C2S: Translating Natural Language Comments to Formal
Program Specifications

Juan Zhai
juan.zhai@rutgers.edu
Rutgers University
USA

Guian Zhou
mf1832267 @smail.nju.edu.cn
Nanjing University

Yu Shi
shi442@purdue.edu
Purdue University

Yongxiang Liu
liuyongxiang@smail.nju.edu.cn
Nanjing University

Minxue Pan”
mxp@nju.edu.cn
Nanjing University
China

Chunrong Fang
fangchunrong@nju.edu.cn
Nanjing University

China China China
Shiging Ma Lin Tan Xiangyu Zhang
shiging.ma@rutgers.edu lintan@purdue.edu xyzhang@cs.purdue.edu
Rutgers University Purdue University Purdue University
USA USA

ABSTRACT

Formal program specifications are essential for various software
engineering tasks, such as program verification, program synthesis,
code debugging and software testing. However, manually inferring
formal program specifications is not only time-consuming but also
error-prone. In addition, it requires substantial expertise. Natural
language comments contain rich semantics about behaviors of code,
making it feasible to infer program specifications from comments.
Inspired by this, we develop a tool, named C2S, to automate the
specification synthesis task by translating natural language com-
ments into formal program specifications. Our approach firstly
constructs alignments between natural language word and speci-
fication tokens from existing comments and their corresponding
specifications. Then for a given method comment, our approach as-
sembles tokens that are associated with words in the comment from
the alignments into specifications guided by specification syntax
and the context of the target method. Our tool successfully synthe-
sizes 1,145 specifications for 511 methods of 64 classes in 5 different
projects, substantially outperforming the state-of-the-art. The gen-
erated specifications are also used to improve a number of software
engineering tasks like static taint analysis, which demonstrates the
high quality of the specifications.

CCS CONCEPTS

« Software and its engineering;

*Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE °20, November 8—13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7043-1/20/11...$15.00
https://doi.org/10.1145/3368089.3409716

KEYWORDS
Formal Specification, Comment, Natural Language Processing

ACM Reference Format:

Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang,
Shiqing Ma, Lin Tan, and Xiangyu Zhang. 2020. C2S: Translating Natural
Language Comments to Formal Program Specifications. In Proceedings of the
28th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’20), November 8—
13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3368089.3409716

1 INTRODUCTION

Formal specifications are vital for many software engineering tasks.
Program verification requires procedure specifications to verify
properties of interest [14, 44, 45], especially when the source code
is unavailable or too complicated to analyze. Synthesis techniques
need specifications to synthesize unknown expressions [10, 24, 38].
Software testing demands specifications to generate test oracles [15,
20, 25, 27]. Program debugging requires specifications to locate
root causes [22, 46]. As such, a lot of work has been devoted to
designing formal languages for specification composition. Java
modeling language (JML) is one of such specification languages
and widely used by developers (e.g., to provide specifications for
JDK library methods [8]). However, manually composing formal
specifications is not only time-consuming and error-prone, but
also requires substantial expertise. This motivates us to develop an
automatic approach to synthesize program specifications.

Modern software projects have abundant natural language (NL)
documentation which provides a wealth of semantic information
about code properties and behaviors. For example, in the Linux
kernel, FreeBSD, Open-Solaris, MySQL, Firefox, and Eclipse, 21.8—
29.7% (0.3—-1.7 million lines) of their code bases are code com-
ments [40].J2SE’s Javadoc [6] is a representative example document.
It contains rich information such as properties of parameters and
desired behaviors of methods. Such comments are in natural lan-
guage and describe program semantics informally. Recently, natural
language processing (NLP) techniques have achieved enormous

https://doi.org/10.1145/3368089.3409716
https://doi.org/10.1145/3368089.3409716
https://doi.org/10.1145/3368089.3409716

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

progress and have been adopted in many software engineering
tasks showing fairly promising results [21, 28, 51, 52]. This inspires
us to utilize NLP techniques to address the automatic specification
generation challenge.

There are existing techniques that generate specifications from
code comments, including @tComment [43], Toradocu [20] and
Jdoctor [15]. They firstly manually define a set of patterns. Each
pattern specifies a template for NL comments and a correspond-
ing template for specifications. Then they match a given NL com-
ment against the patterns to generate specifications. However, such
pattern-matching based techniques require many manual efforts
and can hardly handle the flexibility and the diversity of natural
languages, which results in limited generality. Specifically, @tCom-
ment infers null value related properties to detect comment-code
inconsistencies. It cannot handle cases related to other properties
such as “Throws NoSuchElementException if this deque is empty”.
Toradocu generates conditional expressions from exception-related
comments to create test oracles for exceptional behaviors. The
conditions they support include “something is/are positive/nega-
tive/true/false/null/<1/<=0". Such patterns are still limited and they
cannot handle the aforementioned (typical) comments. Based on
Toradocu, Jdoctor derives specifications from return-value-related
comments in addition to exception conditions, showing very promis-
ing results and representing the state-of-the-art. However, since it
still relies on patterns, we found that many comments cannot be
handled as they are not covered by the patterns, such as “Returns
the first element in this list”. In addition, Jdoctor is incapable of
generating specifications to describe the main functions of void
methods. For example, Jdoctor cannot generate any specification
for the void method clear() whose comment is “Removes all of
the elements from this set”. Finally, existing work cannot gener-
ate specifications to describe normal functional behaviors except
return-value-related behaviors, which are prevalent in comments.
Hence our goal is to develop a general approach that can automati-
cally synthesize specifications from different kinds of comments.

In this paper, we propose C2S, an automatic approach of trans-
lating NL comments of a target method to formal program specifi-
cations by assembling primitive tokens guided by the specification
syntax and the context of the target method (method properties such
as parameters). The primitive tokens are automatically extracted
from existing JML specifications [8] written for JDK library meth-
ods. Specifically, we regard NL comments and JML specifications
as two languages expressing the same semantics, and formulate
the specification translation task as a syntax-guided synthesis prob-
lem. We automatically couple NL comments and corresponding
JML specifications to build a bilingual corpus to construct align-
ments between NL words and specification tokens. Existing JML
specifications contain information specific to their methods. Such
information is abstracted away to achieve generality. Then for the
target method with comments, we extract the generalized tokens
that are associated with the words contained in an NL comment
from the alignments and assemble them to synthesize program
specification candidates guided by the specification syntax and the
concrete context of the method. The aforementioned generalized
tokens used in the candidates are substituted with concrete ones for
each target method after the synthesis process. Testing is further
used to filter out incorrect candidates.

Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang, Shiqing Ma, Lin Tan, Xiangyu Zhang

We make the following contributions:

e We propose a novel search-based technique to automati-
cally translate NL comments to formal program specifica-
tions that specify the expected set-ups (preconditions) of
using a method and the effects of executing a method (post-
conditions for both exceptional behaviors and normal be-
haviors). Our approach avoids the manual and error-prone
efforts of defining patterns.

o We develop a prototype C2S based on the proposed idea, and
evaluate it on 511 methods of 64 classes in 5 different projects.
The applications of these specifications in dynamic testing
and Android app static taint analysis demonstrate that these
specifications precisely represent the method behaviors and
improve the efficiency and effectiveness of various analysis
and testing applications.

2 MOTIVATION

Instead of using formal program specifications to convey code se-
mantics, developers tend to use natural language comments to
informally describe semantics. Fig. 1(k) demonstrates a real-world
method whose semantics are explained using three natural language
sentences. Line 81 describes that the main functional behavior is
to “remove the first element from this list and also return this ele-
ment”, which is a post-condition of normal behavior. Line 82 points
out that “if this list is empty, NoSuchElementException will be
thrown” which is a post-condition of exceptional behavior. Line 83
specifies the return value. There are existing efforts in analyzing NL
comments to generate formal program specifications. However, no
existing work can infer specifications from the three comments in
Fig. 1(k). The existing approaches all rely on patterns summarized
manually from comments to derive specifications, which requires
substantial manual work and the patterns can only work on very
limited comments. Moreover, an NL comment can be interpreted
differently in different contexts. For example, “the first” in “returns
the first component” (line 62) in Fig. 1(g) means “the first compo-
nent in the receiver object before/after executing the method” (the
method execution does not change the receiver object) while “the
first” in “returns the first element” (line 83) in Fig. 1(k) means
“the first component in the receiver object before executing the
method” (the method execution removes the first element in the
receiver object). The existing work generates the same specifica-
tion for a given pattern without considering contexts, which may
induce errors. We showcase how our approach can address these
limitations using the examples in Fig. 1.

JML is a program specification language designed to specify de-
sired properties/behaviors of Java classes and methods. Fig. 1(b)
shows an excerpt of JML specification for method remove(int) of
class java.util. ArrayList. JML can specify both exceptional behav-
iors (lines 12-13) and normal behaviors (lines 16-17). There are
some existing JML specifications which can be associated with cor-
responding NL comments. This motivates us to design an approach
to leverage both NL comments and existing JML specifications to
automatically infer specifications from comments. Given that the
dataset of existing specifications is minuscule, we resort to the
search-based technique rather than machine learning techniques
which have the overfitting problem.

C2S: Translating Natural Language Comments to Formal Program Specifications

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

01 /** Removes the element at the specified position in this list. @
02 * @throws IndexOutOfBoundsException if the index is out of ®
03 * range (index < @ || index >= size()) -
04 * @param index - the index of the element to be removed

o5 * @returns the element that was removed from the list LTANE)
06 public Object remove(int index){ ... }

(a) Java Documentation of Method ArrayList.remove(int)

21 /** Adds the specified element to this set if it is not

22 * already present.

23 * @param e - element to be appended to this list

24 * @returns true if this set did not already contain the specified
25 * element */
26 public boolean add(E e){ ... }

11 /** @public exceptional_behavior

12 * @requires index < @ || index >= this.size(); @
13 * @signals_only java.lang.IndexOutOfBoundsException;

14 * @public normal_behavior

15 * @requires @ <= index && index < this.size();

16 * @ensures \result == \old(this.get(index)); ®
17 * @ensures \forall int i; index<=i && i<\old(this.size()-1);
this.get(i)==null && \old(this.get(i+1))==null || ®
this.get(i).equals(\old(this.get(i+1))); 4
18 public Object remove(int index){ ... }

(b) JML Specifications of Method ArrayList.remove(int)

31 /** @public normal_behavior

32 * @ensures this.contains(e)

33 * @ensures \result=!\old(this.contains(e)); */
34 public boolean add(E e){ ... }

(c) Java Documentation of Method HashSet.add(E)

41 /** Creates an empty Stack. */
42 public Stack(){ ... }

(e) Java Documentation of Method Stack.Stack()

(d) JML Specifications of Method HashSet.add(E)

51 /** @public normal_behavior
52 * @ensures this.isEmpty() */
53 public Stack(){ ... }

(f) JML Specifications of Method Stack.Stack()

61 /** Returns the first component of this vector.
62 * @returns the first component of this vector. */
63 public E firstElement(){ ... }

71 /** @public normal_behavior
72 * @ensures \result==this.get(®) */
73 public E firstElement(){ ... }

(g) Java Documentation of Method Vector.firstElement()

(h) JML Specifications of Method Vector.firstElement ()

D Natural Language Comment

Formal Program Specification

i Removes the element at the specified position in this list

\forall int i; index<=i && i<\old(this.size()-1); this.get(i)==null &&
\old(this.get(i+1))==null || this.get(i).equals(\old(this.get(i+1)))

i Returns the element that was removed from the list \result==\old(this.get(index))
iii Tr'mr‘ows IndexOuFO‘FBoundsE).(ceptlon if the index is out of range index<@ || index>=this.size() — throw IndexOutOfBoundsException
(index < @ || index >= size())
(i) Comment-Specification Pairs
Word Token 81 /** Removes and returns the first element from this list.
remove \forall, equals, \old, get, &&, .. 82 * @throws NoSuchElementException if this list is empty
return \result, \old, ==, this, get, .. 83 * @return the first element from this list */
element this, null, equals, get, pl@int, .. 84 public E removeFirst(){ ... }
if throw, =, &, ||, !, .. (k) Java Documentation of Method LinkedList.removeFirst()
add contains, this, \result, true, p1@E, .. 91 /** Adds the specified vertex to this graph if not already present.
empty isEmpty, this, size, @, ==, .. 92 * @param v - vertex to be added to this graph.
first 0, this, get, \old, ==, .. 93 * @returns true if this graph did not already contain the specified vertex. */
94 public boolean addVertex(V v){ ... }

(j) Word-Token Pairs

(1) Java Documentation of Method DirectedAcyclicGraph.addVertex(V)

@ this.isEmpty() — throw NoSuchElementException
® \result==this.get(®)

@© \result==\old(this.get(®))

@ \forall int i; @<=i && i<\old(this.size()-1);

(® this.isEmpty() — throw NoSuchElementException
(® \result==\old(this.get(0))
® \forall int i; O<=i && i<\old(this.size()-1);

® this.contains(pl@E)

(o) IR of DirectedAcyclicGraph.addVertex(V)

this.get(i)==null &% \old(this.get(i+1))==null
|| this.get(i).equals(\old(this.get(i+1)))

this.get(i)==null && \old(this.get(i+1))==null
|| this.get(i).equals(\old(this.get(i+1)))

| (D this.containsVertex(v) |

(m) Specification Candidates of LinkedList.removeFirst()

(n) Specifications of LinkedList.removeFirst()

(p) Specification of DirectedAcyclicGraph.addVertex(V)

Figure 1: Motivating Examples

Fig. 1(a), Fig. 1(c), Fig. 1(e) and Fig. 1(g) are four documentation
samples where NL comments are annotated using different tags like
@returns to describe different aspects. Fig. 1(b), Fig. 1(d), Fig. 1(f)
and Fig. 1(h) separately show the corresponding JML specifications
composed by developers. The specifications are annotated using
different tags to specify different kinds of behaviors. For example, a
specification annotated by ensures specifies a post-condition which
is a property held by a method when the method finishes execu-
tion normally. In the first stage of our technique, we automatically
couple each specification with the corresponding comment based
on annotations. By respectively coupling comments (D), (2), and
(® with specifications (6), ® and (&), we get the three comment-
specification pairs shown in Fig. 1(i).

Then comments and corresponding specifications are automat-
ically pre-processed and split to obtain alignments between NL

words and specification tokens shown in Fig. 1(j). The first column
lists NL words and the second column lists all the tokens associated
with each NL word. Tokens associated with words in a method
comment are used to assemble specifications for the method.
Notice that we have a token p@int in Fig. 1(j), but it does not
occur in any JML specification. Here p@int is a parameter place-
holder used to substitute the first parameter index with the data
type int for method remove(int index). Also, we have method names
like get and contains. These are pure methods (i.e., methods that
do not have side-effects) used in the collected JML specifications
to encapsulate primitive actions. We directly use these methods
as our method placeholders. Our system substitutes information
specific to existing methods with placeholders to derive generalized
representations, making our approach more general and more effi-
cient. We refer to each processed specification as an intermediate

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

representation (IR) of the specification. Each IR is an AST which
contains the syntax information of the specification. Such syntax
information is essential to assembling tokens.

Given a target method with comments (Fig. 1(k)), we first pre-
process each comment into a bag of words and then retrieve the
potential IR tokens from the word-token pairs (Fig. 1(j)). Consider-
ing the comment in line 82, we can retrieve tokens like “isEmpty”
and “this” given the NL word “empty” and tokens like “—” given
the NL word “if”. With these tokens, we leverage grammar rules of
specifications to synthesize potential IRs shown in Fig. 1(m). This is
feasible since the IRs have a limited number of tokens and syntactic
structures (e.g., a method only accepts parameters of fixed types).

Next we instantiate IRs into specification candidates. Take the
IR (® in Fig. 1(0) as an example, the instantiation consists of sev-
eral steps like replacing the parameter placeholder p1@E (first
parameter with generic type E) with the formal parameter name v
and substituting the method placeholder contains (B in Fig. 1(0))
with the concrete method name containsVertex () in Fig. 1(p)),
depending on the context of the target method.

The last step is to filter out incorrect candidates via testing and

the result are shown in Fig. 1(n), in which the candidates like (b) in
Fig. 1(m) are filtered out. Notice that we generate two specification
candidates () and (¢) for the comment “returns the first element
from this list” (line 83 in Fig. 1(k)). Specification (b) specifies “the
return value is the first element in the receiver after executing the
target method which is the case for line 62 in Fig. 1(g). Specification
(©) specifies “the return value is the first element in the receiver before
executing the target method which is the case for line 83 in Fig. 1(k).
We leverage testing to prune out the wrong one to provide the
context-aware generation.
Improving Testing. Normally, it is difficult for automatic testing
tools to have a general way to generate test cases to cover diverse
non-exceptional behaviors. However, our derived specifications can
be used to generate more accurate and more effective tests. Consider
the method addVertex(V) in Fig. 1(1). The test cases generated by
Randoop [9] only check whether the return value is true or false,
which cannot check the core behavior of adding a vertex. In contrast,
we can use our generated specification (box (@ in Fig. 1(p)) to guide
a testing tool to check whether the input v is successfully added. As
we will show in Section 4, the generated specifications can be used
in generating new test oracles, reducing false alarms in automated
testing, and improving static taint analysis.

3 DESIGN

Fig. 2 gives the design of our approach, which includes the search
space preparation phase (left) and the synthesis phase (right). The
inputs of the first phase are NL comments collected from Java docu-
mentation [6] and corresponding JML specifications collected from
JML website [8]. We begin by using the association engine to auto-
matically couple each specification with an NL comment and the
generated comment-specification pairs are fed into the tokenizer
to build word-token pairs which will be used to synthesize specifi-
cations in the second phase. For each comment, the pre-processor
cleans it and splits it into individual words. For each specification,
the IR translator substitutes the concrete subjects (e.g., parameter
names) specific to the subject method with placeholders to obtain

Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang, Shiqing Ma, Lin Tan, Xiangyu Zhang

Input Method
with Comments E’\
| * I Pre-processor

—‘ Javadoc
Comment-
i Specification Word-Token ~
Pairs

| ‘ IPre-processor Pairs ":"Eoéj IR Synthesizer
&—-8— —8 7 °
@ Specification
Generator

/|
@ IR Translator

T Tokenizer v

Association
Engine

= Specification

=@ Checker

e
Specifications

Figure 2: Overview of C2S

JML

a general specification, and builds an AST from the generalized
specification. After that, NL words are coupled with AST tokens
that will be used as the search space for synthesis.

The goal of the second phase is to generate specifications for
a target method with NL comments. Firstly, we obtain NL words
from a cleaned NL comment using the pre-processor. Then the
IR synthesizer generates IR candidates by obtaining AST tokens
that are associated with the NL words from the word-token pairs
and assembling the tokens into candidates based on grammar rules
and the context of the method. After that, the specification gener-
ator instantiates each IR candidate with the context of the target
method (e.g., parameters of the method) to obtain a formal specifi-
cation. Specifically, candidates are generated from tokens extracted
from existing specifications and thus parameter placeholders and
method placeholders used in the candidates are specific to the orig-
inal data. As such, they need to be separately instantiated with
formal parameters of the target method and concrete Java methods
in the class/superclass containing the target method. Lastly, the
specification checker leverages existing developer test cases to filter
out incorrect specifications.

3.1 Specification Language

JML specifications are used to specify properties and behaviors of
Java methods. We simplify and formalize the specification language
and present the abstract language model in Table 1. Our approach
generates both normal specifications and exceptional specifications
for a given method. Normal specifications specify preconditions
and post-conditions when a method terminates execution with-
out throwing an exception. Exceptional specifications specify a
specific exception is thrown under a certain condition. Logical ex-
pressions (LE) lists different types of specifications that can be used
to describe normal specifications. Throw expression (TE) speci-
fies when a certain conditional expression (CE) is true, a specific
exception (EL) will be thrown.

Specifications cannot have side effects on objects, otherwise
the program state may be changed. Therefore, expressions like
assignments and increments are not allowed in the specification
language. Also only methods that have no side-effects on a program
state can be used in specifications.

In addition to the logical expressions supported by Java, forall
expressions (FE) and implication expressions (IE) are introduced
to describe program states after executing a method. FE represents
universal quantification expressions. For example, the specification

C2S: Translating Natural Language Comments to Formal Program Specifications

Table 1: Specification Language Model

Specification S == LE|TE
Logical Expression LE := CE|FE|IE|CELOPLE
Throw Expressin TE := CE — throw EL /*if CE is true, throw exception EL*/
Implication Expression IE := CE=CE|CE=TFE
Forall Expression FE := forall int ID; CE; CE
Conditional Expression CE == NE|NELOPCE
Negation Expression NE == LEP|!LEP
Logical Expression Primitive LEP := BC|RE|MI|\result /*the type of \result is boolean*/
Relational Expression RE := AEROP AE | AE EOP AE | AE EOP null
Arithmetic Expression AE := AEP | AEP AOP AEP
Arithmetic Expression Primitive AEP == IC|ID | AA|MI|\result /*the type of \result is int*/
Method Invocation MI == OBJID(PL?) | MLID(PL?) | \old(MI)
Arithmetic Operator AOP == +|-
Equality Operator EOP == ==|!=
Logical Operator LOP == &&|||
Relational Operator ROP = >|>=|<|<=
Array Access AA := OBJlength
Object OBJ := ID|this | \result /*the type of \result is non-primitive*/
Integer Constant IC == -1]|0]1
Boolean Constant BC := true | false
Exception Literal EL := NullPointerExpcetion | IndexOutOfBoundsException
| IlegalArgumentException | NoSuchElementException
| ArrayIndexOutOfBoundsException
Parameter List PL
Identify ID

\forallinti;0 < i&&i < a.length; a[i] == null means “for each i
in the range from 0 (inclusive) to the length of the array a (exclusive),
the i-th element is null”. An IE in the form p = ¢ means “if p is
true, then ¢ must also be true for p = g to be true, and if p is false,
then p = g is always true”.

The method “\old” is introduced to describe properties that in-
volve program states before calling a method. This enables us to
describe the changes that a method invocation induces. Considering
the program statement list.remove(i), we can use \old(list.get(i)) to
represent “the element previously at the position i of the receiver
list when the method remove has not been called”.

In order to represent the return value of calling a method, the
keyword “\result” is introduced. The data type of \result depends
on the return type of the method. With \result, we can have the
specification \result == \old(list.get(i)) for the above-mentioned
example to convey that “the method remove(int) is expected to
return the element previously at the position i of the receiver list
before being modified by the method invocation”.

3.2 Association Engine

The association engine automatically couples specifications with
corresponding comments based on annotations to prepare comment-
specification pairs.

In documentation, a method has comments for method param-
eters, exceptional-behaviors and normal-behaviors. As shown in
Fig. 1(a), a parameter comment annotated by @param (e.g., line
04) gives a brief parameter description. In some cases, a parameter
comment may describe the condition that the parameter should
satisfy in order not to make the method execute exceptionally. For
example, method subtract(Iterable a, Iterable b) of class CollectionU-
tils in project Apache Commons Collections [1] has a parameter
comment “a must not be null” which indicates a precondition. An
exceptional-behavior comment annotated by @throws (e.g., line 02)
describes the condition that triggers an exception of a specific type.
For normal behaviors, the first sentence (e.g., line 01) of the com-
ments of a method is a concise but complete description of what the

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

method does [5, 23], and the comment annotated by @returns (e.g.,
line 05) describes the return value of the method.

Similarly, a method has both exceptional-behavior specifications
and normal-behavior specifications, which also can be distinguished
by their annotations. Take Fig. 1(b) as an example, in exceptional
behaviors, the specification index < 0||index > this.size() an-
notated by requires (line 12) specifies the condition of throwing
exception java.lang.IndexOutOfBoundsException (line 13 annotated
by signals_only). Based on the exception type, we can associate the
specification in line 12 with the comment “if the index is out of
range (index < 0 || index < size())” in line 02 (pair @ in Fig. 1(i)).
In normal behaviors, when the precondition annotated by requires
in line 15 is met, the method will terminate the execution normally
in a program state that satisfies the post-conditions annotated by
ensures (lines 16-17). The specification in line 16 is an equality ex-
pression with one operand as \result meaning the specification de-
scribes the return value. And hence we associate such specifications
with comments annotated by @returns (pair @ in Fig. 1(i)). Other
types of post-conditions describe execution effects of a method and
they are associated with the first sentence that summarizes the
method (pair (@) in Fig. 1(i)).

3.3 Tokenizer

The tokenizer accepts a comment-specification pair and transforms
it into pairs of NL words and AST tokens. For each input pair, the
pre-processor is leveraged to clean the NL comment and split it
into separate words, and the IR translator is leveraged to convert
the specification into an AST. Then the tokenizer constructs pairs
of NL words and AST tokens by coupling each word in the cleaned
comment with each leaf node in the AST.

3.3.1 Pre-processor. To acquire more general comments by re-
moving unnecessary information and normalizing texts, the pre-
processor mainly performs three tasks: 1) Removing stop words (com-
mon words appearing frequently [37]) like “the”; 2) Reducing de-
rived words to their word stem, namely root form, by applying the
Porter stemming algorithm [34]. For example, the word “inserts” is
transformed into “insert”; and 3) Lowercasing all the words. After
the cleaning, each comment is split into individual words by space.

3.3.2 IR Translator. The IR translator generalizes a JML specifica-
tion in the text form to an abstract form and parses the abstracted
specification to an IR represented using AST.

Each generalized specification is called an IR with the semantics
preserved. There are two main reasons for using IRs. The first one
is to reduce the search space for the synthesis process and the
second one is to facilitate the instantiation of the synthesis results
with concrete information belonging to the target method (i.e., the
method whose specifications are being synthesized). We will use
the specification this.contains(e) of method add(E e) in Fig. 1(d) to
demonstrate the reasons as well as the process.

Firstly, we substitute all concrete parameter names with parame-
ter placeholders in the form of pi@t (the i-th parameter with type t).
Such substitution enables us to achieve better generality and higher
efficiency. For example, assume the parameter e is not generalized
and hence becomes part of the token set that would be used to syn-
thesize a specification. However, it is very likely a target method

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

Algorithm 1 Synthesizing IR Candidates from a NL Comment

Input: comment C, parameters P, return type T, word-token pairs M
Output: a set of IR candidates S

1: procedure syNTHESIZEIR(C, P, T, M)

2: wordSet «— preprocess(C)

3: tokenSet « extractTokens(wordSet, M)
4: S « filterTokens(tokenSet, P, T)

5: while true do

6: removeSet < 0

7:
8:

oldSet S
setl < S
9: set2«— S
10: for each ast1 € set1 do
11: for each ast2 € set2 do
12: S «— SUassemble(astl, ast2,P, T)
13: if S == oldSet then
14: removeSet < removeSet + ast1
15: if S == oldSet then
16: break
17: S« S\ removeSet

18: return filter(S)

with similar specifications does not have a parameter e. As such,
the generated specification is invalid. It would be very difficult to
replace it with some other parameter name as we do not know
what e represents. However, with p1@E, we know that it is the first
parameter with a generic type and thus finding a replacement is
much easier. Another benefit of using placeholders is to reduce the
search space by decreasing the number of tokens used to construct
specifications since parameter names can be diverse.

Pure methods which do not have side-effects are used in JML
specifications to encapsulate primitive actions. For example, the
method containsin the specification this.contains(e) is a pure method.
We use the pure methods as method placeholders in our IRs and they
will be substituted with concrete methods when IRs are instantiated
into specifications for a target method (Section 3.5).

After generalization, IR translator parses a specification to an

AST. The parser performs lexical analysis and syntax analysis,
which is very similar to that in a compiler [11].
ASTs. We represent IRs using ASTs, and use leaf nodes to represent
tokens and non-leaf nodes to represent the IR’s grammatical terms.
As shown in Fig. 3, leaf nodes like “\result” and “==" are tokens
used to constitute an expression, and a non-leaf node like “Equality
Expression” represents a term having its inner structure.

3.4 IR Synthesizer

In this section, we introduce our search-based approach of synthe-
sizing IRs for a method with NL comments.

The process of synthesizing IRs is presented in Algorithm 1. It
takes a method comment C, the parameters with type information
P, the return type T, and the word-token pairs M as inputs and
the output is a set of IR candidates, denoted as S. Given a method
comment, we first obtain the initial token set from word-token pairs
M based on words of the pre-processed comment (lines 2-3). Then
we leverage the parameter data type(s) P and the return type T of
the target method to eliminate some tokens from the initial token
set (line 4). For example, if the target method has no parameters,
then the token p1@int should be removed from the token set. The
result set of tokens is stored in S to be used to synthesize IRs.

With the token set, the main procedure iteratively assembles
two ASTs in the set S into a larger AST based on the specification
language model shown in Table 1. When a fixed point is reached, we

Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang, Shiqing Ma, Lin Tan, Xiangyu Zhang

\result == -1 = !this.contains(p1 @Object)
Implication
Expression
Equality Implication Method ®
1 Expression Operator Expression
Object |/| Equality Integer Negation Method
Operator | | Constant Operator Invocation

(a) IR Candidates

\result -1 == != get() && ! = null this contains() pl@Object ‘

(b) Tokens Used for Synthesis
Figure 3: Synthesis Example

terminate the assembling process. The assembling procedure in line
12 treats the two input ASTs (i.e., astI and ast2) as siblings to form
a new AST. Note that the assemble procedure only generates an
AST with correct syntax. In addition to the syntax rules in Table 1,
we also check the syntax based on the following properties of the
target method: 1) the number of parameters; 2) the data type of
each parameter; and 3) the return type. Suppose that we have two
ASTs separately for “\result” and “# null”, the IR \result # null is
not generated for a target method whose return type is int although
it is a correct IR for some methods. Note that two different ASTs
may have the same semantic, such as ASTs of \result # null and
null # \result. Such ASTs are regarded as duplicated and they will
not exist simultaneously in the set S.

Line 13 checks whether a new AST is produced in the loop (lines
11-12). If not, it is highly possible that no new ASTs can be con-
structed from ast1 in the following iterations and thus we add it to
removeSet and remove it from S in line 17. Consequently, ast1 will
not be used to synthesize IRs in later iterations.

After the assembling process, we get an AST forest, which may
contain incomplete ASTs (e.g., a relational expression missing one
operand) and complete ASTs that do not denote logic assertions (e.g.,
this.size() whose value is not boolean). We eliminate such ASTs
and return the remaining ones as IR candidates (line 18).
Example. Fig. 3(a) presents some IR candidates assembled from
the tokens listed in Fig. 3(b). Some non-leaf nodes are omitted
for the limitation of space. In the first iteration, ASTs (D and (2
are constructed. Then based on the initial tokens in Fig. 3(b) and
the ASTs created in the first iteration, 3) and (4) are assembled
in the second iteration. After that, the third iteration produces ()
and (®. Finally, the whole tree in Fig. 3(a) is built in the fourth
iteration. In addition to the whole tree, three other complete logical
specifications are synthesized in this process, namely 3), @ and
®. All the four IRs are returned by the synthesis algorithm and
the ones that do not specify the desired behaviors of the method
will be eliminated by the specification checker in Section 3.6. Other
synthesized IRs like \result # —1 && this.get(\result) # null =
this.get(\result).equals(p1@Object) are omitted here.

3.5 Specification Generator

The specification generator translates an abstract IR to a concrete
specification, leveraging the contextual information of the target

C2S: Translating Natural Language Comments to Formal Program Specifications

method. The placeholders that need to be instantiated include pa-
rameters and methods.

For each parameter placeholder, we directly substitute pi@t with
the i-th parameter of the method being specified. For each method
placeholder, we need to find the matching concrete method in the
class that contains our target method. The initial concrete method
candidates include all the methods that can be invoked by this class
or by an instance of this class. We first leverage the number of
parameters and parameter types to select the candidates. Suppose
that a parameter of the abstract method in the IR is of the type int.
If a method candidate does not contain a parameter with type int,
it is discarded. If the abstract method does not have any parameter,
then no candidate is discarded in this step. In the remaining candi-
dates, we use word embeddings to measure the similarity between
the concrete method name and the abstract method name. We use
the value 90% as a threshold for the similarity. The value is picked
based on our experimental results. If no concrete method name has
a similarity higher than the threshold, it is highly likely that there
is no concrete method having the behavior specified by the abstract
method, and hence we do not generate any specification for this
IR. Otherwise, the one with the highest similarity is selected to
instantiate the abstract method. The embedding of a CamelCase
method name is calculated as the average of word vectors of individ-
ual words. Notice that overloaded methods with the same method
name have already been pruned out in the first step.

Take the target method addVertex(V v) of class DirectedAcyclic-
Graph in project JGraphT [7] in Fig. 1(1) as an example. One syn-
thesized IR is this.contains(p1@E) (@) in Fig. 1(0)). After parameter
instantiation, the IR is transformed into this.contains(v) (E and V
here are generic types and they are the same). Then C2S uses the pa-
rameter type V to select potential concrete methods in the concrete
class. Any method that does not have parameters and any method
whose first parameter type is not V are eliminated. Then we com-
pare the word vector of the abstract method name “contains” with
the word vector of each concrete method name, and the one that
has the highest similarity (greater than the threshold) is the method
“containsVertex”. By instantiating the method placeholder ‘“contains’
with the concrete method “containsVertex”, the final specification
this.containsVertex(v) is generated (@ in Fig. 1(p)).

3]

3.6 Specification Checker

The goal of the specification checker is to eliminate invalid specifi-
cation candidates. It works by first transforming the specification
candidates into test oracles and then adding these oracles to exist-
ing project test cases written by developers. Here, we trust these
project test cases as they were the ones used in unit testing and
regression testing. As such, any specification candidates that trigger
violations in these tests are deemed invalid.

The specification checker consists of two main steps. The first
step is to instantiate a specification by substituting general infor-
mation (e.g., formal parameters) with concrete information (e.g.,
actual parameters). The second step is to instrument existing test
cases with assertions generated from instantiated specifications
and necessary Java statements.

3.6.1 Specification Instantiation. General information in specifica-
tions is instantiated in this step. Recall that our specifications are

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

Algorithm 2 Instantiating a Specification for a Method Invocation
Statement

Input: method specification S, method invocation statement ST, method M
Output: an instantiated specification specific to statement ST

1: procedure INSTANTIATESPECIFICATION(S, ST, M)

2 switch S do

3 case \result

4: return getRetValue(ST)

5: case parm > parm is one formal parameter of M
6: return getActualParameter(parm, ST, M)

7 case this

8: return getReceiver(ST, M) > get the receiver of M in ST
9: case \old(e)

10: e’ — instantiateSpecification(e, ST, M)

11: r « getReceiver(ST, M)

12: return e’[r¢ /7] > 1’ is a clone of r before executing ST
13: default

14: newSpec «— S
15: for each operand € S do

16: newOpnd « instantiateSpecification(operand, ST, M)

17: newSpec «— updateOperand(newSpec, operand, newOpnd)
18: return newSpec

generated for individual method. These specifications use formal
parameters, this and \result to respectively represent inputs, the
receiver and the return value of a method, which has to be instanti-
ated in order to generate test oracles. For a statement (in a project
test case) that invokes the target method, the specification checker
automatically instantiates them by using values in the method in-
vocation statement. Notice that these concrete values are also used
to generate assertion statements for the test case (Section 3.6.2).
This instantiation process is shown in Algorithm 2. It takes a
specification S of the method M, a statement ST that invokes the
method M as well as the method M as inputs, and returns the instan-
tiated specification that is specific to the input statement ST. We
will use the example in Fig. 4 to show how it works. Fig. 4(a) gives
a statement from an existing test case which invokes method re-
move(int index) with two generated specifications listed in Fig. 4(b).
The instantiateSpecification procedure defined in line 1 recur-
sively calls itself to do substitution. It has three base cases separately
for return value, parameters and receiver. When the expression
\result is found (line 3), we call the procedure getRetValue in line 4
to get the actual return value of the given statement ST. For exam-
ple, the statement in Fig. 4(a) uses variable ret to store the return
value and thus ret is used to substitute \result (D) to 3)). When one

‘61 String ret = list.remove(2); ‘

(a) A Statement Calling remove(int) in (b) From a Test Case

java.util LinkedList: remove(int index)
@ \result == \old(this.get(index))
@ \forall int i; @ <= i & i < index; this.get(i) == \old(this.get(i))

(b) Specifications of Method remove(int)

@ ret == oldList.get(2)

@ \forall int i; @ <= i && i < 2; list.get(i) == oldList.get(i)/R
©“>>
®
o]

(c) Instantiated Specifications Based on (a) and (b)

n@1 LinkedList oldList = list.clone();

02 String ret = list.remove(2);

k@3 org.junit.Assert.assertTrue(ret == oldList.get(2));
04 boolean flag = true;

05 for(int i = @; @ <= 1 && i < 2; i++)

06 flag = flag && (list.get(2) == oldList.get(2));
07 org.junit.Assert.assertTrue(flag);

(d) Test Oracle Generated Based on Specifications in (b)

Figure 4: Test Oracle Translation Example

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

formal parameter parm of method M is found (line 5), the procedure
getActualParameter in line 6 is called to retrieve the correspond-
ing actual parameter. For example, the formal parameter index in
Fig. 4(b) is substituted with the actual parameter 2 in Fig. 4(c) (D
to 3, and @ to @). When the keyword this is found (line 7), we
substitute it with the actual receiver of method M returned by the
procedure getReceiver (line 8). The statement in Fig. 4(a) has list as
the receiver, and thus this is substituted by list.

To express the semantics of \old, we propose to save the pro-
gram state (i.e., the state of the receiver in Java) before executing a
statement into a new variable r., a clone of the receiver, and later
retrieves from r.. More specifically, when the expression \old(e) is
found (line 9), we recursively call the procedure instantiateSpecifica-
tion to substitute the aforementioned general information in e and
store the substituted expression to e’ (line 10). Then we substitute
the receiver of M in ST (r in line 11) in ¢’ with our cloned receiver
re (line 12). Consequently, we can retrieve the program state before
executing ST from r.. For example, in Fig. 4(d), we can get the third
element in the original linked list (i.e., before calling remove(int) in
line 02) from receiver oldList cloned in line 01. The previous third
element cannot be obtained from the receiver list in line 03 since it
has been removed by calling remove(int) in line 02.

For other expression types, each operand is substituted by re-
cursively calling the procedure instantiateSpecification to get the
whole expression instantiated (lines 13-18).

3.6.2 Assertion Instrumentation. After deriving instantiated spec-
ifications, the specification checker instruments test cases with
assertions (and related code). The rules of instrumenting asser-
tions and code into existing test cases are shown in Fig. 5. The
instrumentation process works recursively and is named as genera-
teOralce. The first column lists the instantiated specifications and
the transformed test cases are boxed in the third column. The state-
ment st here calls a target method for which we have synthesized
specifications, namely the input parameter ST in Algorithm 2.

Rule [T-IMPLY] separately generates an oracle for each operand
of the implication operator and then generates an assertion based
on the definition of the implication expression. Similarly, we have
Rule [T-AND], Rule [T-OR] and Rule [T-NOT] for conditional ex-
pressions in our specification language model.

Rule [T-UQ] is used to generate test oracles from universal quan-
tification specifications with a for loop. For example, we can use
Rule [T-UQ] to transform the specification () in Fig. 4(c) into the
oracle in lines 4-7 of Fig. 4(d), in which the initial value 0 (value
in Rule [T-UQ]) of the loop control variable is obtained from the
condition 0 <= i && i < index of (9.

Rule [T-OLD] shows how to instrument a test case based on an
instantiated specification containing the cloned receiver rc. Firstly,
we insert a code snippet to clone the receiver of the target method
in st as r¢ before st. Then the specification is treated as others.
Considering the example in Fig. 4(d), line 01 is inserted before line
02 to clone the receiver list, and the specification (3) is transformed
to the oracle in line 3.

4 EVALUATION

We have implemented a prototype C2S and empirically evaluated
C2S to address the following questions:

Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang, Shiqing Ma, Lin Tan, Xiangyu Zhang

Table 2: Specifications Generated

Project #Class #Method #Pre #Except Post #Nor Post
JDK 8.0 10 201 64 929 348
Commons Collections 4.1 27 170 140 115 187
Guava 19 8 81 10 13 98
GraphStream 1.3 4 25 0 6 32
JGraphT 0.9.2 15 34 4 10 19
Total 64 511 218 243 684

ROQ1: How effective is C2S in synthesizing formal program specifi-
cations from NL comments?
RQ2: How does C2S compare with state-of-the-art approaches in
improving dynamic testing?
RQ3: How useful is C2S in improving static taint analysis?

The evaluation was conducted on a machine with Intel(R) Core(TM)
i5-8259U CPU (2.30GHz) and 8GB main memory. The operating
system is macOS High Sierra 10.13.6, and the JDK version is 8.

4.1 Data Collection

To prepare the search space of tokens for synthesizing specifica-
tions, we collected all available JML method specifications and their
corresponding NL comments. All the specifications are composed
for the project JDK [6]. In total, we have 3,547 couplings between
comments and specifications. On average, each NL word is mapped
to 18 IR tokens. The time used to synthesize specifications for each
comment is on average 26.40s.

4.2 Effectiveness in Specification Generation

To answer RQ1, we synthesize specifications for 5 frequently-used
Java libraries with well-maintained documentation, namely JDK [6],
Apache Commons Collections [1], Guava [4], GraphStream [3], and
JGraphT [7], The results are shown in Table 2, which presents
the project (column 1), the number of classes/methods (columns
2/3) that are analyzed, and the number of generated precondi-
tions/exceptional behavior post-conditions/normal behavior post-
conditions (columns 4/5/6). Note that the search space of IR tokens
used in C2S is collected only from project JDK. However, specifica-
tions for other projects can be generated using C2S, meaning that
C2S is cross-project.

From Table 2, we make a few observations. Firstly, the number of
normal post-conditions is a bit more than the number of methods.
This is because executing one method can lead to multiple effects.
Take method add(int index, Object element) of class ArrayList as an
example. If it executes normally, it would achieve at least the follow-
ing two effects: 1) The receiver list contains the parameter element;
and 2) The element at the position specified by the parameter index
equals to the parameter element. C2S generates a specification for
each effect. Secondly, the number of preconditions is less than that
of exceptional post-conditions except for project Apache Commons
Collections. Based on our analysis on these comments, we observe
that, in many projects, developers rarely comment on precondi-
tions although normally the negation of the exception triggering
condition could be considered as essentially a precondition.

To further answer RQ1, we measure precision and recall of C2S
in synthesizing specifications. Like other projects of deriving speci-
fications from comments [15, 20, 43], there is no ground truth for

C2S: Translating Natural Language Comments to Formal Program Specifications

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

st;
boolean flag; = generateOracle(e;);

a=e— boolean flagy = generateOracle(ey);

W o e

AssertTrue(flag; == false || flagy == true && flagy == true);

st;

boolean flag; = generateOracle(ey)
boolean flagy = generateOracle(ez)]
AssertTrue(flag) && flaga);

e && eg —

s

1 st;

2 boolean flag; = generateOracle(ey)
3 boolean flagy = generateOracle(ey)
4 AssertTrue(flagy || flagy);

st;
boolean flag = generateOracle(e)
AssertTrue(!flag);

erllez —

1

st;

boolean flag = true;
for (int x = initalValue; e;; x + +) flag = flag && eq;
4 AssertTrue(flag);

@ o o=

\forall int x; e1; e; —

[T-IMPLY] Note:

® st:astatement which calls a method m with specifications
® e/ej/ey: a specification after instantiation using Algorithm 2
e r:receiver, the object on which the method m is called in st
® r¢:aclone of the receiver r before executing st
.

T-AND
[] f(r¢): ainstantiated specification that contains cloned receiver r¢
[T-OR]
1 st;
[T-NOT) €12 AssertTrue(e)] [T-E]
1 Type r¢ = clone(r);
[TUQl f(re) —| st [T-OLD]

3 boolean flag = generateOracle(f(rc));
4 AssertTrue(flag);

Figure 5: Transformation Rules

ideal specifications. We follow a similar evaluation method to ex-
isting work [15], which manually checks generated specifications.
We asked 8 developers (6 graduate students and 2 developers from
industry) to participate in the manual checking. All the developers
had at least four years of programming experience and were ac-
quainted with program comments. In the process, all specifications
are checked against source code with the help of corresponding
comments. There are two main reasons: 1) specifications are ex-
pected to specify code behaviors; and 2) one NL sentence may
express different meanings in different contexts (e.g., “returns the
first component in Fig. 1(g) and in Fig. 1(k) introduced in Section 2).
As we manually check specifications, it is inevitable to introduce
subjectivity. To minimize such subjectivity, we utilized cross verifi-
cation by assigning each specification to two different developers.
When a disagreement occurs, all the developers would involve
to have an open discussion to resolve it. Moreover, we mix our
synthesized specifications and specifications generated using the
other three approaches, and thus the developers are unaware of
whether a specification is generated using our approach or not. Note
that @tComment aims at detecting comment-code inconsistencies,
meaning that it does not assume the correctness of source code. In
order to have a fair comparison, during the study, the users were
instructed to preclude cases in which specifications are inconsistent
with code due to inconsistencies between comments and code.

If a specification is inconsistent with the source code, it is con-
sidered as false positive. If we fail to generate a specification for
a comment, we consider there is a false negative. Note that there
are comments that do not have corresponding specifications (e.g.,
those explaining time, authors, and implementation details). We
preclude such comments. Specifically, a specification is correct (C)
when it is consistent with the corresponding source code; it is
wrong (W) when it is inconsistent. For example, the specifica-
tion this.containsVertex(sourceVertex) is generated for method

Table 3: Specification Synthesis Precision and Recall

Normal Post

Tool Pre Except Post Return Non-retarn Overall

P R P R P R P R P R
@tComment 0.98 0.64 0.80 0.18 n.a. 0.00 n.a. 0.00 0.91 0.26
Toradocu n.a. 0.00 0.58 0.42 na. 0.00 na. 0.00 0.58 0.41
Jdoctor 0.94 0.92 0.93 0.77 0.66 0.39 n.a. 0.00 0.85 0.76
C28 0.98 0.97 0.98 0.91 0.93 0.90 0.92 0.88 0.96 0.91

addEdge(V sourceVertex, V targetVertex, E e) in class EdgeReversed-
Graph of project JGraphT. However, method addEdge is to add
an edge which goes from the sourceVertex rather than adding the
parameter sourceVertex. Such wrong specifications are generated
because C2S does not analyze the semantic of a natural language
comment. A specification is missing (M) when no specification is
generated for a comment or when a comment describes two or
more behaviors, but C2S fails to synthesize specifications for all of
them. Consider the comment “Throws lllegalArgumentException if
collection is empty or contains more than one element” of method
extractSingleton(Collection<E> collection) in class CollectionUtils of
project Apache Common Collections. C2S can generate a specifica-
tion for “collection is empty”, but cannot generate for the later part
due to the incompleteness of the word-token pairs.

We define precision as the ratio between the number of correct
specifications and the total number of generated specifications,
namely C/(C + W) and recall as the ratio between the number of
correct specifications to the total number of correct specifications
that are expected to be generated, namely C/(C + M).

Note that our manual validation efforts are only needed for eval-
uating precision and recall, not during deployment. For example,
in real deployment of using our specifications to improve testing,
we will simply utilize all the generated specifications and report
all test failures. The developers will manually go through such fail-
ures. Some failures may be due to incorrect specifications but our
precision and recall results indicate that such cases are very rare.

Table 3 reports precision and recall of @tComment, Toradocu,
Jdoctor and C2S on the target methods of Table 2. The columns P
and R separately show precision and recall. As mentioned in intro-
duction, @tComment does not handle normal post-conditions (i.e.,
post-conditions for normal behaviors), Toradocu cannot generate
preconditions or normal post-conditions, and Jdoctor does not han-
dle normal post-conditions that are unrelated to return value (as
n.a. shown in the table). The data shows that the precision of C2S
is comparable with the state-of-the-art approaches while the recall
of C2S is substantially higher.

For the return-related normal post-conditions, Jdoctor’s preci-
sion and recall are much lower than those of C2S since return
comments are too complicated for pattern-matching and lexical
similarity to work well.

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

C2S is the only technique capable of generating non-return-
related normal post-conditions. For example, C2S can generate the
desired specification this.get(index) == object for the comment
“Sets the value at the specified index avoiding duplicates.”.

Finally, we want to point out that there are still comments be-
yond the capabilities of C2S. For example, C2S cannot handle the
comment “Returns the n’th item down (zero-relative) from the top
of this stack without removing it.”, limited by the incompleteness
of existing specifications.

The overall precision of 0.96 and the recall of 0.91 illustrate
that C2S is more effective in translating NL comments to formal
specifications than the state-of-the-art approaches.

Our generated specifications are publicly available [2].

4.3 Improving Automatic Test Case Generation

To answer RQ2, we conduct an experiment to show how our spec-
ifications improve automatic test cases generation by Randoop
compared with Jdoctor’s specifications. We choose Jdoctor because
of its diverse specification types. For example, @tComment and
Toradocu cannot generate post-conditions for normal behaviors
while Jdoctor can. To make a comprehensive comparison, we choose
to compare C2S with Jdoctor. This experiment follows Jdoctor’s
experiment setup.

Randoop is an automatic testing tool that explores method se-
quences randomly for a given class and checks whether executing
these sequences would violate default specifications as well as user-
provided specifications that describe expected behaviors. Randoop
outputs two types of test cases, namely failing ones that reveal
potential bugs, and passing ones that are used as regression tests.

Randoop has limitations in supporting our generated specifi-
cations. To address this, we enhance Randoop in three aspects,
and we refer to our enhanced Randoop as C2SRandoop. Firstly,
C2SRandoop allows adding oracles between program statements
whereas Randoop only adds oracles after the last statement, mak-
ing it impossible to check some properties before that. For in-
stance, the property list.isEmpty() holds after executing the state-
ment list.clear(), and we need to add this oracle after the invoca-
tion. Otherwise, list may be updated by following statements like
list.add(“paper”) and it would become invalid to test the property
isEmpty() after the last statement. Secondly, we modify Randoop to
generate oracles for void methods whose specifications are skipped.
For example, Randoop does not generate assertions to test the void-
return method add(int index, E element) of class ArrayList, and
thus its properties like this.contains(element) cannot be checked.
Thirdly, Randoop does not accept some of our specification types in-
cluding implication expressions, forall expressions and expressions
containing keyword \old. Based on the rules shown in Fig. 5 (intro-
duced in Section 3.6), C2SRandoop can generate oracles from these
specifications to test target methods.

We use C2SRandoop to generate test cases based on Jdoctor’s
specifications and our specifications, and the time limit is set as
15 minutes. Table 4 summarizes the comparison results. The first
column lists the projects. The columns #FC, #TA, #FA and % re-
spectively show the number of failing cases, the number of true
alarms, the number of false alarms and the ratio between false
alarms and the number of failing cases. As we manually check the

Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang, Shiqing Ma, Lin Tan, Xiangyu Zhang

Table 4: Test Case Generation Improvement

Project Jdoctor C28
#FC #TA #FA % #NO #FC #TA #FA % #NO
JDK 8.0 60 40 20 33.33% 9 40 40 5 12.50% 178
Collections 4.1 105 30 75 7143% 17 30 30 10 3333% 106
Guava 19 20 10 10 50.00 % 2 10 10 0 0.00 % 22
GraphStream 1.3 20 20 0 0.00 % 1 20 20 0 0.00 % 12
JGraphT 0.9.2 114 64 50 43.86 % 0 64 64 10 1563 % 5
Total 356 189 167 4691% 29 189 189 25 1323% 323

failing test cases, subjectivity might be introduced. To reduce such
subjectivity, we mix failing test cases from Jdoctor and C2S, and
developers are unaware of whether test cases belong to Jdoctor or
C2S. Moreover, false alarms are checked by multiple developers in-
dependently. When a disagreement occurs, all 8 developers involve
to discuss to resolve it. From the results, we can see that Jdoctor’s
specifications lead to a much higher false alarm than our specifi-
cations do (46.91% vs. 12.23% on average). This results from two
main reasons. The first one is that Jdoctor’s pattern-matching and
lexical similarity to identify subjects (e.g., parameters) in comments
are relatively inaccurate. The second one is that Jdoctor does not
have an automatic approach to eliminate wrong specifications. By
contrast, we leverage our specification checker to automatically
prune out incorrect specifications. The columns #NO shows the
number of new oracles generated based on specifications. Multiple
test cases may be generated for a method using the same oracle.
Such cases are only counted as one oracle. Note that the number
of new oracles generated using our specifications is much higher
than that of Jdoctor beacause C2S can generate much more normal
post-conditions than Jdoctor.

4.4 Improving Identifying Leak Paths

To answer RQ3, we leverage FlowDroid [12] to conduct taint analy-
sis on 10 Android applications to detect undesirable information
leak paths. Flowdroid does not analyze library functions. Instead,
it accepts taint wrappers to model the information flow of library
methods to achieve more precise results. Consider the method re-
move(int) of class ArrayList, we can specify the flow from the first
parameter of remove(int) to the return value and thus FlowDroid
can use the flow to analyze code that invokes remove(int), without
analyzing the body of the method. Our specifications describe re-
lations between parameters and the return value and thus can be
utilized to extract information flow model of a library method.
We limit the sinks to Internet access and files writing, and set
a 30 minutes timeout for each app in our experiments. We ran
FlowDroid on 10 Android apps in three modes: 1) without using
any taint wrapper; 2) with taint wrappers containing data-flow
information extracted from Jdoctor’s specifications; and 3) with
taint wrappers from our specifications. We compare the number of
reported information leak warnings and the performance, which
are summarized in Table 5. The first column lists the apps, among
which, some are from the DroidBench micro-benchmark suite such
as ArrayAccess1 and they are selected since they use library meth-
ods. In order to demonstrate our specifications are beneficial to
identify leak paths for different kinds of applications, including
open-source and commercial software, benign applications and
malwares, we classify applications that use these library methods

C2S: Translating Natural Language Comments to Formal Program Specifications

Table 5: Static Taint Analysis Comparison Result

APK No TW Jdoctor TW C2STW
#P #T #P #T #ATP #P #T #ATP

ArrayAccess1 1 3.85 1 4.56 0 1 5.37 0
Alipay 39 1450.89 40 1482.32 1 52 1542.43 13
Broncos News 1 32.26 1 30.35 0 5 32.35 4
OpenTable 32 1251.142 32 1253.52 0 47 1799.66 15
Wikipedia 0 5.20 0 5.20 0 2 9.43 2
TencentNews 89 1061.75 89 1293.74 0 93 1305.57 4
DroidKungFu 1 11.02 1 19.41 0 5 27.12 4
santander 4 11.86 4 14.20 0 5 16.85 1
enriched1 1 4.83 1 5.08 0 1 5.50 0
Avira Antivirus Security 20 1682.14 26 178643 6 27 1927.86 7
Total 188 - 195 - 7 238 - 50

into the aforementioned categories, and randomly pick some out
of each category.

The number of leak paths and the time (in seconds) used to do
the analysis in the three experiments are shown in columns #P and
#T. The #ATP columns 6 and 9 present the additional number of
true leak paths that are identified using Jdoctor’s specifications and
our specifications but cannot be identified when no taint wrapper is
used. In summary, the results illustrate that with our specifications,
50 more leak paths can be identified for 8 apps within an acceptable
time that is comparable to the analysis time when no taint wrapper
is used, while only 7 more leak paths can be identified for 2 apps
using Jdoctor’s specification.

5 DISCUSSION
5.1 Threats to Validity

One threat to external validity is that it is possible the space of
tokens that compose specifications collected from JDK would cause
low accuracy when synthesizing specifications for other projects.
To mitigate this, we introduce an intermediate representation to
capture the expected behaviors of a method which can be instan-
tiated into a concrete specification for a target method. Another
threat lies in that our subject projects and classes might not be
representative of true practice. To minimize this, we conducted
the evaluation on 5 representative projects that provide diverse
functionalities from graph handling to efficient data structures.
The threat to internal validity is the accuracy of our C2S in syn-
thesizing specifications. To alleviate this, we verified the correctness
of each generated specification by running developer-written test
cases. In addition, as part of our evaluation, each specification was
manually checked against source code by two developers.

5.2 Generality

Our technique assumes good quality comments. Empirical stud-
ies on comments/documentation like [26, 31] have demonstrated
over 50% comments/documentation are of good quality and useful
in practice. Furthermore, such assumption/limitation is general
for most existing work that extracts information from comments
like [32, 40, 42, 47, 53]. Despite such limitation, these existing efforts
and C2S, have shown that comments in existing projects can be
used to improve various aspects of software engineering.

The value of C2S lies in generating specifications for methods
whose specifications do not exist or are incomplete. It achieves the
goal by learning from a small number of existing specifications
(for alignments). Our technique is general in principle and it is a
valuable step towards automated specification generation, which is

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

difficult in general. Although we did not present in the paper, C2S
works well for C# documentation, and we believe it can be applied
to derive specifications for other programming languages.

6 RELATED WORK

There are many efforts of generating specifications from source
code or natural language comments, based on static analysis tech-
niques [16, 17, 36, 48—50], dynamic analysis approaches [13, 18,
19, 30], mining large-scale repositories [29, 35, 39], and NLP tech-
niques [15, 20, 32, 43, 54].

Our work is closely related to approaches that infer specifica-
tions by analyzing comments written in a natural language. These
approaches [15, 20, 32, 41-43, 54] extract specifications from com-
ments by matching handcrafted patterns. Specifically, [53] builds an
automaton based on the predefined specification template to infer
a resource specification to detect bugs. ALICS [32] generates pro-
cedure pre/post-conditions that are relevant with strings, integers,
null, return and exceptions. iComment [41] extracts usage rules, i.e.,
lock-related and call-related rules, to detect bugs or bad comments.
Similarly, [54] generates parameter constraints to detect directive
defects. aComment [42] generates interrupt-related annotations
to detect concurrency bugs. @tComment [43] infers null-value
related properties of method parameters to detect comment-code
inconsistencies. Toradocu [20] synthesizes conditions that can trig-
ger exceptions to create test oracles for exceptional behaviors, and
Jdoctor [15] translates code comments to procedure specifications
to generate better test cases. Unlike these textual pattern match-
ing approaches, our work does not require predefined patterns
that demand manual efforts and may be incomplete. There are
other approaches that combine NLP and ML techniques to analyze
comments. In [33], researchers use statistical machine translation
techniques to translate exception-related documentation to code.
Our work leverages alignments which is part of statistical machine
translation techniques, but we focus on formal specifications and
we generate specifications of various perspectives in addition to
exceptions.

7 CONCLUSION

We propose an automatic technique to derive formal program spec-
ifications from method NL comments by assembling primitive to-
kens guided by specification syntax and properties of the target
method. We develop a prototype C2S. Our experiments show that
C2S can derive specifications efficiently and effectively, with 0.96
precision and 0.91 recall, substantially outperforming the state-of-
the-art like Jdoctor. We leverage the generated specifications in a
number of software engineering tasks including static taint analysis.
The results show our specifications can improve these tasks.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive com-
ments. This research was supported, in part by NSF-China 61802166,
61972193 and 61802171, DARPA FA8650-15-C-7562, NSF 1748764,
1901242 and 1910300, ONR N000141410468 and N000141712947, and
Sandia National Lab under award 1701331. Any opinions, findings,
and conclusions in this paper are those of the authors only and do
not necessarily reflect the views of our sponsors.

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

REFERENCES

[11]
[12]

[13]

[14]

[15

[16

[17]

[18

[19]

[20

[21

[22]

[23]

[24

[25]

[26]

[27

[28

[29]

2020. Apache Commons Collections.
commons-collections/.

2020. C2S Specifications. https://c2s-fse.github.io/C2S/.

2020. GraphStream. http://graphstream-project.org/.

2020. Guava. https://opensource.google.com/projects/guava/.

2020. Javadoc Style. https://www.oracle.com/technetwork/articles/java/index-
137868.html.

2020. JDK. https://www.oracle.com/technetwork/java/javase/downloads/index.
html.

2020. JGraphT. https://jgrapht.org/.

2020. JML Specification Examples. http://www.eecs.ucf.edu/~leavens/JML/
examples.shtml.

2020. Randoop. https://randoop.github.io/randoop/.

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund
Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama, Emina
Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In 2013 Formal
Methods in Computer-Aided Design. IEEE, 1-8.

W Appel Andrew and P Jens. 2002. Modern compiler implementation in Java.
Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259-269.

Angello Astorga, Siwakorn Srisakaokul, Xusheng Xiao, and Tao Xie. 2018. Preln-
fer: Automatic Inference of Preconditions via Symbolic Analysis. In 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). IEEE, 678-689.

Osbert Bastani, Saswat Anand, and Alex Aiken. 2015. Specification inference
using context-free language reachability. In ACM SIGPLAN Notices, Vol. 50. ACM,
553-566.

Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D
Ernst, Mauro Pezzé, and Sergio Delgado Castellanos. 2018. Translating code
comments to procedure specifications. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM, 242-253.
Manuel Costa, Miguel Castro, Lidong Zhou, Lintao Zhang, and Marcus Peinado.
2007. Bouncer: Securing software by blocking bad input. ACM SIGOPS Operating
Systems Review 41, 6 (2007), 117-130.

Patrick Cousot, Radhia Cousot, Manuel Fahndrich, and Francesco Logozzo. 2013.
Automatic inference of necessary preconditions. In International Workshop on
Verification, Model Checking, and Abstract Interpretation. Springer, 128-148.
Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. 2008. DySy:
Dynamic Symbolic Execution for Invariant Inference. In Proceedings of the 30th
International Conference on Software Engineering. ICSE 2008. IEEE.

Michael D Ernst, Jake Cockrell, William G Griswold, and David Notkin. 2001.
Dynamically discovering likely program invariants to support program evolution.
IEEE Transactions on Software Engineering 27, 2 (2001), 99-123.

Alberto Goffi, Alessandra Gorla, Michael D Ernst, and Mauro Pezze. 2016. Auto-
matic generation of oracles for exceptional behaviors. In Proceedings of the 25th
International Symposium on Software Testing and Analysis. ACM, 213-224.
Jianjun Huang, Xiangyu Zhang, and Lin Tan. 2016. Detecting sensitive data dis-
closure via bi-directional text correlation analysis. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
ACM, 169-180.

James A Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test
information to assist fault localization. In Proceedings of the 24th International
Conference on Software Engineering. ICSE 2002. IEEE, 467-477.

Douglas Kramer. 1999. API documentation from source code comments: a case
study of Javadoc. In Proceedings of the 17th annual international conference on
Computer documentation. 147-153.

Viktor Kuncak, Mikaél Mayer, Ruzica Piskac, and Philippe Suter. 2010. Complete
functional synthesis. In ACM Sigplan Notices, Vol. 45. ACM, 316-329.

Andreas Leitner, Ilinca Ciupa, Manuel Oriol, Bertrand Meyer, and Arno Fiva.
2007. Contract driven development= test driven development-writing test cases.
In Proceedings of the the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software
engineering. ACM, 425-434.

Walid Maalej and Martin P Robillard. 2013. Patterns of knowledge in API reference
documentation. IEEE Transactions on Software Engineering 39, 9 (2013), 1264—
1282.

Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, and Lisa Ling Liu. 2007. Automatic
testing of object-oriented software. In International Conference on Current Trends
in Theory and Practice of Computer Science. Springer, 114-129.

Manish Motwani and Yuriy Brun. 201. Automatically Generating Precise Oracles
from Structured Natural Language Specifications. In Proceedings of the 41th
International Conference on Software Engineering (ICSE’19).

Hoan Anh Nguyen, Robert Dyer, Tien N Nguyen, and Hridesh Rajan. 2014. Mining
preconditions of APIs in large-scale code corpus. In Proceedings of the 22nd ACM

https://commons.apache.org/proper/

(30]

(31]

[32

e W
S X2 =

~
fla’

[43

[44

[45

[46

[47]

[49]

[50]

[51]

o
5,

(53]

Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang, Shiqing Ma, Lin Tan, Xiangyu Zhang

SIGSOFT International Symposium on Foundations of Software Engineering. ACM,
166-177.

Jeremy W Nimmer and Michael D Ernst. 2002. Automatic generation of program
specifications. ACM SIGSOFT Software Engineering Notes 27, 4 (2002), 229-239.
Yoann Padioleau, Lin Tan, and Yuanyuan Zhou. 2009. Listening to program-
mers Taxonomies and characteristics of comments in operating system code. In
Proceedings of the 31st International Conference on Software Engineering. IEEE
Computer Society, 331-341.

Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit Parad-
kar. 2012. Inferring method specifications from natural language API descriptions.
In Proceedings of the 34th International Conference on Software Engineering. IEEE
Press, 815-825.

Hung Phan, Hoan Anh Nguyen, Tien N Nguyen, and Hridesh Rajan. 2017. Sta-
tistical learning for inference between implementations and documentation. In
Proceedings of the 39th International Conference on Software Engineering: New
Ideas and Emerging Results Track. IEEE Press, 27-30.

M.E. Porter. 1980. An algorithm for suffix stripping. Program 14, 3 (1980), 130-137.
Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. 2007.
Static specification inference using predicate mining. In ACM SIGPLAN Notices,
Vol. 42. ACM, 123-134.

Mohamed Nassim Seghir and Daniel Kroening. 2013. Counterexample-guided
precondition inference. In European Symposium on Programming. Springer, 451—
471.

C. Silva and B. Ribeiro. 2003. The importance of stop word removal on recall
values in text categorization. In Proceedings of the International Joint Conference
on Neural Networks. IEEE.

Saurabh Srivastava, Sumit Gulwani, and Jeffrey S Foster. 2010. From program
verification to program synthesis. In ACM Sigplan Notices, Vol. 45. ACM, 313-326.
Jingyi Su, Mohd Arafat, and Robert Dyer. 2018. Poster: Using Consensus to
Automatically Infer Post-conditions. (2018).

Lin Tan. 2009. Leveraging Code Comments To Improve Software Reliability. Ph.D.
Dissertation. University of Illinois at Urbana-Champaign.

Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /* iComment:
Bugs or bad comments?*. In ACM SIGOPS Operating Systems Review, Vol. 41.
ACM, 145-158.

Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. 2011. aComment: mining anno-
tations from comments and code to detect interrupt related concurrency bugs. In
Software Engineering (ICSE), 2011 33rd International Conference on. IEEE, 11-20.
Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T Leavens. 2012. @tcomment:
Testing javadoc comments to detect comment-code inconsistencies. In Software
Testing, Verification and Validation (ICST), 2012 IEEE Fifth International Conference
on. IEEE, 260-269.

Niki Vazou, Eric L Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-
Jones. 2014. Refinement types for Haskell. In ACM SIGPLAN Notices, Vol. 49.
ACM, 269-282.

Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and Flavio
Lerda. 2003. Model checking programs. Automated software engineering 10, 2
(2003), 203-232.

Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering 28, 2 (2002), 183-200.
Juan Zhai, Jianjun Huang, Shiging Ma, Xiangyu Zhang, Lin Tan, Jianhua Zhao,
and Feng Qin. 2016. Automatic model generation from documentation for Java
API functions. In 2016 IEEE/ACM 38th International Conference on Software Engi-
neering (ICSE). IEEE, 380-391.

Juan Zhai, Bin Li, Zhenhao Tang, Jianhua Zhao, and Xuandong Li. 2016. Pre-
condition Calculation for Loops Iterating over Data Structures. In 2016 IEEE
International Conference on Software Quality, Reliability and Security (ORS). IEEE,
132-143.

Juan Zhai, Hanfei Wang, and Jianhua Zhao. 2014. Post-condition-directed invari-
ant inference for loops over data structures. In Software Security and Reliability-
Companion (SERE-C), 2014 IEEE Eighth International Conference on. IEEE, 204-212.
Juan Zhai, Hanfei Wang, and Jianhua Zhao. 2015. Assertion-directed precondition
synthesis for loops over data structures. In International Symposium on Depend-
able Software Engineering: Theories, Tools, and Applications. Springer, 258-274.
Juan Zhai, Xiangzhe Xu, Yu Shi, Minxue Pan, Shiging Ma, Lei Xu, Weifeng
Zhang, Lin Tan, and Xiangyu Zhang. 2020. CPC: Automatically classifying
and propagating natural language comments via program analysis. In Software
Engineering (ICSE), 2020 IEEE/ACM 42nd International Conference on. IEEE, 1359—
1371.

Shiyu Zhang, Juan Zhai, Bu Lei, Wang Linzhang, and Xuandong Li. 2020. Au-
tomated Generation of LTL Specifications For Smart Home IoT Using Natural
Language. In 2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE.

Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. 2009. Inferring resource speci-
fications from natural language API documentation. In Proceedings of the 2009
IEEE/ACM International Conference on Automated Software Engineering. IEEE
Computer Society, 307-318.

https://commons.apache.org/proper/commons-collections/
https://commons.apache.org/proper/commons-collections/
https://c2s-fse.github.io/C2S/
http://graphstream-project.org/
https://opensource.google.com/projects/guava/
https://www.oracle.com/technetwork/articles/java/index-137868.html
https://www.oracle.com/technetwork/articles/java/index-137868.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://jgrapht.org/
http://www.eecs.ucf.edu/~leavens/JML/examples.shtml
http://www.eecs.ucf.edu/~leavens/JML/examples.shtml
https://randoop.github.io/randoop/

C2S: Translating Natural Language Comments to Formal Program Specifications ESEC/FSE *20, November 8-13, 2020, Virtual Event, USA

[54] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano Panichella, and defects. In Proceedings of the 39th International Conference on Software Engineering.
Harald Gall. 2017. Analyzing APIs documentation and code to detect directive IEEE Press, 27-37.

	Abstract
	1 Introduction
	2 Motivation
	3 Design
	3.1 Specification Language
	3.2 Association Engine
	3.3 Tokenizer
	3.4 IR Synthesizer
	3.5 Specification Generator
	3.6 Specification Checker

	4 Evaluation
	4.1 Data Collection
	4.2 Effectiveness in Specification Generation
	4.3 Improving Automatic Test Case Generation
	4.4 Improving Identifying Leak Paths

	5 Discussion
	5.1 Threats to Validity
	5.2 Generality

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

