamic of the BEV driving and it calculates the corresponding SOC variation. 
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neurons, as well as the number of iterations of the learning process, have 
been selected to optimize the SOC estimation. The Adam optimizer and 
the mean squared error (MSE) loss function have been used to compile 
the ANN model. 

LSTM belongs to the RNN class of DL models designed for the esti
mation of time series with recurrences. An RNN model predicts the value 
of the target at a specific time step by considering the data belonging to a 
prior time sequence of a given temporal length l. The time series esti
mation is performed by constructing a deep network where multiple 
ANNs are built for each single time step of the sequence and concate
nated to each other. The hidden layers of every single ANN are referred 
as hidden states of the RNN. LSTM is an optimized RNN, developed to 
address the vanishing gradient problem of standard RNN. LSTM com
bines the hidden states of the RNN with dedicated layers called cell 
states able to filter the non-useful information for the target prediction 
from the so-called short memory (close in time to the target) and the 
long memory (far in time from the target) of the network. In our prob
lem, the values of the nine variables FX in the time sequence [t*

n−l, 
… t*

n−2, t*n−1] of length l up to the time t*
n−1 are used to predict the SOC at 

the time t*n (Fig. 3b). Similar to ANN, the Adam optimizer and the MSE 
loss function has been used to compile the LSTM network. As in the case 
of SVR and ANN, the hyperparameters of the model (the length l of the 
time sequence and the optimal architecture of the LSTM network) have 
been investigated to find the most accurate SOC prediction. 

Finally, the performance of the models has been evaluated by 
considering the MSE between the estimated and the true SOC, which is a 
metric typically used in regression problems: 

MSE =

∑N
i=1

(
SOCtrue,i − SOCpredicted,i

)

N

2

(3)  

Nis the total number of data points in the dataset, while SOCtrue,i and 
SOCpredicted,i are the true and the predicted values of the SOC for the 
sample i. 

3. Results and discussion 

In this section, we present as first the development of the simulated 
data. Then, we illustrate the simulations of the SOC decay in BEV as a 
result of the SEI degradation. Finally, we report the prediction of the 
SOC using ML models trained and test on the modeling data. 

3.1. Automotive simulations and datasets creation 

We illustrate here the computed profiles of the variables character
izing the operation of the BEV, modeled using our proposed multi- 
physics approach. The BEV automotive simulations are performed 
considering several repetitions of the six DCs US06, FTP75, HDUDDS, 
HWFET, SC03 and LA92 for both the Tesla S and Nissan Leaf models. 
Using many DCs allows us to model different driving patterns and to 
provide a broader set of configurations for a data-driven model. For 
example, US06 driving cycle represents an aggressive and high speed/ 
acceleration driving behavior with rapid speed fluctuations. On the 
other hand, HWFET has been developed to estimate the highway fuel 
economy rating, while FTP75 measures emissions in urban 
environments. 

For each driving cycle, the number of repetitions is considered ac
cording to the EPA driving range for Tesla S and Nissan Leaf which are 
391 miles (630 km) and 226 miles (363 km), respectively. In this way, it 
is possible to simulate the whole driving period before the battery pack 
needs to be recharged. The reliability of our automotive modeling is 
tested by evaluating the battery SOC drop: if the battery is empty (SOC 
consistently below 10%) at the end of the simulation when the 
maximum driving range is achieved, it means that the automotive model 
is reliable in representing the driving conditions of the two vehicles. For 
all the applied driving cycles, the SOC drops to values between 4% and 
8% approximately, thus we consider that our BEV model is accurate in 
simulating the Tesla S and Nissan Leaf driving conditions. A time step of 
1 s is considered, meaning that the number of datapoints simulated for a 
specific driving cycle is equal to the time in seconds required to 
discharge the battery. For all the cases, the simulations are performed at 
a constant ambient temperature of 298 K (25 ◦C). However, our BEV 
model is amenable to different values of the input environmental tem
perature, since the battery block has been parametrized using discharge 
curves at constant temperatures in the range 253K–313K, as shown in 
Figure S1 in Supplementary Information. In Figure S2 of Supplementary 
Information we have included the profiles of the SOC, the voltage and 
the applied current for environmental temperatures of 253K, 298K and 
313K. For brevity, we report here only the results obtained by applying 
the FTP75 driving cycle. 

Fig. 4 shows the discharge profiles simulated for the FTP75 driving 
cycle. As it is illustrated, the discharge curves for the two vehicles are 
different. Fig. 4b shows that the Nissan Leaf battery pack is discharged in 
approximately 11 h, while Tesla S can be driven for approximately 18 h 
following the FTP75 speed profile. The shapes of the voltage profiles 
shown in Fig. 4c are different because of the electrochemical behavior of 

Fig. 3. Artificial Neural Network and Recurrent Neural Network for SOC estimation. The ANN takes as inputs the values of the variables characterizing the dynamic 
of the BEV computed at each time t* from the automotive simulation. The target variable is the value of the SOC at the timet*. (a) The RNN is built by combining 
many deep neural networks for each time t*. (b) The sequence of l observations [FX, …,FX,FX] is used to predict the SOC at the time t*

n . 
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Fig. 4. Discharge characteristics simulated by applying the FTP75 driving cycle. (a) Speed profile of the FTP75 driving cycle. (b) Battery SOC with a zoom-in on the 
first repetition of FTP75 for the Tesla S and Nissan Leaf BEV models. (c) Discharging voltage and (d) discharging current for the Tesla S and Nissan Leaf BEV models. 

Fig. 5. Discharging current for a single repetition of the FTP75 driving cycle for (a) a cylindrical NMC cell of Tesla S battery pack and (b) a LMO pouch cell of Nissan 
Leaf battery pack. (c) Profile of the mechanical power, FX, delivered by the electric motor and (d) the power loss, FX, due to the aerodynamic resistance of the air 
during the first repetition of the FTP75 driving cycle. 
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the NMC cylindrical cells and LMO pouch cells characterizing the bat
tery packs of the two vehicles. The discharging current of the Tesla S and 
Nissan Leaf presented in Fig. 4d overlap since the current profile is 
dictated by the acceleration, which depends exclusively on the profile of 
the applied driving cycle that is the same in the two cases. Tesla S has a 
slightly higher regenerative current (negative values of the current 
profile) since the torque responsible for the SOC recuperation depends 
on the characteristics of the powertrain system which is different in the 
two vehicles. However, the current flowing in each single cell of the 
battery pack is very different for the two vehicles. Since the number of 
groups of cells wired in parallel is 86 and 3 for the battery packs of Tesla 
S and Nissan Leaf, respectively, a less intense current flows through a 
Tesla S cell compared to Nissan Leaf. 

Fig. 5a and b illustrate the cell’s current profile for a single repetition 
of the FTP75 driving cycle for the two distinct cases of TeslaS and Nissan 
Leaf. The values of the cell’s discharging current are obtained by 
dividing the current profile shown in Fig. 4d by the number of groups of 
cells in parallel. 

In Fig. 5c and d, the profiles of the mechanical power delivered by 
the electric motor FX and the power losses due to the aerodynamic 
resistance of the air, FX, are illustrated. The profiles for the two vehicles 
vary due to the differences in technical characteristics of each compo
nent. The power delivered by Tesla S motor is higher compared to Nissan 
Leaf because the torque reported in the characteristic curve of Tesla S is 
more intense than the torque offered by Nissan Leaf (i.e., 660 Nm vs. 340 
Nm) in the operating window of the angular speed corresponding to the 
driving conditions. Similarly, the power loss, FX, of Nissan Leaf slightly 
exceeds Tesla S because of the more extended surface of the windshield 
(i.e., 2.58 m2 for Nissan Leaf and 2.34 m2 for Tesla S) and the higher drag 
coefficient (i.e., 0.28 for Nissan Leaf and 0.24 for Tesla S). Since dif
ferences are present in the profiles related to the powertrain systems of 
the two vehicles, it is important to take them into account in training a 
data driven model for the prediction of the SOC. 

The SOC is highly dependent on the operating temperature of the 
cell. In the prior literature, the temperature data are collected using 

thermocouples placed in contact with the cell [30]. Although this 
approach is the most straightforward in the acquisition of experimental 
data, it allows the user to record only the surface temperature of the cell, 
which is always lower compared to the bulk region. In particular, due to 
a large cell area, the surface of the cell is thermally stable during the 
discharge, so the experimental data do not allow to fully capture the 
temperature differences that exist between the cases of a sudden accel
eration (high C-rate) of the vehicle to a high driving speed and a slower 
and stable (low C-rate) driving behavior. The modeling approach pro
posed in this work allows to simulate the temperature distribution 
within the core of the cylindrical NMC and pouch LMO cells of Tesla S 
and Nissan Leaf when a current demand corresponding to a DC is 
applied. In addition, the thermal model allows also to simulate the effect 
of the convective cooling adopted by the thermal management system of 
the BEV to control the temperature of the battery pack. The variation in 
time of the average temperature of the cylindrical NMC cell during the 
first iteration of the FTP75 driving cycle is shown in Fig. 6a, whereas 
Fig. 6b illustrates the contours of the temperature corresponding to four 
different levels of current demand (low demand at t = 100 s, high de
mand at t = 200 s, moderate demand at t = 260 s, intermediate demand 
at t = 360 s). 

At t = 100 s, the vehicle is accelerated to 22 mph (Fig. 4a), and a 
maximum temperature of 302 K (28 ◦C) is achieved in the core of the 
cell. When the vehicle is accelerated to the highest speed of 58 mph (t =
200 s), the maximum temperature achieved within the cell is 320 K 
(47 ◦C). However, from Fig. 6a it can be noted that the average tem
perature of the cell remains below 313 K (40 ◦C), so the cell fully 
operates within an optimal range of operating temperature estimated for 
LIBs [56]. At t = 260 s and t = 360 s the vehicle is accelerated to 38 mph 
and 30 mph respectively, corresponding to an average temperature of 
305 K (32 ◦C) and 309 K (36 ◦C). In addition, it can be noted that for a 
low and moderate current demand the maximum temperature is located 
in the separator region since the main contribution to the heat losses is 
given by the ohmic resistance of the electrolyte. On the other hand, with 
an increase in current demand, the main contribution to the heat losses 

Fig. 6. (a) Temperature variation during the first repetition of the FTP75 DC of the cylindrical NMC cell together with (b) the bulk temperature distribution for four 
time-steps corresponding to the different levels of current demand during driving. 

M. Ragone et al.                                                                                                                                                                                                                                



Journal of Power Sources 483 (2021) 229108

8

is given by the irreversible term due to the electrochemical reactions 
within the electrodes, so the maximum temperature is located in the 
electrode’s region. Our approach allows us to provide the data of the 
fluctuating temperature within the cell, which is more informative than 
just the temperature of the surface which remains more or less constant 
during the discharge of the cell. 

3.2. Battery degradation 

In this section, the analysis of the capacity fade due to the battery 
degradation is presented. In particular, the growth of the SEI thickness 
and the SOH are investigated. Different DCs are applied to discharge a 
battery, while charging is performed at 1 C-rate. Among different aging 
mechanisms, the SEI film formation is one of the most harmful sources of 
loss of cyclable lithium in LIBs [57,58]. Such a passivation layer pre
vents further decomposition of the electrolyte by blocking the electron 
transfer and exfoliation of the graphite in the negative electrode, but it 
could be also the source of undesired phenomena such as anisotropic 
diffusivity of the Lithium ions to the electrode surface [59] which limits 
the performance of the battery and causes a potential failure. The for
mation of the SEI begins at the first charge cycle of the battery, and it 
continues to evolve during cycling, with a growth of the thickness from 
few nm to tens of nm. The SEI behavior is also highly dependent on the 
operating temperature of the cell, in particular at high temperatures for 
which the transformation of certain components and reaction with the 
electrolyte or active material occurs. 

We report here the results obtained by simulating 2000 repetitions of 
a full charge-discharge life cycle (corresponding approximately to two 
years of operation) using the degradation electrochemical model of LIBs 
reported in section 2.2. The simulation is performed considering the 
ambient temperature of 298K (25 ◦C). The purpose of this study is to 

investigate the growth of SEI in the cylindrical NMC cell of Tesla S and in 
the pouch LMO cell of Nissan Leaf subjected to a discharging current 
corresponding to the BEV operation. The calculation of the thickness of 
the SEI layer and the SOH are implemented according to the mathe
matical model for SEI formation reported in Ref. [52]. In particular, the 
SEI thickness and the SOH are related to qSEI, the capacity loss as a 
result of the side reactions generating the SEI. The charging of the cell is 
simulated at a constant current of 1C, while the discharge is modeled 
considering the discharging current for the FTP75 DC. 

During the first charge-discharge cycle, the SEI grows up to around 
0.014 nm (Fig. 7a), whereas an expansion up to around 30 nm is 
observed after 2000 cycles (Fig. 7b). Also, in Fig. 7a it could be noted 
that during charging at 1C, a steeper growth of the SEI is observed 
compared to the charging at low C-rates, which is induced by the 
recuperation current of the FTP75 protocol. The degradation of the 
battery over 2000 cycles due to SEI leads to a decay of the SOH up to 
14% (Fig. 7c), meaning that the battery pack need to be replaced after 
this operation period. The values of the SEI thickness and the SOH 
shown in Fig. 7b and c correspond to values at the end of a complete 
charge-discharge cycle, like the one reported in Fig. 7a. Since the growth 
of the SEI and the capacity loss are approximately constant in each cycle, 
the variations of the values of the SEI thickness and SOH at end of each 
cycle exhibit a linear behavior. These profiles should not be confused 
with temporal variation during each cycle, which are indeed non-linear 
as shown in Fig. 7a. The degradation due to SEI is slightly higher for 
Tesla S compared to Nissan Leaf. Such small discrepancy is due to the 
different chemistry charactering the battery packs of the two vehicles. 

3.3. Data preprocessing 

The simulated data obtained with the modeling approach discussed 

Fig. 7. Simulation of battery degradation for 2000 repetitions of charge-discharge life cycles (2 years of operation) for the FTP75 DC. (a) Growth of the SEI film 
during the first cycle of discharge. (b) Growth of the SEI thickness and (c) SOH decay over the 2000 life cycles. For each of the 2000 cycles, the values at the end of 
the discharge cycle are reported. 
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in the previous section need to be preprocessed in an appropriate 
manner before being fed to ML models. In this section the methodology 
for the preparation of the training and test datasets is presented. 

The BEV model of Tesla S can be simulated for more repetitions of the 
different driving cycles compared to Nissan Leaf, as it is shown in 
Fig. 4b. Thus, Tesla S datasets have almost the double number of data 
points compared to Nissan Leaf datasets. The higher size of the datasets 
could bias a data driven model to overfit the Tesla S configuration, 
resulting in lower predicting capabilities of the SOC for Nissan Leaf. In 
order to prevent this issue, the Tesla S datasets is filtered by a random 
and uniform removal of datapoints until the datasets have an equal 
number of samples. Then, each variable is scaled using a Gaussian scaler, 
which performs a standardization to a null mean and unit variance. 
Features scaling is a well-established technique in statistics, which has 
been proven to be beneficial in the application of ML and DL models 

x− =
x − u

s
(4) 

Equation (4) describes the Gaussian standardization, where to the 
feature x is removed its mean value u and the result is divided by the 
standard deviation s. 

Different approaches could be used to create the training and vali
dation datasets from the simulated data characterizing the six driving 
cycles for the Tesla S and Nissan Leaf. An approach could be to combine 
all the twelve datasets and randomly split 70% of the data for training 
and 30% for test (these are the percentages typically considered to pick 
the training and test datasets in ML). A second approach could be to use 
the first 70% of the total repetitions of the driving cycles for training and 
the last 30% for the test. Compared to the previous case, this approach 
allows to preserve the temporal evolution in the training and test 
datasets. A third approach is to select certain DCs for training and 
completely different DCs for the validation. A fourth and similar 
approach applied to our proposed modeling datasets is to use the 
simulated data of Tesla S for training and Nissan Leaf data for test (or 
vice-versa). Compared to the first two methods, the third and fourth 
methods are useful to evaluate the extrapolation capabilities of the 
models, since distinct configurations in terms of DCs and BEVs are used 
for training and test. In particular, the fourth method allows to inves
tigate if a data driven model can extrapolate in the case of a different 
chemistry of the battery pack, which to our knowledge is a task still not 
addressed in the prior literature. 

In this work, we first adopt distinct DCs to create the training and test 
datasets (Case 1). US06, HDUDDS, SC03 and LA92 are used for training, 
while FTP75 and HWFET are considered for test. It should be noted that 
there is not a particular reason behind the choice of the specific DC to 
use for the training and test datasets, and the same analysis could be 
performed by selecting other DCs’ combinations. Then, we employ the 
Tesla S simulated data for training and the Nissan Leaf simulated date 
for test (Case 2). The formation of the training and test datasets is 
summarized in Table 1. 

3.4. State-of-charge estimation 

Here, we present the results of the estimation of the SOC using the 
considered learning algorithms applied to the datasets created with our 
proposed modeling framework. Through a 10-fold cross-validation it is 
found that the optimal configuration of the SVR is reported using a 
linear kernel with values of the regularization parameter C and the slack 
variable ξ equal to 0.1. Similarly, the ANN built using a single hidden 
layer comprising 128 neurons and trained for 500 epochs using a batch 
size of 32 samples provides the most accurate SOC estimation. Finally, 
for the LSTM network, 512 are used for the hidden states and a time 
sequence length l of 500 time-steps is employed. Usually, increasing the 
depth in time of the input time sequence reduces the error in the target 
estimation. For instance, Chemali et al. [35] found that for their LSTM, 
increasing the length of the time sequence from 250 to 500 leads to a 
reduction of the mean absolute error (MAE) by a half, but moving from 
500 to 1000, provides only a 15% of the mean absolute error (MAE). The 
LSTM is trained for 200 epochs. It should be noted that similar as in any 
deep learning analysis, the values of the hyperparameters are always a 
trade-off between the performance, the number of epochs required for 
the training and the computational time. 

Fig. 8a–c shows that for Case 1, all the models have satisfactory 
extrapolation capabilities when predicting the SOC for the FTP75 
driving cycle which is not included in the training dataset. The less ac
curate estimation is reported by the SVR (MSE = 1.639 for Tesla S and 
MSE = 1.319 for Nissan Leaf), while ANN (MSE = 0.045 for Tesla S and 
MSE = 0.033 for Nissan Leaf) and LSTM (MSE = 0.082 for Tesla S and 
MSE = 0.064 for Nissan Leaf) exhibit similar performances. Table 2 
reports the values of the MSE for the entire training dataset and test 
datasets built for Case 1. 

The analysis for Case 2 highlights if the models can extrapolate in the 
case of a different chemistry characterizing the battery pack and the 
different technical characteristics of the vehicles such as the electric 
motor and the powertrain system. For the sake of comparison with Case 
1, the value of the hyperparameters of the models and the architectures 
of the ANN and LSTM are not changed. Fig. 8-d-e-f reveal that the test 
MSE of Nissan Leaf is higher than the training MSE of Tesla S for all the 
three models. In the zooming box on the first FTP75 cycle, it can be 
noted an accurate fitting for Tesla S while there is remarkable diver
gence between the estimated and the true profiles for Nissan Leaf. This is 
particularly evident for SVR, which provides a high MSE value also for 
the training data of Tesla S. Table 3 reports the training and test results 
obtained for the whole training and test datasets. For all the three 
models, it can be noted that the test MSE obtained on Nissan Leaf data is 
higher than the training MSE obtained on Tesla S data by two orders of 
magnitude. Overall, the extrapolation on Nissan Leaf dataset is still 
satisfactory; however, it is much less accurate than Tesla S compared to 
the results obtained with the datasets of Case 1. 

The analysis reported in Case 2 remarks the importance of consid
ering different chemistries in the training of a data driven model, since a 
model trained on a particular chemistry is not able to perform with the 
same level of accuracy on a different chemistry. 

4. Summary and conclusions 

In this work, a computational study of LIBs SOC estimation in BEV 
combining automotive simulations, electrochemical-degradation- 
thermal modeling of battery and ML algorithms is presented. The test 
cases are the battery packs from Tesla S and Nissan Leaf models 
currently available in the BEV market. The automotive simulations 
performed for six EPA DCs, (i.e., FTP75, US06, HWFET, HDUDDS, SCO3 
and LA92) have allowed us to simulate the variation of the discharging 
current flowing in the NMC cylindrical cells of Tesla S and LMO pouch 
cells of Nissan Leaf battery packs, as well as of the variables related to 
the powertrain system. The consistency of our proposed automotive 
modeling is demonstrated by the full discharge of the battery pack 

Table 1 
Two different methods to create the training and test datasets from the twelve 
simulated datasets of the Tesla S (TS) and Nissan Leaf (NL) models.  

Simulated Dataset Case 1 Case 2 

FTP75 TS Test Training 
FTP75 NL Test Test 
US06 TS Training Training 
US06 NL Training Test 
HWFET TS Test Training 
HWFET NL Test Test 
HDUDDS TS Training Training 
HDUDDS NL Training Test 
SC03 TS Training Training 
SC03 NL Training Test 
LA92 TS Training Training 
LA92 NL Training Test  
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corresponding to the driving range estimated by EPA for Tesla S and 
Nissan Leaf. The simulated current is used to model the thermal 
behavior and the degradation of the battery during the operation of the 
vehicle using the developed electrochemical model. This work is mainly 
focused on the Tesla S and Nissan Leaf models which employ NMC and 
LMO cells respectively; however, the proposed modeling framework is 
amenable to other types of BEVs characterized by different chemistries. 
Applications of such different chemistries will be considered in future 
publications. 

The results of the computed temperature distribution within a cell 

match with the operating window recognized for BEV operation, serving 
as a further validation of our coupled automotive-electrochemical 
model. A capacity loss around 14% due to degradation (i.e., the 
growth of the SEI) is simulated for a life-cycle corresponding to two 
years of operation, which is a realistic estimation compared to the 
practical aging conditions. Although our model is capable of reproduc
ing a realistic capacity loss profile due to the SEI formation/decompo
sition, such models require detail material information, which are rarely 
available for commercial cells. Thus, there is a necessity to experimen
tally measure such properties, which could improve the prediction of 
our model. Next, the modeling data reflecting real-life behavior of BEVs, 
have been employed to train and test an SVR, an ANN and an LSTM 
networks for the prediction of the SOC. 

Compared to the attempts reported in the prior literature, a focus of 
this work is to feed ML models with more realistic data characterizing 
the BEV operation compared to the experimental data collected through 
discharge tests of a cell performed in a laboratory. A second goal is to 
allow a data driven model to capture the relationships between the SOC 
and variables related to the vehicle’s dynamics, such as the mechanical 
power in the powertrain system and the aerodynamic resistance of the 
wind, in addition to the cell variables (i.e., current, voltage and tem
perature) adopted in the prior literature. As a first case, we have 
considered the extrapolation in the SOC estimation by training the 
models on selected driving cycles and testing on other unseen driving 
cycles. Then, we have investigated a second extrapolation case where 
the Tesla S data have been used for training while Nissan Leaf data have 
been used for test. Overall, the adopted models offer a satisfactory 
estimation of the SOC, where a more precise prediction is observed by 

Fig. 8. SOC estimation for the FTP75 driving cycles obtained by training and testing the models on the datasets created by DC selection (Case 1). Prediction of the 
SOC for Tesla S (blue color) and Nissan Leaf (red color) using (a) SVR, (b) ANN, and (c) LSTM. SOC estimation for the FTP75 driving cycles obtained by training and 
testing the models on the datasets created by BEV selection (Case 2). Prediction of the SOC for Tesla S and Nissan Leaf using (d) SVR, (e) ANN, and (f) LSTM. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 2 
Values of the training and test MSE reported by the SVR and ANN for the whole 
training and test datasets created by DC selection (Case 1).  

Model Training MSE Test MSE 

SVR 1.963×10−3 2.038×10−3 

ANN 3.379×10−5 1.191×10−4 

LSTM 7.748×10−4 7.653×10−4  

Table 3 
Values of the training and test MSE reported by the SVR and ANN for the whole 
training and test datasets created by BEV selection (Case 2).  

Model Training MSE Test MSE 

SVR 3.535×10−3 5.636×10−1 

ANN 7.615×10−5 1.031×10−3 

LSTM 7.959×10−5 1.397×10−3  
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ANN and LSTM compared to SVR. Comparing the two cases, it has been 
found that a more precise extrapolation is obtained by applying the 
models on unseen driving cycles compared to an unseen BEV. This 
finding indicates that an accurate SOC estimation using data driven 
approaches has to be supported by the retrieval of training data 
comprehensive enough of different BEV configurations, which is the 
primary objective of this work. Although this report is mainly focused on 
the estimation of the battery’s SOC, the proposed multi-physics 
modeling framework for the generation of realistic training data could 
be extended to the boosting of ML models in other applications of in
terest in BEV’s research, such as the impact of the driving conditions on 
the triggering of thermal runaway or on the internal chemistry of battery 
pack. 
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