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ABSTRACT

State-of-charge (SOC) estimation in a lithium-ion battery (LIB) is a crucial task of the battery management system
(BMS) in battery electric vehicle (BEV) applications. In this work, we propose a modeling framework for SOC
estimation using different machine learning (ML) methods, i.e. support vector regressor (SVR), artificial neural
network (ANN), and long-short term memory (LSTM) network. The necessary training data have been developed
using Matlab/Simulink automotive simulations of BEV, integrated with an electrochemical Comsol Multiphysics
model of LIBs. The developed multi-physics model of BEV and LIBs operation allows to investigate the effect of
driving conditions on the electrochemical and degradation (i.e., the solid electrolyte interphase — SEI — formation
and decomposition) processes occurring inside batteries of different chemistries adopted in the Tesla S and
Nissan Leaf BEVs. Our study remarks also the importance of taking into account the different components of BEV
in the development of informative datasets, which are required for the implementation of learning algorithms for
SOC evaluation. Thus, the proposed work establishes a basis for the generation of realistic training data based on
simulations of BEV and LIBs dynamic response, which allows a more precise SOC estimation based on data-

driven approaches.

1. Introduction

Global warming is recognized worldwide as one of the most critical
challenges nowadays. The emission of tons of CO» gas during the
operation of vehicles powered by internal combustion engines is one of
the most harmful sources of environmental pollution in urban envi-
ronments. To address these problems, the automotive industry is
focusing more attention on electric vehicles [1], which are capable of
integrating an electric motor as a propulsion system. Battery electric
vehicles (BEVs) are particularly appealing due to the complete absence
of a combustion engine and the usage of a battery pack as the primary
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energy source for the powertrain of the vehicle [2]. Nickel-metal hybrid
(NiMH), nickel-cadmium (NiCd), lead-acid and lithium-ions (LIBs) are
battery technologies typically adopted in automotive industry [3]. In
particular, depending upon the chemistry, LIBs are capable of delivering
high energy density or high power density and they have long lifetime
and reduced cost compared to other technologies [4].

The functionality of LIBs in BEVs is dictated by the battery man-
agement system (BMS). The BMS is a collection of hardware (i.e., sen-
sors, controllers, actuators, etc.) and software, which equips the battery
pack in BEVs and it is responsible for enhancing its safety, protecting its
individual cells from damage, increasing its efficient usage and
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extending its lifespan [5]. One of the main tasks of the BMS is to monitor
the state-of-charge (SOC) and the state-of-health (SOH) of the battery
pack and to provide immediate intervention in the case of abnormal
behavior. The evaluation of the online SOC is a challenging task, mainly
because of the non-linearities of the processes that characterize the
electrochemical behavior of the battery.

Several methods have been developed for SOC estimation in BEVs
and they can be divided into different categories [6-8] such as con-
ventional methods, model-based estimations methods, adaptive filtering
methods, non-linear observers and learning algorithms. Conventional
methods include open-circuit voltage (OCV) [9], electromotive force
(EMF) [10], Coulomb counting [11] and internal resistance [12].
Model-based estimation methods are categorized as equivalent circuit
models (ECM) [13], reduced-order models (ROM) [14], state-space
models [15], electrochemical models (EM) [16] and electrochemical
impedance spectroscopy models (EISM) [17]. On the other hand, the
adaptive filter algorithm methods, also known as Bayesian frameworks,
include Kalman Filters (KF) [18], Extended Kalman Filters (EKF) [19],
Unscented Kalman Filters (UKF) [20] and Adaptive Unscented Kalman
Filters (AUKF) [21]. Other approaches are non-linear observers methods
[22], bi-linear interpolation (BI) techniques and particle filter (PF)
method [23]. Learning algorithms for SOC estimation such as fuzzy logic
(FL) [24], genetic algorithm (GA) [25], and machine learning (ML)
[26-35], form a special group of methods, since they do not involve
parameters estimation, modeling of physical processes within the bat-
tery or its dynamic states. In fact, they exclusively rely on learning the
non-linearities of the processes occurring within a cell through available
training data of the battery characteristics (e.g., current, voltage and
temperature) collected during laboratory tests. The state of knowledge
of the application of ML models for battery’s SOC estimation is further
reviewed and analyzed Supplementary Information.

Despite the success in demonstrating the effectiveness of the data-
driven models for the prediction of the SOC, the bottleneck of these
approaches is that the data collected through laboratory experiments
could not be fully representative of practical BEVs operation. First, the
discharge is performed for few cells or even for a single cell, while a BEV
is characterized by a battery pack comprising several modules of cells
connected in series and in parallel. The full discharge of a cell in a
laboratory results in a limited number of hours of operation, and it
consequently turns into a reduced driving range compared to the dis-
tance that can be achieved by the BEVs currently used on the market. For
example, the Environmental Protection Agency (EPA) estimated that the
Tesla S model is capable to cover a distance of 391 miles (630 km) [36]
before recharging the battery, while Nissan Leaf has a driving range of
226 miles (363 km) [37]. As a second reason, discharging a cell in a
laboratory does not allow to take into account the characteristics of
other components of the vehicle such as the electric motor, the power-
train system or external conditions like the aerodynamic resistance of
the air, which are dynamically coupled with the battery pack in the
operation of the BEV and they consequently impact the discharge of the
cell. Last but not least, in almost all the works reported in the prior
literature, the data are collected from single cell chemistry. Since the
relationship between the SOC and the battery characteristics is highly
dependent on the electrochemical process and the reactions occurring
inside the cell, a model trained on data obtained from particular
chemistry cannot be able to predict accurately the SOC of a cell for a
different chemistry and training should be repeated.

In order to address these challenges, in this work we propose a multi-
physics modeling framework to generate realistic training data for
learning-based techniques applied to SOC estimation in BEVs. The
developed model of BEV allows to compute the battery characteristics
and a SOC with a high level of fidelity to practical driving conditions.
Additional variables including the temporal variation of the mechanical
power delivered by the electric motor and the power loss due to the
aerodynamic resistance of the air are combined with the traditionally
used electric current, voltage, and temperature to predict the SOC. The
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method has been applied to the Tesla S and Nissan Leaf models available
in the BEV market, in order to obtain data reflecting up-to-date appli-
cations. Modeling the different chemistries of the cells characterizing
the battery packs of the two vehicles (i.e., Nickel-Manganese—Cobalt
and Lithium-Manganese-Oxide cathode materials) and the different
operation of the electric motors and powertrain systems allows to
generate a more informative dataset for training a data-driven model
applied to BEVs. The US06, Federal Test Procedure 75 (FTP75), Heavy
Duty Urban Dynamometer Driving Schedule (HDUDDS), Highway Fuel
Economy Test (HWFET), Supplementary Federal Test Procedure (SC03)
and Los Angeles 92 (LA92) are the driving cycles (DCs) used to simulate
the different driving patterns for the collection of the dataset. Then, the
generated data are adopted to train and test a support vector regressor
(SVR), an artificial neural network (ANN), and a long short-term
memory (LSTM) network, which are the most effective learning
models adopted in the prior literature for the final SOC estimation.

In addition to the generation of data to be adopted in learning al-
gorithms for SOC estimation, our study involves a numerical analysis of
the degradation of the capacity of the battery during the BEVs operation,
where formation/decomposition of the solid electrolyte interphase (SEI)
is considered as a possible source of degradation. For this purpose, we
have developed an electrochemical model for the cylindrical and pouch
cells used in Tesla S and Nissan Leaf battery packs, where the discharge
is simulated by applying the current computed through the automotive
simulations. The growth of the SEI film has been monitored in the
simulations. In this way, it is possible to explore how the BEV operation
affects the degradation of the battery, which is one of the most serious
challenges to be addressed in order to improve the performance of the
existing battery pack in BEV.

2. Model description

The computational approach proposed in this work to investigate the
battery SOC in BEVs combines automotive simulations, multi-physics
electrochemical and thermal model of LIBs and ML models. Automo-
tive simulations have been performed using the Matlab/Simulink plat-
form [39]. The Matlab/Simulink library called Powertrain Blockset
[40], which allows to build data-driven models of automotive power-
trains such as gasoline, diesel and electric systems, is used. The main
advantage of using blocks implemented in the Powertrain Blockset li-
brary is the customization of the parameters of the vehicle’s components
using appropriate look-up tables. In our problem, the blocks have been
parametrized considering the technical specifications of Tesla S and
Nissan Leaf models available in the Tesla and Nissan websites [36,37].

The battery degradation has been investigated using an electro-
chemical-thermal model of LIBs built in Comsol Multiphysics [41].
Comsol Multiphysics is well suited for the investigation of battery
degradation since it incorporates dedicated libraries which allow to
simulate the effect of electrochemical parameters such as the size of the
particles of the electrode materials and the phases concentrations in the
active materials and phenomena such as the charge transfer reactions at
the interfaces between the electrodes and the electrolyte. The LIBs
modeling in Comsol Multiphysics has been also used to generate the
lookup tables for the parametrization of the battery block in the Mat-
lab/Simulink model of the BEV.

Then, using the data generated through the BEVs automotive simu-
lations, we have trained and tested an SVR, an ANN and an LSTM
network on our augmented dataset comprising the characteristics of the
BEVs’ components. The implementation of the learning algorithms has
been performed using the Scikit-Learn [42] and TensorFlow [43] li-
braries for ML and Deep Learning (DL) model development. The work-
flow of the presented modeling framework is illustrated in Fig. 1.

2.1. Automotive simulations

Herein, the technical description of the automotive simulations of
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Learning Algorithms
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Fig. 1. Workflow of the modeling framework presented in this work. Automotive simulations of BEV combined with multi-physics modeling of LIBs have been used
to generate the proper training data for the estimation of the SOC using ML algorithms. Training data reflect the DC, the environmental conditions, and realistic car’s

and battery’s characteristics.

BEV implemented in Matlab/Simulink is reported. The model simulates
the dynamic behavior of the battery pack, the electric motor, the dif-
ferential, the wheels and brakes system and the vehicle body with
dedicated blocks from the Powertrain Blockset library. A more detailed
description of each module is provided in Supplementary Information
(section 2), while only a brief summary is presented here.

The battery pack is implemented using the Datasheet Battery block
[44], which uses an ECM with parameters estimated through look-up
tables built by interpolating the discharge curves of the cells at con-
stant C-rates and constant temperatures. Specifically, the discharge
curves at different C-rates of 1C, 2C, 3C, 4C and 5C at a constant tem-
perature of 293 K, and different temperatures of 263 K, 273 K, 293 K,
313 K at the constant 1C have been simulated using the developed
electrochemical-thermal model in Comsol Multiphysics. We have
considered the different characteristics of the cells adopted in the Tesla S
and Nissan Leaf vehicles (i.e., cylindrical NMC 18650 cell and pouch
LMO cell with a nominal capacity of 2.86 A h and 56.3 A h respectively).
The Datasheet Battery block is implemented to take into account the
series-parallel connections characterizing the battery packs of Tesla S (i.
e., 96s86p) and Nissan Leaf (i.e., 96s3p). In this way, it is possible to
simulate the discharge of the full battery packs of the two vehicles with a
total energy of 100 kWh and 62 kWh, respectively. The block calculates
the SOC using the Coulomb counting method.

The permanent magnet synchronous motor (PMSM) of Tesla S and
Nissan Leaf is simulated using the Mapped Motor block [45]. The block
controls the output shaft torque Ty, to match the reference torque
demand Treference demand- The shaft torque Tghaf is computed through the
characteristic curves of the motor at the specific angular speed.FX The
reference torque Treference demand takes into account the positive torque
needed during the acceleration of the vehicle Tacceleration and the
breaking torque Tregenarative breaking Te€sponsible for the recuperation of
the SOC during deceleration. The acceleration torque is obtained from
the characteristic curve of the motor at the angular speed FX, and it is
multiplied by the percentual acceleration ag; computed by the Pro-
portional Integral (PI) controller to match the demand of the driving
cycle.

The powertrain system of the vehicle is simulated by the Limited Slip
Differential [46] and the Longitudinal Wheel [47] blocks, which
compute the torque corresponding to the left and right axles (i.e.,
Tieft axte and Tright axie) and the net longitudinal forces applied to the rear
and front wheels (i.e., F rearx and Ffonex). The friction between the
wheels and the tarmac is also considered. The dynamic of the vehicle is
simulated using the Vehicle Body 1DOF Longitudinal [48] block. The
block models the vehicle as one degree-of-freedom rigid body in

longitudinal motion parallel to the ground, by taking into account the
net longitudinal forces applied to the wheels and the aerodynamic drag
force Fyog applied to the windshield due to the aerodynamic resistance
of the air. The balance of forces involving the mass of the vehicle
Myehichle@llows us to compute the acceleration @geegpacand then the
resulting speed Sgedback- The feedback speed Sgeedback iS dynamically
controlled by the PI controller to match the reference speed Sieference Of
the applied DC.

A more detailed explanation of the construction of the look-up tables
and differential equations characterizing each block is provided in the
Mathworks websites dedicated to the Powertrain Blockset modules [40].
A schematic of the BEV model is illustrated in Fig. 2.

2.2. Multi-physics electrochemical and thermal modeling of lithium-ion
battery

The objective of the multi-physics model is to characterize the
electro-thermal behavior of the battery during BEV’s operation taking
into account the degradation phenomena due to the SEI formation. The
finite element method (FEM) is used to simulate the cylindrical (Tesla S)
and pouch (Nissan Leaf) cells, with a P2D model [49] including a
degradation sub-model due to the SEI formation/decomposition [50,
511, combined with a 3D thermal model to compute heat propagation
within the cells. Here, we describe the P2D electrochemical, the
degradation and the thermal models implemented in Comsol
Multiphysics.

The P2D model describes the so-called repeat unit consisting of the
two current collectors (both negative and positive), a negative electrode,
electrolyte and positive electrode. Since the electrochemical model is
described in the prior literature only an overview is given here. The cell
model is based on a 1D continuum description of reaction and transport
along electrodes, electrolyte and current collectors, plus an additional
dimension in the electrode particle (P2D) [49]. Electrochemical
charge-transfer reactions only occur at the interfaces of the electrodes
and the electrolyte and are modeled using the Butler-Volmer equation
[49].

The ionic charge balances and material balance in the electrolyte are
modeled according to the equations for binary electrolytes. Electrons
transport is not explicitly modeled due to the fast delivery to the current
collector in comparison to the other processes in the battery. We use a
homogenization approach (the Bruggeman relation) to model the
transport properties in the porous electrode. Detailed definitions of
symbols and additional equations for local current densities and voltage
are given elsewhere [49].
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Fig. 2. Schematic of the BEV model built in Matlab/Simulink using dedicated blocks from the Powertrain Blockset library. The model takes as input a driving cycle
which dictates the reference speed of the vehicle Syeference and it simulates the dynamic of the BEV driving and it calculates the corresponding SOC variation.

The degradation model is used to simulate the behavior of the SEI
during the BEV’s operation. The SEI is used in the model to simulate the
increase of the potential losses due to the resistance of the growing film
on the electrode’s particles. In addition, the electrolyte charge transport
as a result of the reduction of the electrolyte volume fraction due to the
SEI is considered. The SEI formation/decomposition is modeled using
the parasitic current forming during this process and it is described by
the following equation [52]:

]exc Lloc,C ref

iluc.SEI = - (1 + GE)
exp “—”;?‘F) +

) (€))
gsetfexe

Toe,C ref

where, ijocc ref is the local current density at particular C-rate, GE is a
dimensionless graphite expansion factor, Jex. is dimensionless exchange
current density for the parasitic reaction, « is the transfer coefficient of
the electrochemical reduction reaction, 7 is the overpotential, ggg; is the
local accumulated charge due to the SEI formation, and f is a lumped
nondimensional parameter based on the properties of the SEI film.

The thermal model simulates the heat generation and propagation
within the cell. The generation of heat inside the battery is mainly
triggered by charge transport and (electro-)chemical reactions during
charge/discharge cycles [53]. The contributions to the heat losses
within the cell are classified as irreversible due to the charge transfer
reactions, reversible due the entropic changes during the lithium
intercalation and Ohmic due to the current conduction in the solid and
electrolyte phases. Thus, the energy conservation law is:

or T g T
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where p is the density of materials; C, is the specific heat capacity, and
kin and kg, are the in-plane and through-plane thermal conductivity
coefficients. The superscript ‘1’ in Eq. (2) indicates layer-specific prop-
erties. The last three terms in Eq. (2) define different heat generation
mechanisms as described above (irreversible, reversible and ohmic). The
details of these heat sources are given in Refs. [54,55]. The boundary
condition for Eq. (2) is the convective heat transport through all the
surfaces facing the ambient environment. In this way it is possible to
model the cooling system present in the battery pack of the BEV, which
is paramount to keep the temperature of the cells within the operating
range of 298-312 K (25-40 °C). The thermal model is directly coupled to
electrochemical and degradation sub-models and solved iteratively.

2.3. Machine learning models

The modeling data developed with the combined automotive and
electrochemical models of BEV and LIBs described in the previous sec-
tions, have been used to train and test different ML models for the
prediction of the battery’s SOC. Here, we first introduce the variables
used as input (features). Then, we briefly present the learning models we

have selected for the estimation of the SOC.

The variables characterizing the battery are the discharging current,
the voltage, the temperature and the SOC. The current, voltage and SOC
variation is calculated by the battery block of the BEV model, while the
temperature profile is computed by the thermal model of the cell. The
powertrain of the system is included in the dataset considering the
mechanical power delivered by the electric motor FX, the mechanical
power transferred through the differential FX, the mechanical power
transferred from the axles to the wheels FX, the mechanical power loss
due to the rolling resistance FXand the mechanical power required for
breaking the vehicle FX. Finally, we have considered the power loss due
to the aerodynamic resistance of the wind. As a result, the time series of
nine variables characterizing the vehicle operation have been combined
to estimate the SOC. Adding the data related to the variation of the
characteristics of each block provides a more comprehensive charac-
terization of the vehicle dynamic and more informative dataset in
respect to the case of using only the variables related to the battery cell
(i.e., current, voltage and temperature). We have considered the
learning algorithms belonging to the different categories described in
section 2: SVR [26], ANN [28] and LSTM models [35]. Since an exten-
sive description of SVR, ANN and LSTM models is reported in the
literature, including reports regarding the application of these models in
the estimation of SOC in BEV [34,38,43] only a brief summary is re-
ported here.

SVR is the counterpart of the Support Vector Machine (SVM) clas-
sifier for the regression purpose. SVR predicts a target variable using a
regression curve built upon an appropriate hyperplane, computed
through a kernelized combination of the input variables. The linear
kernel, the Gaussian kernel defined by the Radial Basis Function (RBF),
the polynomial kernel of a predefined degree and Sigmoid kernel are
typically used in SVM and SVR models. The data points which lie inside
a hyperplane margin of a controlled width are called support vectors,
and they are responsible for the final estimation of the target. The width
of the margin is controlled by the hyperparameters comprising a regu-
larization parameter C and a penalty slack variable £ The different
kernels and values of the hyperparameters have been investigated using
cross-validation to optimize the prediction of the SOC.

An ANN decomposes the relationships between the input variables
and a target through a sequence of algebraic linear combinations built
upon a deep architecture of so-called hidden layers comprising several
activated neurons. The input variables and the target represent the input
and the output layers of the network. The coefficients of the linear
combinations are called weights and bias and they are calculated
through an iterative optimization process based on the backpropagation
and gradient descent algorithms. In our problem, we have adopted an
ANN characterized by an input layer comprising nine neurons repre-
senting values of the nine input variables at a specific time t*, with
hidden layer and neurons activated by the Rectified Linear Unit (ReLu)
activation function and an output layer with a single neuron for the final
SOC prediction (Fig. 3a). The proper number of hidden layers and
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Fig. 3. Artificial Neural Network and Recurrent Neural Network for SOC estimation. The ANN takes as inputs the values of the variables characterizing the dynamic
of the BEV computed at each time t* from the automotive simulation. The target variable is the value of the SOC at the timet". (a) The RNN is built by combining
many deep neural networks for each time t". (b) The sequence of I observations [FX, ...,FX,FX] is used to predict the SOC at the time tn

neurons, as well as the number of iterations of the learning process, have
been selected to optimize the SOC estimation. The Adam optimizer and
the mean squared error (MSE) loss function have been used to compile
the ANN model.

LSTM belongs to the RNN class of DL models designed for the esti-
mation of time series with recurrences. An RNN model predicts the value
of the target at a specific time step by considering the data belonging to a
prior time sequence of a given temporal length I. The time series esti-
mation is performed by constructing a deep network where multiple
ANNSs are built for each single time step of the sequence and concate-
nated to each other. The hidden layers of every single ANN are referred
as hidden states of the RNN. LSTM is an optimized RNN, developed to
address the vanishing gradient problem of standard RNN. LSTM com-
bines the hidden states of the RNN with dedicated layers called cell
states able to filter the non-useful information for the target prediction
from the so-called short memory (close in time to the target) and the
long memory (far in time from the target) of the network. In our prob-
lem, the values of the nine variables FX in the time sequence [t;ifp

.. t, 5, t, 1] of length L up to the time ¢, ; are used to predict the SOC at
the time ¢, (Fig. 3b). Similar to ANN, the Adam optimizer and the MSE
loss function has been used to compile the LSTM network. As in the case
of SVR and ANN, the hyperparameters of the model (the length [ of the
time sequence and the optimal architecture of the LSTM network) have
been investigated to find the most accurate SOC prediction.

Finally, the performance of the models has been evaluated by
considering the MSE between the estimated and the true SOC, which is a
metric typically used in regression problems:

Y (SOCiuei — SOCpredicneas)’

MSE =
N

3

Nis the total number of data points in the dataset, while SOC,.; and
SOCpregicted,; are the true and the predicted values of the SOC for the
sample i.

3. Results and discussion

In this section, we present as first the development of the simulated
data. Then, we illustrate the simulations of the SOC decay in BEV as a
result of the SEI degradation. Finally, we report the prediction of the
SOC using ML models trained and test on the modeling data.

3.1. Automotive simulations and datasets creation

We illustrate here the computed profiles of the variables character-
izing the operation of the BEV, modeled using our proposed multi-
physics approach. The BEV automotive simulations are performed
considering several repetitions of the six DCs US06, FTP75, HDUDDS,
HWFET, SC03 and LA92 for both the Tesla S and Nissan Leaf models.
Using many DCs allows us to model different driving patterns and to
provide a broader set of configurations for a data-driven model. For
example, US06 driving cycle represents an aggressive and high speed/
acceleration driving behavior with rapid speed fluctuations. On the
other hand, HWFET has been developed to estimate the highway fuel
economy rating, while FTP75 measures emissions in urban
environments.

For each driving cycle, the number of repetitions is considered ac-
cording to the EPA driving range for Tesla S and Nissan Leaf which are
391 miles (630 km) and 226 miles (363 km), respectively. In this way, it
is possible to simulate the whole driving period before the battery pack
needs to be recharged. The reliability of our automotive modeling is
tested by evaluating the battery SOC drop: if the battery is empty (SOC
consistently below 10%) at the end of the simulation when the
maximum driving range is achieved, it means that the automotive model
is reliable in representing the driving conditions of the two vehicles. For
all the applied driving cycles, the SOC drops to values between 4% and
8% approximately, thus we consider that our BEV model is accurate in
simulating the Tesla S and Nissan Leaf driving conditions. A time step of
1 s is considered, meaning that the number of datapoints simulated for a
specific driving cycle is equal to the time in seconds required to
discharge the battery. For all the cases, the simulations are performed at
a constant ambient temperature of 298 K (25 °C). However, our BEV
model is amenable to different values of the input environmental tem-
perature, since the battery block has been parametrized using discharge
curves at constant temperatures in the range 253K-313K, as shown in
Figure S1 in Supplementary Information. In Figure S2 of Supplementary
Information we have included the profiles of the SOC, the voltage and
the applied current for environmental temperatures of 253K, 298K and
313K. For brevity, we report here only the results obtained by applying
the FTP75 driving cycle.

Fig. 4 shows the discharge profiles simulated for the FTP75 driving
cycle. As it is illustrated, the discharge curves for the two vehicles are
different. Fig. 4b shows that the Nissan Leaf battery pack is discharged in
approximately 11 h, while Tesla S can be driven for approximately 18 h
following the FTP75 speed profile. The shapes of the voltage profiles
shown in Fig. 4c are different because of the electrochemical behavior of
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the NMC cylindrical cells and LMO pouch cells characterizing the bat-
tery packs of the two vehicles. The discharging current of the Tesla S and
Nissan Leaf presented in Fig. 4d overlap since the current profile is
dictated by the acceleration, which depends exclusively on the profile of
the applied driving cycle that is the same in the two cases. Tesla S has a
slightly higher regenerative current (negative values of the current
profile) since the torque responsible for the SOC recuperation depends
on the characteristics of the powertrain system which is different in the
two vehicles. However, the current flowing in each single cell of the
battery pack is very different for the two vehicles. Since the number of
groups of cells wired in parallel is 86 and 3 for the battery packs of Tesla
S and Nissan Leaf, respectively, a less intense current flows through a
Tesla S cell compared to Nissan Leaf.

Fig. 5a and b illustrate the cell’s current profile for a single repetition
of the FTP75 driving cycle for the two distinct cases of TeslaS and Nissan
Leaf. The values of the cell’s discharging current are obtained by
dividing the current profile shown in Fig. 4d by the number of groups of
cells in parallel.

In Fig. 5¢ and d, the profiles of the mechanical power delivered by
the electric motor FX and the power losses due to the aerodynamic
resistance of the air, FX, are illustrated. The profiles for the two vehicles
vary due to the differences in technical characteristics of each compo-
nent. The power delivered by Tesla S motor is higher compared to Nissan
Leaf because the torque reported in the characteristic curve of Tesla S is
more intense than the torque offered by Nissan Leaf (i.e., 660 Nm vs. 340
Nm) in the operating window of the angular speed corresponding to the
driving conditions. Similarly, the power loss, FX, of Nissan Leaf slightly
exceeds Tesla S because of the more extended surface of the windshield
(i.e., 2.58 m for Nissan Leaf and 2.34 m? for Tesla S) and the higher drag
coefficient (i.e., 0.28 for Nissan Leaf and 0.24 for Tesla S). Since dif-
ferences are present in the profiles related to the powertrain systems of
the two vehicles, it is important to take them into account in training a
data driven model for the prediction of the SOC.

The SOC is highly dependent on the operating temperature of the
cell. In the prior literature, the temperature data are collected using
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thermocouples placed in contact with the cell [30]. Although this
approach is the most straightforward in the acquisition of experimental
data, it allows the user to record only the surface temperature of the cell,
which is always lower compared to the bulk region. In particular, due to
a large cell area, the surface of the cell is thermally stable during the
discharge, so the experimental data do not allow to fully capture the
temperature differences that exist between the cases of a sudden accel-
eration (high C-rate) of the vehicle to a high driving speed and a slower
and stable (low C-rate) driving behavior. The modeling approach pro-
posed in this work allows to simulate the temperature distribution
within the core of the cylindrical NMC and pouch LMO cells of Tesla S
and Nissan Leaf when a current demand corresponding to a DC is
applied. In addition, the thermal model allows also to simulate the effect
of the convective cooling adopted by the thermal management system of
the BEV to control the temperature of the battery pack. The variation in
time of the average temperature of the cylindrical NMC cell during the
first iteration of the FTP75 driving cycle is shown in Fig. 6a, whereas
Fig. 6b illustrates the contours of the temperature corresponding to four
different levels of current demand (low demand at t = 100 s, high de-
mand at t = 200 s, moderate demand at t = 260 s, intermediate demand
at t = 360 s).

At t = 100 s, the vehicle is accelerated to 22 mph (Fig. 4a), and a
maximum temperature of 302 K (28 °C) is achieved in the core of the
cell. When the vehicle is accelerated to the highest speed of 58 mph (t =
200 s), the maximum temperature achieved within the cell is 320 K
(47 °C). However, from Fig. 6a it can be noted that the average tem-
perature of the cell remains below 313 K (40 °C), so the cell fully
operates within an optimal range of operating temperature estimated for
LIBs [56]. At t = 260 s and t = 360 s the vehicle is accelerated to 38 mph
and 30 mph respectively, corresponding to an average temperature of
305 K (32 °C) and 309 K (36 °C). In addition, it can be noted that for a
low and moderate current demand the maximum temperature is located
in the separator region since the main contribution to the heat losses is
given by the ohmic resistance of the electrolyte. On the other hand, with
an increase in current demand, the main contribution to the heat losses
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Fig. 6. (a) Temperature variation during the first repetition of the FTP75 DC of the cylindrical NMC cell together with (b) the bulk temperature distribution for four

time-steps corresponding to the different levels of current demand during driving.
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is given by the irreversible term due to the electrochemical reactions
within the electrodes, so the maximum temperature is located in the
electrode’s region. Our approach allows us to provide the data of the
fluctuating temperature within the cell, which is more informative than
just the temperature of the surface which remains more or less constant
during the discharge of the cell.

3.2. Battery degradation

In this section, the analysis of the capacity fade due to the battery
degradation is presented. In particular, the growth of the SEI thickness
and the SOH are investigated. Different DCs are applied to discharge a
battery, while charging is performed at 1 C-rate. Among different aging
mechanisms, the SEI film formation is one of the most harmful sources of
loss of cyclable lithium in LIBs [57,58]. Such a passivation layer pre-
vents further decomposition of the electrolyte by blocking the electron
transfer and exfoliation of the graphite in the negative electrode, but it
could be also the source of undesired phenomena such as anisotropic
diffusivity of the Lithium ions to the electrode surface [59] which limits
the performance of the battery and causes a potential failure. The for-
mation of the SEI begins at the first charge cycle of the battery, and it
continues to evolve during cycling, with a growth of the thickness from
few nm to tens of nm. The SEI behavior is also highly dependent on the
operating temperature of the cell, in particular at high temperatures for
which the transformation of certain components and reaction with the
electrolyte or active material occurs.

We report here the results obtained by simulating 2000 repetitions of
a full charge-discharge life cycle (corresponding approximately to two
years of operation) using the degradation electrochemical model of LIBs
reported in section 2.2. The simulation is performed considering the
ambient temperature of 298K (25 °C). The purpose of this study is to
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investigate the growth of SEI in the cylindrical NMC cell of Tesla S and in
the pouch LMO cell of Nissan Leaf subjected to a discharging current
corresponding to the BEV operation. The calculation of the thickness of
the SEI layer and the SOH are implemented according to the mathe-
matical model for SEI formation reported in Ref. [52]. In particular, the
SEI thickness and the SOH are related to qSEI, the capacity loss as a
result of the side reactions generating the SEI. The charging of the cell is
simulated at a constant current of 1C, while the discharge is modeled
considering the discharging current for the FTP75 DC.

During the first charge-discharge cycle, the SEI grows up to around
0.014 nm (Fig. 7a), whereas an expansion up to around 30 nm is
observed after 2000 cycles (Fig. 7b). Also, in Fig. 7a it could be noted
that during charging at 1C, a steeper growth of the SEI is observed
compared to the charging at low C-rates, which is induced by the
recuperation current of the FTP75 protocol. The degradation of the
battery over 2000 cycles due to SEI leads to a decay of the SOH up to
14% (Fig. 7c¢), meaning that the battery pack need to be replaced after
this operation period. The values of the SEI thickness and the SOH
shown in Fig. 7b and ¢ correspond to values at the end of a complete
charge-discharge cycle, like the one reported in Fig. 7a. Since the growth
of the SEI and the capacity loss are approximately constant in each cycle,
the variations of the values of the SEI thickness and SOH at end of each
cycle exhibit a linear behavior. These profiles should not be confused
with temporal variation during each cycle, which are indeed non-linear
as shown in Fig. 7a. The degradation due to SEI is slightly higher for
Tesla S compared to Nissan Leaf. Such small discrepancy is due to the
different chemistry charactering the battery packs of the two vehicles.

3.3. Data preprocessing

The simulated data obtained with the modeling approach discussed
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in the previous section need to be preprocessed in an appropriate
manner before being fed to ML models. In this section the methodology
for the preparation of the training and test datasets is presented.

The BEV model of Tesla S can be simulated for more repetitions of the
different driving cycles compared to Nissan Leaf, as it is shown in
Fig. 4b. Thus, Tesla S datasets have almost the double number of data
points compared to Nissan Leaf datasets. The higher size of the datasets
could bias a data driven model to overfit the Tesla S configuration,
resulting in lower predicting capabilities of the SOC for Nissan Leaf. In
order to prevent this issue, the Tesla S datasets is filtered by a random
and uniform removal of datapoints until the datasets have an equal
number of samples. Then, each variable is scaled using a Gaussian scaler,
which performs a standardization to a null mean and unit variance.
Features scaling is a well-established technique in statistics, which has
been proven to be beneficial in the application of ML and DL models
X—U

(€3]

x=

N

Equation (4) describes the Gaussian standardization, where to the
feature x is removed its mean value u and the result is divided by the
standard deviation s.

Different approaches could be used to create the training and vali-
dation datasets from the simulated data characterizing the six driving
cycles for the Tesla S and Nissan Leaf. An approach could be to combine
all the twelve datasets and randomly split 70% of the data for training
and 30% for test (these are the percentages typically considered to pick
the training and test datasets in ML). A second approach could be to use
the first 70% of the total repetitions of the driving cycles for training and
the last 30% for the test. Compared to the previous case, this approach
allows to preserve the temporal evolution in the training and test
datasets. A third approach is to select certain DCs for training and
completely different DCs for the validation. A fourth and similar
approach applied to our proposed modeling datasets is to use the
simulated data of Tesla S for training and Nissan Leaf data for test (or
vice-versa). Compared to the first two methods, the third and fourth
methods are useful to evaluate the extrapolation capabilities of the
models, since distinct configurations in terms of DCs and BEVs are used
for training and test. In particular, the fourth method allows to inves-
tigate if a data driven model can extrapolate in the case of a different
chemistry of the battery pack, which to our knowledge is a task still not
addressed in the prior literature.

In this work, we first adopt distinct DCs to create the training and test
datasets (Case 1). US06, HDUDDS, SC03 and LA92 are used for training,
while FTP75 and HWFET are considered for test. It should be noted that
there is not a particular reason behind the choice of the specific DC to
use for the training and test datasets, and the same analysis could be
performed by selecting other DCs’ combinations. Then, we employ the
Tesla S simulated data for training and the Nissan Leaf simulated date
for test (Case 2). The formation of the training and test datasets is
summarized in Table 1.

Table 1
Two different methods to create the training and test datasets from the twelve
simulated datasets of the Tesla S (TS) and Nissan Leaf (NL) models.

Simulated Dataset Case 1 Case 2
FTP75 TS Test Training
FTP75 NL Test Test
US06 TS Training Training
US06 NL Training Test
HWEFET TS Test Training
HWFET NL Test Test
HDUDDS TS Training Training
HDUDDS NL Training Test
SCO3 TS Training Training
SCO3 NL Training Test
LA92 TS Training Training
LA92 NL Training Test
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3.4. State-of-charge estimation

Here, we present the results of the estimation of the SOC using the
considered learning algorithms applied to the datasets created with our
proposed modeling framework. Through a 10-fold cross-validation it is
found that the optimal configuration of the SVR is reported using a
linear kernel with values of the regularization parameter C and the slack
variable & equal to 0.1. Similarly, the ANN built using a single hidden
layer comprising 128 neurons and trained for 500 epochs using a batch
size of 32 samples provides the most accurate SOC estimation. Finally,
for the LSTM network, 512 are used for the hidden states and a time
sequence length [ of 500 time-steps is employed. Usually, increasing the
depth in time of the input time sequence reduces the error in the target
estimation. For instance, Chemali et al. [35] found that for their LSTM,
increasing the length of the time sequence from 250 to 500 leads to a
reduction of the mean absolute error (MAE) by a half, but moving from
500 to 1000, provides only a 15% of the mean absolute error (MAE). The
LSTM is trained for 200 epochs. It should be noted that similar as in any
deep learning analysis, the values of the hyperparameters are always a
trade-off between the performance, the number of epochs required for
the training and the computational time.

Fig. 8a—c shows that for Case 1, all the models have satisfactory
extrapolation capabilities when predicting the SOC for the FTP75
driving cycle which is not included in the training dataset. The less ac-
curate estimation is reported by the SVR (MSE = 1.639 for Tesla S and
MSE = 1.319 for Nissan Leaf), while ANN (MSE = 0.045 for Tesla S and
MSE = 0.033 for Nissan Leaf) and LSTM (MSE = 0.082 for Tesla S and
MSE = 0.064 for Nissan Leaf) exhibit similar performances. Table 2
reports the values of the MSE for the entire training dataset and test
datasets built for Case 1.

The analysis for Case 2 highlights if the models can extrapolate in the
case of a different chemistry characterizing the battery pack and the
different technical characteristics of the vehicles such as the electric
motor and the powertrain system. For the sake of comparison with Case
1, the value of the hyperparameters of the models and the architectures
of the ANN and LSTM are not changed. Fig. 8-d-e-f reveal that the test
MSE of Nissan Leaf is higher than the training MSE of Tesla S for all the
three models. In the zooming box on the first FTP75 cycle, it can be
noted an accurate fitting for Tesla S while there is remarkable diver-
gence between the estimated and the true profiles for Nissan Leaf. This is
particularly evident for SVR, which provides a high MSE value also for
the training data of Tesla S. Table 3 reports the training and test results
obtained for the whole training and test datasets. For all the three
models, it can be noted that the test MSE obtained on Nissan Leaf data is
higher than the training MSE obtained on Tesla S data by two orders of
magnitude. Overall, the extrapolation on Nissan Leaf dataset is still
satisfactory; however, it is much less accurate than Tesla S compared to
the results obtained with the datasets of Case 1.

The analysis reported in Case 2 remarks the importance of consid-
ering different chemistries in the training of a data driven model, since a
model trained on a particular chemistry is not able to perform with the
same level of accuracy on a different chemistry.

4. Summary and conclusions

In this work, a computational study of LIBs SOC estimation in BEV
combining automotive simulations, electrochemical-degradation-
thermal modeling of battery and ML algorithms is presented. The test
cases are the battery packs from Tesla S and Nissan Leaf models
currently available in the BEV market. The automotive simulations
performed for six EPA DCs, (i.e., FTP75, US06, HWFET, HDUDDS, SCO3
and LA92) have allowed us to simulate the variation of the discharging
current flowing in the NMC cylindrical cells of Tesla S and LMO pouch
cells of Nissan Leaf battery packs, as well as of the variables related to
the powertrain system. The consistency of our proposed automotive
modeling is demonstrated by the full discharge of the battery pack
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Fig. 8. SOC estimation for the FTP75 driving cycles obtained by training and testing the models on the datasets created by DC selection (Case 1). Prediction of the
SOC for Tesla S (blue color) and Nissan Leaf (red color) using (a) SVR, (b) ANN, and (c¢) LSTM. SOC estimation for the FTP75 driving cycles obtained by training and
testing the models on the datasets created by BEV selection (Case 2). Prediction of the SOC for Tesla S and Nissan Leaf using (d) SVR, (e) ANN, and (f) LSTM. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Table 2
Values of the training and test MSE reported by the SVR and ANN for the whole
training and test datasets created by DC selection (Case 1).

Model Training MSE Test MSE

SVR 1.963x1073 2.038x1073

ANN 3.379x107° 1.191x107*

LSTM 7.748x107* 7.653x107*
Table 3

Values of the training and test MSE reported by the SVR and ANN for the whole
training and test datasets created by BEV selection (Case 2).

Model Training MSE Test MSE

SVR 3.535%x1073 5.636x1071
ANN 7.615x107° 1.031x1073
LSTM 7.959x107° 1.397x1073

corresponding to the driving range estimated by EPA for Tesla S and
Nissan Leaf. The simulated current is used to model the thermal
behavior and the degradation of the battery during the operation of the
vehicle using the developed electrochemical model. This work is mainly
focused on the Tesla S and Nissan Leaf models which employ NMC and
LMO cells respectively; however, the proposed modeling framework is
amenable to other types of BEVs characterized by different chemistries.
Applications of such different chemistries will be considered in future
publications.

The results of the computed temperature distribution within a cell

match with the operating window recognized for BEV operation, serving
as a further validation of our coupled automotive-electrochemical
model. A capacity loss around 14% due to degradation (i.e., the
growth of the SEI) is simulated for a life-cycle corresponding to two
years of operation, which is a realistic estimation compared to the
practical aging conditions. Although our model is capable of reproduc-
ing a realistic capacity loss profile due to the SEI formation/decompo-
sition, such models require detail material information, which are rarely
available for commercial cells. Thus, there is a necessity to experimen-
tally measure such properties, which could improve the prediction of
our model. Next, the modeling data reflecting real-life behavior of BEVs,
have been employed to train and test an SVR, an ANN and an LSTM
networks for the prediction of the SOC.

Compared to the attempts reported in the prior literature, a focus of
this work is to feed ML models with more realistic data characterizing
the BEV operation compared to the experimental data collected through
discharge tests of a cell performed in a laboratory. A second goal is to
allow a data driven model to capture the relationships between the SOC
and variables related to the vehicle’s dynamics, such as the mechanical
power in the powertrain system and the aerodynamic resistance of the
wind, in addition to the cell variables (i.e., current, voltage and tem-
perature) adopted in the prior literature. As a first case, we have
considered the extrapolation in the SOC estimation by training the
models on selected driving cycles and testing on other unseen driving
cycles. Then, we have investigated a second extrapolation case where
the Tesla S data have been used for training while Nissan Leaf data have
been used for test. Overall, the adopted models offer a satisfactory
estimation of the SOC, where a more precise prediction is observed by
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ANN and LSTM compared to SVR. Comparing the two cases, it has been
found that a more precise extrapolation is obtained by applying the
models on unseen driving cycles compared to an unseen BEV. This
finding indicates that an accurate SOC estimation using data driven
approaches has to be supported by the retrieval of training data
comprehensive enough of different BEV configurations, which is the
primary objective of this work. Although this report is mainly focused on
the estimation of the battery’s SOC, the proposed multi-physics
modeling framework for the generation of realistic training data could
be extended to the boosting of ML models in other applications of in-
terest in BEV’s research, such as the impact of the driving conditions on
the triggering of thermal runaway or on the internal chemistry of battery
pack.
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