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The simulation complexity of predicting the time evolution of delocalized many-body quantum
systems has attracted much recent interest, and simulations of such systems in real quantum hard-
ware are promising routes to demonstrating a quantum advantage over classical machines. In these
proposals, random noise is an obstacle that must be overcome for a faithful simulation, and a single
error event can be enough to drive the system to a classically trivial state. We argue that this
need not always be the case, and consider a modification to a leading quantum sampling problem—
time evolution in an interacting Bose-Hubbard chain of transmon qubits [Neill et al, Science 2018]
— where each site in the chain has a driven coupling to a lossy resonator and particle number is no
longer conserved. The resulting quantum dynamics are complex and highly nontrivial. We argue
that this problem is harder to simulate than the isolated chain, and that it can achieve volume-law
entanglement even in the strong noise limit, likely persisting up to system sizes beyond the scope of
classical simulation. Further, we show that the metrics which suggest classical intractability for the
isolated chain point to similar conclusions in the noisy case. These results suggest that quantum
sampling problems including nontrivial noise could be good candidates for demonstrating a quantum

advantage in near-term hardware.

INTRODUCTION

Quantum sampling problems present the most
promising near-term route to demonstrating “quantum
supremacy” [1, 2], where quantum hardware solves a
problem that no classical supercomputer is capable of
completing in a reasonable amount of time. Interest in
these problems began with the boson sampling problem
proposed by Aaronson and Arkhipov [3], who argue that
sampling the output distribution of groups of identical,
noninteracting bosons propagating through a linear opti-
cal network is likely to be extremely difficult for classical
machines. The years following that paper have seen a
number of other candidate quantum systems put forward
as challenging sampling problems [4-8], with perhaps the
most attention focused on the random quantum circuit
protocol [5]. This protocol is based on sampling the out-
put of a random sequence of quantum gates acting on an
initial product state, which is likely to be exponentially
difficult for classical computers. Subsequent theoretical
and experimental work [9] extended this class of prob-
lems to include continuous time evolution (as opposed
to a discrete collection of applied unitaries) in sampling
the output of a time-evolving Bose-Hubbard chain, which
like the other protocols is also very likely to be classically
intractable once the system becomes sufficiently large.
Since the threshold for superiority of quantum hardware
depends on the state of the art in classical hardware and
software, it naturally presents a moving target, and inter-
est in quantum sampling problems has in turn prompted
an explosion of progress in classical algorithms for simu-
lating quantum circuits [10-21].

These sampling problems all involve simulating purely
unitary quantum dynamics, and the introduction of lo-

cal random noise into any of them reduces simulation
fidelity and drives the system toward classically trivial
configurations. In this work, we argue through a mix
of analytical arguments and numerical simulations that
this need not be the case in general, and propose a varia-
tion of the Bose-Hubbard sampling problem which reso-
nantly couples the system to highly lossy elements (in this
case, harmonic oscillators in the form of superconduct-
ing cavities). Through a variety of numerical benchmarks
we show that this open quantum system should also be
extremely hard to simulate, and due to the expanded
Hilbert space and need to average over many quantum
trajectories for accurate results, we expect the system to
become classically intractable at around two thirds the
size of the equivalent unitarily evolving chain, and half
the size of a comparable circuit of qubits enacting ran-
dom discrete gates.

Since the lossy cavities are already included for state
readout in any superconducting qubit implementation,
the only additional experimental features required by our
protocol are additional microwave signals to resonantly
drive qubit-cavity interactions. Since these cavities are
left idle throughout the evolution in other protocols, and
are only populated for state measurement at the end of
the evolution, in traditional unitary protocols fully half
of the system’s quantum degrees of freedom are left idle.
In contrast, in our proposal they are integral to the sys-
tem’s dynamics, so our protocol thus nearly maximizes
the quantum simulation complexity for a given hardware
layout. Our results here are focused on superconduct-
ing qubit platforms due to the hardware efficiencies and
relative ease of engineering complex quantum dynamics
through dissipation [22], but could easily be generalized
to other quantum platforms such as trapped ions or neu-



tral atoms. These results expand the space of interesting
sampling problems, and suggest that a quantum advan-
tage may be possible to demonstrate in smaller systems
than previously thought.

This paper is organized as follows. We first describe
our new protocol, then discuss important general con-
siderations for sampling problems which include noise.
We then simulate the dynamics of our protocol using ex-
perimentally realistic target parameters, and compute a
series of key benchmark quantities to demonstrate classi-
cal hardness, including volume entanglement, signatures
of quantum chaos in the form of distance from a Porter-
Thomas distribution, number fluctuations, inverse par-
ticipation ratio, heavy output generation and expected
fidelity loss from various sources, both experimental and
in simulation. Extrapolating from these, we provide esti-
mates for expected classical simulation difficulty at larger
system sizes, and show that, under the assumption that
direct Hamiltonian time evolution is the most efficient
simulation method, the system should become impossi-
ble to accurately simulate with near-term classical hard-
ware for chains or grids of between 25 and 30 qubit-cavity
pairs, depending on protocol details.

PROPOSED PROTOCOL

Quantum sampling problems based on unitary evolu-
tion amount to sampling from the distribution with prob-
abilities Py of observing basis state |k) after evolving
a known initial state with a potentially time-dependent
H (t) up to some time T. Sampling problems including
noise are also based on sampling from the distribution Py,
which are in this case the diagonal entries of a density
matrix evolving under the Lindblad equation [23]:
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Here, K « L is the number of Lindblad operators and L
is the system size. For simplicity we assume that H (t)
can vary in time but that the Lindblad operators O; do
not, though of course they may depend on time as well.
Within this extremely general class of possible simula-
tion problems, the protocol we consider in this work is a
modification of the gmon chain experiment reported in
[9]. We begin with the L-qubit Hamiltonian
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Here, h; are a set of local detunings, the ¢, are the
qubit nonlinearities and g (¢) is a time dependent cou-
pling strength which is ramped up and down, with the
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FIG. 1: Basic protocol studied in this work, an extension
of the experiment reported in [9]. As in the original work,
a chain of qubits is initialized in a simple product state in
the z basis, a random set of detunings is applied to the qubits
(circles), the nearest neighbor qubit-qubit exchange couplings
(purple lines) are repeatedly pulsed on and off, and then the
detunings are turned off and all qubits are measured in the
z basis. This program is repeated a sufficient times to esti-
mate the fidelity with the aid of classical simulations. The
key difference in our protocol is that driven sideband inter-
actions (dashed lines), coupling the qubits to their readout
cavities (boxes), are simultaneously turned on whenever the
qubit-qubit couplers are, significantly changing the quantum
dynamics and implementing a Hamiltonian where total pho-
ton number is no longer conserved. The magnitudes of all
detunings and sideband interactions are weak compared to
the qubit-qubit coupling terms, ensuring delocalized evolu-
tion and sharp resonance conditions in the qubit-cavity inter-
actions.

pulse waveform carefully optimized so that the popula-
tion of |2) and |3) states is negligible at the end of each
pulse (though the population of such states mid-pulse
may be significant). In principle each qubit-qubit cou-
pling can be tuned independently from the others, but
we ramp them all up and down with the same profile
for simplicity. Each qubit is weakly coupled to a lossy
readout cavity; in the default protocol these terms do
not appear in Hg because the cavities are only used for
state measurement and do not effect the quantum evo-
lution. We modify this protocol by including a set of
driven qubit-cavity couplings, which couple each qubit



to its lossy readout cavity via the Hamiltonian

HQC (t) = Z [hcz-agiaoi + AaTCiaCia;fai] (3)
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Here the hg; are a set of resonator detunings, A is the
qubit-cavity dispersive shift and ng and Qgcl- are the
amplitudes of the red and blue sideband qubit-cavity
drives, respectively. These can be engineered [24-27] in
the gmon architecture of flux tunable transmons qubits
with fixed capacitive couplings to their cavities through
oscillating the qubit energy near the difference of the
qubit and cavity frequencies (red) or driving the qubit
or cavity at frequencies near half the sum of the two
frequencies (blue). For simplicity, we will consider only
blue sideband protocols in this work (all ng = 0) since
these terms are somewhat easier to engineer in a noise
tolerant manner. Further, for reasons which will be-
come clear below, we require that all couplings (qubit-
qubit and qubit-cavity) are turned on simultaneously, as
sketched in FIG. 2, rather than sequentially or in discon-
nected groups, as in gate model protocols. After being
initialized in a simple product state (in the z basis), the
couplings are pulsed on and off for a total of C' cycles,
at which point the states of all the qubits are measured
in the z basis. This sequence is repeated many times to
generate an output sample, which is then compared to a
theoretical model to calculate fidelity.

GENERAL CONSIDERATIONS FOR SAMPLING
PROBLEMS WITH NOISE

Before presenting the results of our numerical simu-
lations, it is worth pausing to consider some of the im-
portant differences between noisy sampling problems and
their purely unitary counterparts. In this section, we
will discuss these differences, and argue a number of key
points. First, we will demonstrate the perhaps obvious
point that there exist nontrivial choices of the {O;} for
which sampling the output distribution of (1) is at least
as difficult as any unitary problem. Second, we will show
that this is not the case for some of the most natural
choices, which include empirical models of random qubit
error. Third, we will show that the worst cases of (1)
are at most polynomially harder in total Hilbert space
size than their unitary counterparts, and that realistic
problems are likely to be more difficult by a factor which
is polynomial in the size of the system and total evolu-
tion time. Following these results, we will outline key
metrics for classical hardness that candidate protocols
should satisfy, and then compute them explicitly in nu-
merical simulations for the noisy sampling problem at the
center of this work.
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FIG. 2: Schematic picture of qubit-cavity interactions. In (a),
the qubits (circles) are uncoupled from each other; as a result,
the qubit-cavity drive (blue dashed lines) simply excites that
qubit and its corresponding cavity (boxes), ignoring the state
of the other qubits. A subsequent photon loss from the cavity
thus acts as a local measurement of that qubit. In contrast,
in (b) qubit-qubit exchange couplings (purple solid lines) are
turned on at the same time as the qubit-cavity drive. In the
limit that these couplings are much stronger than the qubit-
cavity drive itself, the qubit-cavity drive can only couple to
propagating modes within a narrow energy range, which have
weight over the entire chain (represented by semi-transparent
blue arrows at each qubit). Photon losses from the cavity
then act as a measurement of a much more complex nonlocal
operation, and do not necessarily disentangle the state. This
property is vital for maximizing the simulation complexity of
our noisy system, and more generally for employing noise to
generate and stabilize nontrivial quantum states [22].

We begin by first noting that evolution under (1) for
arbitrary {O;} has at least as much computational power
as unitary quantum evolution, as shown by Verstraete et
al [28], who provided an explicit construction for a set of
Lindblad operators {O;} capable of universal quantum
computation, even if the unitary Hamiltonian is zero.
Thus, systems evolving under (1) can have at least as
much computational power as unitary gate model quan-
tum computation, and at minimum the worst cases of the
noisy sampling problem should be extremely difficult to
simulate on classical machines. Further, the operation of
real, noisy quantum hardware is often well-approximated
by (1), and topological error correction codes can be mod-
eled through complex Lindblad operators; schemes to en-
gineer self-correcting quantum codes [29, 30] are exam-
ples of such an approach. These results further suggest
that the general sampling problem of Lindblad evolution
should be exponentially difficult for classical machines.
Of course, simulating this evolution is not exponentially
difficult for a digital quantum computer [31-33]; by using
ancilla qubits to model irreversible processes, one can ac-
curately simulate dissipative evolution with polynomial
overhead, at least for cases such as the one we consider



here where the Lindblad operators are simple.

However, both these examples are obviously rather
specialized, and in both cases the engineered Lindblad
operators are irreducibly nonlocal. It is thus reasonable
to ask how Lindblad operators deriving from a realis-
tic noise model for modern quantum hardware will ef-
fect complexity, and in this limit things are naturally
less clear cut. In many cases, the addition of noise sim-
ply makes the problem more trivial, and noisy elements
which cannot create any type of correlations on their own
are not good candidates for designing nontrivial sam-
pling problems. For example, the addition of depolarizing
noise (uncorrelated Pauli errors along z, y and z applied
randomly at equal rates to each qubit) to random quan-
tum circuits drives the system toward incoherent uni-
form randomness (IUR), a trivial distribution where all
P, = 2L [5]. In fact, due to the chaotic nature of evo-
lution in that system, to good approximation the final
distribution is given by (1 — Peyy) pu + Perrprur, where
P, is the probability that at least one error has occurred
in any of the qubits, pri g is the incoherent random distri-
bution and py is the distribution which would result from
noise-free evolution. We will show later in this work that
realistic qubit error, in the form of white noise dephasing
and photon loss, has similar effects on the evolution of an
interacting Bose-Hubbard chain, with or without other
nontrivial noise sources included in the sampling prob-
lem, though the fidelity loss from a single error depends
on the type of error and may be somewhat less than 1. On
general grounds, we would expect similar trivializing be-
havior from any set of Hermitian {O;} applied identically
to all degrees of freedom in the system (since such opera-
tors create an incoherent random walk in Hilbert space),
and the influence of many non-Hermitian {O;} choices
applied identically everywhere should likewise drive the
system toward trivial distributions.

That said, while these considerations pose serious chal-
lenges to crafting sampling problems where the noise is
nontrivial, there is at least one key exception that offers
reasons to be hopeful. Consider a quantum system si-
multaneously evolving under a continuously applied, de-
localized many-body Hamiltonian H (which may vary
with time) and interacting with a bath that can be cap-
tured by a set of Lindblad operators {O;} which arise
from local interactions between bath degrees of freedom
and the constituent qubits. If these operators are simple
Pauli matrices (potentially including non-Hermitian o3
terms), then we expect the resulting incoherent (though
perhaps biased) random walk to simply push the system
toward classically trivial states. Now imagine that the
system is weakly coupled to the bath through local spin
flips, resulting in transition rates which are sensitive to
the energy difference between the given pair of states. If
the system is delocalized, the resulting eigenstates are su-
perpositions of many basis states (exponentially many for
a general, delocalized many-particle system), and transi-

tions between one eigenstate and another require opera-
tions to be performed across large fractions of the system,
so for a transition induced by a local operator to be sensi-
tive to energy changes in the system’s state the operator
must necessarily be modified into something extremely
complex and nonlocal, with weight distributed across the
system?!.

The most natural example of such nonlocal operators
arising from local couplings is a system’s interaction with
a low-but-finite temperature thermal bath, which has
been shown to be extremely difficult to faithfully sim-
ulate [34]; while the thermal states of many-body sys-
tems can often be accurately simulated with quantum
Monte Carlo if they lack a sign problem, the detailed time
dynamics of thermalization beginning from an arbitrary
initial condition cannot. And though these operators do
not occur naturally in high-coherence quantum informa-
tion platforms driven by oscillating fields, such as trapped
ions or transmon qubits, they can be engineered straight-
forwardly by coupling the system to auxiliary, lossy ele-
ments (see [22] for a review), as illustrated in FIG. 2. It is
this type of system we choose to study, and we will show
that configurations of this type are capable of generat-
ing complex quantum dynamics, even when the noise is
strong and we expect multiple incoherent events to have
occurred in the course of the evolution.

Given that classically hard noisy protocols exist, and a
likely route toward them via engineering effective global
operations through resonant coupling to lossy subsys-
tems, it is natural to ask how much more (or less) difficult
simulation of these systems should be in comparison to
unitary evolution. From the chaotic signatures presented
below, we assume that the only classical algorithms to
simulate the required sampling involve calculating the
ideal probabilities Pj. Clearly, storing the full density
matrix in Eq. (1) is horrendously inefficient (it has a
memory cost proportional to NZ for Hilbert space size
Nyr), since the protocol is designed to explore a large frac-
tion of Hilbert space and thus p will not be sparse. One
can reduce the memory cost by using trajectory meth-
ods [35]. These schemes require only O (Ng) in memory
(since only a wavefunction needs to be stored), and evolv-
ing a single trajectory costs only O ((T'/dt) x L x Ng) in
time (where dt is a sufficiently small timestep), since each
sparse matrix-vector multiplication requires O (L X Ng)

1 The “range” of these new operators depends on the details of
the Hamiltonian and on the energy-dependence function which
modulates the matrix elements (on general grounds, we expect
slowly varying functions to correspond to shorter ranges than
sharply peaked ones, based on the inverse polynomial splitting
of propagating modes in the free particle case), but we will argue
later in this work that it can be quite long, and thus, applications
and measurements of these operators have highly nontrivial ef-
fects on the system’s state and, being nonlocal, do not necessarily
disentangle it.



operations. However, we have to sample a large number
of trajectories N; to accurately solve (1). Let us assume
we want to find all the P, over some restricted fraction
of Hilbert space A, with dimension Ny 4; in our case A is
the qubit subspace and Nya = 2%, As discussed in [36]
and other works, the worst case estimate of N; is expo-
nentially large, since we want Ny to be large compared
to the average per-trajectory variance é P divided by Py
itself, and (P;) = 2~ L. In this limit trajectory methods
are hardly faster than density matrix evolution, though
they do use substantially less memory.

However, the true scaling of the variance ¢ Py is prob-
lem dependent and the worst case assumption may be ex-
ceedingly pessimistic. First note that to produce a sam-
ple we can output one bitstring with the correct prob-
ability from each trajectory. In addition, to produce a
sample of size M with fidelity «, it suffices to sample
aM bitstrings from the ideal distributions [19]. This up-
per bounds the number of quantum trajectories required.
From a different point of view, for the delocalized system
we consider in this work all P, o 1/Nga in a typical
trajectory, and therefore 0P, o< 1/Npga and N; does not
grow exponentially with system size (as shown below, we
empirically find N, grows linearly or quadratically with
the product of system size and evolution time, depending
on the observable of interest). However, in cases where
a typical trajectory has most P, values nearly equal to
zero and a few values exponentially larger than 1/Np 4
the variance may be larger, provided that the locations of
the large Py values can vary substantially from one tra-
jectory to the next. These arguments apply equally well
to simulations based on matrix product states or simi-
lar constructions, as we describe toward the end of this
work. We thus conclude that simulating noisy evolution
at least as hard as noise-free Hamiltonian time evolution,
and polynomially harder in the worst case.

Given all these considerations, we can wrap up our
general discussion of noisy sampling problems with a set
of benchmarks that must be met if we are to strongly be-
lieve that no polynomial classical algorithm could repro-
duce the output distribution. First, and most obviously,
the evolving wavefunction should require an exponential
amount of classical information to store. This require-
ment implies that the evolution should explore a large
fraction of Hilbert space (as measured through inverse
participation ratio [37]), and achieve volume-law entan-
glement?, since states whose total entanglement does not

2 In a 2d grid of locally coupled qubits, area-law entanglement,
which is the maximum entanglement achievable for noisy evo-
lution for sufficiently long times and large system sizes [38—40],
would also lead to a superpolynomially growing cost to store
the wavefunction, scaling roughly as eV'N for some c. However,
given that random qubit error reduces the fidelity by a factor
which is exponential in the number of qubits (and not its square

grow exponentially with system size should in principle
have an efficient classical representation, though actually
finding such a representation in practice may be difficult.
Second, the output distribution should be (information-
ally) easy to distinguish from classically trivial config-
urations, such as incoherent uniform randommness. It is
desirable on general grounds if the evolving mixed state
displays features of quantum chaos, such as a Porter-
Thomas distribution of amplitudes and rapid scrambling
of any initial information, since this strengthens expec-
tations for classical simulation difficulty, but this is not
a strict requirement; there are many quantum problems
(such as finding the ground states of local Hamiltonians
[41]) which are not necessarily chaotic but have no effi-
cient classical solution.

Finally, it is worth pointing out one clear advantage of
intentionally noisy evolution: the possibility of achieving
nontrivial steady states, even when random qubit errors
are taken into account. In a purely unitary protocol such
as RQC or Bose-Hubbard evolution, introducing random
qubit error in the form of losses or dephasing leads in-
evitably to a trivial final state at long enough times, typ-
ically either IUR or an entirely empty lattice. However,
this is not the case if the random qubit noise is balanced
by carefully tailored noise in auxiliary elements. As sum-
marized by one of us in a recent review [22], engineered
dissipation can be an extraordinarily useful resource in
quantum computing with superconducting circuits, and
complex many-qubit states can be stabilized. Undoubt-
edly, variations of the protocols we explore here could
lead to highly nontrivial long-time configurations. Find-
ing such protocols is not our purpose here— and indeed,
the long time states of the protocols we do simulate are
likely trivial- but the possibility is worth keeping in mind
for future work.

NUMERICAL RESULTS

We now present the main results of this work: exten-
sive numerical simulations of our protocol. Of necessity,
the systems we consider— linear chains with L ranging
from 4 to 11— are relatively small, but since each site cor-
responds to a qubit-cavity pair, the system’s total Hilbert
space is much larger than for a qubit chain alone. We
first describe our simulation methods and parameters in
detail, then plot results for entanglement negativity, a
collection of different statistical measures of the output
distribution, and the expected fidelity loss (in comparison

root), unless entanglement grows sufficiently quickly the fidelity
of a simulation on real hardware could become vanishingly small
by the time classical intractability is reached. It thus strikes us
as sensible to require entanglement to scale with the volume in
a 2d system as well.



to the output of an ideal evolution) from various sources
including approximations made in simulation and error
processes in the quantum hardware itself.

Simulation details

We consider blue sideband protocols, initialized in sim-
ple product states of L/2 — 1 photons in the qubits
(rounded down for odd L) with all cavities empty. In all
cases we draw a random set of coupler pulses with g4, =
21 x 40MHz and durations randomly chosen within the
range from 20 to 30 ns; all couplers are identically ramped
up and down using a symmetrized hyperbolic tangent
profile. During each pulse the same set of qubit-cavity
interactions are applied with Q¢ maez = 27 x 3.0MHz,
with a slightly narrower ramp profile with the same du-
ration. The qubit nonlinearity is § = —27 x 200MHz,
the qubit-cavity dispersive shift is A = 27 x 5MHz. The
cavity photon loss rate is chosen to be I'c = 10MHz.
Where applicable, these parameters were all chosen to
roughly match the experimental parameters used in the
unitary protocol which this work builds upon [9]; other
parameters (such as the cavity loss rate and qubit-cavity
interaction strengths) are chosen as “typical” values for
superconducting qubit experiments. We consider two
variations of our protocol: Parametrization A, where
all h; € 2m x {—=20,+420} MHz and all he; = 0, and
parametrization B, where all h; € 27 x {—5,+5} MHz
and where each h¢; is chosen to be equal to one of the
L eigenvalues of the single-particle hopping matrix with
J = Ymax (these assignments are randomized from one
protocol instance to the next). Qubit and cavity detun-
ings are fixed through all N, cycles of evolution.

We track various observables over 12 full cycles of evo-
lution. For context, we note that assuming gme. =
27 x 40MHz and 20ns < t.yce < 30ns, between L/4 and
L/3 cycles are likely sufficient to fully entangle an L-site
chain, as observed indirectly in [9]. Given that g (¢) is
ramped up and down over the course of a cycle, an aver-
age cycle time of 25 ns roughly corresponds to between
4 and 5 times <g>_1, a relatively long evolution time. A
full 12 cycles thus amounts to an average of around 50
<g>71, and three times the cavity photon lifetime.

To simulate the dynamics of our protocol, we use an
event-driven quantum trajectory method as outlined in
[35] to integrate the Lindblad equation beginning from
a simple product state at ¢ = 0. To simplify the calcu-
lation, we make two approximations. First, we truncate
the cavity Hilbert space to include at most one photon
per cavity, and cap the maximum number of cavity pho-
tons at a fixed value, respecting the fact that the cavities
are lossy, begin in an empty state, and are coupled rela-
tively weakly to the qubits, so their average photon pop-
ulations should be low. We repeat our calculations with
varying maximum cavity photon number, and track the

fidelity loss from the truncation as a way of estimating
the likely number of photons that would need to be kept
in simulations at larger L.

Our second approximation is to truncate the qubit
Hilbert space to zero or one photon per qubit, and in
doing so we include additional qubit-qubit interactions
(computed in second order perturbation theory) to ac-
count for our having integrated out states |2) and higher.
As described in [9] this is not expected to be a quantita-
tively good approximation for long times or large L, but
it should not qualitatively change the behavior we are
primarily interested in, such as bipartite entanglement,
information scrambling, inverse participation ratios, and
so on. We make this approximation primarily to avoid
having to perform the complex task of pulse shaping to
suppress local |2) and |3) states, which would be a sub-
stantial effort ultimately not relevant to the conclusions
we make in this work. Specifically, perturbatively elimi-
nating the |2) state generates nearest neighbor potential
interactions and a mediated hopping term. For a given
three sites these terms take the form
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where n; = (07 4+ 1) /2. Our total Hamiltonian in simu-
lation is thus equal to:
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It is this time-dependent Hamiltonian, extended to larger
chains, that we use in our simulations. Note that the
Hamiltonian is not symmetric about half filling (/2 pho-
tons in the qubits), as is to be expected from the un-
derlying Bose-Hubbard model it approximates. Further,
for the parameters we choose, the interaction terms in
the first and second lines are not small, for while they
are smaller than g (¢) they are larger than the disorder
strength and qubit-cavity interactions, and thus play a
significant role in the physics. However, even in the limit
of & — oo where the interactions vanish and the iso-
lated chain is integrable, interactions with the cavities



break integrability and would likely still lead to the quasi-
chaotic dynamics we observe here.

Beyond these approximations we use standard meth-
ods to simulate the system’s dynamics, integrating (1)
using 4th-order Runge-Kutta methods beginning from
a simple product state with a fixed number of photons
in the qubits and all cavities empty. The system’s full
density matrix is computed by averaging the sum of
[t (t)) (¢ (t)| over many randomized trajectories, which is
then used to compute expectation values, entanglement
measures, and so forth.

Negativity

The first, and arguably most important, quantity we
measure is entanglement, since one can usually find
efficient classical representations for weakly entangled
states. To measure entanglement in our system, we use
the bipartite negativity [42, 43], N = (1/2) (||p™]|| — 1)
where pT4 is the partial transpose of the density ma-
trix p relative to subsystem A and H pTAH is the sum
of the absolute values of its eigenvalues. The negativ-
ity, while expensive to compute (since it requires fully
diagonalizing the density matrix of the full system), is
equally well-defined for pure and mixed states; the more
commonly used Von Neumann and Renyi entropies only
measure entanglement accurately for pure states. A
nonzero negativity is a sufficient, if not necessary, con-
dition for quantum entanglement. For a perfect bi-
partition of the system the negativity is bounded by
Nimaz = (1/2) (V Ny — 1), where Ny is the Hilbert space
size of the full system. If the system’s negativity grows
exponentially with L, then it obeys volume-law entan-
glement and it is extremely unlikely that any efficient
classical representation exists for its state.

In FIG. 3, we plot the bipartitie negativity A and the
ratio N/ Nz, where N is computed with Ny =
(1+ L) x 2%, since we assume the resonator population
is low. To keep the Hilbert space sizes approximately
equal the system is partitioned such that partition A
contains all of the cavities and (L — 3) /2 qubits (frac-
tions rounded up), with the remaining qubits placed in
partition B; we make this choice because our nonlocal
constraint on the maximum number of cavity photons
makes it impossible to partition the cavity Hilbert space
efficiently. As shown in the figure, the system rapidly
achieves volume-law entanglement, and at least within
the computationally accessible range of L < 9, even-odd
effects aside there are no obvious trends in the scaling
which suggest entanglement is beginning to saturate as
L increases. Our studies of entanglement are limited to
L = 9 and below due to the exploding cost of storing
the full density matrix, which, assuming a maximum of
2 photons in the cavities, is almost 9 GB for L = 9 and
a bit over 52 GB for L = 10.

We can further probe the entanglement generated in
our system by tracing out the cavities before computing
N, leaving a reduced negativity Ng which captures the
entanglement between two halves of the qubit subsystem.
While this is not a useful metric for predicting the ulti-
mate classical simulation difficulty in an MPS or PEPS-
type simulation scheme (where the difficulty scales with
the total bipartite negativity, not just the qubit subsys-
tem’s contribution), showing volume-law scaling of Ng
further bolsters our argument above that photon loss in
the cavities does not fully disentangle the state. Note
also that, since tracing out the cavities is equivalent to
making measurements on the state (though the effect of
these measurements is nonlocal as described above), we
expect N to be smaller in this calculation than it would
be for an isolated, unitarily evolving chain, even before
any photon losses have not occurred. In FIG. 4 we show
the results of this calculation. The observed subsystem
negativities at intermediate times (eight cycles) are an
average of nearly three times smaller than those com-
puted for the purely unitary chain (where there are no
measurement effects), but still grow exponentially with
L, demonstrating that the quantum state of the qubits
is extremely complex.

Large-L limits on entanglement

A natural objection to this proposal is that continuous
photon loss from the cavities will ultimately limit entan-
glement growth in the chain once L becomes sufficiently
large [45-48]. This in turn calls the ultimate difficulty of
the problem into question, since states with bounded en-
tanglement often have efficient classical representations
through matrix product states or similar constructions
[44]. Further, recent studies in random quantum circuits
have shown that continuous (deterministically applied)
measurement limits entanglement growth to an area-law
[38-40], a potentially trivializing effect if entanglement
were to saturate at a small enough L within reach of clas-
sical machines. Rigorously determining this limit for our
protocol given realistic circuit parameters is an excep-
tionally difficult problem we will not attempt to answer,
so instead we will consider two methods for roughly es-
timating it, and show that both arguments suggest that
this L can easily pushed into ranges beyond the simula-
tion capacity of any forseeable classical computer.

Inspired by the lower bound calculated in [49], we can
provide a lower bound for the maximum length scale for
correlations as follows. Let us imagine the Lieb-Robinson
velocity for information propagation is v, photon losses
occur at an average rate (Ncq,) ¢, where (n.q,) is the
average photon density in a cavity during the evolution.
Let us further assume a single loss is sufficient to fully
scramble the state, as it does in RQC. Then the maxi-
mum length L,,.; is given by the distance information



FIG. 3: Full system entanglement negativities after N. cycles of evolution. In the top row, we plot A/ for parametrizations A
(left) and B (right; see the “Simulation details” subsection for specific value ranges), and in the bottom row we plot the same
quantity divided by the maximum possible negativity Nmaz = (1/2) (\/Nu,ers — 1), where we used Np,ey = (14 L) x2" as the
cavity photon population is kept low by photon loss and the full cavity Hilbert space is not explored. In this and all subsequent
figures unless otherwise noted, L = 4 is plotted with blue filled circles, L = 5 gold boxes, L = 6 green diamonds, L = 7 red
triangles, L = 8 purple triangles, and L = 9 brown open circles. The results in this and all subsequent figures are averaged over
many random protocol instances. Aside from an even-odd effect where odd L negativities tend to be larger, N'/Nmqe remains
approximately constant as L increases, showing that the system achieves volume entanglement at intermediate times, though
entanglement does begin to decay after a handful of cycles due to continuous photon loss from the cavities. While we observe
no saturation of N with increasing L, this should occur at some sufficiently large L., (see discussion in text), though we
expect Lyqae to be large enough that classically simulating the system’s evolution will be impossible on any near-term classical
computer.

can propagate before a single loss has occurred anywhere the difficulty enormously.

in the system; since these losses occur at a total rate

L (ncav) T'oy and the time to entangle one end of the chain

with the otheris ¢ = L/U7 we find Liaa ~ \Y% v/ <ncav> Le. Negativity after a single photon loss
For the gmon chain, v can be estimated from the in-
verse of the time per iSWAP operation induced by the
qubit-qubit couplers, which is around 3.5 ns assuming
Imaz = 27 X 40MHz, a ramp profile similar to that used
in [9], and that all couplers are turned on simultaneously.
(Neaw) is highly protocol dependent but a decent rough
estimate is 0.05-0.1 based on the results detailed below,
and I'c = 10MHz is a typical loss rate in a readout cavity.
This places Ly, ~ 17 — 24; as shown toward the end of
this work, the upper end of that scale may push into the
limits of what is possible to simulate on near-term clas-
sical supercomputers. Further, if our expectation that
the classical simulation difficulty scales exponentially in
La. is correct, fairly small reductions in I can increase

However, the assumption that a single loss disentangles
the state is empirically false for our protocol, so Laz
could be much larger. A plausible reason for this, in-
troduced earlier in the general considerations section, is
illustrated in FIG. 2. Let us for the moment ignore in-
teractions and disorder, and imagine the photons in the
chain to be non-interacting bosons. Let us further as-
sume, as mentioned above, that all terms are operated
simultaneously, and the waveforms Qg¢; (t) are shaped
such that they are only nonzero when g (¢) is nonzero.
During the evolution, if we assume Qg (t) and I'c are
weak compared to gmaz, then for a given qubit-cavity in-
teraction we only have a significant probability of adding
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FIG. 4: Qubit subsystem entanglement negativities after N, cycles of evolution. In the top row, we plot Ng for for parametriza-
tions A (left) and B (right; see the “Simulation details” subsection for specific value ranges), and in the bottom row we plot the
same quantity divided by the maximum possible subsystem negativity N maz = fleor(L/2)=1 For the system sizes studied Ng
tends to continuously decay with increasing N. due to interaction with the cavities, as tracing out the cavities to calculate Ng
acts as a measurement on the qubit subsystem (albeit a complex, nonlocal one) even if no photon loss has occurred. However,
it still clearly grows as a volume law, indicating the quantum state of the qubits remains extremely complex even with the
cavities traced out. Note that methods for simulating time evolution which scale exponentially in bipartite entanglement, such
as matrix product state representations [44], will scale exponentially in the full system A and not merely the qubit subsystem

entanglement plotted here.

or removing a photon from the chain (and adding one to
the cavity) if the total energy change in system is smaller
than the minimum of Qgc and I'c. However, since the
system is delocalized this condition can only be satisfied
if the photon is added to or removed from a propagating
mode, which has approximately equal weight over the en-
tire lattice. A subsequent loss from the cavity, in other
words, thus measures a highly nonlocal operator, and
such measurements need not disentangle the state. The
maximum length scale in this limit should be set by the
mode splitting, which is approximately 5.8¢mqz/L near
the center of the band for a 1d chain. Requiring that the
loss rate is less than half this gives L4, ~ 72 from the
parameters listed above, a much higher estimate than the
lower bound of the previous paragraph.

Of course, interactions, disorder and the qubit-cavity
dispersive shift all complicate this estimate, and the true
value of L,,,, probably lies somewhere in between the
two predictions. Nonetheless, it is clear from these argu-
ments that L., can be increased by reducing I'c, and
assuming exponential difficulty scaling such reductions

could push L, into a classically intractable range fairly
easily. Furthermore, all of these concerns are moot in a 2d
implementation, where a grid of 5 x5 or 4 x 7 qubit-cavity
pairs will likely be sufficient to reach classical intractabil-
ity (see the classical difficulty estimates section near the
end of this work for the origins of this estimate) without
any worries about the maximum range of correlations.
Thus, while the evolution in our noisy protocol ultimately
saturates in finite-ranged correlations, the range of those
correlations can be quite long, and this effect does not
keep this protocol from being a good candidate for simu-
lating a classically hard quantum sampling problem with
real quantum hardware.

To support this prediction, we take advantage of the
fact that quantum trajectory simulations allow us to pre-
cisely track the number of photon losses, and present the
entanglement negativity calculated from an average of
only those trajectories where precisely one photon has
been lost by the end of 12 cycles. To create this ensem-
ble we generate a large number of trajectories using the
same method as in the full simulation, but only include
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FIG. 5: Entanglement negativities averaged over only those
trajectories where a single cavity photon loss has occurred
during the 12 cycles, for parametrizations A (top) and B
(bottom). These results show that substantial entanglement
persists even after a photon loss (which acts as a local mea-
surement of a cavity, but an effective nonlocal measurement
of the qubits) has occurred, and that a single incoherent event
does not decorrelate the state.

those where one photon has been lost in the subsequent
averaging to construct the density matrix p. We plot the
results of these calculations in FIG. 5; as seen in the fig-
ure the system appears to maintain volume entanglement
even after a photon loss has occurred, and in fact the fi-
nal entanglement at 12 cycles is slightly larger than in
the full simulation for large L, which we assume reflects
the fact that an average of more than one loss has oc-
curred by that point in the full simulation. These results
indicate that, unlike RQC, while cavity photon loss in
our system does reduce entanglement, it does not com-
pletely destroy it, nor does it decorrelate the state. This
suggests that the lower bound on the maximum range of
correlations L., .. calculated in the previous subsection is
too low, and that volume-law entanglement should per-
sist in this system to much longer chains, likely beyond
the scope of classical simulation.
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Output distribution: number fluctuations, distance
from Porter-Thomas and incoherent uniform
randomness

Having thoroughly studied entanglement generation
and loss in our noisy system, we now examine the output
distribution itself. To do so, we use the familiar Kullback-
Leibler divergence [51] to quantify the “distance” be-
tween our observed output distribution and other im-
portant ones:

Py
Pg;’

Dk (pa,pB) = Z Py;ln (6)
3

In FIG. 6, we plot the K-L divergence of the full output
distribution in the qubit basis from a Porter-Thomas (P-
T) distribution, as a function of the number of cycles of
evolution, averaged over random instances of each proto-
col. The P-T distribution used for comparison is defined
over the full 2F-element qubit Hilbert space, and not a
restricted subspace as in the unitary protocol which con-
serves photon number. Consistent with quantum chaotic
behavior at intermediate times, the output distribution
becomes very close to a P-T distribution between 6 and 9
cycles of evolution (for the simulation parameters chosen,
and as seen in the figure, this is somewhat protocol de-
pendent) before gradually pulling away at longer times;
see FIG. 7 for example output distributions. Note that
since the point of “closest approach” varies from instance
to instance the averages plotted here tend overestimate
the minimum distance achieved for a given instance.

What is rather remarkable about these results is that
cavity photon losses are already significant (see FIG. 9)
by the time a P-T distribution well fits the observed out-
put, with (for L = 9) an average of ~ 0.9 photons lost by
9 cycles for parametrization A and ~ 0.75 photons lost by
9 cycles for parametrization B. As discussed below, this
signature of quantum chaos is not observed when consid-
ering random incoherent processes in the qubits, which
rapidly drives the system toward trivial configurations
and cannot generate new correlations. Viewed alongside
the persistence of entanglement after a photon loss dis-
cussed in the previous section, these results confirm that
photon loss from a resonantly coupled auxiliary system
is qualitatively different from random qubit error, and
leads to highly nontrivial quantum dynamics.

However, as shown in FIG. 8 there is some “trivializ-
ing” effect to the cavity photon loss, in that the observed
distribution grows closer to incoherent uniform random-
ness (IUR) at long times (before eventually reaching a
fully occupied lattice at extremely long times, assuming
that no photon loss processes balance out the blue side-
band terms), consistent with a trivial final state. Given
effort to tailor the protocol to stabilize nontrivial configu-
rations at long times (see for example [52, 53]), we would
expect this effect to disappear, but such considerations
are beyond the scope of this work.
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FIG. 6: Output statistics, showing significant information scrambling. In this and all subsequent figures unless otherwise
noted, L. = 4 is plotted with blue filled circles, L = 5 gold boxes, L. = 6 green diamonds, L. = 7 red triangles, L = 8
purple triangles, L = 9 brown open circles, L = 10 light blue open squares and L = 11 yellow open diamonds. The top row
corresponds to simulations in parametrization A, the bottom row the same quantities in parametrization B. Left: Kullback-
Leibler divergence from an ideal Porter-Thomas distribution over the entire qubit Hilbert space, as a function of the number
of cycles N, of evolution. A Porter-Thomas distribution is a key signature of quantum chaotic evolution; in our protocol both
parametrizations come very close to such a distribution, with an average minimum K-L divergence of around 0.02, before slowly
pulling away from one at long times as a likely trivial final state is approached (the time to reach such a state is expected to
be many times longer than the window shown here). Center: inverse participation ratio (IPR) vs N.. Consistent with the
Porter-Thomas output and volume-law entanglement, the IPR measurement shows that the system explores a constant fraction
of its total Hilbert space as L grows, demonstrating that an exponentially large amount of classical information is required to
represent the state after just a few cycles of evolution. Right: fraction of sampled bit strings which are “heavy,” e.g. larger than
the median output probability. Aaronson and Chen [50] have argued that a sufficient fraction, for example 2/3 (blue dashed
line) is a strong indicator of classical intractability for random quantum circuits; a Porter-Thomas distribution produces heavy
output in approximately 85% of samples (gold line). All of our simulations are well above the 2/3 threshold even at fairly long

evolution times.

Importantly, in both sets of trials (though much more
pronounced in parametrization A), there are clear even-
odd effects; odd L cases have higher values for peak
entanglement, number fluctuations, and average cavity
photon population (and thus, loss rates). The reason for
this likely comes from the choice of cavity detuning— in
parametrization A, the cavity detuning h¢; in Eq. (3)
is set to zero, whereas all the h¢; are assigned random
single photon hopping energies in parametrization B. As
remarked earlier, since Qo maz < gmaz, @ photon can
only be added or removed from the chain if it populates a
near-resonant propagating mode, and when we consider
the eigenvalues of a single particle hopping on a 1d chain
with open boundary conditions, there is a zero energy
mode for odd L, but not for even L. Thus, while this
simplistic picture is complicated by interactions, disor-
der, and the qubit-cavity dispersive shift, it is reasonable
to assume that the odd L chains are on average closer to
resonance with the cavities than the even L chains, and
thus interact with them more strongly. Further, since the
density of states of the interacting system peaks at the
center of the spectrum, we expect some enhancement for

odd L even in parametrization B, where a single particle
tunneling energy lines up with the peak. This explains
why odd L chains have larger peak entanglement, fluctu-
ations and cavity loss rates than even L chains do, though
we expect this effect to diminish as L becomes large.

Further, as shown in FIG. 6, we also computed the in-
verse participation ratio (IPR), and as is to be expected
from our previous results, our protocol explores an O (1)
fraction of Hilbert space, typically reaching half of the
maximum value of 2¥ between 6 and 10 cycles, depend-
ing on protocol details. Combined with the exponentially
growing entanglement negativity and the lack of any sym-
metries to exploit, an exponential amount of classical in-
formation is thus required to exactly store the evolving
quantum state.

Output heaviness

Recently, Aaronson and Chen provided an alternative
metric for quantum sampling hardness, called heavy out-
put generation (HOG) [50]. The HOG problem is stated
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FIG. 7: Distribution of output probabilities for parametriza-
tion A, with L = 9, after three (blue), six (gold), nine (green)
and twelve (red) cycles of evolution, combining the results
of 32 protocol instances for a total of 16384 data points per
curve. Here, N = 27 is the qubit Hilbert space size, and the
plotted quantity is the average probability of a given config-
uration having probability p in the final output distribution
(note that the z axis is rescaled by a factor of N). The black
dashed line, e “™P, corresponds to an ideal Porter-Thomas dis-
tribution, the result of fully chaotic quantum evolution. At
six cycles the distribution is very close to P-T, with an av-
erage K-L divergence of 0.02 from an ideal P-T distribution,
but for longer evolutions the system pulls away from it toward
a distribution closer to, but clearly distinct from, incoherent
uniform randomness. See the main text and FIGs. (6,8) for
more details.

as follows: given a suitably randomized quantum circuit,
generate an output distribution for which at least two
thirds of the observed samples {1, ...,xn} have a higher
probability than the median value of all probabilities
{Py} in the full output distribution. Aaronson and Chen
proved that if a plausible conjecture called QAUTH is
true, no polynomial-time classical algorithm can solve the
HOG problem in the most general cases. Note that for
a Porter-Thomas distribution, approximately 85% of the
sampled outcomes will have greater than median proba-
bility, so a perfectly executed random quantum circuit or
unitary Bose-Hubbard evolution easily satisfies the heavy
output criteria. Conversely, an RQC executed with poor
fidelity produces a distribution very close to IUR, and
does not satisfy the heavy output criteria, though it may
still be exponentially difficult to reproduce classically.

In practice, a heavy output distribution is not com-
pletely sufficient to prove classical hardness, given that
classically easy examples, such as low-depth circuits or
ones composed entirely of Clifford gates, can also have
heavy output distributions. However, absent any obvi-
ous simplifying factors, heavy output can be a valuable
metric for classical difficulty [54], so it is reasonable to
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check if our simulations produce it3. In FIG. 6 we plot the
heavy output fractions observed in both parmetrizations;
all simulations show an output heaviness substantially
greater than 2/3. These results clearly demonstrate that
our protocols satisfy the heavy output criteria, bolstering
our expectations for classical difficulty. When combined
with volume-law entanglement scaling, full Hilbert space
exploration, output distributions showing signatures of
quantum chaos, high effective circuit depths (see the sec-
tion on classical difficulty for more details), and the lack
of any symmetries to simplify the evolution, we find it ex-
tremely doubtful that any polynomial-time classical algo-
rithm could reproduce our results once L becomes large.

Fidelity loss from qubit error

To discuss the effect of noise we must first define a fi-
delity metric. Throughout this work we will use a simple,
and experimentally relevant, definition of fidelity based
on the K-L divergence described above:

. DKL (Pideah Pobs)
Drr (Pideat; Pre)’

Here, P;g.q; is the probability distribution of a perfectly
executed instance of the protocol, Py is the observed re-
sult of the experiment (likely including noise), and Preo
is a trivial classical distribution, the choice of which de-
pends on protocol details. While this does not coincide
with the standard definition of fidelity, it captures a no-
tion of statistical distance. Note that while for RQC the
choice of trivial distribution is not fundamental [5], the
most convenient is incoherent randomness (IUR), where
all P, = 1/N4 for an output space of dimension Nj4.
For the unitary protocol initialized with N, photons in
the qubits, Ny = ( Nih)' In cases where F falls below

F (Pobs) 1

(7)

zero, we assume it to be zero; for a Porter-Thomas dis-
tribution, Dk, (Ppr, Prur) = 1 — v ~ 0.423, where 7 is
the Euler-Mascheroni constant. The choice to normalize
the K-L divergence based on the divergence from trivial
classical distributions is motivated by the empirically ob-
served results from RQC, where IUR is the distribution
that results from one or more Pauli errors occurring dur-
ing the evolution, thus sending F to zero. It also in some

3 Formally, the hardness proof for HOG assumes the output dis-
tribution is generated by a random quantum circuit, and while
instances of our protocol can of course be represented as a sub-
set of that family given that time evolution can be Trotterized
and non-unitary operations can be modeled through coupling to
additional ancillary qubits, the constraints on randomness that
result would make it very much an edge case. It is thus possible
that the HOG hardness proof could be shown to not apply to
our system, though we nonetheless consider heavy output in our
protocol to further bolster our arguments for classical simulation
difficulty.
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FIG. 8: Output statistics, showing that simple classical distributions do not capture the output of our system. The top row
corresponds to simulations in parametrization A, the bottom row the same quantities in parametrization B. Left: K-L divergence
from incoherent uniform randomness (all P, = 27%), the result of noise in a random quantum circuit; such a distribution does
not well approximate our system even when photon loss has become significant. The dashed line at ~ 0.422 is the K-L
divergence between IUR and an ideal Porter-Thomas distribution. Right: K-L divergence from a reweighted variant of IUR,
where relative probabilities are Poisson-weighted (see Eq. 8) by the total number of added particles beyond the population of
the initial state; while this distribution is a better representation than pure IUR, it still does not capture the complex quantum

structure generated in evolution.

sense measures performance above a trivial classical re-
sult; since simulating the system’s evolution with an TUR,
distribution is computationally “free” it makes sense to
let that level of accuracy be zero fidelity, and let nonzero
fidelities thus correspond to better approximations of the
intended quantum dynamics. Note that when studying
fidelities for the intentionally noisy protocol that we fo-
cus on in this work, the ideal simulation P;geq; includes
the intentional noise sources {O;} (in our case, cavity
photon loss), but not unintentional ones (control errors
in the operations, phase and loss errors in the qubits, and
so forth).

To ground our results, we first consider random qubit
error, in the form of white noise phase errors and T}
photon loss, applied to the unitarily evolving chain with
no qubit-cavity interactions. Since the applied Hamilto-
nian conserves total photon number, a single photon loss
instantly sends the fidelity to zero, though we can elimi-
nate these events, as well as most SPAM errors, through
post-selection since any change in total photon number
implies an error has occurred. Random photon addition

has the same effect, though this is an empirically much
weaker noise channel in superconducting qubits. Phase
noise, on the other hand, is not detectable, and reduces
the fidelity significantly, though unlike RQC a single er-
ror does not appear to send F strictly to zero; as shown
in FIG. 10 averaging over the insertion of a single er-
ror leads to F =~ 0.25 after 12 cycles of evolution for
the parameters described above. Averaging over two er-
ror insertions gives F =~ 0.076, a further reduction by
a factor of 3.3, suggesting that fidelity decreases expo-
nentially with the number of phase errors, as we would
expect for a system with chaotic dynamics. If we use
an alternative fidelity measure based on the absolute dis-
tance Daps (Pa, Pg) = 23, |Pai — Pp;| we find some-
what smaller final fidelities for one and two phase errors,
but in both cases F remains nonzero*. Note that since

4 We hypothesize that a small but nonzero fidelity persists due
to the structure of the many-body “gate,” where all qubit-qubit
exchange couplers are turned on simultaneously. Since the qubit
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FIG. 9: Number fluctuations, cavity photon populations, and cavity photon loss. The top row corresponds to simulations
in parametrization A, the bottom row the same quantities in parametrization B. Left: average number of photons added to
the qubits vs N., which grows extensively with L, though with significant even-odd effects in parametrization A (see text for
details). Center: average total cavity photon population, which also grows extensively, though with a small prefactor due to
a combination of relatively weak coupling to resonant modes in the qubit chain and the significant loss rate. This quantity
has important implications for the simulation difficulty; the larger it is, the more cavity photon states need to be included in
the classical Hilbert space for faithful simulations. Right: average number of cavity photons lost. This quantity is O (1) near
the end of the evolution time, showing that the effects of noise cannot be ignored, but do not trivialize the dynamics, in our

evolving chain.

phase errors are along the directions of both the initial
product state and final qubit measurement, they can only
influence the output distribution through changing the
result of subsequent coupler pulses, and thus have less
influence at short times. This effect can be seen in real
experimental data (see figure 4 of [9]), and in numerical
simulations; we found that averaging a single phase er-
ror over just three cycles instead of twelve leaves a final
fidelity of approximately 0.5, twice the fidelity obtained
when averaging over a single error occurred in twelve cy-
cles of evolution.

We find similar results in our noisily evolving chain,
though care must be taken in defining a fidelity metric in
that case, due to the non-conservation of photon number.
In our noisily evolving chain with incoherent (if quantum

nonlinearity strongly, though not completely, suppresses double
occupancies, spin configurations where many sites in a row are all
occupied by photons are less likely to be produced by applications
of the coupler pulse than ones where occupied and empty sites
alternate. Consequently, even in cases where phase errors have
occurred, the same relative biases away from particular classes
of states apply, and the divergence between the error trajecto-
ries and the ideal ones is slightly lower than between the ideal
trajectory and IUR. Note that if this hypothesis is correct, we
expect its effect to be diminished in 2d, where photons cannot
blockade each others’ motion to the same extent, and residual
fidelities after phase errors will likely be closer to zero.

correlated) particle addition, we can better approximate
the final distribution with a re-weighted modification of
the TUR distribution, which we call WIUR, where the
individual bit string probabilities are reweighted by a
function of their total qubit photon number, assuming
a Poisson distribution of random addition or loss events
starting from the known initial photon number. WIUR
is also computationally trivial distribution, and like TUR,
it does not accurately capture the output distribution of
our protocol, but does provide a somewhat better ap-
proximation to the full system dynamics than IUR over
the full 2 -element qubit Hilbert space. For concreteness,
assume the system begins with Ny photons in the qubits,
and an average of 6N photons are added after IV, cycles
of evolution®. We then generate the WIUR distribution

5 While qubit z errors will scramble the relative amplitudes of
states within a given band of fixed photon number, we do not ex-
pect them to significantly change the average number of photon
creation or loss events induced by the cavities. This statement
assumes that the positions and times of z errors are being aver-
aged over, and may not be the case for comparing the full output
distribution of an error-free protocol instance with one where one
or more z errors occur at specific point(s) in spacetime.
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FIG. 10: Fidelity (top) and K-L divergence from incoherent
uniform randomness (bottom) for phase errors in the purely
unitary protocol with no qubit-cavity interactions, for L run-
ning from 6 to 9. The colors used in this plot differ from
other figures in this work— in the top cluster of curves, L = 6
is blue, 7 is gold, 8 is green and 9 is red. In the bottom cluster,
6 is purple, 7 is brown, 8 is light blue and 9 is yellow. In the
higher (in fidelity and divergence from IUR) clusters of curves
we average over a single phase error insertion during 12 cycles
of evolution, and the lower clusters of curves correspond to
averaging over two random phase error insertions. Somewhat
surprisingly, the fidelity loss from a phase error is highest for
L = 6 and decreases slightly as L increases toward 9, though
this effect would be swamped by the linearly increasing rate
of errors with L in a real experiment. As shown in the second
plot, the output distribution averaged over error insertions is
difficult to distinguish from incoherent uniform randomness,
where all states with the appropriate total photon number
have equal probability. A single photon loss error sends F to
Z€ro.

by assigning all bitstrings |k) probabilities given by:

P, =0 {Nk < No}, (8)
1 (LN sy (6N) o)
= W (Nk> e 7(]\716 — N0)| {Nk 2 N()} .

Here, N}, is the number of photons in bitstring |k) and
W is a normalization factor such that ), P, = 1. Ana-
logues of this distribution can be easily defined for other
protocol choices. Using this distribution to replace the
IUR distribution in (7), we can then estimate reductions
to F by averaging the evolution of a given protocol over
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the insertion of a single photon loss error, or one or two
phase errors as in the unitary protocol above.

As in the unitary protocol, we find that a single pho-
ton addition or loss error leads to zero fidelity, though
this was not guaranteed a priori in the noisy chain since
photon number is not conserved. However, unlike in
the unitary protocol, these events cannot be removed by
post-selection, and so will directly reduce the observed
fidelity in an experiment. We find that z errors likewise
reduce the fidelity, though as shown in FIG. 11 the ex-
tent to which one or two z errors reduces F is much more
variable, with the system displaying an apparent transi-
tion toward phase noise resilience when the number of
photons added by the cavities is more than ~ 1. This
is puzzling because, as seen earlier, other complexity-
related observables such as entanglement, divergences
from Porter-Thomas and IUR, and IPR, display similar
behavior to the unitary case, and given this one would
expect similar fragility to qubit phase noise in our noisily
evolving chain.

One possible reason for this could be a measurement
effect from photon loss in the cavities— as discussed ear-
lier, a photon loss from a cavity projects the system’s
full wavefunction onto the subspace where a photon has
been added or removed from the qubit chain via a very
complex nonlocal operation, and that projection may de-
crease the resulting scrambling from a qubit z error that
occurred prior to it. If it is likely that a cavity-mediated
photon addition occurs after the z error has, then one
would assume the fidelity loss from the z error could be
lower. As shown in FIG. 11, simply initializing the sys-
tem with one additional photon for L = 7 and 9, which
correspondingly reduces the average number of photons
added by 20-30%, is sufficient to eliminate the phase noise
resilience of those instances, bolstering this interpreta-
tion.

If this projection onto the action of nonlocal opera-
tors is indeed responsible for suppressing phase noise,
one might naturally worry that it could lead to routes
to efficient classical simulation, if the nonlocal operators
themselves can be straightforwardly computed. We em-
phasize however that this should not be the case. As
argued earlier, computing the appropriate matrix ele-
ments requires detailed knowledge of high-energy excited
states (near the middle of the system’s full spectrum) of
an interacting system with disorder, and while we might
be able to make predictions about instantaneous eigen-
states near the ground state using perturbation theory or
Arnoldi diagonalization, both methods break down once
we go higher in the spectrum, necessitating the diago-
nalization of the full Hamiltonian. Even just focusing on
the qubit subspace and ignoring the effect of double occu-
pancies, the cost of doing so is O (22L) space and O (23F)
time, making these operators impossible to compute in
practice once the system gets reasonably large. Further,
this argument likely applies to any simulation method
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FIG. 11: Fidelity loss from one (top) or two (bottom) z er-
rors inserted at random spacetime points over 12 cycles in
parametrization A, for L = 6,7, 8,9 (blue circles, gold squares,
green diamonds, red triangles). At larger L, or more tellingly,
higher numbers of photons added by the cavity interactions,
the system’s susceptibility to phase noise markedly decreases.
The dashed lines for L = 7,9 correspond to initializing the
system with one additional photon in the qubits (3 total for
L = 7 and 4 total for L = 9), which reduces the average
number of photons added through interaction with the cavi-
ties; those instances’ sensitivity to phase noise is substantially
higher. A possible reason for this is discussed in the main text.
As in the unitary protocol, single photon loss error sends F
to zero.

which attempts to eliminate the cavities by construct-
ing new effective Lindblad operators for the qubits. For
the parameters considered in this work, Qgc > I'c, so
the internal dynamics of the cavities cannot be ignored
and they cannot be treated as purely Markovian noise
sources. But even if this were not the case, when we in-
clude relatively sharp energy modulation of the matrix

elements of a local creation or annihilation operator a;r,

the resulting transformed operator &;r is no longer sparse,

requiring a cost O (22L) to store it and O (23L) opera-
tions to compute it. As we shall see below in the classical
difficulty estimates section, this scaling is actually worse
than the time and memory costs of direct time evolution
in a truncated basis, which does not involve any uncon-
trolled approximations.
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Given realistic numbers, the fidelities achievable in this
protocol are reasonably good. The previous unitary chain
experiment reported fidelity reductions of approximately
5% per qubit for state preparation and measurement
(which was largely eliminated through post-selection),
and 0.4% per qubit per cycle for phase and control er-
ror accumulated during evolution. Assuming (a) no im-
provement in SPAM error and (b) no net increase in
phase/control error due to the introduction of the side-
band terms, 27 qubits evolved for 9 cycles would have
an experimental fidelity of approximately 9.5%, which
is still good enough to clearly distinguish the contribu-
tions from quantum dynamics to the observed output,
and an order of magnitude larger than typical fidelity
targets for RQC. Since SPAM error well below 5% has
been realized in other experiments, it is reasonable to
assume this could be brought down to 2% with suitable
hardware refinement, which would increase the fidelity
to 22%. Improvement in the per-cycle error is a trickier
issue, as the protocol’s apparent reduced sensitivity to
phase noise would likely be balanced to some degree by
the introduction of the sideband terms, which obviously
bring with them additional error sources that would have
to be carefully calibrated away.

Fidelity versus number of cavity photons in
simulation

While the cavity photon populations are not measured
in our protocol- indeed, the cavities themselves are ex-
pected to be used to projectively measure the qubits,
erasing any information about their own state— they must
be included in the system’s Hilbert space for an accurate
classical simulation. However, due to the fast loss rate
and comparatively weak interaction between cavities and
qubits, the actual photon populations in the cavities are
expected to be low, and as a result substantial savings
can be attained in classical simulation by truncating the
maximum number of photons in the cavity Hilbert space.
Doing so will reduce the fidelity relative to a full simu-
lation including the entire cavity Hilbert space, but by
precisely how much is a matter that must be estimated
in numerical simulation.

In FIG. 12 we plot the fidelity loss from truncating
from a maximum of two photons in the cavities (which we
expect to be sufficient for the system sizes studied) to just
one. These fidelity losses are important, since they can
be used to estimate the classical simulation difficulty. As
we will describe shortly, for methods which store the full
evolving wavefunction, increasing the maximum number
of cavity photons increases the size of the state and the
time costs to evolve it. For methods which scale expo-
nentially in entanglement, such as MPS or tensor network
constructions, higher cavity photon populations increase
the total explored Hilbert space and thus the maximum
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FIG. 12: Left to right: fidelity (defined in Eq. 7) after re-
stricting the system to have at most one photon in the cavity
Hilbert space (in comparison to truncating it to at most two
photons), for parametrizations A and B (top and bottom),
for L running from 4 to 11, using simulation parameters de-
scribed in the text. These fidelities give a rough estimate of
how many cavity photons need to be included in the cavity
Hilbert space for an accurate simulation, and thus have im-
portant implications for the classical simulation difficulty of
our protocol.

possible entanglement of the evolving state; in either
case, higher cavity photon populations suggest a more
complex classical simulation is necessary to accurately
capture the system’s evolution.

Having studied the output of our protocol in detail, we
now turn to the question of the asymptotic classical diffi-
culty to simulate it. We shall see that, due to the enlarged
Hilbert space from including lossy cavities in the evolu-
tion, the threshold beyond which classical simulation is
impossible should lie at substantially smaller system sizes
than in the unitarily evolving chain upon which our pro-
tocol is based. We very roughly estimate that values of
L in the mid to high twenties are likely beyond the reach
of near-term classical supercomputers, though we can-
not rule out the possibility of more efficient simulation
algorithms that would push this threshold higher.
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CLASSICAL DIFFICULTY ESTIMATES

We now consider the projected difficulty of classically
simulating the evolution in this circuit as L becomes
large. We assume throughout this section that the most
efficient method is an average over quantum trajectories
based on direct evolution of the system’s full wavefunc-
tion (in an appropriately truncated basis). We offer no
formal proof that a more efficient algorithm does not ex-
ist, but as we discuss below, exponentially growing entan-
glement means that matrix product methods are unlikely
to provide a significant advantage over direct evolution,
and the partitioning and decomposition methods used to
simplify random quantum circuit simulations [11-18] are
likely not applicable to continuous time evolution under
a varying H (t), with or without noise. Further, the cost
of those methods scales exponentially with gate depth,
and given the large g4z, 6-8 cycles of evolution in our
chain roughly corresponds to a depth of 42-56 in RQC
(where each qubit experiences a CZ an average of once
per two cycles). In other words, evolution in this sys-
tem corresponds to a relatively deep quantum circuit, so
any method which scales exponentially in gate depth will
likely fail to accurately capture its evolution. We thus
make the reasonable assumtion that direct wavefunction
evolution will be the most efficient simulation method.

Proceeding from this assumption, we build on the es-
timates in [9] through the following inclusions: a total
transmon Hilbert space consisting of O (CL) (for some
small C') manifolds with a fixed number M of photons in
each, a resonator Hilbert space including up to L/D pho-
tons across all the resonators (for some D again depend-
ing on the details of the protocol) and a total of N (L)
trajectories that must be averaged over. We assume that
attempting to precisely predict the probabilities Py for
real quantum hardware would forbid us from employing
the qubit subspace truncation used in this work; a more
precise calculation would instead truncate the space of
double and triple occupancies to a fixed number of bands.

First, we estimate the memory requirements for esti-
mating the Py based on direct wavefunction evolution.
We plot a range of values, corresponding to simulations
which keep up to {2, 1} or {3, 2} doublons/triplons in the
qubit Hilbert space, and a manifold of states with total
qubit photon numbers in the range {0.35L,0.65L} (frac-
tions rounded to the nearest integer). We then tensor
this with a cavity Hilbert space containing no double oc-
cupancies and a maximum of L/10, L/8, L/6, L/5 or L/4
total photons in the cavities, fractions again rounded to
the nearest integer. The number of photons that need to
be kept in the cavities depends on protocol details; as a
very rough estimate, assuming that we need to include
configurations with up to L/D cavity photons (rounded
to the nearest integer) to achieve reasonable fidelity, the
results of FIG. 12 suggest that D is in the range of 6 to
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FIG. 13: Total wavefunction size vs. L, in gigabytes, for a
range of possible Hilbert space truncations. As discussed in
the text, we keep up to {2,1} or {3,2} {doublons,triplons},
a manifold of states with total qubit photon numbers in the
range {0.35L,0.65L}, and a maximum of L/10, L/8, L/6,
L/5 or L/4 total photons in the cavities (all fractions are
rounded to the nearest integer). Dashed lines correspond to a
megabyte, gigabyte, terabyte, petabyte and exabyte, respec-
tively.

8. Assuming sixteen bytes per entry for double precision
complex numbers, the total wavefunction storage sizes
are plotted in FIG. 13. The petabyte range is reached
for L between 21 and 26; the exabyte range between 27
and 34.

Second, we estimate the time costs for this calculation.
As argued in [9], the cost to unitarily evolve the full wave-
function for L sites and a total time T scales as LT Ny,
where N is the Hilbert space size; this estimate comes
from O (L) terms in H (t), a cost per sparse matrix-vector
multiplication proportional to Ny, and a total number of
matrix-vector multiplications proportional to LT, since
the minimum timestep dt scales as 1/L. The cost to
evaluate a single trajectory when noise is included scales
similarly. Based on this and the empirical scaling of their
simulations at smaller L, they provide a very rough es-
timate of 37 hours to fully evolve a 70 TB wavefunction
over 1000 4th order Runge-Kutta steps on a 4096 node
cluster with 1.2 GB/s per socket of node-to-node memory
bandwidth.

We expect that evolution with noise should take con-
siderably longer. At the single trajectory level, the
timestep dt required for faithful simulation in a trajectory
method is smaller than for unitary evolution, since in the
unitary case errors in the wavefunction norm from each
evolution step can be simply renormalized away, whereas
in a noisy trajectory method decay of the wavefunction
norm is tracked and used to determine when to randomly
insert noise operations (see sec. II1.D of [35]). More im-
portantly, many trajectories must be evaluated for an
accurate simulation. Comparing trajectory simulations
with the full density matrix evolution for L running from
4 to 8 led us to a very rough estimate that approximately
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3L x N, trajectories were needed to evolve an L-site sys-
tem over N, cycles, with an output distribution that had
an average K-L divergence from the exact result of 0.01
or less (we typically used 6L trajectories in our simu-
lations). Note that due to the nonlinearity intrinsic to
how the K-L divergence is calculated, the K-L diver-
gence from sampling a finite number of trajectories N;
decreases as 1/N;, not 1/4/N; as in most other quanti-
ties. To see why this is, let Py ., be the exact probability
of obtaining bitstring k, and let Py n, be an approxi-
mation computed from N; trajectories. We can write
Py N, = Piex + 0P, where the individual 6P scale as
1/+/N; but due to normalization, Y, dP; = 0 regardless
of how few trajectories are sampled. If we then plug this

into (6) and expand the logarithm, the lowest order non-

<. -1 (6P)2
vanishing term is 5, -

d Py, and thus scales as 1/N;.

This consideration aside, the estimate 3L x IV, stretches
into the hundreds when the wavefunction approaches
the PB scale, and suggests that runtime may ultimately
prove to be the limiting factor in an accurate simula-
tion, given that parallelization of the trajectories would
quickly become memory-limited even on the largest cur-
rent supercomputers. Note that, given experimental er-
ror the infidelity of the real experiment would likely be
much worse than this so one could get away with sam-
pling fewer trajectories, though given the need for a
smaller dt and other complications we still expect that
runtime should be a significant bottleneck. For further
evidence that the need to average over trajectories is un-
avoidable, we also simulated evolution with the cavity
loss rate I'c set to zero (but still including the trun-
cated cavity Hilbert space and the qubit-cavity interac-
tion terms), and compared the result of that perfectly
unitary evolution to the full simulation. As shown in
FIG. 14, the fidelity drops to zero within just a few cycles,
confirming that the noise processes cannot be ignored in
classical simulation.

, which is quadratic in the

Matrix product state methods

An obvious possible objection to the above estimates is
that matrix product state (MPS) methods, which have
time and memory costs that scale exponentially in the
system’s total entanglement and not Hilbert space size,
may prove more efficient. Given the many successes of
MPS methods in other contexts [44], it is natural to ask
whether or not they could simplify the simulation of our
noisy chain. Note that these questions likely do not apply
in a 2d implementation, where we expect most of our
claims about entanglement and complexity to still hold,
but MPS or tensor network methods are significantly less
effective.

Assuming that the volume entanglement scaling we ob-



1.0+

0.8+

0.6 -

0.4+

0.2+

FIG. 14: Fidelity of a simulation with no cavity photon loss,
compared to the full simulation, for parametrization A. For
all L > 4 the results of the two methods rapidly diverge,
indicating that our noisy protocol cannot be simulated with
noise-free methods. This implies that many trajectories will
have to be sampled to obtain an accurate result, significantly
increasing the runtime of a classical simulation.

served in our simulations persists to larger L, we expect
that this should not be the case. The memory cost to
store an MPS wavefunction over L sites with negativ-
ity A is approximately 4LdN? complex numbers, where
Niaz =~ \/1\7715;/27 d is the local dimension of each site
and Ny is the size of the full Hilbert space. Treating
each qubit-cavity pair as a composite object and includ-
ing states up through |3) gives d = 8 for our chain. The
cost to unitarily time evolve such a state is higher by a
factor proportional to d2A". MPS methods can be used in
noisy systems, through for example the quantum trajec-
tory methods in [55, 56]. However, the memory cost of a
quantum trajectory simulation using MPS states is based
on the negativity of a typical trajectory, and not the aver-
aged negativity, and this can be substantially higher since
the system rapidly re-entangles after a photon loss. In
FIG. 15 we calculate the average per-trajectory negativ-
ity in our chain, and show that, unlike the full dynamics
averaged over random quantum jumps, it does not decay
with time and remains an O (1) fraction of Nq.. We at-
tribute this difference to the system rapidly re-entangling
after a photon loss; unlike the full system the entangle-
ment of the evolving state in a single trajectory is not
suppressed since we are not averaging over different lo-
cations (in time and space) for the photon loss operator
insertions.

Consider also the decay of entanglement vs. average
number of photon losses, discussed earlier in this work,
which would be relevant to methods which scale with the
average negativity and not the per-trajectory negativity.
We found that after a sufficiently long time, for an av-
erage of p cavity photon losses the bipartite negativity
scales as N (p) ~ Npe P where Ny o< Npasz and cf,
depends on L and protocol details, and is generally close
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to but slightly less than 1. Since p scales linearly with L
and the number of cycles (see FIG. 9), extrapolating to
L = 27 at 8 cycles gives p ~ 2.7 for parametrization A
and p ~ 2.25 for parametrization B, the resulting entan-
glement loss assuming ¢y, = 1 should give a negativity
equivalent to that of a volume-entangled system with be-
tween six and eight fewer total qubit degrees of freedom
(e.g. a total system Hilbert space smaller by a factor be-
tween 64 and 256). As an alternative estimate, we took
the negativity measured at 7, 8 or 9 cycles for each pro-
tocol as a function of L, and fit that to AN, (L) 27F,
where N;,qz is the maximum possible negativity assum-
ing at most two photons in the cavities and A and d are
fitting parameters; those fits returned values of d ranging
from 0.08 to 0.13, and thus predict a negativity equiva-
lent to true volume entanglement with 4-7 fewer qubits
for L = 27 at 8 cycles, a nearly identical range. This
is significant, but when the additional time evolution
cost of d?A is taken into account we expect that MPS
methods should still be substantially less efficient than
direct Schrodinger evolution averaged over trajectories.
These results suggest that MPS simulation methods will
be more expensive than the full wavefunction evolution,
particularly given that runtime could prove to be a bot-
tleneck before memory does, due to the large number of
trajectories involved in a faithful simulation.

All that said, one could attempt a matrix product
simulation where the total entanglement is bounded to
reduce computational difficulty. This would reduce the
simulation fidelity relative to a full wavefunction evolu-
tion, perhaps to an acceptable degree (e.g. below the
expected fidelity loss from various error sources in the
real experiment). The details and scaling of such calcu-
lations are beyond the scope of this paper, though the
possibility deserves further exploration.

CONCLUSIONS AND OUTLOOK

In this work, we presented a deceptively simple modifi-
cation to a leading quantum sampling problem— weak but
resonant coupling to lossy cavities— and showed that it
leads to dramatic changes in the quantum dynamics. By
considering a wide range of metrics in direct numerical
simulation, we showed that features suggesting classical
intractability, including volume-law entanglement and an
output distribution consistent with quantum chaotic evo-
lution at intermediate times, persist despite the pres-
ence of strong noise in the system. These results suggest
that quantum sampling problems including noise in their
definition can still be extremely difficult to solve with
classical machines, and are thus potentially good candi-
dates for demonstrating a quantum advantage in near-
term hardware. This is doubly true for superconducting
platforms, where lossy elements in the form of readout
cavities are already present for qubit measurement, and



FIG. 15: Average per-trajectory entanglement negativity
(top), and the same quantities plotted as a ratio of A to
the square root of the total Hilbert space size, v/ Ng. Unlike
the negativity of the full simulation shown in FIG. 3 (which is
averaged over many random trajectories), the per-trajectory
negativity does not appreciably decay at long times, since the
system can rapidly re-entangle after a cavity photon loss. As
discussed in the text, this result suggests that matrix product
state based methods for simulation evolution in our protocol
will not be efficient and likely will exhibit worse scaling than
direct wavefunction evolution.

involving them in the state’s evolution can greatly in-
crease the quantum simulation complexity without in-
creasing the hardware complexity of the implementation.
These methods, or variations of them, likely represent the
most difficult simulation problem that can be practically
engineered with a given number of transmon qubits (and
associated measurement cavities).

For a variety of reasons, the basic protocol in this work,
and the parameters used in its numerical simulation, were
closely tied to the previously reported gmon chain ex-
periment. However, the fundamental mechanism— pulses
of delocalized evolution through tunneling terms com-
bined with much weaker, resonant, driven interactions
coupling the primary system to a lossy auxiliary one- is
fairly generic, and we have no doubts that variations of it
would produce similar results. That said, when compared
to unitary sampling problems such as the isolated Bose-
Hubbard chain or RQC, families of dissipative protocols
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can be qualitatively more sensitive to changes in protocol
details (e.g. what classes of operator to use in Hp, the
choice of which sideband terms to employ, the choice of
resonance energies for the lossy objects, etc), and some
choices may lead to results which can be efficiently re-
produced classically. For example, simply alternating the
qubit-cavity and qubit-coupler pulses, rather than oper-
ating them simultaneously as done in this work, can lead
to a situation where the qubits are repeatedly subjected
to effective local measurements, which disentangle the
state and open the door to efficient classical simulations.
Further, it strikes us as unlikely on general grounds for
experimentally realistic protocols with substantial dissi-
pative elements to exhibit chaotic behavior at arbitrarily
long times, though the intermediate-time behavior of the
protocols considered in this work certainly appears to be,
and the time scale of quantum chaos can be increased by
reducing the loss rate of the dissipative elements.

Finally, the techniques described in this work allow for
an intriguing future application: the simulation of ther-
mal many-body states using superconducting circuits.
Multiple previous proposals [57, 58] have argued that
a thermal bath can be simulated in interacting photon
systems using suitably complex bath structures, though
when these constructions are combined with intrinsic
qubit noise the character of the resulting steady state,
and its effective temperature, remain an open question.
However, methods developed in studying cold atoms [59]
allow the system’s temperature to be extracted from local
density fluctuations in the presence of a slowly varying
potential (even if the underlying microscopic Hamilto-
nian is not known), so sufficiently large circuits could
be used to probe the thermodynamics of novel interact-
ing boson systems. In cases where the system is small
or analytically simple enough to permit a classical solu-
tion, this measure could be further bolstered by directly
comparing the observed output distribution to a theoret-
ical model using the K-L divergence or a similar sampling
metric. These approaches could greatly expand the space
of models that can be probed in analog quantum simu-
lation.
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