
CPC: Automatically Classifying and Propagating Natural
Language Comments via Program Analysis

Juan Zhai
Purdue University, Rutgers University

Xiangzhe Xu
Nanjing University

Yu Shi
Purdue University

Guanhong Tao
Purdue University

Minxue Pan†

Nanjing University
Shiqing Ma

Rutgers University

Lei Xu†

Nanjing University
Weifeng Zhang

Nanjing University of Posts and
Telecommunications

Lin Tan
Purdue University

Xiangyu Zhang
Purdue University

ABSTRACT

Code comments provide abundant information that have been lever-

aged to help perform various software engineering tasks, such as

bug detection, speciication inference, and code synthesis. However,

developers are less motivated to write and update comments, mak-

ing it infeasible and error-prone to leverage comments to facilitate

software engineering tasks. In this paper, we propose to leverage

program analysis to systematically derive, reine, and propagate

comments. For example, by propagation via program analysis, com-

ments can be passed on to code entities that are not commented

such that code bugs can be detected leveraging the propagated

comments. Developers usually comment on diferent aspects of

code elements like methods, and use comments to describe various

contents, such as functionalities and properties. To more efec-

tively utilize comments, a ine-grained and elaborated taxonomy

of comments and a reliable classiier to automatically categorize

a comment are needed. In this paper, we build a comprehensive

taxonomy and propose using program analysis to propagate com-

ments. We develop a prototype CPC, and evaluate it on 5 projects.

The evaluation results demonstrate 41573 new comments can be

derived by propagation from other code locations with 88% accu-

racy. Among them, we can derive precise functional comments for

87 native methods that have neither existing comments nor source

code. Leveraging the propagated comments, we detect 37 new bugs

in open source large projects, 30 of which have been conirmed and

ixed by developers, and 304 defects in existing comments (by look-

ing at inconsistencies between existing and propagated comments),

including 12 incomplete comments and 292 wrong comments. This

† Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speciic permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23ś29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380427

demonstrates the efectiveness of our approach. Our user study

conirms propagated comments align well with existing comments

in terms of quality.

ACM Reference Format:

Juan Zhai, Xiangzhe Xu, Yu Shi, Guanhong Tao, Minxue Pan†, Shiqing

Ma, Lei Xu†, Weifeng Zhang, Lin Tan, and Xiangyu Zhang. 2020. CPC:

Automatically Classifying and Propagating Natural Language Comments via

Program Analysis. In 42nd International Conference on Software Engineering
(ICSE ’20), May 23ś29, 2020, Seoul, Republic of Korea. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3377811.3380427

1 INTRODUCTION

Modern software systems usually contain a large volume of code

comments [58]. Commenting code has been recognized as a good

programming practice [23], which facilitates both code compre-

hension and software maintenance. For example, the researchers

in [80, 81, 87] conducted experiments showing that code comments

can help improve code readability while the researchers in [30, 36]

demonstrated that code comments played a signiicant role in main-

taining software. Moreover, code comments provide abundant in-

formation that can be leveraged to help perform a wide range

of software engineering tasks, such as bug detection [69, 77ś79],

speciication inference [17, 59, 90], testing [24, 86] and code syn-

thesis [15, 25, 56, 62, 88]. However, as far as we know, existing

work barely utilizes program analysis to systematically derive, re-

ine, and propagate comments that provide rich semantics beyond

traditional artifacts that have been used in program analysis such

as types, control low and data low. For example, by propagation

through program analysis, comments can be passed on to code en-

tities that are not commented such that code bugs can be detected

by cross-checking code with the propagated comments.

Due to the lack of standard of composing documentation, de-

velopers have substantial lexibility and they tend to use arbitrary

ways to compose documentation. They usually comment on difer-

ent aspects of code elements like classes, methods and variables,

and use comments to describe various contents, such as summariz-

ing the functionality, explaining the design rationale and specifying

the implementation details. In addition, as comments are written

in natural language, they are intrinsically ambiguous and accurate

https://doi.org/10.1145/3377811.3380427
https://doi.org/10.1145/3377811.3380427

ICSE ’20, May 23ś29, 2020, Seoul, Republic of Korea Zhai et al.

linguistic analysis is needed to acquire their exact meanings and

scopes. To better understand code and more efectively propagate

comments, we must irst know which code elements they comment

on and what kind of information they convey. That is to say, it is

imperative to design a ine-grained and elaborated taxonomy of

code comments and develop a reliable classiier to automatically

categorize a comment.

There have been eforts in software documentation classiication.

Padioleau et al. [58] built a taxonomy based on meanings of com-

ments. The work in [46] proposed a taxonomy of knowledge types

in API reference documentation and used the taxonomy to assess

the knowledge they contain. Based on this taxonomy, researchers in

[43] developed a set of textual features to automatically categorize

the knowledge. In [74], researchers studied comment categorization

to provide better quantitative insights for comment quality assess-

ment. Features are manually given for machine learning techniques

to automatically classify comments. Researchers in [60, 61] irst

manually classiied more than 2,000 code comments and then used

supervised learning to achieve about 85% classiication accuracy.

Their taxonomies are not designed to be coupled with program

analysis. It is unclear how to propagate and infer comments based

on their classiication.

Hence, our goal is to irst build a comprehensive taxonomy from

diferent perspectives (e.g., what and why) and diferent code enti-

ties (e.g., class and method), and then design a uniform analysis to

enable bi-directional analysis: (1) program analysis propagates and

updates comments, and (2) comments provide additional seman-

tic hints to enrich program analysis. Multiple software tasks can

beneit from the bi-directional analysis. For example, leveraging

program analysis to propagate comments can provide automation

support in maintaining documentation which is diicult [21] and

leveraging comment analysis can help detect software bugs by

checking the comment semantics against source code.

In this paper, we propose CPC, a principled and sophisticated

software reasoning method that couples comment analysis and

program analysis. It automatically classiies comments based on

diferent perspectives and code entities (namely builds a comment

taxonomy), and thus each comment is attributed to a code element

and becomes a irst-class object just like other classic objects in

program analysis (e.g., variables and statements). Based on the tax-

onomy, CPC leverages program analysis techniques to propagate

comments from one code entity to another to update, infer, and

associate comments with code entities. Then CPC extracts seman-

tics from the propagated comments to facilitate various software

engineering tasks such as code bug detection. Our contributions

are as follows:

• We construct a comprehensive comment taxonomy from dif-

ferent perspectives with various granularity levels, and train

six classiiers using three algorithms to automatically catego-

rize comments into appropriate perspectives and granularity

levels.

• We propose a novel bidirectional method of leveraging pro-

gram analysis to propagate comments and leveraging com-

ment analysis to facilitate bug detection, which achieves a

seamless synergy of comment analysis and program analysis.
• We develop a prototype CPC based on the proposed idea,

and evaluate it on 5 large real-world projects. The evaluation

results demonstrate that 41573 new comments can be derived

by propagation from other code locations with 88% accuracy.

Among them, we can derive precise functional comments for

87 native methods that have neither existing comments nor

source code. Our user study shows propagated comments

are as useful as existing comments in helping developers.

2 MOTIVATION

Modern software provide abundant natural language (NL) com-

ments and there is substantial existing work on analyzing NL com-

ments and leveraging them in a wide range of software engineering

applications. However, as far as we know, existing work hardly

leverages program analysis techniques to derive, reine, and prop-

agate comments systematically. Such propagated comments con-

tain wealthy semantics beyond traditional artifacts that have been

widely used in program analysis like data types. For example, by

using program analysis techniques, we can pass comments on to

code entities that are not commented and leverage information con-

tained in the propagated comments to detect code bugs. Our overall

goal is to achieve code-comment co-analysis: (1) program analysis

propagates and updates code comments, and (2) code comments

provide additional semantic hints to enrich program analysis.

Software developers tend to comment on diferent aspects of dif-

ferent code elements [58]. Comments of diferent perspectives entail

diferent propagation rules. Consider the two comments łThrows

IndexOutOfBoundsException if the index is out of range (index <

0 || index >= size()).ž and łShits any subsequent elements to the

let (subtracts one from their indices).ž of method remove(int in-
dex). The former can be propagated through data low while the

latter cannot. Suppose we have an assignment o = list.remove(i), by
propagating the irst comment from the method deinition (to the

statement), we can know that if the condition i < 0 || i >= size() holds,
the assignment statement will throw an IndexOutOfBoundsExcep-
tion, which can be used to check the code. However, the second

comment describes the implementation details involving the data

structure used in remove(int index), which would be misleading

and make no sense if propagated to the assignment. Hence, the

irst step towards comments propagation and inference is to build

a complete taxonomy for comments.

There have been eforts in software documentation classiica-

tion [46, 58, 60, 61, 74]. The researchers in [58] propose a taxonomy

based on the following four dimensions: comment contents, com-

ment authors/users, comment locations (e.g., before a loop or in a

macro), and comment composition time. In [46], researchers manu-

ally classify API documentation based on the knowledge types (e.g.,

functionalities, concepts, directives and code examples) to help

humans understand and gauge the quality of API documentation.

They also study the distribution of diferent kinds of comments. The

taxonomies in [61, 74] are similar and both include categories like

purpose (the functionality of the code), under development (topic

related to ongoing/future development) and metadata (authors,

license, etc.). They are produced to facilitate quality analysis of

comments. The taxonomy in [29] is proposed to investigate develop-

ers’ documentation patterns while the work [74] studies comment

categorization to provide better quantitative insights about the

documentation for comment quality assessment. Their taxonomies,

Classifying and Propagating Natural Language Comments via Program Analysis ICSE ’20, May 23ś29, 2020, Seoul, Republic of Korea

01 /** Creates a new array with the specified component

02 * type and length. ...

03 * @exception NegativeArraySizeException if the

04 * specified code length is negative */

05 public Object newInstance(Class<?> componentType,

int length) throws NegativeArraySizeException {

06 return newArray(componentType, length);

07 }

...

08 private static native Object newArray(

Class<?> componentType, int length)

throws NegativeArraySizeException;

New Comment: Creates a new array with
the specified component type and length.

Method2St
Propagation

St2Callee
Propagation

method what

Figure 2: Comment Defect Detection

Class ArrayList<E>
Implements all optional list operations, and
permits all elements, including null.

01 private final List<Collection<E>> all

= new ArrayList<Collection<E>>();

...

02 public int size() {

03 int size = 0;

04 for (final Collection<E> item: all)

05 size += item.size();

06 return size;

07 }

permit null elements

class property

may be null

Instantiation Propagation

throw NullPointerException if item is null

Container Propagation

Figure 1: Code Bug Detection

however, do not distinguish comments of diferent code entities and

are not designed to be coupled with program analysis. It is unclear

where and how to propagate and infer comments based on their

classiication. For our purpose, we propose a comment taxonomy

according to the commented subjects (e.g., classes, methods, and

statements) and perspectives (e.g., what, why, and how). For each

kind of comments, we develop speciic rules to propagate them

through program analysis. We will use 3 cases to demonstrate the

beneits of propagating comments according to their categories. In a

nutshell, our technique can reveal bugs in both code and comments.

Code Bug Detection. Properties are critical information embed-

ded in comments that deine intended behaviors of code elements.

The top box of Fig. 1 shows the comment of class ArrayList<E> from
JDK. This class permits all elements including null (denoted with

green background) as items in the list. Here, the description of per-

mitting null elements is recognized as a property comment by our

technique (step 1○). As a property comment, it can be propagated to

the code where class ArrayList is actually used. The bottom box of

Fig. 1 is the code snippet from Apache Commons Collections, where
the class ield all is instantiated as an ArrayList instance at line 1.
The class property (permitting null elements) is hence propagated

from class ArrayList to its instance (step 2○) applying the Instantia-
tion Propagation rule (detailed in Section 6.1). When variable all is
accessed later in the program (line 4), the same property should also

hold. Since variable all has the property of allowing null elements,

each of its elements item is permitted to be null (step 3○). As the

size() method of element item is invoked to measure the size, with

item being null, it will cause null pointer access and hence trigger a
NullPointerException. This is a new bug detected by our technique

(step 4○). In total, we detect 29 such bugs which cannot be detected

by existing techniques since they only use information contained

in existing comments which rarely comment on local variables

especially control variables only used during iteration. All the 29

bugs have been conirmed and ixed by developers. In addition, we

detect another 8 bugs based on our propagated comments.

Comment Defect Detection. Comments are critical for code un-

derstanding. They also serve as instructions/manuals for (third

party) developers to utilize classes and methods. Defective com-

ments can mislead developers and even incur critical bugs. Fig. 2

demonstrates a real-world case where comments are missing for

native methods. Method newArray() is implemented using native

code (line 08), and it has two arguments componentType and length.
Although comments are highly desirable here due to the black-box

nature of native implementation, there is no comment for the native
method, which can potentially lead to bugs (e.g., pass −1 to param-

eter length). Such native methods are implemented in other lan-

guages (e.g., C++ and assembly) where the source code, in general,

is unavailable. Comments of these methods cannot be generated

using existing techniques since they either summarize source code

to infer comments, or analyze existing software repositories and use

the comments from similar code. We showcase how our technique

can address this problem using the example in Fig. 2. Firstly, there

is only one statement in method newInstance() (line 05). Hence,

we can apply rule Property-Method2St (detailed in Section 6.1)

to propagate the what-comment (lines 01-02, meaning the func-

tionality) associated with method newInstance() to the statement

at line 06 (step 1○). Secondly, the statement at line 06 only invokes

the native method newArray(), which satisies the preconditions

of rule Property-St2Callee (detailed in Section 6.2). Thus, the

comment can be further propagated from the statement at line 06

to its callee method newArray() (step 2○). Through the propagation,

a new comment can be generated for the native method, specifying

the functionality of newArray() is to łCreate a new array with the

specified component type and length.ž. Using our technique, we

are able to infer comments for 87 native methods that have neither

source code nor comments in JDK. Note that these native meth-

ods may be invoked by many other Java methods such that their

generated comments can be used to help these invocations.

Wrong Propagation Without Classiication. A comment tax-

onomy is vital for comment propagation as diferent kinds of com-

ments convey diferent semantic perspectives. As such, some of

them cannot be directly propagated. For instance, even if two code

snippets are exactly the same, propagating comment from one to

the other may be problematic. Consider the two code snippets

in Fig. 3(a) and Fig. 3(c). The method in Fig. 3(c) has a property-
comment łThis method will block until the byte can be writen.ž.

Although the two code snippets are syntactically identical, we can-

not propagate the property comment from the method in (c) to the

method in (a). This is because the method invoked at line 4 of (a)

and that invoked at line 8 of (c) have diferent implementations

which have diferent characteristics. Speciically, line 4 in (a) calls

the write method in Fig. 3(b) that is non-blocking. In contrast, line

8 in (c) calls the write in Fig. 3(d) that is blocking, indicated by the

łsynchronized ž keyword in Fig. 3(e). Therefore, it is incorrect to

propagate the aforementioned property comment. However, exist-

ing techniques [84, 85] use the comment in (c) as comment for the

method in (a), as they work by identifying code clones and sharing

comments across all clones. In contrast, our technique does not

allow propagating property comments in such cases.

ICSE ’20, May 23ś29, 2020, Seoul, Republic of Korea Zhai et al.

01

02

03

public void write(byte[] b, int off, int len) throws IOException {

...

while (!def.needsInput()) { deflate(); } }

(d) java.util.zip.DeflataerOutputStream.write(byte[] b, int off, int len)

01

02

03

04

public void write(int b) throws IOException {

byte[] buf = new byte[1];

buf[0] = (byte)(b & 0xff);

write(buf, 0, 1); }

(a) java.util.Base64. write(int b)

01

02

03

04

05

06

07

08

/** Writes a byte to the compressed output

* stream. This method will block until the

* byte can be written.

*/

public void write(int b) throws IOException {

byte[] buf = new byte[1];

buf[0] = (byte)(b & 0xff);

write(buf, 0, 1); }

(c) java.util.zip.DeflataerOutputStream. write(int b)

01

02

03

04

public int deflate(byte[] b, int off, int len, int flush) { ...

synchronized (zsRef) { ...

int n = deflateBytes(zsRef.address(), b, off, len, flush);

... } }

(e) java.util.zip.Deflataer. deflate(byte[] b, int off, int len, int flush)

01

02

03

04

public void write(byte[] b, int off, int len) throws IOException {

...

while (nBits24-- > 0) { ...

out.write(base64[(bits >>> 18) & 0x3f]); } ... }

(b) java.util.Base64. write(byte[] b, int off, int len)Cannot Be
Propagated

method property

×

Code
Clone

does not block the method

block the method

Call

Call

Call

Figure 3: Wrong Propagation Without Classiication

Table 1: Examples of Software Comments Taxonomy

Entity Perspective Comment Example Project/Class/Method or Field

Class

What This class is a member of the Java Collections Framework. JDK/ArrayList
Why This enables eicient processing when most tasks spawn other subtasks. JDK/ForkJoinPool
How-it-is-done Resizable-array implementation of the List interface. JDK/ArrayList
Property Implements all optional list operations, and permits all elements, including null. JDK/LinkedList

How-to-use
But using this class, one must implement only the computeNext method, and invoke the
endOfData method when appropriate.

Guava/AbstractIterator

Method

What Pushes an item onto the top of this stack. JDK/Stack/push(E item)
Why It eliminates the need for explicit range operations. JDK/ArrayList/subList(int from, int to)
How-it-is-done Shifts any subsequent elements to the left. JDK/LinkedList/remove(int index)
Property This method is not a constant-time operation. JDK/ConcurrentLinkedDeque/size()
How-to-use This method can be called only once per call to next(). JDK/Iterator/remove()

Statement

What Make a new array of a’s runtime type, but my contents. JDK/ArrayList/toArray(T[] a)
Why To get better and consistent diagnostics, we call typeCheck explicitly on each element. JDK/Collections/checkedCopyOf(Collectioncoll)
How-it-is-done Place indices in the center of array (that is not yet allocated).zou JDK/WorkQueue/WorkQueue(ForkJoinPool, ForkJoinWorkerThread)
Property This shouldn’t happen, since we are Cloneable. JDK/ArrayList/clone()
How-to-use Use as random seed. JDK/WorkQueue/registerWorker(ForkJoinWorkerThread wt)

Variable

What The number of characters to skip. Guava/CharStreams/SkipFully(long n)

Why Helps prevent entries that end up in the same segment from also ending up in the same bucket. Guava/LocalCache/int segmentShift

How-it-is-done Modiied on advance/split. Guava/CharBuferSpliterator/int index

Property The index must be a value greater than or equal to 0. JDK/Vector/setElementAt(E obj, int index)
How-to-use The collection to be iterated. JDK/Collections/Collection iterate

3 THE TAXONOMY OF COMMENTS

As aforementioned, taxonomy is critical for comment propagation.

However, existing taxonomies cannot be leveraged to facilitate com-

ment propagation due to two main reasons. The irst one is that

comments are not associated with the corresponding code entities, mak-
ing it impossible to leverage program analysis to propagate comments.
For example, we need to make sure a comment is commenting on a

variable before we can propagate it through a deinition-use rela-

tion of the variable. The second reason is that the taxonomies are
not designed to be coupled with program analysis and comments in a
category (by existing work) tend to describe multiple perspectives of a
code entity such that it is unclear how to propagate such comments.
Hence we propose to construct a comment taxonomy by classifying

comment texts based on two dimensions: code entity and content

perspective, where code entity means elements like classes and

methods and content perspective means functionalities, rationales,

implementation details, etc. Such a taxonomy is vital since diferent

comments describe diferent code entities from diferent perspec-

tives (e.g., what, why, and how) which entail diferent propagation

rules. To develop a comprehensive and rigorous taxonomy, we per-

formed a content analysis which is a methodology for studying the

contents of documents and communication artifacts [55] (Section 4).

Our inal taxonomy is illustrated in Table 1. The irst column lists

the code entities, namely, class, method, statement, and variable
which are the subjects that are commonly commented by develop-

ers. For each code entity, we are interested in the following ive

perspectives: what, why, how-it-is-done, property and how-to-use.
What. The what perspective provides a deinition or a summary of

functionality of the subject and/or its interface. Critical semantics

can be extracted from what information, such as security sensitiv-

ity, which is important for vulnerability identiication. By reading

such type of comments, developers can easily understand the main

functionality of the corresponding code entity, without diving into

(implementation) details. For example, the comment łPushes an

item onto the top of this stack" in the seventh row of Table 1

describes the main functionality of method push(E item).
Why. The why perspective explains the reason why the subject

is provided or the design rationale of the subject. There are two

scenarios in which why perspective is important. First, it helps

developers understand methods whose objective is masked by com-

plex implementation. For example, the comment łHelps prevent

entries that end up in the same segment from also ending up in the

same bucketž of the method segmentShift() conveys why we need

this method, while from the implementation we can only tell it

moves some objects. Second, there exist multiple methods that look

similar but serve diferent purposes. In this case, developers often

provide why comments to point out why these similar methods are

needed and explain why they are not plain redundancy.

How-it-is-done. The how-it-is-done perspective describes the im-

plementation details like the design or the work-low of the subject.

Such information is critical for developers to understand the subject,

especially when the complexity is high. Detecting inconsistencies

between how-it-is-done comments and implementation is a way

to ind bugs. Moreover, many program analyses avoid analyzing

complex library implementation due to the entailed space and time

overhead. Instead, program analysis developers often rely on how-
it-is-done comments to synthesize (much simpler) code snippet to

Classifying and Propagating Natural Language Comments via Program Analysis ICSE ’20, May 23ś29, 2020, Seoul, Republic of Korea

model library functionalities. For example, the comment łShits

the element currently at that position (if any) and any subsequent

elements to the right (adds one to their indices)." of method add(int,
E) implies that we can implement the functionality by manipulating

an array within a loop statement (e.g., łfor (int i=size-1; i>index;
i=i-1) elements[i]=elements[i-1]ž). While the original library code

is usually highly optimized (and hence complex and diicult to

analyse), the model code is simple and much easier to analyze.

Property. The property perspective asserts properties of the subject,
e.g., pre-conditions/post-conditions of a function and even some

statements. Pre-conditions specify the conditions that should hold

in order to use the subject while post-conditions indicate the result

of using the subject. Such comments are of importance as they

can be used in many software engineering tasks, such as program

veriication, defect detection and program testing. For example,

the comment łThe index must be a value greater than or equal

to 0.ž of the variable index (a parameter of setElementAt(E, int))
speciies a pre-condition index ≥ 0 thatmust be satisied formethod

setElementAt(E, int) to work properly.

How-to-use. The how-to-use perspective describes the expected
set-up of using the subject, such as platforms and compatible ver-

sions. For example, the comment łBut using this class, one must

implement only the computeNext method, and invoke the endOf-

Data method when appropriate.ž of the abstract class AbstractIter-
ator clearly points out the required implementation in its concrete

classes. These comments are important for code-comment incon-

sistency detection [77].

4 TAXONOMY CONSTRUCTION

In this section, we discuss how we perform a large scale study of

program comments to derive the aforementioned taxonomy.

4.1 Comment Sampling

We collected a sample set of natural language comments from four

frequently-used libraries, namely JDK 8 [8], Guava [7], Apache

Commons Collections [1], and Joda [9]. All the four projects are

open sourced. The size of the projects varies from 450 to 2500

classes and from 43 to 310 KLOC, and 30% of the lines of code

are comments, which clearly indicates that documentation is not

anecdotal in those projects.

Due to the lack of standard of composing documentation, devel-

opers have substantial lexibility. They tend to have arbitrary ways

of composing comments and comment on diferent aspects of code

elements [58] like methods and parameters. To ensure our study

has good coverage, we performed stratiied random sampling [55]

to collect comments for distinct code entities: classes, methods,

statements and variables. For each source ile, we randomly sam-

pled comments from each kind of code element in proportion to

the number of such elements in the ile. This ensured that com-

ments of diferent kinds of code entities were covered. Developers

usually write both single-line and multi-line comments (comment

blocks), and the sentences in a multi-line comment tend to provide

diferent types of information like what the function does or how

the function is implemented. As such, we choose to use sentence as
the comment unit to construct the sample set. In total, we collected

5000 comment units.

4.2 Coding Procedure

In this section, we illustrate the coding procedure [51] that we fol-

lowed to construct the comment taxonomy. Coding procedure is a

standard analytical process that can be utilized to deine and classify

a subject data set. To minimize subjectivity, we followed the default

setting of the procedure [57] and made use of four coders (partici-

pants in a coding procedure). All the coders had at least four years

of programming experience and were acquainted with program

comments. With the intention of specifying a starting coding frame-

work, one coder carried out a pilot study on 200 comments of the

sampling set by identifying diferent content perspectives with the

corresponding characteristics. This study brought forth the initial

comment taxonomy which covered the majority of the inal tax-

onomy. Some categories shown in Table 1 did not occur in the 200

comments and we reined the taxonomy in the later phrase. Based

on the initial taxonomy, this coder held a 60-minute session to train

the remaining coders either on-site or through video conferences.

During the session we discussed the meaning and the examples of

each category and clariied misunderstandings that arose.

The 5000 comment units were randomly and evenly assigned to

all the coders, which ensured that each coder categorized comments

of all the four projects. For each comment unit, the coders identify

its subject (the type of code entity) and analyze its content (e.g.,

to identify information like the functionality). Each comment unit

may target at diferent code entities and fall into multiple content

categories. For example, the comment łReturns the head of this

deque, or null if this deque is emptyž of method pollFirst() not
only describes the functionality (what) of this method, but also

implies the implementation (how-it-is-done) of this method. In such

cases, the coders would mark the comment with two labels. As

mentioned earlier, it is possible that the coders would identify

some categories that were not in the initial taxonomy. Thus the

to-be-completed taxonomy was shared among coders via an online

spreadsheet, which allowed each coder to add new categories to the

taxonomy. Once a new category was identiied and included in the

taxonomy, all the other coders would be notiied and they would

discuss and verify. If all the coders agree on the new category, then

the taxonomy would be updated to include the new one.

As we manually processed comments, it is inevitable to intro-

duce subjectivity. To minimize such subjectivity, we utilized cross-

veriication by assigning each comment unit to two diferent coders.

When disagreement occurs, all the coders would involve to have

an open discussion to resolve it. Since to what extend two coders

agreed on the categories of each comment unit is a direct mea-

surement of both the reliability of the comment taxonomy and

the quality of the labeled comments, we calculated the Kappa met-

ric [20] to measure the agreement between two coders. The result

percentage is 82.6%, representing substantial agreement [16].

5 COMMENT CLASSIFICATION

In this section, we introduce how we train a classiier, according to

the taxonomy proposed in Section 3, to automatically categorize

comments. We collect 5000 comments from 4 projects as mentioned

in Section 4. Since our classiier works at the sentence level, the

ICSE ’20, May 23ś29, 2020, Seoul, Republic of Korea Zhai et al.

Table 2: Features for Comments Classiication

Feature Type Description

tokenNum numeric number of tokens in a cleaned comment
classNum numeric number of classes mentioned in a cleaned comment

tree string a depth irst traversal of Stanford parse tree
NPNum numeric number of noun phrases in parse tree
VPNum numeric number of verb phrases in parse tree
PPNum numeric number of prepositional phrases in parse tree
caseNum numeric number of case marking relations

preconjNum numeric number of preconjunction relations

6

5

4

3

2

1 ROOT

SINV

VP

VBZ

Gets

NP

NP

DT

the

NN

value

PP

IN

for

NP

DT

the

NN

Entry

(a) Stanford Parse Tree

1: ROOT; 2: SINV; 3: VP NP; 4: VBZ NP PP; 5: DT NN IN NP; 6: DT NN

(b) The BFS Sequence of Stanford Parse Tree

Figure 4: Parse Tree and BFS

collected comments are split into sentences. Each comment is man-

ually annotated with the subject being commented and with the

perspective (see Table 1).

5.1 Word Embedding and Comment Cleaning

The irst step towards comment classiication is to train a word

embedding [49, 50] based on the collected comments. Text words

are represented as ixed-length vectors in word embedding and

thus words close to each other in the vector space share more simi-

larities. Existing word embeddings are trained from news articles

and hardly represent the domain speciic features in software. For

example, the word new may be a verb (e.g., łnew an objectž) in

software comments, but not in general English. Hence we propose

to train a word embedding based on our collected comments using

word2vec [12]. The trained word embedding will be used to train

comment classiiers introduced in Section 5.3.

Before training the embedding, we clean the collected comments

to remove unnecessary information and normalize texts to acquire a

more accurate and higher-quality word embedding. Mainly we per-

form the following four tasks: 1) Substituting class/method/variable

names with three corresponding placeholders to make the embed-

ding more general; 2) Removing stop words (common words ap-

pearing frequently [70]) which include will, the, a, an, it, its and
also in our case; 3) Reducing derived words to their word stem,

namely root form, by applying the porter stemming algorithm [63].

For example, the word łinsertsž is transformed into łinsertž; and 4)

Lowercasing all the words.

5.2 Feature Extraction

To train models to classify comments, we extract eight features

shown in Table 2. The irst column lists the features, and the second

column gives the type of each feature, namely numeric and string.

The last column describes each feature. Note that all the features are

automatically extracted, meaning that no human efort is required

to use our trained classiiers to categorize comments.

Feature tokenNum is the number of tokens contained in a cleaned

comment, and classNum is the number of classes mentioned in a

comment. A comment which mentions more classes tends to have

a higher probability to be an explanation of implementation details,

indicating itself to be a how-it-is-done-comment. The remaining six

features are extracted from parse trees and Stanford dependencies

generated by Stanford Parser [40, 65]. The Stanford parser parses a

sentence and determines Part-Of-Speech (POS) tags [41] associated

with diferent words and phrases. Parse trees represent grammat-

ical structure of sentences and Stanford dependencies represent

grammatical relations between words in a sentence. For example,

Fig. 4(a) shows the Stanford parse tree of the comment łGets the

value for the Entryž where NP, VP, PP, etc., are POS tags. Feature
tree is a string representation of a parse tree which is composed of

nodes that are traversed using breadth irst search (BFS). For exam-

ple, Fig. 4(b) is the BFS of the tree in Fig. 4(a). The features NPNum,

VPNum and PPNum count the number of noun phrase (NP) nodes,

verb phrase (VP) nodes and prepositional phrase (PP) nodes, re-

spectively. Stanford parser also provides dependency types for each

pair of adjacent words [22]. We extract the relations caseNum and

preconjNumwhich are the number of type case and type preconj con-
tained in a sentence. The case relation is used for any case-marking

element which is treated as a separate syntactic word (including

prepositions, postpositions, and clitic case markers) [2]. Preconjunc-
tion is the relation between the head of an NP and a word that

appears at the beginning bracketing a conjunction and puts empha-

sis on it [10], such as łeitherž, łbothž, łneitherž. The six features

are utilized since based on our experiments, we observe that these

six features have positive importance on the classiication while

the other elements contained in parse trees and dependencies have

little positive importance or even have negative importance.

5.3 Algorithms and Evaluation

To train classiiers to categorize comments into diferent code en-

tities and diferent perspectives, we leverage the following three

algorithms: decision tree [64], random forest [18] and convolutional

neural network (CNN) [38]. The three algorithms are frequently

used to train classiication models and they are proven to have

high accuracy in classiication [39, 74]. The decision tree algorithm

and the random forest utilize the extracted features to train models

while the CNN algorithm does not use any feature. As mentioned

earlier, a comment may fall into diferent categories and thus we

trainmulti-label classiicationmodels [83] for both perspectives and

code entities. The multi-label classiication problem is transformed

into a set of binary classiications and each binary classiication

checks whether a comment can be classiied into one category.

To evaluate the classiiers, we apply the standard 5-fold cross

validation [42], namely we randomly select 20% comments collected

in Section 4 as the testing set and the remaining comments as the

training set. The performance of perspective/code entity classiica-

tion is summarized in Table 3. The columns DTC, RFC and CNN

respectively show the performance of decision tree, random forest

and CNN. The four metrics we use are Precision, Recall, F1 Score
and Hamming Loss which are calculated using sklearn metrics [11].

Speciically, precision measures the ability of the classiier correctly

labels a comment, and it is calculated as TP/(TP + FP) where TP

is the total number of correctly classiied comments and FP is the

total number of comments that are classiied into wrong categories.

The metric recall measures the ability of the models to correctly

Classifying and Propagating Natural Language Comments via Program Analysis ICSE ’20, May 23ś29, 2020, Seoul, Republic of Korea

Table 3: Comment Classiication Result

Perspective Code Entity
DTC RFC CNN DTC RFC CNN

Precision 87.84% 87.78% 95.15% 97.39% 98.09% 89.33%
Recall 95.22% 91.39% 93.78% 99.27% 99.27% 75.28%
F1 Score 93.43% 93.17%s 94.46% 98.55% 98.90%s 81.71%

Hamming Loss 0.014583 0.014583 0.011979 0.010417 0.0007813 0.0674157

classify all the comments that belong to one category and it is calcu-

lated as TP/(TP + FN) where FN is the number of comments that

are not classiied as one category while in fact they belong to that

category. The F1 score is a weighted average of precision and recall

and the hamming loss is the fraction of labels that are incorrectly

predicted. For the irst three metrics, the higher the better while

for the hamming loss, the lower the better.

From this table, we can see that the three algorithms achieve high

precision, recall and F1 score and low hamming loss in classifying

comments into correct perspectives, which indicates the efective-

ness of our classiiers. For the code entity classiication, the decision

tree and the random forest algorithms have high precision, recall

and F1 score and low hamming loss. In contrast, CNN has relative

lower precision, recall and F1 score and relative higher hamming

loss compared with the other two algorithms. The classiication

of code entity is more sensitive to input features. CNNs performs

their own feature abstraction, which may miss important features.

6 PROPAGATION

In this section, we will introduce the rules that are used to prop-

agate comments based on their corresponding code entities and

perspectives. These propagation rules achieve the goal of lever-

aging program analysis techniques to update existing comments,

infer new comments and associate comments with code. We have

diferent rules for diferent code entities and perspectives. Each rule

is headed by its name, followed by a fraction with the nominator

the conditions and the denominator the derived comment.

6.1 Property-comment Propagation

The property-comment propagation rules are summarized in Fig. 5(a),

which involve rules for propagating comments of diferent levels of

granularity, namely class-, method-, statement-, and variable-level.

Class-level Propagation.Rule Property-Instan deines the prop-

agation between a class and its instantiation. That is, if a comment

c is associated with a class o and a variable v instantiates class o,

then the property-comment is propagated from class o to variable

v . The expression c[v/o] means the occurrence of o in c is replaced

with v . For example, the property-comment łpermits all element,

including nullž of the class ArrayList is propagated to the instance

all declared at line 1 in Fig. 1. Rule Property-Inher speciies that

if (1) a comment c is associated with superclass q, and (2) there is

an inheritance relation between subclass p and superclass q, then

property-comment c is propagated from superclass q to subclass p

with the class name q (superclass) occurring in c substituted with

the class name of p (subclass). Rule Property-Impl is analogous to

rule Property-Inher, where the property-comment c associated

with interface i is propagated to its implementation class o.
Method-level Propagation. Rule Property-Callee2St is applied

to propagate a property-comment if a comment c contains prop-

erties regarding a callee method m and m is invoked by a state-

ment s , then the property-comment c is propagated from the callee

methodm to the statement s with the formal parameters f p in c

substituted with the actual parameters ap used in s . Rule Property-

Method2St deines the scenario that a comment c associated with

a methodm is propagated to a statement s when the statement s is

the only statement inm. For example, in Fig.2, the statement return
newArray(componentType, length) at line 6 is the only statement of

the method newInstance() and thus we can propagate the property-
comment ł@exception NegativeArraySizeException if the specified

code length is negative.ž at lines 3-4 to the statement at line 6.

Statement-level Propagation. Rule Property-St2Callee spec-

iies that if (1) a statement s invokes a callee method m, and (2)

s has no additional operations other than returning the result of

the calleem, then the property-comment c is propagated from the

statement s to the callee method m with the actual parameters

ap substituted with the formal parameters f p. Consider the afore-

mentioned statement (line 6 in Fig.2) which invokes the method

newArray() and does not have operations except returning the result
of newArray(). Since the two conditions are met, we can infer a new

property-comment for the native method newArray() by propagat-

ing ł@exception NegativeArraySizeException if the specified code

length is negative.ž from the statement to the callee newArray().
We can observe that comments of a caller method can be prop-

agated from a callee method via the invocation statement based

on Rule Property-Method2St and Rule Property-St2Callee.

Rule Property-St2Method deines propagating comments from a

statement s to a methodm which contains s , under the condition

that the set of actual variables ap contained in s is a subset of the

parameters ofm. Suppose that the property-comment c describes

a property of a variable that is not a parameter ofm and thus it

would be inappropriate for c to be a comment ofm.

Variable-level Propagation.Variable-level rules include two cases:

deinition-use and container-element. Rule Property-DefUse de-

ines the case that if a comment c is associated with a variable v

and v is used in code u, then the property-comment c is propagated

from deinitionv to useu. Rule Property-Container speciies that

if (1) a comment c is associated with container l and l has element

e , then a element-related property-comment is propagated from

container l to each element e .

6.2 What-comment Propagation

The rules to propagatewhat-comment are shown in Fig. 5(b). Similar

to the rules of property-comment, they are also categorized based

on classes, methods, statements and variables.

Class-level Propagation.RuleWhat-Inher is similar to Property-

Inher, where a what-comment c associated with a superclass q is

propagated to a subclass p. Rule What-Impl is also similar.

Method-level Propagation. RuleWhat-Callee2St speciies that

if (1) a comment c is associated with a methodm, and (2) there is a

method invocation relation between a statement s and the callee

methodm, then the what-comment is propagated from the calleem

to the statement s with the formal parameters f p in c substituted

with the actual parameters ap. Rule What-Method2St denotes

the propagation from a method m to a statement s inside. Two

preconditions are required to be satisied for the propagation. The

irst condition is that the statement s is the last statement of method

ICSE ’20, May 23ś29, 2020, Seoul, Republic of Korea Zhai et al.

Class-level Propagation Rules:

Property-Instan
propComment (o, c) Instantiation(v, o)

propComment (v, c[v/o])

Property-Inher
propComment (q, c) inher itance(p, q)

propComment (p, c[p/q])

Property-Impl
propComment (i, c) implementation(o, i)

propComment (o, c[o/i])

Method-level Propagation Rules:

Property-Callee2St
propComment (m, c) invocation(s,m)

propComment (s, c[ap/f p])

Property-Method2St
propComment (m, c) onlySt (s,m)

propComment (s, c)

Statement-level Propagation Rules:

Property-St2Callee
propComment (s, c) invocation(s,m) && noOtherOp(s)

propComment (m, c[f p/ap])

Property-St2Method
propComment (s, c) contain(m, s) && ap ⊆ f p

propComment (m, c[f p/ap])

Variable-level Propagation Rules:

Property-DefUse
propComment (v, c) def U se(u, v)

propComment (u, c)

Property-Container
propComment (l, c) contain(e, l)

propComment (e, c[e/l])

(a) Property Propagation Rules

Class-level Propagation Rules:

What-Inher
whatComment (q, c) inher itance(p, q)

whatComment (p, c[p/q])

What-Impl
whatComment (i, c) implementation(o, i)

whatComment (o, c[o/i])

Method-level Propagation Rules:

What-Callee2St
whatComment (m, c) invocation(s,m)

whatComment (s, c[ap/f p])

What-Method2St

whatComment (m, c) lastSt (m, s) &&(preSts == � | | preSts ⊆ exSts)

whatComment (s, c)

Statement-level Propagation Rules:
What-St2Callee

whatComment (s, c) invocation(s,m) && noOtherOp(s)

whatComment (m, c[f p/ap])
What-St2Method

whatComment (s, c) lastSt (m, s) && (preSts == � | | preSts ⊆ exSts)

whatComment (m, c)

Variable-level Propagation Rules:

What-DefUse
whatComment (v, c) def U se(u, v)

whatComment (u, c)

(b) What Propagation Rules

Method-level Propagation Rules:

How-Clone
howComment (m, c) clone(m′

,m, 100%)

howComment (m′
, c)

How-DiffType
howComment (m, c) clone(m′

,m, 90%) && dif f Type(m′
,m)

howComment (m′
, c[t ′/t])

(c) How-it-is-done Propagation Rules

Note:
c comment u code that uses a variable v
o class ap actual parameters
p subclass f p formal parameters
q superclass l container variable
i interface e element contained in the container l

m/m′ method t/t ′ type
s statement preSts statements before the current statement
v variable exSts exception-handling statements

Figure 5: Comment Propagation Rules

m. The second one can be either 1) there are no statements before

s , namely preSts == ∅ or 2) all the previous statements are for

exception handling (preSts ⊆ exSts). If the two conditions are met,

the what-comment c can be propagated from the methodm to the

statement s . Consider the example shown in Fig. 2. The statement

at line 6 is the last statement of the method newInstance() (lines 5-7),
meaning the irst condition is satisied. Also the method body does

not have statements before line 6, meaning the second condition

holds. Hence the what-comment łCreates a new array with the

specified component type and length.ž can be propagated from the

method newInstance() to the statement at line 6.

Statement-level Propagation. Rule What-St2Callee describes

propagation from a method invocation statement to the callee.

Speciically, a statement s invokes a methodm and has no additional

operations other than returning the result ofm. If a comment c is

associated with s , then c can be propagated tom with the actual

parameters ap substituted. For example, the statement at line 6 of

method newInstance() in Fig. 2 invokes method newArray() and it

does not involve other operations, and thus we can propagate the

what-comment łCreates a new array with the specified component

type and length.ž (propagated to the statement based on RuleWhat-

Method2St) to newArray() at line 8. Rule What-St2Method is

symmetric to rule What-Method2St and discussion is elided.

Variable-level Propagation.Variable-level propagation is deined

by rule What-DefUse. That is, if variable v is associated with a

comment c and there is a deinition-use relation between v and u,

then c is propagated from deinition v to use u.

6.3 How-it-is-done-comment Propagation

The propagation rules for How-it-is-done-comment are given in

Fig. 5(c) and they only involve method-level propagation. Com-

ments can be propagated in other levels, but in practice, most How-
it-is-done-comments are in method-level. The irst ruleHow-Clone

speciies the scenario that if (1) a how-it-is-done-comment c is asso-

ciated with a methodm, and (2) the method body ofm is the same

as the body of another methodm′, then c is propagated fromm to

m′. The second rule How-DiffType speciies that if methodm′ is

a code clone of methodm but with diferent types of variables or

formal parameters, then comment c is propagated fromm tom′

with the type information substituted.

7 EVALUATION

We implement a prototype CPC, leveraging the Eclipse JDT toolkit [6]

and the code clone tool Nicad [68], and empirically evaluate it to

address the following questions:

RQ1: How efective is CPC in propagating comments of diferent

perspectives and code entites?

RQ2: How useful is CPC in helping developers?

RQ3: How efective is CPC in improving comments?

RQ4: How efective is CPC in detecting code bugs?

The evaluationwas conducted on amachinewith Intel(R) Core(TM)

i7-8700K CPU (5.00GHz) and 32GB main memory. The operating

system is macOS High Sierra 10.13.6, and the JDK version is 8.

Classifying and Propagating Natural Language Comments via Program Analysis ICSE ’20, May 23ś29, 2020, Seoul, Republic of Korea

Table 5: Comment Propagation Accuracy

Perspective
Accuracy

dist=0 dist<0.5 dist≥0.5
Property 100.00% 76.00% 85.00%
What 100.00% 71.00% 70.00%

How-it-is-done 100.00% 75.00% 70.00%

Table 4: Comment Propagation Summary

Perspe-
ctive

Project
Similarity with Existing Comments
dist=0 dist<0.5 dist≥0.5

#c #m #ec #pc #cmt % #cmt % #cmt %

Property

JDK 998 17727 21147 39274 9133 75.11% 2191 18.02% 835 6.87%
Collections 247 2687 3151 4222 1301 73.30% 372 20.96% 102 5.75%
Guava 518 6140 1940 8425 2718 88.28% 259 8.41% 102 3.31%

Joda-Time 219 5011 2344 4393 1313 80.50% 111 6.81% 207 12.69%
ApacheDB 193 3508 1898 2552 779 82.43% 57 6.03% 109 11.53%

What

JDK 628 10841 12927 5029 1368 39.66% 1550 44.94% 531 15.40%
Collections 70 989 1472 330 105 44.30% 83 35.02% 49 20.68%
Guava 205 2847 1347 1294 419 49.47% 333 39.31% 95 11.22%

Joda-Time 83 1725 1949 885 237 29.40% 325 40.32% 244 30.27%
ApacheDB 78 1426 1316 682 169 29.14% 366 63.10% 45 7.76%

How-it-
is-done

JDK 261 974 1392 16285 15516 96.72% 394 2.46% 133 0.83%
Collections 41 98 100 113 53 67.09% 22 27.85% 4 5.06%
Guava 20 33 31 127 108 85.71% 16 12.70% 2 1.59%

Joda-Time 15 22 29 130 32 35.20% 37 29.13% 58 45.67%
ApacheDB 180 285 254 519 421 84.04% 58 7.39% 22 4.39%

7.1 Efectiveness in Comments Propagation

To answer RQ1, we propagate property-comments, what-comments

and how-it-is-done-comments in ive projects. The results are sum-

marized in Table 4, which presents the comment perspective (col-

umn 1), the projects (column 2), the number of classes/methods

whose comments are propagated (columns #c and #m), the number

of existing comments/propagated comments (columns #ec and #pc),

the similarity between an existing comment and an propagated

comment (columns 7-12). Note that the comparison is conducted

only when there is an existing comment. The similarity is measured

using the Word Mover’s Distance (WMD) algorithm [44]. A zero

distance means the existing comment and the propagated com-

ment are literally the same. If the distance is between 0 and 0.5, it

means two comments are literally similar and if the distance is more

than 0.5, it means two comments are literally diferent. The longest

distance is 10. For each distance range, the columns #cmt and %

present the number of propagated comments and the ratio between

#cmt and the total number of propagated comment (column #pc).

From Table 4, we make a few observations. Firstly, the number

of propagated comments is larger than that of existing comments

since one comment may be propagated to diferent places. Secondly,

the number of propagated property-comments is much larger than

that of what-comments and how-it-is-done-comments. This is due

to the fact that developers tend to comment on exception-related

behaviors and one method may contain several diferent excep-

tion behaviors, and these exception-related comments belong to

property comments. Thirdly, the number of propagated how-it-is-
done-comments is relatively smaller due to two factors. The irst one

is that the number of code clones is small and the second one is that

fewer comments are about implementation details (how-it-is-done).
Fourthly, the percentage of propagated property-comments that are

literally the same with existing comments (0 distance) is higher

than the other two perspectives (on average 80% vs 56%). This is

mainly because property-comments have limited contents with rel-

atively ixed sentence patterns while the other comments describe

various aspects and tend to be depicted using diferent sentences

to express the same semantic. Fifthly, more than 88% propagated

comments are literally similar with existing comments (distance

less than 0.5), which indicates our propagation technique is feasible

and eicient in manipulating comments as irst-class objects. Lastly,

the percentage of comments with distance larger than 0.5 in the

project Joda-Time is much higher than the others. By checking
the comments, we found that there are ten code snippets which

share the same code and one of them has a comment that is literally

diferent from the comments of the remaining ones, and there are

some other similar cases. Such cases contribute a lot to the high

percentage given the small number of propagated comments.

To further answer RQ1, we manually measure the accuracy of

propagated comments for diferent distance ranges, summarized in

Table 5. The irst column gives the perspective of comments and

the remaining columns show the accuracies of diferent distance

ranges. Due to the large number of propagated comments, we can-

not manually check all of them. Instead, for each distance range, we

randomly sampled 500 comments of each perspective and manually

checked whether the propagated comments are correct or not. If

a propagated comment is inconsistent with the source code, it is

considered as false positive.

Table 5 shows that we achieve 100% accuracy when the distance

is 0 and an average of 75% accuracy when the distance is larger than

0. This demonstrates that our propagation technique is efective in

inferring comments. Note that even though the distance is larger

than 0 or even larger than 0.5, it does not mean the propagated

comments are incorrect since the same semantics can be expressed

using diferent sentences. For example, the comment łReturns the

node; or null if not foundž is propagated to method remove() of class
ConcurrentSkipListMap and this method has an existing comment

łReturns the previous value associated with the specified key; or

null if there was no mapping for the key.ž. The two comments are

literally quite diferent, but they have the same semantics.

7.2 Usefulness in Helping Developers

To answer RQ2, we conducted a user study involving 14 users (6

graduate students and 8 developers from industry) to participate.

We randomly selected 80 code entities that have both existing com-

ments and propagated comments (with a total of 160 comments).

The generated comments are propagated from other places and

must be syntactically diferent from the existing ones. They are

mainly from Commons Collections, JDK, and Guava, and have even

coverage for the three comment types. To diversify our selection,

these code entities are selected from diferent source iles. To avoid

bias, we mix the propagated comments and the existing comments,

and thus the users are unaware of whether a comment is propa-

gated or existing. For each comment, we provide the corresponding

code, and ask users to evaluate the comments from the following

three perspectives:Meaningfulness (is a comment of high quality

in helping developers understand code), Consistency (is a com-

ment consistent with code), and Naturalness (does a comment

efectively convey information as a natural language sentence).

The users are asked to evaluate each comment based on the

widely-adopted ive-point Likert scale [45], and the scores 1,2,3,4,5

separately represent strongly disagree, disagree, neither agree nor

disagree, agree and strongly agree. Note that the numerical results

of these questions are not important as they are dependent on the

ICSE ’20, May 23ś29, 2020, Seoul, Republic of Korea Zhai et al.

Table 6: Comment Propagation Improvement

Project
Perspective Property What How-it-is-done

#N #I #W #N #I #W #N #I #W

JDK 26862 11 243 1580 1 0 242 n.a. 0
Collections 2404 11 42 93 0 0 34 n.a. 0
Guava 5344 0 2 447 0 0 1 n.a. 0

Joda-Time 2757 0 5 79 0 0 3 n.a. 0
ApacheDB 1607 0 0 102 0 0 18 n.a. 0

Table 7: Code Bug Detection

Project Version #Bugs Buggy Method Conirmed

Collections 4.2 29
CompositeCollection.iterator() Yes
CompositeMap.removeComposited(inal Map<K, V>) Yes
. . .

Guava 28.0 6
Throwables.getRootCause(Throwable) No
. . .

ApacheDB 3.2 2
Utilities.printClasspath() Yes
ConsoleFileOutput.getDirectory() No

3.70
3.75
3.80
3.85
3.90
3.95
4.00

Consistency

MeaningfulnessNaturalness

Propagated

Existing

Figure 6: User Study Comparison Result

quality of the original comments (recall our propagated comments

also originate from existing comments). Instead, the comparative

results of the two kinds of comments are important. Fig. 6 shows

the comparison results between propagated comments (blue) and

existing comments (red): 3.88 vs 3.86 for consistency, 3.85 vs 3.84

for meaningfulness, and 3.98 vs 4.00 for naturalness. Overall, the

results indicate propagated comments align well with existing ones

in terms of quality. Further inspection shows that the slightly worse

results regarding naturalness are due to our sampling bias: the

propagated comments are 16.7% shorter than the existing comments

and the users seem to consider longer comments are more natural.

7.3 Efectiveness in Improving Comments

To answer RQ3, we evaluate the efectiveness of our comment prop-

agation in three aspects: 1) inferring new comments for code entities

that do not have existing comments; 2) identifying incomplete com-

ments which may be misleading for users or developers; and 3)

detecting wrong comments that might lead to bugs. The result is

shown in Table 6, and the columns #N, #I and #W present the num-

ber of new comments, incomplete comments and wrong comments,

respectively. Here a new comment means the code entity where

the comment is propagated to does not have any comment before.

Note that we do not give the number of incomplete how-it-is-done-
comments since it is unnecessary and impractical to comment all

the implementation details.

Based on the number of new comments shown in Table 6 and the

accuracy in Table 5, we can see that our technique can efectively

generate new comments, which can be further used to facilitate

understanding and maintain documentation. By manually check-

ing some of the newly-generated comments, we ind that many

comments describe exceptional behaviors including the type of

exception and the corresponding exception-trigger condition. Such

comments are usually considered very important since a majority

of bugs are caused by triggering exceptions. For example, we can

generate the new comment łThrows IllegalArgumentException if

the size is less than 1ž for constructor CircularFifoQueue(Collection),
which conveys that the parameter collection should have a size

larger than 0. Without such a comment, bugs are easily introduced

since very few methods have such requirements and developers are

insensitive to them. Moreover, among the new comments, precise

functional comments are inferred for 87 native methods that have

neither comments nor source code. These comments can serve as

manuals for developers to leverage these native methods.

We also identify 11 incomplete comments which can be seen as

inconsistencies between comments and code. Our propagated com-

ments can be used to complement existing comments to address

such inconsistencies and reduce the risk of introducing bugs when
the code is used. For example, łReturns true if this list changed as

a result of the call.ž is the existing comment of method addAll() in
class RoleList, and łReturns true if the RoleList specified is null.ž is

one propagated comment of the method. By analyzing the code, we

can see the propagated comment is correct, meaning the existing

one is incomplete. In addition, we detect many wrong comments

that would be misleading and even lead to bugs. For example, in

the project Apache Commons Collection, we generate the propa-

gated comment łthrows IndexOutOfBoundsException if index <0

or index >= size()ž which is inconsistent with the existing comment

łthrows IndexOutOfBoundsException if index <0 or index > size()ž

of method setIterator in class CollatingIterator. We conirmed our

propagated comment is correct, and developers also conirmed this
and corrected the existing wrong comment [3].

7.4 Efectiveness in Bug Detection

To answer RQ4, we write a script to extract code whose propa-

gated comments describe behaviors related to NullPointerException
and IndexOutOfBoundsException based on buggy patterns. For Null-
PointerException, the buggy pattern is the code that does not check

whether the return value of a method (whose comments state a null

value may be returned) is null before dereferencing it. For Index-
OutOfBoundsException, the buggy pattern is the code that does not

check if the returned value of a method (whose comments state -1

may be returned) is -1 before using it to access an array.

Table 7 reports the bug detection results including, from left

to right, the project, the project version, the number of detected

bugs, the buggy method and whether the reported bug is conirmed.

Due to the space limitations, not all the bugs are presented in the

table. In total, our script reports 57 bugs. By manually checking

them, we believe 37 of them are true bugs. We have reported the

37 bugs to the developers, among which, 30 bugs have already
been conirmed and ixed by developers [4, 5], while the remaining

ones await conirmation. For the false positives, the main reason is

that our analysis script is not context-sensitive and hence cannot

identify cases in which users will never pass parameters that trigger

the function to return null or -1. It is a limitation of our scanner,

not comment derivation.

Classifying and Propagating Natural Language Comments via Program Analysis ICSE ’20, May 23ś29, 2020, Seoul, Republic of Korea

8 THREATS TO VALIDITY

The threat to construct validity is the bias that may be introduced

during the manual labeling of comments (Section 4). To mitigate

this threat, each comment was categorized by two developers inde-

pendently, and a third developer would manually resolve all cases

when two developers disagreed. We assessed the labeling relia-

bility by measuring the inter-coder agreement (Section 4). In the

future, we will further minimize the threat by inviting more devel-

opers to categorize comments. The threat to internal validity is the

potential overitting problem of the machine learning algorithms.

To minimize this, we randomly selected 80% of the dataset as the

training data and applied a ive-fold cross validation. The threat

to external validity is that it is plausible the classiiers produced

on our training data would have low accuracy when categorizing

comments from other projects. To alleviate this threat, we prepared

labeled comments from four diferent software projects that cover

diferent types of functionalities (e.g., Java collection framework

and calendar system). While we believe that the comments from

these software systems well represent comments in other software

projects, we do not intend to draw any general conclusions. In the

future, we will train the classiiers with more labeled comments

of other kinds of systems to improve the generalizability. The user

study was conducted with 14 users and 80 code entities. While we

tasked each user with a lot of code and comment, we will extend

the study to a larger user group.

9 RELATED WORK

Comment Classiication. Researchers in [58] proposed a taxon-

omy based on meanings of comments and manually classiied 1050

comments. They found 52.6% of these comments can be leveraged

to improve software reliability and increase programmer produc-

tivity. In [52], researchers empirically studied API directives which

are constraints about usages of APIs, and built a corresponding

taxonomy. The authors of [46] leveraged grounded methods and an-

alytical approaches to build a taxonomy of knowledge types in API

reference documentation and manually classiied 5574 randomly-

sampled documentation units to assess the knowledge they contain.

Based on this taxonomy, the researchers in [43] trained a classiier

for each knowledge type and assigned only one label to each docu-

ment unit based on nine features and their semantic and statistical

combinations. In comparison, each classiier in our work classi-

ies comments into diferent perspectives and code entities. The

work [29] built a taxonomy of comments to investigate developers’

commenting habits while the work [74] studied comment cate-

gorization to provide better quantitative insights about comment

quality assessment. Researchers in [60, 61] produced a taxonomy

of comments and investigated how often each category occurs by

manually classifying more than 2,000 code comments. Unlike them,

we develop the taxonomy to treat a comment as an attribute of a

code entity and thus we can leverage program analysis techniques

to infer, propagate, update and reason about comments. It is unclear

how to propagate comments based on existing taxonomies.

Comment Generation. There are eforts of generating comments

from source code/code changes, based on manually crafted tem-

plates [13, 19, 47, 48, 53, 54, 66, 71ś73], information retrieval [27,

28, 32, 84, 85], and machine translation [14, 31, 33, 35, 62]. The
techniques [84, 85] are most closely related and they generated

comments for a code snippet by using comments of its code clone.

However, they did not distinguish between comments of diferent

perspectives and thus may generate many wrong comments. Also

they did not utilize techniques like data low analysis to propagate

comments, which is our novelty. Our technique difers from com-

ment generation in a few aspects. Comment generation produces

comments from code. However, diferent projects have diferent

coding and comment styles. A generation technique trained on a set

of projects or based on rules may not generate good comments on

other projects. Instead of generating comments from code, we prop-

agate existing comments to code entities that are not commented

by leveraging program analysis. Our technique is less sensitive to

such styles as it only classiies comments instead of generating

them. Comment propagation is deterministic and rigorous through

program analysis. Secondly, generating comments for complex code

that even humans can hardly understand is error-prone. For such

cases, our technique can leverage existing comments (from other

places). Thirdly, evaluating quality of generated comments, such

as their naturalness, is a hard challenge. Our technique is largely

immune to this. Finally, our technique can propagate comments to

methods without code while existing work requires code as input.

On the other hand, comment generation and comment propagation

are complementary. Through propagation, we can produce a much

larger training set for generation techniques. Generated comments

can be propagated through our technique.

Comment-Code Inconsistency Detection. Research has been

conducted on improving API documentation maintenance such as

reporting potential code-comment inconsistencies as code evolves [21,

67], detecting existing code-comment inconsistencies [77ś79, 89,

91], and enriching documentation (e.g., with code samples) [26, 34,

37, 75, 76, 82]. They do not aim to explicitly propagate comments

as irst-class objects and thus our eforts are complementary.

10 CONCLUSION

We build a comprehensive comment taxonomy from diferent per-

spectives with various levels of granularity and propose using pro-

gram analysis to propagate comments. We develop a prototype CPC.

Our experiments show that CPC can generate 41573 new comments

with 88% accuracy. The derived comments are used to detect 37

new code bugs in 5 real-world projects with 30 conirmed and ixed

by developers. We also identify 304 defects in existing comments,

including 12 incomplete comments and 292 wrong comments. Our

user study conirms propagated comments align well with existing

comments regarding quality.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive com-

ments. This research was supported, in part by NSF-China 61802166,

61972193 and 61832009, DARPA FA8650-15-C-7562, NSF 1748764,

1901242 and 1910300, ONRN000141410468 and N000141712947, and

Sandia National Lab under award 1701331. Any opinions, indings,

and conclusions in this paper are those of the authors only and do

not necessarily relect the views of our sponsors.

ICSE ’20, May 23ś29, 2020, Seoul, Republic of Korea Zhai et al.

REFERENCES
[1] 2019. Apache Commons Collections. https://commons.apache.org/proper/

commons-collections/.
[2] 2019. Case Marking Relation. http://universaldependencies.org/docsv1/u/dep/

case.html.
[3] 2019. Comirmed and Corrected Comments. https://issues.apache.org/jira/

browse/COLLECTIONS-727.
[4] 2019. Comirmed and Fixed Bugs. https://issues.apache.org/jira/browse/

COLLECTIONS-710.
[5] 2019. Comirmed and Fixed Bugs. https://issues.apache.org/jira/browse/JDO-780.
[6] 2019. Eclipse Java development tools (JDT). https://www.eclipse.org/jdt/.
[7] 2019. Guava. https://opensource.google.com/projects/guava/.
[8] 2019. JDK. https://www.oracle.com/technetwork/java/javase/downloads/index.

html.
[9] 2019. Joda Time. https://www.joda.org/joda-time/.
[10] 2019. Preconjunct Relation. https://nlp.stanford.edu/software/dependencies_

manual.pdf.
[11] 2019. sklearn metrics. https://scikit-learn.org/stable/modules/classes.html.
[12] 2019. word2vec tool. https://github.com/dav/word2vec.
[13] Nahla J Abid, Natalia Dragan, Michael L Collard, and Jonathan I Maletic. 2015.

Using stereotypes in the automatic generation of natural language summaries
for c++ methods. In Software Maintenance and Evolution (ICSME), 2015 IEEE
International Conference on. IEEE, 561ś565.

[14] Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A convolutional at-
tention network for extreme summarization of source code. In International
Conference on Machine Learning. 2091ś2100.

[15] Miltos Allamanis, Daniel Tarlow, Andrew Gordon, and Yi Wei. 2015. Bimodal
modelling of source code and natural language. In International Conference on
Machine Learning. 2123ś2132.

[16] J Viera Anthony and M Garrett Joanne. 2005. Understanding Interobserver
Agreement: The Kappa Statistic. Family medicine 37 (06 2005), 360ś3.

[17] Arianna Blasi, Alberto Goi, Konstantin Kuznetsov, Alessandra Gorla, Michael D
Ernst, Mauro Pezzè, and Sergio Delgado Castellanos. 2018. Translating code
comments to procedure speciications. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM, 242ś253.

[18] L. Breiman. 2001. Random Forests. In Machine Learning. Vol. 45. 5ś32.
[19] Raymond PL Buse and Westley R Weimer. 2010. Automatically documenting

program changes. In Proceedings of the IEEE/ACM international conference on
Automated software engineering. ACM, 33ś42.

[20] Jacob Cohen. 1960. A coeicient of agreement for nominal scales. Educational
and psychological measurement 20, 1 (1960), 37ś46.

[21] Barthélémy Dagenais and Martin P Robillard. 2014. Using traceability links to
recommend adaptive changes for documentation evolution. IEEE Transactions on
Software Engineering 40, 11 (2014), 1126ś1146.

[22] Marie-Catherine de Marnefe, Bill MacCartney, and Christopher D. Manning.
2006. Generating Typed Dependency Parses from Phrase Structure Parses. In
Proceedings of the Fifth International Conference on Language Resources and Eval-
uation (LREC’06). European Language Resources Association (ELRA).

[23] Sergio Cozzetti B de Souza, Nicolas Anquetil, and Kathia M de Oliveira. 2005. A
study of the documentation essential to software maintenance. In Proceedings of
the 23rd annual international conference on Design of communication: documenting
& designing for pervasive information. ACM, 68ś75.

[24] Alberto Goi, Alessandra Gorla, Michael D Ernst, and Mauro Pezzè. 2016. Auto-
matic generation of oracles for exceptional behaviors. In Proceedings of the 25th
International Symposium on Software Testing and Analysis. ACM, 213ś224.

[25] Tihomir Gvero and Viktor Kuncak. 2015. Synthesizing Java expressions from
free-form queries. In Acm Sigplan Notices, Vol. 50. ACM, 416ś432.

[26] Andrew Habib and Michael Pradel. 2018. Is this class thread-safe? inferring
documentation using graph-based learning. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM, 41ś52.

[27] Sonia Haiduc, Jairo Aponte, and Andrian Marcus. 2010. Supporting program
comprehension with source code summarization. In Proceedings of the 32Nd
ACM/IEEE International Conference on Software Engineering-Volume 2. ACM, 223ś
226.

[28] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. 2010. On the
use of automated text summarization techniques for summarizing source code.
In Reverse Engineering (WCRE), 2010 17th Working Conference on. IEEE, 35ś44.

[29] Dorsaf Haouari, Houari Sahraoui, and Philippe Langlais. 2011. How good is
your comment? a study of comments in java programs. In Empirical Software
Engineering and Measurement (ESEM), 2011 International Symposium on. IEEE,
137ś146.

[30] Carl S Hartzman and Charles F Austin. 1993. Maintenance productivity: Obser-
vations based on an experience in a large system environment. In Proceedings of
the 1993 conference of the Centre for Advanced Studies on Collaborative research:
software engineering-Volume 1. IBM Press, 138ś170.

[31] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment
generation. In Proceedings of the 26th Conference on Program Comprehension.
ACM, 200ś210.

[32] Yuan Huang, Qiaoyang Zheng, Xiangping Chen, Yingfei Xiong, Zhiyong Liu, and
Xiaonan Luo. 2017. Mining version control system for automatically generating
commit comment. In Proceedings of the 11th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. IEEE Press, 414ś423.

[33] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing source code using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), Vol. 1. 2073ś2083.

[34] He Jiang, Jingxuan Zhang, Zhilei Ren, and Tao Zhang. 2017. An unsupervised
approach for discovering relevant tutorial fragments for APIs. In Proceedings of
the 39th International Conference on Software Engineering. IEEE Press, 38ś48.

[35] Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generat-
ing commit messages from difs using neural machine translation. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineering.
IEEE Press, 135ś146.

[36] Zhen Ming Jiang and Ahmed E Hassan. 2006. Examining the evolution of code
comments in PostgreSQL. In Proceedings of the 2006 international workshop on
Mining software repositories. ACM, 179ś180.

[37] Jinhan Kim, Sanghoon Lee, Seung-Won Hwang, and Sunghun Kim. 2013. Enrich-
ing documents with examples: A corpus mining approach. ACM Transactions on
Information Systems (TOIS) 31, 1 (2013), 1.

[38] Yoon Kim. 2014. Convolutional neural networks for sentence classiication. arXiv
preprint arXiv:1408.5882 (2014).

[39] Yoon Kim. 2014. Convolutional neural networks for sentence classiication.
In Proceedings of 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP).

[40] Dan Klein and Christopher D. Manning. 2003. Accurate unlexicalized parsing. In
Proceedings of the 41st Meeting of the Association for Computational Linguistics.

[41] Dan Klein and Christopher D Manning. 2003. Accurate unlexicalized pars-
ing. In Proceedings of the 41st Annual Meeting on Association for Computational
Linguistics-Volume 1. Association for Computational Linguistics, 423ś430.

[42] R. Kohavi. 1995. A Study of Cross-Validation and Bootstrap for Accuracy Estima-
tion and Model Selection. In IJCAIâĂŹ95.

[43] Niraj Kumar and Premkumar Devanbu. 2016. OntoCat: Automatically categoriz-
ing knowledge in API Documentation. arXiv preprint arXiv:1607.07602 (2016).

[44] Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. 2015. From word
embeddings to document distances. In International Conference on Machine Learn-
ing. 957ś966.

[45] Rensis Likert. 1932. A technique for the measurement of attitudes. Archives of
psychology (1932).

[46] WalidMaalej andMartin P Robillard. 2013. Patterns of knowledge inAPI reference
documentation. IEEE Transactions on Software Engineering 39, 9 (2013), 1264ś
1282.

[47] Paul W McBurney and Collin McMillan. 2014. Automatic documentation gen-
eration via source code summarization of method context. In Proceedings of the
22nd International Conference on Program Comprehension. ACM, 279ś290.

[48] Paul W McBurney and Collin McMillan. 2016. Automatic source code summa-
rization of context for java methods. IEEE Transactions on Software Engineering
42, 2 (2016), 103ś119.

[49] Tomas Mikolov, Kai Chen, Greg Corrado, and Jefrey Dean. 2013. Eicient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[50] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jef Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111ś3119.

[51] MB Miles, AM Huberman, and J Saldaña. [n.d.]. Qualitative data analysis: a
methods sourcebook. 2013 Thousand Oaks.

[52] Martin Monperrus, Michael Eichberg, Elif Tekes, and Mira Mezini. 2012. What
should developers be aware of? An empirical study on the directives of API
documentation. Empirical Software Engineering 17, 6 (2012), 703ś737.

[53] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pollock,
and K Vijay-Shanker. 2013. Automatic generation of natural language summaries
for java classes. In Program Comprehension (ICPC), 2013 IEEE 21st International
Conference on. IEEE, 23ś32.

[54] Laura Moreno, Andrian Marcus, Lori Pollock, and K Vijay-Shanker. 2013. Jsum-
marizer: An automatic generator of natural language summaries for java classes.
In Program Comprehension (ICPC), 2013 IEEE 21st International Conference on.
IEEE, 230ś232.

[55] Kimberly A Neuendorf. 2016. The content analysis guidebook. Sage.
[56] Anh Tuan Nguyen, Peter C Rigby, Thanh Van Nguyen, Mark Karanil, and Tien N

Nguyen. 2017. Statistical translation of English texts to API code templates.
In Software Engineering Companion (ICSE-C), 2017 IEEE/ACM 39th International
Conference on. IEEE, 331ś333.

[57] Chaparro Oscar, Lu Jing, Zampetti Fiorella, Moreno Laura, Di Penta Massimiliano,
Marcus Andrian, Bavota Gabriele, and Ng Vincent. 2017. Detecting Missing
Information in Bug Descriptions. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE 2017).
ACM, New York, NY, USA, 396ś407. https://doi.org/10.1145/3106237.3106285

https://commons.apache.org/proper/commons-collections/
https://commons.apache.org/proper/commons-collections/
http://universaldependencies.org/docsv1/u/dep/case.html
http://universaldependencies.org/docsv1/u/dep/case.html
https://issues.apache.org/jira/browse/COLLECTIONS-727
https://issues.apache.org/jira/browse/COLLECTIONS-727
https://issues.apache.org/jira/browse/COLLECTIONS-710
https://issues.apache.org/jira/browse/COLLECTIONS-710
https://issues.apache.org/jira/browse/JDO-780
https://www.eclipse.org/jdt/
https://opensource.google.com/projects/guava/
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.joda.org/joda-time/
https://nlp.stanford.edu/software/dependencies_manual.pdf
https://nlp.stanford.edu/software/dependencies_manual.pdf
https://scikit-learn.org/stable/modules/classes.html
https://github.com/dav/word2vec
https://doi.org/10.1145/3106237.3106285

Classifying and Propagating Natural Language Comments via Program Analysis ICSE ’20, May 23ś29, 2020, Seoul, Republic of Korea

[58] Yoann Padioleau, Lin Tan, and Yuanyuan Zhou. 2009. Listening to program-
mers Taxonomies and characteristics of comments in operating system code. In
Proceedings of the 31st International Conference on Software Engineering. IEEE
Computer Society, 331ś341.

[59] Rahul Pandita, XushengXiao, Hao Zhong, Tao Xie, StephenOney, andAmit Parad-
kar. 2012. Inferring method speciications from natural language API descriptions.
In Proceedings of the 34th International Conference on Software Engineering. IEEE
Press, 815ś825.

[60] Luca Pascarella. 2018. Classifying code comments in Java Mobile Applications.
In Conference on Mobile Software Engineering and Systems.

[61] Luca Pascarella and Alberto Bacchelli. 2017. Classifying Code Comments in Java
Open-source Software Systems. In Proceedings of the 14th International Conference
on Mining Software Repositories (Buenos Aires, Argentina) (MSR ’17). 227ś237.

[62] Hung Phan, Hoan Anh Nguyen, Tien N Nguyen, and Hridesh Rajan. 2017. Sta-
tistical learning for inference between implementations and documentation. In
Proceedings of the 39th International Conference on Software Engineering: New
Ideas and Emerging Results Track. IEEE Press, 27ś30.

[63] M.F. Porter. 1980. An algorithm for suix stripping. Program 14, 3 (1980), 130ś137.
[64] R. Quinlan and M. Kaufmann. 1993. C4.5: Programs for Machine Learning.
[65] Anna N Raferty and Christopher D Manning. 2008. Parsing three German

treebanks: Lexicalized and unlexicalized baselines. In Proceedings of the Workshop
on Parsing German. Association for Computational Linguistics, 40ś46.

[66] Sarah Rastkar, Gail C Murphy, and Alexander WJ Bradley. 2011. Generating
natural language summaries for crosscutting source code concerns. In Software
Maintenance (ICSM), 2011 27th IEEE International Conference on. IEEE, 103ś112.

[67] Inderjot Kaur Ratol and Martin P Robillard. 2017. Detecting fragile comments.
In Automated Software Engineering (ASE), 2017 32nd IEEE/ACM International
Conference on. IEEE, 112ś122.

[68] C. K. Roy and J. R. Cordy. 2008. NICAD: Accurate Detection of Near-Miss
Intentional Clones Using Flexible Pretty-Printing and Code Normalization. In
2008 16th IEEE International Conference on Program Comprehension. 172ś181.
https://doi.org/10.1109/ICPC.2008.41

[69] Cindy Rubio-González and Ben Liblit. 2010. Expect the unexpected: error code
mismatches between documentation and the real world. In Proceedings of the
9th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and
engineering. ACM, 73ś80.

[70] C. Silva and B. Ribeiro. 2003. The importance of stop word removal on recall
values in text categorization. In Proceedings of the International Joint Conference
on Neural Networks. IEEE.

[71] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-
Shanker. 2010. Towards automatically generating summary comments for java
methods. In Proceedings of the IEEE/ACM international conference on Automated
software engineering. ACM, 43ś52.

[72] Giriprasad Sridhara, Lori Pollock, and K Vijay-Shanker. 2011. Automatically
detecting and describing high level actions within methods. In Proceedings of the
33rd International Conference on Software Engineering. ACM, 101ś110.

[73] Giriprasad Sridhara, Lori Pollock, and K Vijay-Shanker. 2011. Generating param-
eter comments and integrating with method summaries. In Program Comprehen-
sion (ICPC), 2011 IEEE 19th International Conference on. IEEE, 71ś80.

[74] Daniela Steidl, Benjamin Hummel, and Elmar Juergens. 2013. Quality analysis
of source code comments. In Program Comprehension (ICPC), 2013 IEEE 21st
International Conference on. IEEE, 83ś92.

[75] Jefrey Stylos, Brad A Myers, and Zizhuang Yang. 2009. Jadeite: improving API
documentation using usage information. In CHI’09 Extended Abstracts on Human

Factors in Computing Systems. ACM, 4429ś4434.
[76] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. 2014. Live API

documentation. In Proceedings of the 36th International Conference on Software
Engineering. ACM, 643ś652.

[77] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /* iComment:
Bugs or bad comments?*. In ACM SIGOPS Operating Systems Review, Vol. 41.
ACM, 145ś158.

[78] Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. 2011. aComment: mining anno-
tations from comments and code to detect interrupt related concurrency bugs. In
Software Engineering (ICSE), 2011 33rd International Conference on. IEEE, 11ś20.

[79] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T Leavens. 2012. @tcomment:
Testing javadoc comments to detect comment-code inconsistencies. In Software
Testing, Veriication and Validation (ICST), 2012 IEEE Fifth International Conference
on. IEEE, 260ś269.

[80] Ted Tenny. 1985. Procedures and comments vs. the banker’s algorithm. ACM
SIGCSE Bulletin 17, 3 (1985), 44ś53.

[81] Ted Tenny. 1988. Program readability: Procedures versus comments. IEEE
Transactions on Software Engineering 14, 9 (1988), 1271ś1279.

[82] Christoph Treude and Martin P Robillard. 2016. Augmenting API documentation
with insights from Stack Overlow. In Software Engineering (ICSE), 2016 IEEE/ACM
38th International Conference on. IEEE, 392ś403.

[83] Grigorios Tsoumakas and Ioannis Katakis. 2007. Multi-label classiication: An
overview. International Journal of Data Warehousing and Mining (IJDWM) 3, 3
(2007), 1ś13.

[84] Edmund Wong, Taiyue Liu, and Lin Tan. 2015. CloCom: Mining existing source
code for automatic comment generation. In 22nd IEEE International Conference
on Software Analysis, Evolution, and Reengineering, SANER 2015, Montreal, QC,
Canada, March 2-6, 2015. 380ś389.

[85] Edmund Wong, Jinqiu Yang, and Lin Tan. 2013. AutoComment: Mining Question
and Answer Sites for Automatic Comment Generation. In Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering (ASE),
New Idea.

[86] Edmund Wong, Lei Zhang, Song Wang, Taiyue Liu, and Lin Tan. 2015. DASE:
Document-assisted Symbolic Execution for Improving Automated Software Test-
ing. In Proceedings of the 37th International Conference on Software Engineering -
Volume 1 (ICSE). IEEE, 620ś631.

[87] Scott N Woodield, Hubert E Dunsmore, and Vincent Yun Shen. 1981. The efect
of modularization and comments on program comprehension. In Proceedings of
the 5th international conference on Software engineering. IEEE Press, 215ś223.

[88] Juan Zhai, Jianjun Huang, Shiqing Ma, Xiangyu Zhang, Lin Tan, Jianhua Zhao,
and Feng Qin. 2016. Automatic model generation from documentation for Java
API functions. In Software Engineering (ICSE), 2016 IEEE/ACM 38th International
Conference on. IEEE, 380ś391.

[89] Hao Zhong and Zhendong Su. 2013. Detecting API documentation errors. In
ACM SIGPLAN Notices, Vol. 48. ACM, 803ś816.

[90] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. 2009. Inferring resource speci-
ications from natural language API documentation. In Proceedings of the 2009
IEEE/ACM International Conference on Automated Software Engineering. IEEE
Computer Society, 307ś318.

[91] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano Panichella, and
Harald Gall. 2017. Analyzing APIs documentation and code to detect directive
defects. In Proceedings of the 39th International Conference on Software Engineering.
IEEE Press, 27ś37.

https://doi.org/10.1109/ICPC.2008.41

	Abstract
	1 Introduction
	2 Motivation
	3 The Taxonomy of Comments
	4 Taxonomy Construction
	4.1 Comment Sampling
	4.2 Coding Procedure

	5 Comment Classification
	5.1 Word Embedding and Comment Cleaning
	5.2 Feature Extraction
	5.3 Algorithms and Evaluation

	6 Propagation
	6.1 Property-comment Propagation
	6.2 What-comment Propagation
	6.3 How-it-is-done-comment Propagation

	7 Evaluation
	7.1 Effectiveness in Comments Propagation
	7.2 Usefulness in Helping Developers
	7.3 Effectiveness in Improving Comments
	7.4 Effectiveness in Bug Detection

	8 Threats to Validity
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

