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ABSTRACT

Code comments provide abundant information that have been lever-
aged to help perform various software engineering tasks, such as
bug detection, specification inference, and code synthesis. However,
developers are less motivated to write and update comments, mak-
ing it infeasible and error-prone to leverage comments to facilitate
software engineering tasks. In this paper, we propose to leverage
program analysis to systematically derive, refine, and propagate
comments. For example, by propagation via program analysis, com-
ments can be passed on to code entities that are not commented
such that code bugs can be detected leveraging the propagated
comments. Developers usually comment on different aspects of
code elements like methods, and use comments to describe various
contents, such as functionalities and properties. To more effec-
tively utilize comments, a fine-grained and elaborated taxonomy
of comments and a reliable classifier to automatically categorize
a comment are needed. In this paper, we build a comprehensive
taxonomy and propose using program analysis to propagate com-
ments. We develop a prototype CPC, and evaluate it on 5 projects.
The evaluation results demonstrate 41573 new comments can be
derived by propagation from other code locations with 88% accu-
racy. Among them, we can derive precise functional comments for
87 native methods that have neither existing comments nor source
code. Leveraging the propagated comments, we detect 37 new bugs
in open source large projects, 30 of which have been confirmed and
fixed by developers, and 304 defects in existing comments (by look-
ing at inconsistencies between existing and propagated comments),
including 12 incomplete comments and 292 wrong comments. This
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demonstrates the effectiveness of our approach. Our user study
confirms propagated comments align well with existing comments
in terms of quality.
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1 INTRODUCTION

Modern software systems usually contain a large volume of code
comments [58]. Commenting code has been recognized as a good
programming practice [23], which facilitates both code compre-
hension and software maintenance. For example, the researchers
in [80, 81, 87] conducted experiments showing that code comments
can help improve code readability while the researchers in [30, 36]
demonstrated that code comments played a significant role in main-
taining software. Moreover, code comments provide abundant in-
formation that can be leveraged to help perform a wide range
of software engineering tasks, such as bug detection [69, 77-79],
specification inference [17, 59, 90], testing [24, 86] and code syn-
thesis [15, 25, 56, 62, 88]. However, as far as we know, existing
work barely utilizes program analysis to systematically derive, re-
fine, and propagate comments that provide rich semantics beyond
traditional artifacts that have been used in program analysis such
as types, control flow and data flow. For example, by propagation
through program analysis, comments can be passed on to code en-
tities that are not commented such that code bugs can be detected
by cross-checking code with the propagated comments.

Due to the lack of standard of composing documentation, de-
velopers have substantial flexibility and they tend to use arbitrary
ways to compose documentation. They usually comment on differ-
ent aspects of code elements like classes, methods and variables,
and use comments to describe various contents, such as summariz-
ing the functionality, explaining the design rationale and specifying
the implementation details. In addition, as comments are written
in natural language, they are intrinsically ambiguous and accurate


https://doi.org/10.1145/3377811.3380427
https://doi.org/10.1145/3377811.3380427

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

linguistic analysis is needed to acquire their exact meanings and
scopes. To better understand code and more effectively propagate
comments, we must first know which code elements they comment
on and what kind of information they convey. That is to say, it is
imperative to design a fine-grained and elaborated taxonomy of
code comments and develop a reliable classifier to automatically
categorize a comment.

There have been efforts in software documentation classification.
Padioleau et al. [58] built a taxonomy based on meanings of com-
ments. The work in [46] proposed a taxonomy of knowledge types
in API reference documentation and used the taxonomy to assess
the knowledge they contain. Based on this taxonomy, researchers in
[43] developed a set of textual features to automatically categorize
the knowledge. In [74], researchers studied comment categorization
to provide better quantitative insights for comment quality assess-
ment. Features are manually given for machine learning techniques
to automatically classify comments. Researchers in [60, 61] first
manually classified more than 2,000 code comments and then used
supervised learning to achieve about 85% classification accuracy.
Their taxonomies are not designed to be coupled with program
analysis. It is unclear how to propagate and infer comments based
on their classification.

Hence, our goal is to first build a comprehensive taxonomy from
different perspectives (e.g., what and why) and different code enti-
ties (e.g., class and method), and then design a uniform analysis to
enable bi-directional analysis: (1) program analysis propagates and
updates comments, and (2) comments provide additional seman-
tic hints to enrich program analysis. Multiple software tasks can
benefit from the bi-directional analysis. For example, leveraging
program analysis to propagate comments can provide automation
support in maintaining documentation which is difficult [21] and
leveraging comment analysis can help detect software bugs by
checking the comment semantics against source code.

In this paper, we propose CPC, a principled and sophisticated
software reasoning method that couples comment analysis and
program analysis. It automatically classifies comments based on
different perspectives and code entities (namely builds a comment
taxonomy), and thus each comment is attributed to a code element
and becomes a first-class object just like other classic objects in
program analysis (e.g., variables and statements). Based on the tax-
onomy, CPC leverages program analysis techniques to propagate
comments from one code entity to another to update, infer, and
associate comments with code entities. Then CPC extracts seman-
tics from the propagated comments to facilitate various software
engineering tasks such as code bug detection. Our contributions
are as follows:

o We construct a comprehensive comment taxonomy from dif-
ferent perspectives with various granularity levels, and train
six classifiers using three algorithms to automatically catego-
rize comments into appropriate perspectives and granularity
levels.

e We propose a novel bidirectional method of leveraging pro-
gram analysis to propagate comments and leveraging com-
ment analysis to facilitate bug detection, which achieves a

seamless synergy of comment analysis and program analysis.
e We develop a prototype CPC based on the proposed idea,

and evaluate it on 5 large real-world projects. The evaluation
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results demonstrate that 41573 new comments can be derived
by propagation from other code locations with 88% accuracy.
Among them, we can derive precise functional comments for
87 native methods that have neither existing comments nor
source code. Our user study shows propagated comments
are as useful as existing comments in helping developers.

2 MOTIVATION

Modern software provide abundant natural language (NL) com-
ments and there is substantial existing work on analyzing NL com-
ments and leveraging them in a wide range of software engineering
applications. However, as far as we know, existing work hardly
leverages program analysis techniques to derive, refine, and prop-
agate comments systematically. Such propagated comments con-
tain wealthy semantics beyond traditional artifacts that have been
widely used in program analysis like data types. For example, by
using program analysis techniques, we can pass comments on to
code entities that are not commented and leverage information con-
tained in the propagated comments to detect code bugs. Our overall
goal is to achieve code-comment co-analysis: (1) program analysis
propagates and updates code comments, and (2) code comments
provide additional semantic hints to enrich program analysis.

Software developers tend to comment on different aspects of dif-
ferent code elements [58]. Comments of different perspectives entail
different propagation rules. Consider the two comments “Throws
IndexOutOfBoundsException if the index is out of range (index <
0 || index >= size()).” and “Shifts any subsequent elements to the
left (subtracts one from their indices).” of method remove(int in-
dex). The former can be propagated through data flow while the
latter cannot. Suppose we have an assignment o = list.remove(i), by
propagating the first comment from the method definition (to the
statement), we can know that if the condition i < 0/ i >= size() holds,
the assignment statement will throw an IndexOutOfBoundsExcep-
tion, which can be used to check the code. However, the second
comment describes the implementation details involving the data
structure used in remove(int index), which would be misleading
and make no sense if propagated to the assignment. Hence, the
first step towards comments propagation and inference is to build
a complete taxonomy for comments.

There have been efforts in software documentation classifica-
tion [46, 58, 60, 61, 74]. The researchers in [58] propose a taxonomy
based on the following four dimensions: comment contents, com-
ment authors/users, comment locations (e.g., before a loop or in a
macro), and comment composition time. In [46], researchers manu-
ally classify API documentation based on the knowledge types (e.g.,
functionalities, concepts, directives and code examples) to help
humans understand and gauge the quality of API documentation.
They also study the distribution of different kinds of comments. The
taxonomies in [61, 74] are similar and both include categories like
purpose (the functionality of the code), under development (topic
related to ongoing/future development) and metadata (authors,
license, etc.). They are produced to facilitate quality analysis of
comments. The taxonomy in [29] is proposed to investigate develop-
ers’ documentation patterns while the work [74] studies comment
categorization to provide better quantitative insights about the
documentation for comment quality assessment. Their taxonomies,
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01 /** Creates a new array with the specified component®
02 * type and length.
03 * @exception NegativeArraySizeException if the
04 * specified code length is negative */|\ Method2St
05 public Object newInstance(Class<?> componentType, Propagation
int length) throws NegativeArraySizeException {
06 return newArray(componentType, length);
07} St2Callee New Comment: Creates a new array with
Propagation the specified component type and length.
08 private static native Object¥newArray
Class<?> componentType, int length)
throws NegativeArraySizeException;

Figure 2: Comment Defect Detection

Class ArrayList<E>
Implements all optional list operations, and
@ permits all elements, including null. \Instantiation Propagation
class property \ @
01 private final List<Collection<E>>Nall[permit null elements
= new ArrayList<Collection<E>>();

02 public int size() { ©)
03 int size = @; may be null

04 for (final Collection<E> item: all)
05 size += item.size();¢” S—7 .
: Container Propagation
06 return slze;@ |
07 } | throw NullPointerException if item is null |

Figure 1: Code Bug Detection

however, do not distinguish comments of different code entities and
are not designed to be coupled with program analysis. It is unclear
where and how to propagate and infer comments based on their
classification. For our purpose, we propose a comment taxonomy
according to the commented subjects (e.g., classes, methods, and
statements) and perspectives (e.g., what, why, and how). For each
kind of comments, we develop specific rules to propagate them
through program analysis. We will use 3 cases to demonstrate the
benefits of propagating comments according to their categories. In a
nutshell, our technique can reveal bugs in both code and comments.
Code Bug Detection. Properties are critical information embed-
ded in comments that define intended behaviors of code elements.
The top box of Fig. 1 shows the comment of class ArrayList<E>from
JDK. This class permits all elements including null (denoted with
green background) as items in the list. Here, the description of per-
mitting null elements is recognized as a property comment by our
technique (step (D). As a property comment, it can be propagated to
the code where class ArrayList is actually used. The bottom box of
Fig. 1 is the code snippet from Apache Commons Collections, where
the class field all is instantiated as an ArrayList instance at line 1.
The class property (permitting null elements) is hence propagated
from class ArrayList to its instance (step (2)) applying the Instantia-
tion Propagation rule (detailed in Section 6.1). When variable all is
accessed later in the program (line 4), the same property should also
hold. Since variable all has the property of allowing null elements,
each of its elements item is permitted to be null (step 3)). As the
size() method of element item is invoked to measure the size, with
item being null, it will cause null pointer access and hence trigger a
NullPointerException. This is a new bug detected by our technique
(step @). In total, we detect 29 such bugs which cannot be detected
by existing techniques since they only use information contained
in existing comments which rarely comment on local variables
especially control variables only used during iteration. All the 29
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bugs have been confirmed and fixed by developers. In addition, we
detect another 8 bugs based on our propagated comments.

Comment Defect Detection. Comments are critical for code un-
derstanding. They also serve as instructions/manuals for (third
party) developers to utilize classes and methods. Defective com-
ments can mislead developers and even incur critical bugs. Fig. 2
demonstrates a real-world case where comments are missing for
native methods. Method newArray() is implemented using native
code (line 08), and it has two arguments componentType and length.
Although comments are highly desirable here due to the black-box

nature of native implementation, there is no comment for the native
method, which can potentially lead to bugs (e.g., pass —1 to param-

eter length). Such native methods are implemented in other lan-
guages (e.g., C++ and assembly) where the source code, in general,
is unavailable. Comments of these methods cannot be generated
using existing techniques since they either summarize source code
to infer comments, or analyze existing software repositories and use
the comments from similar code. We showcase how our technique
can address this problem using the example in Fig. 2. Firstly, there
is only one statement in method newlnstance() (line 05). Hence,
we can apply rule PROPERTY-METHOD2ST (detailed in Section 6.1)
to propagate the what-comment (lines 01-02, meaning the func-
tionality) associated with method newlInstance() to the statement
at line 06 (step (D). Secondly, the statement at line 06 only invokes
the native method newArray(), which satisfies the preconditions
of rule PROPERTY-ST2CALLEE (detailed in Section 6.2). Thus, the
comment can be further propagated from the statement at line 06
to its callee method newArray() (step 2)). Through the propagation,
a new comment can be generated for the native method, specifying
the functionality of newArray() is to “Create a new array with the
specified component type and length.”. Using our technique, we
are able to infer comments for 87 native methods that have neither
source code nor comments in JDK. Note that these native meth-
ods may be invoked by many other Java methods such that their
generated comments can be used to help these invocations.
Wrong Propagation Without Classification. A comment tax-
onomy is vital for comment propagation as different kinds of com-
ments convey different semantic perspectives. As such, some of
them cannot be directly propagated. For instance, even if two code
snippets are exactly the same, propagating comment from one to
the other may be problematic. Consider the two code snippets
in Fig. 3(a) and Fig. 3(c). The method in Fig. 3(c) has a property-
comment “This method will block until the byte can be written.”.
Although the two code snippets are syntactically identical, we can-
not propagate the property comment from the method in (c) to the
method in (a). This is because the method invoked at line 4 of (a)
and that invoked at line 8 of (c) have different implementations
which have different characteristics. Specifically, line 4 in (a) calls
the write method in Fig. 3(b) that is non-blocking. In contrast, line
8 in (c) calls the write in Fig. 3(d) that is blocking, indicated by the
“synchronized ” keyword in Fig. 3(e). Therefore, it is incorrect to
propagate the aforementioned property comment. However, exist-
ing techniques [84, 85] use the comment in (c) as comment for the
method in (a), as they work by identifying code clones and sharing
comments across all clones. In contrast, our technique does not
allow propagating property comments in such cases.
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01 public void write(int b) throws IOException { 01 public void write(byte[] b, int off, int len) throws IOException {
02 byte[] buf = new byte[1]; Call 02
/83/—>buf[6] = (byte)(b & OxFf); 03 while (nBits2d-- > @) { ...
4 write(buf, @, 1); 04 out.write(base64[(bits >>> 18) & @x3f]); } ... }
(a) java.util.Base64. write(int b) \Cannol Be (b) java.util.Base64. write(byte[] b, int off, int len)
~TOPag! 01 public void write(byte[] b, int off, int len) throws IOException {
Code | |01 /** Writes a byte to the compressed output \ Call 02 .
Clone | |92 : stream. This mgthod will block until the 03 while (!def.needsInput()) { deflate(); } }
e R o (@) java.util.zip.DeflatacrOutputStream. write(byte[] b, int off, int len)
05 public void write(int b) throws IOException { 01 public int deflate(byte[] b, int off, int len, int flush) { ...
\&) byte[] buf = new byte[1]; 02 synchronized (zsRef) {
o7 buf[@] = (byte)(b & @xff); 03 int n = deflateBytes(zsRef.address(), b, off, len, flush);
08 write(buf, @, 1); } 04 )
(c) java.util.zip.DeflataerOutputStream. write(int b) (e) java.util.zip.Deflataer. deflate(byte[] b, int off, int len, int flush)
Figure 3: Wrong Propagation Without Classification
Table 1: Examples of Software Comments Taxonomy
Entity Perspective Comment Example Project/Class/Method or Field
‘What This class is a member of the Java Collections Framework. JDK/ArrayList
Why This enables efficient processing when most tasks spawn other subtasks. JDK/ForkJoinPool
Class How-it-is-done  Resizable-array implementation of the List interface. JDK/ArrayList
Property Implements all optional list operations, and permits all elements, including null. JDK/LinkedList
But using this class, one must implement only the computeNext method, and invoke the
How-to-use . Guava/Abstractlterator
endOfData method when appropriate.
‘What Pushes an item onto the top of this stack. JDK/Stack/push(E item)
Why It eliminates the need for explicit range operations. JDK/ArrayList/subList(int from, int to)
METHOD How-it-is-done  Shifts any subsequent elements to the left. JDK/LinkedList/remove(int index)
Property This method is not a constant-time operation. JDK/ConcurrentLinkedDeque/size()
How-to-use This method can be called only once per call to next(). JDK/Iterator/remove()
‘What Make a new array of a’s runtime type, but my contents. JDK/ArrayList/toArray(T[] a)
Why To get better and consistent diagnostics, we call typeCheck explicitly on each element. JDK/Collections/checkedCopyOf{Collectioncoll)
STATEMENT  How-it-is-done  Place indices in the center of array (that is not yet allocated).zou JDK/WorkQueue/WorkQueue(ForkJoinPool, ForkJoinWorkerThread)
Property This shouldn’t happen, since we are Cloneable. JDK/ArrayList/clone()
How-to-use Use as random seed. JDK/WorkQueue/registerWorker(ForkJoinWorkerThread wt)
What The number of characters to skip. Guava/CharStreams/SkipFully(long n)
Why Helps prevent entries that end up in the same segment from also ending up in the same bucket. = Guava/LocalCache/int segmentShift
VARIABLE How-it-is-done  Modified on advance/split. Guava/CharBufferSpliterator/int index
Property The index must be a value greater than or equal to 0. JDK/Vector/setElementAt(E obj, int index)
How-to-use The collection to be iterated. JDK/Collections/Collection iterate

3 THE TAXONOMY OF COMMENTS

As aforementioned, taxonomy is critical for comment propagation.
However, existing taxonomies cannot be leveraged to facilitate com-
ment propagation due to two main reasons. The first one is that
comments are not associated with the corresponding code entities, mak-
ing it impossible to leverage program analysis to propagate comments.
For example, we need to make sure a comment is commenting on a
variable before we can propagate it through a definition-use rela-
tion of the variable. The second reason is that the taxonomies are
not designed to be coupled with program analysis and comments in a
category (by existing work) tend to describe multiple perspectives of a
code entity such that it is unclear how to propagate such comments.
Hence we propose to construct a comment taxonomy by classifying
comment texts based on two dimensions: code entity and content
perspective, where code entity means elements like classes and
methods and content perspective means functionalities, rationales,
implementation details, etc. Such a taxonomy is vital since different
comments describe different code entities from different perspec-
tives (e.g., what, why, and how) which entail different propagation
rules. To develop a comprehensive and rigorous taxonomy, we per-
formed a content analysis which is a methodology for studying the
contents of documents and communication artifacts [55] (Section 4).
Our final taxonomy is illustrated in Table 1. The first column lists
the code entities, namely, class, method, statement, and variable
which are the subjects that are commonly commented by develop-
ers. For each code entity, we are interested in the following five

perspectives: what, why, how-it-is-done, property and how-to-use.
‘What. The what perspective provides a definition or a summary of

functionality of the subject and/or its interface. Critical semantics

can be extracted from what information, such as security sensitiv-
ity, which is important for vulnerability identification. By reading
such type of comments, developers can easily understand the main
functionality of the corresponding code entity, without diving into
(implementation) details. For example, the comment “Pushes an
item onto the top of this stack” in the seventh row of Table 1
describes the main functionality of method push(E item).

Why. The why perspective explains the reason why the subject
is provided or the design rationale of the subject. There are two
scenarios in which why perspective is important. First, it helps
developers understand methods whose objective is masked by com-
plex implementation. For example, the comment “Helps prevent
entries that end up in the same segment from also ending up in the
same bucket” of the method segmentShift() conveys why we need
this method, while from the implementation we can only tell it
moves some objects. Second, there exist multiple methods that look
similar but serve different purposes. In this case, developers often
provide why comments to point out why these similar methods are
needed and explain why they are not plain redundancy.

How-it-is-done. The how-it-is-done perspective describes the im-
plementation details like the design or the work-flow of the subject.
Such information is critical for developers to understand the subject,
especially when the complexity is high. Detecting inconsistencies
between how-it-is-done comments and implementation is a way
to find bugs. Moreover, many program analyses avoid analyzing
complex library implementation due to the entailed space and time
overhead. Instead, program analysis developers often rely on how-
it-is-done comments to synthesize (much simpler) code snippet to
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model library functionalities. For example, the comment “Shifts
the element currently at that position (if any) and any subsequent
elements to the right (adds one to their indices)." of method add(int,
E) implies that we can implement the functionality by manipulating
an array within a loop statement (e.g., “for (int i=size-1; i>index;
i=i-1) elements[i]=elements[i-1]"). While the original library code
is usually highly optimized (and hence complex and difficult to
analyse), the model code is simple and much easier to analyze.
Property. The property perspective asserts properties of the subject,
e.g., pre-conditions/post-conditions of a function and even some
statements. Pre-conditions specify the conditions that should hold
in order to use the subject while post-conditions indicate the result
of using the subject. Such comments are of importance as they
can be used in many software engineering tasks, such as program
verification, defect detection and program testing. For example,
the comment “The index must be a value greater than or equal
to 0.” of the variable index (a parameter of setElementAt(E, int))
specifies a pre-condition index > 0 that must be satisfied for method
setElementAt(E, int) to work properly.

How-to-use. The how-to-use perspective describes the expected
set-up of using the subject, such as platforms and compatible ver-
sions. For example, the comment “But using this class, one must
implement only the computeNext method, and invoke the endOf-
Data method when appropriate.” of the abstract class Abstractlter-
ator clearly points out the required implementation in its concrete
classes. These comments are important for code-comment incon-
sistency detection [77].

4 TAXONOMY CONSTRUCTION

In this section, we discuss how we perform a large scale study of
program comments to derive the aforementioned taxonomy.

4.1 Comment Sampling

We collected a sample set of natural language comments from four
frequently-used libraries, namely JDK 8 [8], Guava [7], Apache
Commons Collections [1], and Joda [9]. All the four projects are
open sourced. The size of the projects varies from 450 to 2500
classes and from 43 to 310 KLOC, and 30% of the lines of code
are comments, which clearly indicates that documentation is not
anecdotal in those projects.

Due to the lack of standard of composing documentation, devel-
opers have substantial flexibility. They tend to have arbitrary ways
of composing comments and comment on different aspects of code
elements [58] like methods and parameters. To ensure our study
has good coverage, we performed stratified random sampling [55]
to collect comments for distinct code entities: classes, methods,
statements and variables. For each source file, we randomly sam-
pled comments from each kind of code element in proportion to
the number of such elements in the file. This ensured that com-
ments of different kinds of code entities were covered. Developers
usually write both single-line and multi-line comments (comment
blocks), and the sentences in a multi-line comment tend to provide
different types of information like what the function does or how
the function is implemented. As such, we choose to use sentence as
the comment unit to construct the sample set. In total, we collected
5000 comment units.
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4.2 Coding Procedure

In this section, we illustrate the coding procedure [51] that we fol-
lowed to construct the comment taxonomy. Coding procedure is a
standard analytical process that can be utilized to define and classify
a subject data set. To minimize subjectivity, we followed the default
setting of the procedure [57] and made use of four coders (partici-
pants in a coding procedure). All the coders had at least four years
of programming experience and were acquainted with program
comments. With the intention of specifying a starting coding frame-
work, one coder carried out a pilot study on 200 comments of the
sampling set by identifying different content perspectives with the
corresponding characteristics. This study brought forth the initial
comment taxonomy which covered the majority of the final tax-
onomy. Some categories shown in Table 1 did not occur in the 200
comments and we refined the taxonomy in the later phrase. Based
on the initial taxonomy, this coder held a 60-minute session to train
the remaining coders either on-site or through video conferences.
During the session we discussed the meaning and the examples of
each category and clarified misunderstandings that arose.

The 5000 comment units were randomly and evenly assigned to
all the coders, which ensured that each coder categorized comments
of all the four projects. For each comment unit, the coders identify
its subject (the type of code entity) and analyze its content (e.g.,
to identify information like the functionality). Each comment unit
may target at different code entities and fall into multiple content
categories. For example, the comment “Returns the head of this
deque, or null if this deque is empty” of method pollFirst() not
only describes the functionality (what) of this method, but also
implies the implementation (how-it-is-done) of this method. In such
cases, the coders would mark the comment with two labels. As
mentioned earlier, it is possible that the coders would identify
some categories that were not in the initial taxonomy. Thus the
to-be-completed taxonomy was shared among coders via an online
spreadsheet, which allowed each coder to add new categories to the
taxonomy. Once a new category was identified and included in the
taxonomy, all the other coders would be notified and they would
discuss and verify. If all the coders agree on the new category, then
the taxonomy would be updated to include the new one.

As we manually processed comments, it is inevitable to intro-
duce subjectivity. To minimize such subjectivity, we utilized cross-
verification by assigning each comment unit to two different coders.
When disagreement occurs, all the coders would involve to have
an open discussion to resolve it. Since to what extend two coders
agreed on the categories of each comment unit is a direct mea-
surement of both the reliability of the comment taxonomy and
the quality of the labeled comments, we calculated the Kappa met-
ric [20] to measure the agreement between two coders. The result
percentage is 82.6%, representing substantial agreement [16].

5 COMMENT CLASSIFICATION

In this section, we introduce how we train a classifier, according to
the taxonomy proposed in Section 3, to automatically categorize
comments. We collect 5000 comments from 4 projects as mentioned
in Section 4. Since our classifier works at the sentence level, the
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Table 2: Features for Comments Classification

Feature Type Description
tokenNum numeric number of tokens in a cleaned comment
classNum numeric  number of classes mentioned in a cleaned comment

tree string a depth first traversal of Stanford parse tree
NPNum numeric number of noun phrases in parse tree
VPNum numeric number of verb phrases in parse tree
PPNum numeric number of prepositional phrases in parse tree
caseNum numeric number of case marking relations
preconjNum  numeric number of preconjunction relations
1 ROPT
2 SINV
B
3 VP NP
— —_— —
4  VBZ NP PP
~ S~ — —
5 DT NN IN NP
— ~
6 DT NN

(a) Stanford Parse Tree

1: ROOT; 2: SINV; 3: VP NP; 4: VBZ NP PP; 5: DT NN IN NP; 6: DT NN
(b) The BFS Sequence of Stanford Parse Tree

Figure 4: Parse Tree and BFS

collected comments are split into sentences. Each comment is man-
ually annotated with the subject being commented and with the
perspective (see Table 1).

5.1 Word Embedding and Comment Cleaning

The first step towards comment classification is to train a word
embedding [49, 50] based on the collected comments. Text words
are represented as fixed-length vectors in word embedding and
thus words close to each other in the vector space share more simi-
larities. Existing word embeddings are trained from news articles
and hardly represent the domain specific features in software. For
example, the word new may be a verb (e.g., “new an object”) in
software comments, but not in general English. Hence we propose
to train a word embedding based on our collected comments using
word2vec [12]. The trained word embedding will be used to train
comment classifiers introduced in Section 5.3.

Before training the embedding, we clean the collected comments
to remove unnecessary information and normalize texts to acquire a
more accurate and higher-quality word embedding. Mainly we per-
form the following four tasks: 1) Substituting class/method/variable
names with three corresponding placeholders to make the embed-
ding more general; 2) Removing stop words (common words ap-
pearing frequently [70]) which include will, the, a, an, it, its and
also in our case; 3) Reducing derived words to their word stem,
namely root form, by applying the porter stemming algorithm [63].
For example, the word “inserts” is transformed into “insert”; and 4)
Lowercasing all the words.

5.2 Feature Extraction

To train models to classify comments, we extract eight features
shown in Table 2. The first column lists the features, and the second
column gives the type of each feature, namely numeric and string.
The last column describes each feature. Note that all the features are
automatically extracted, meaning that no human effort is required
to use our trained classifiers to categorize comments.

Feature tokenNum is the number of tokens contained in a cleaned
comment, and classNum is the number of classes mentioned in a
comment. A comment which mentions more classes tends to have
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a higher probability to be an explanation of implementation details,
indicating itself to be a how-it-is-done-comment. The remaining six
features are extracted from parse trees and Stanford dependencies
generated by Stanford Parser [40, 65]. The Stanford parser parses a
sentence and determines Part-Of-Speech (POS) tags [41] associated
with different words and phrases. Parse trees represent grammat-
ical structure of sentences and Stanford dependencies represent
grammatical relations between words in a sentence. For example,
Fig. 4(a) shows the Stanford parse tree of the comment “Gets the
value for the Entry” where NP, VP, PP, etc., are POS tags. Feature
tree is a string representation of a parse tree which is composed of
nodes that are traversed using breadth first search (BFS). For exam-
ple, Fig. 4(b) is the BFS of the tree in Fig. 4(a). The features NPNum,
VPNum and PPNum count the number of noun phrase (NP) nodes,
verb phrase (VP) nodes and prepositional phrase (PP) nodes, re-
spectively. Stanford parser also provides dependency types for each
pair of adjacent words [22]. We extract the relations caseNum and
preconjNum which are the number of type case and type preconj con-
tained in a sentence. The case relation is used for any case-marking
element which is treated as a separate syntactic word (including
prepositions, postpositions, and clitic case markers) [2]. Preconjunc-
tion is the relation between the head of an NP and a word that
appears at the beginning bracketing a conjunction and puts empha-
sis on it [10], such as “either”, “both”, “neither”. The six features
are utilized since based on our experiments, we observe that these
six features have positive importance on the classification while
the other elements contained in parse trees and dependencies have
little positive importance or even have negative importance.

5.3 Algorithms and Evaluation

To train classifiers to categorize comments into different code en-
tities and different perspectives, we leverage the following three
algorithms: decision tree [64], random forest [18] and convolutional
neural network (CNN) [38]. The three algorithms are frequently
used to train classification models and they are proven to have
high accuracy in classification [39, 74]. The decision tree algorithm
and the random forest utilize the extracted features to train models
while the CNN algorithm does not use any feature. As mentioned
earlier, a comment may fall into different categories and thus we
train multi-label classification models [83] for both perspectives and
code entities. The multi-label classification problem is transformed
into a set of binary classifications and each binary classification
checks whether a comment can be classified into one category.
To evaluate the classifiers, we apply the standard 5-fold cross
validation [42], namely we randomly select 20% comments collected
in Section 4 as the testing set and the remaining comments as the
training set. The performance of perspective/code entity classifica-
tion is summarized in Table 3. The columns DTC, RFC and CNN
respectively show the performance of decision tree, random forest
and CNN. The four metrics we use are Precision, Recall, F1 Score
and Hamming Loss which are calculated using sklearn metrics [11].
Specifically, precision measures the ability of the classifier correctly
labels a comment, and it is calculated as TP/(TP + FP) where TP
is the total number of correctly classified comments and FP is the
total number of comments that are classified into wrong categories.
The metric recall measures the ability of the models to correctly
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Table 3: Comment Classification Result

Perspective Code Entity
DTC RFC CNN DTC RFC CNN
Precision 87.84% 87.78% 95.15% 97.39% 98.09% 89.33%
Recall 95.22% 91.39% 93.78% 99.27% 99.27% 75.28%
F1 Score 93.43% 93.17%s 94.46% 98.55% 98.90%s 81.71%
Hamming Loss 0.014583 0.014583 0.011979 0.010417 0.0007813 0.0674157

classify all the comments that belong to one category and it is calcu-
lated as TP/(TP + FN) where FN is the number of comments that
are not classified as one category while in fact they belong to that
category. The FI score is a weighted average of precision and recall
and the hamming loss is the fraction of labels that are incorrectly
predicted. For the first three metrics, the higher the better while
for the hamming loss, the lower the better.

From this table, we can see that the three algorithms achieve high
precision, recall and F1 score and low hamming loss in classifying
comments into correct perspectives, which indicates the effective-
ness of our classifiers. For the code entity classification, the decision
tree and the random forest algorithms have high precision, recall
and F1 score and low hamming loss. In contrast, CNN has relative
lower precision, recall and F1 score and relative higher hamming
loss compared with the other two algorithms. The classification
of code entity is more sensitive to input features. CNNs performs
their own feature abstraction, which may miss important features.

6 PROPAGATION

In this section, we will introduce the rules that are used to prop-
agate comments based on their corresponding code entities and
perspectives. These propagation rules achieve the goal of lever-
aging program analysis techniques to update existing comments,
infer new comments and associate comments with code. We have
different rules for different code entities and perspectives. Each rule
is headed by its name, followed by a fraction with the nominator
the conditions and the denominator the derived comment.

6.1 Property-comment Propagation

The property-comment propagation rules are summarized in Fig. 5(a),
which involve rules for propagating comments of different levels of
granularity, namely class-, method-, statement-, and variable-level.
Class-level Propagation. Rule PROPERTY-INSTAN defines the prop-
agation between a class and its instantiation. That is, if a comment
¢ is associated with a class o and a variable v instantiates class o,
then the property-comment is propagated from class o to variable
v. The expression c[v/o0] means the occurrence of o in ¢ is replaced
with v. For example, the property-comment “permits all element,
including null” of the class ArrayList is propagated to the instance
all declared at line 1 in Fig. 1. Rule PROPERTY-INHER specifies that
if (1) a comment c is associated with superclass g, and (2) there is
an inheritance relation between subclass p and superclass g, then
property-comment c is propagated from superclass g to subclass p
with the class name g (superclass) occurring in ¢ substituted with
the class name of p (subclass). Rule PROPERTY-IMPL is analogous to
rule PROPERTY-INHER, where the property-comment c associated

with interface i is propagated to its implementation class o.
Method-level Propagation. Rule PROPERTY-CALLEE2ST is applied

to propagate a property-comment if a comment ¢ contains prop-
erties regarding a callee method m and m is invoked by a state-
ment s, then the property-comment ¢ is propagated from the callee
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method m to the statement s with the formal parameters fp in ¢
substituted with the actual parameters ap used in s. Rule PROPERTY-
METHOD2ST defines the scenario that a comment ¢ associated with
a method m is propagated to a statement s when the statement s is
the only statement in m. For example, in Fig.2, the statement return
newArray(componentType, length) at line 6 is the only statement of
the method newlnstance() and thus we can propagate the property-
comment “@exception NegativeArraySizeException if the specified
code length is negative.” at lines 3-4 to the statement at line 6.
Statement-level Propagation. Rule PROPERTY-ST2CALLEE spec-
ifies that if (1) a statement s invokes a callee method m, and (2)
s has no additional operations other than returning the result of
the callee m, then the property-comment c is propagated from the
statement s to the callee method m with the actual parameters
ap substituted with the formal parameters fp. Consider the afore-
mentioned statement (line 6 in Fig.2) which invokes the method
newArray() and does not have operations except returning the result
of newArray(). Since the two conditions are met, we can infer a new
property-comment for the native method newArray() by propagat-
ing “@exception NegativeArraySizeException if the specified code
length is negative.” from the statement to the callee newArray().
We can observe that comments of a caller method can be prop-
agated from a callee method via the invocation statement based
on Rule PROPERTY-METHOD2ST and Rule PROPERTY-ST2CALLEE.
Rule PROPERTY-ST2METHOD defines propagating comments from a
statement s to a method m which contains s, under the condition
that the set of actual variables ap contained in s is a subset of the
parameters of m. Suppose that the property-comment ¢ describes
a property of a variable that is not a parameter of m and thus it
would be inappropriate for ¢ to be a comment of m.
Variable-level Propagation. Variable-level rules include two cases:
definition-use and container-element. Rule PROPERTY-DEFUSE de-
fines the case that if a comment c is associated with a variable v
and v is used in code u, then the property-comment c is propagated
from definition v to use u. Rule PROPERTY-CONTAINER specifies that
if (1) a comment c is associated with container [ and [ has element
e, then a element-related property-comment is propagated from
container [ to each element e.

6.2 What-comment Propagation

The rules to propagate what-comment are shown in Fig. 5(b). Similar
to the rules of property-comment, they are also categorized based
on classes, methods, statements and variables.

Class-level Propagation. Rule WHAT-INHER is similar to PROPERTY-
INHER, where a what-comment c associated with a superclass g is
propagated to a subclass p. Rule WHAT-IMPL is also similar.
Method-level Propagation. Rule WHAT-CALLEE2ST specifies that
if (1) a comment c is associated with a method m, and (2) there is a
method invocation relation between a statement s and the callee
method m, then the what-comment is propagated from the callee m
to the statement s with the formal parameters fp in c substituted
with the actual parameters ap. Rule WHAT-METHOD2ST denotes
the propagation from a method m to a statement s inside. Two
preconditions are required to be satisfied for the propagation. The
first condition is that the statement s is the last statement of method
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Class-level Propagation Rules:

propComment(o, c) Instantiation(v, o)

P; -1
ROPERTY-INSTAN propComment(v, c[v/o])

propComment(q, c)
propComment(p, c[p/q])

propComment(i, c)

inheritance(p, q)

PROPERTY-INHER

implementation(o, i)
PROPERTY-IMPL

propComment(o, c[o/i])

Method-level Propagation Rules:
propComment(m, c)

propComment(s, clap/fp])

propComment(m, c)

invocation(s, m)

PROPERTY-CALLEE2ST

onlySt(s, m)

PROPERTY-METHOD2ST
propComment(s, c)

Statement-level Propagation Rules:
propComment(s, c)
PROPERTY-ST2CALLEE

invocation(s, m) && noOtherOp(s)

propComment(m, c[fp/ap])
propComment(s,c)  contain(m,s) && ap C fp
propComment(m, c[fp/ap])

PROPERTY-ST2METHOD

Variable-level Propagation Rules:

propComment(v, c) defUse(u, v)

propComment(u, c)

PROPERTY-DEFUSE

propComment(l, c) contain(e, )

PROPERTY-CONTAINER
propComment (e, c[e/l])

Class-level Propagation Rules:

whatComment(q, c) inheritance(p, q)

WaaT-Inmex whatComment(p, c[p/q])

whatComment(i, ¢) implementation(o, i)

WHaAT-IMPL
whatComment(o, c[o/i])

Method-level Propagation Rules:
whatComment(m, c)

whatComment(s, clap/fp])

invocation(s, m)
‘WHAT-CALLEE2ST

WHAT-METHOD2ST
whatComment(m, c) lastSt(m, s) &&(preSts == @ || preSts C exSts)

whatComment(s, c)

Statement-level Propagation Rules:
WHAT-ST2CALLEE

whatComment(s, ¢) invocation(s, m) && noOtherOp(s)

whatComment(m, c[fp/ap])

WHAT-STZMETHOD
whatComment(s, c) lastSt(m, s) && (preSts == @ || preSts C exSts)

whatComment(m, c)

Variable-level Propagation Rules:

whatComment(v, c) defUse(u, v)

whatComment(u, c)

WHAT-DEFUSE

(a) Property Propagation Rules

Method-level Propagation Rules:

howComment(m, c) clone(m’, m, 100%)

How-CroNE 7
howComment(m’, c)

howComment(m, c) clone(m’, m, 90%) && dif fType(m’, m)

howComment(m’, c[t’/t])

How-Di1rrTYPE

(c) How-it-is-done Propagation Rules

(b) What Propagation Rules

Note:

¢ comment u  code that uses a variable v

o class ap  actual parameters

p  subclass fp  formal parameters

q  superclass I container variable

i interface e element contained in the container I
m/m’  method t/t’  type

s statement  preSts  statements before the current statement

v variable exSts  exception-handling statements

Figure 5: Comment Propagation Rules

m. The second one can be either 1) there are no statements before
s, namely preSts == 0 or 2) all the previous statements are for
exception handling (preSts C exSts). If the two conditions are met,
the what-comment c can be propagated from the method m to the
statement s. Consider the example shown in Fig. 2. The statement
at line 6 is the last statement of the method newinstance() (lines 5-7),
meaning the first condition is satisfied. Also the method body does
not have statements before line 6, meaning the second condition
holds. Hence the what-comment “Creates a new array with the
specified component type and length.” can be propagated from the
method newlnstance() to the statement at line 6.

Statement-level Propagation. Rule WHAT-ST2CALLEE describes
propagation from a method invocation statement to the callee.
Specifically, a statement s invokes a method m and has no additional
operations other than returning the result of m. If a comment c is
associated with s, then c can be propagated to m with the actual
parameters ap substituted. For example, the statement at line 6 of
method newlnstance() in Fig. 2 invokes method newArray() and it
does not involve other operations, and thus we can propagate the
what-comment “Creates a new array with the specified component
type and length.” (propagated to the statement based on Rule WHAT-
METHOD2ST) to newArray() at line 8. Rule WHAT-ST2METHOD is
symmetric to rule WHAT-METHOD2ST and discussion is elided.
Variable-level Propagation. Variable-level propagation is defined
by rule WHAT-DEFUSE. That is, if variable v is associated with a
comment ¢ and there is a definition-use relation between v and u,
then c is propagated from definition v to use u.

6.3 How-it-is-done-comment Propagation

The propagation rules for How-it-is-done-comment are given in
Fig. 5(c) and they only involve method-level propagation. Com-
ments can be propagated in other levels, but in practice, most How-
it-is-done-comments are in method-level. The first rule How-CLONE
specifies the scenario that if (1) a how-it-is-done-comment c is asso-
ciated with a method m, and (2) the method body of m is the same
as the body of another method m’, then c¢ is propagated from m to
m’. The second rule How-DI1rrTYPE specifies that if method m’ is
a code clone of method m but with different types of variables or
formal parameters, then comment ¢ is propagated from m to m’
with the type information substituted.

7 EVALUATION

We implement a prototype CPC, leveraging the Eclipse JDT toolkit [6]
and the code clone tool Nicad [68], and empirically evaluate it to
address the following questions:
RQ1: How effective is CPC in propagating comments of different
perspectives and code entites?
RQ2: How useful is CPC in helping developers?
RQ3: How effective is CPC in improving comments?
RQ4: How effective is CPC in detecting code bugs?

The evaluation was conducted on a machine with Intel(R) Core(TM)
i7-8700K CPU (5.00GHz) and 32GB main memory. The operating
system is macOS High Sierra 10.13.6, and the JDK version is 8.
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Table 5: Comment Propagation Accuracy

Perspective Accuracy
dist=0 dist<0.5 dist>0.5
Property 100.00% 76.00% 85.00%
What 100.00% 71.00% 70.00%
How-it-is-done 100.00% 75.00% 70.00%

Table 4: Comment Propagation Summary

Similarity with Existing Comments

Project dist=0 dist<0.5 dist>0.5

#  #m #ec  #pc | #cmt % #emt % #cmt %
JDK 998 17727 21147 39274| 9133 75.11% | 2191 18.02% | 835 6.87%
Collections | 247 2687 3151 4222 | 1301 73.30% | 372 20.96% | 102 5.75%
Property Guava 518 6140 1940 8425 | 2718 88.28% | 259 8.41% | 102 3.31%
Joda-Time [219 5011 2344 4393 | 1313 80.50% | 111 6.81% | 207 12.69%
ApacheDB | 193 3508 1898 2552 | 779 82.43%| 57 6.03% | 109 11.53%
JDK 628 10841 12927 5029 | 1368 39.66% | 1550 44.94% | 531 15.40%
Collections | 70 989 1472 330 105 44.30% | 83 35.02% | 49 20.68%
What Guava 205 2847 1347 1294 | 419 49.47%| 333 39.31%| 95 11.22%
Joda-Time | 83 1725 1949 885 237 29.40% | 325 40.32% | 244 30.27%
ApacheDB | 78 1426 1316 682 169 29.14% | 366 63.10% | 45 7.76%
JDK 261 974 1392 16285|15516 96.72% | 394 2.46% | 133 0.83%
Collections | 41 98 100 113 53  67.09% | 22 27.85%| 4 5.06%
Guava 20 33 31 127 108 85.71% | 16 12.70% | 2 1.59%
Joda-Time | 15 22 29 130 32 35.20%| 37 29.13%| 58 45.67%
ApacheDB [ 180 285 254 519 421 84.04% | 58 7.39% | 22 4.39%

Perspe-
ctive

How-it-
is-done

7.1 Effectiveness in Comments Propagation

To answer RQ1, we propagate property-comments, what-comments
and how-it-is-done-comments in five projects. The results are sum-
marized in Table 4, which presents the comment perspective (col-
umn 1), the projects (column 2), the number of classes/methods
whose comments are propagated (columns #c and #m), the number
of existing comments/propagated comments (columns #ec and #pc),
the similarity between an existing comment and an propagated
comment (columns 7-12). Note that the comparison is conducted
only when there is an existing comment. The similarity is measured
using the Word Mover’s Distance (WMD) algorithm [44]. A zero
distance means the existing comment and the propagated com-
ment are literally the same. If the distance is between 0 and 0.5, it
means two comments are literally similar and if the distance is more
than 0.5, it means two comments are literally different. The longest
distance is 10. For each distance range, the columns #cmt and %
present the number of propagated comments and the ratio between
#cmt and the total number of propagated comment (column #pc).

From Table 4, we make a few observations. Firstly, the number
of propagated comments is larger than that of existing comments
since one comment may be propagated to different places. Secondly,
the number of propagated property-comments is much larger than
that of what-comments and how-it-is-done-comments. This is due
to the fact that developers tend to comment on exception-related
behaviors and one method may contain several different excep-
tion behaviors, and these exception-related comments belong to
property comments. Thirdly, the number of propagated how-it-is-
done-comments is relatively smaller due to two factors. The first one
is that the number of code clones is small and the second one is that
fewer comments are about implementation details (how-it-is-done).
Fourthly, the percentage of propagated property-comments that are
literally the same with existing comments (0 distance) is higher
than the other two perspectives (on average 80% vs 56%). This is
mainly because property-comments have limited contents with rel-
atively fixed sentence patterns while the other comments describe
various aspects and tend to be depicted using different sentences
to express the same semantic. Fifthly, more than 88% propagated
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comments are literally similar with existing comments (distance
less than 0.5), which indicates our propagation technique is feasible
and efficient in manipulating comments as first-class objects. Lastly,
the percentage of comments with distance larger than 0.5 in the

project Joda-Time is much higher than the others. By checking
the comments, we found that there are ten code snippets which

share the same code and one of them has a comment that is literally
different from the comments of the remaining ones, and there are
some other similar cases. Such cases contribute a lot to the high
percentage given the small number of propagated comments.

To further answer RQ1, we manually measure the accuracy of
propagated comments for different distance ranges, summarized in
Table 5. The first column gives the perspective of comments and
the remaining columns show the accuracies of different distance
ranges. Due to the large number of propagated comments, we can-
not manually check all of them. Instead, for each distance range, we
randomly sampled 500 comments of each perspective and manually
checked whether the propagated comments are correct or not. If
a propagated comment is inconsistent with the source code, it is
considered as false positive.

Table 5 shows that we achieve 100% accuracy when the distance
is 0 and an average of 75% accuracy when the distance is larger than
0. This demonstrates that our propagation technique is effective in
inferring comments. Note that even though the distance is larger
than 0 or even larger than 0.5, it does not mean the propagated
comments are incorrect since the same semantics can be expressed
using different sentences. For example, the comment “Returns the
node; or null if not found” is propagated to method remove() of class
ConcurrentSkipListMap and this method has an existing comment
“Returns the previous value associated with the specified key; or
null if there was no mapping for the key.”. The two comments are
literally quite different, but they have the same semantics.

7.2 Usefulness in Helping Developers

To answer RQ2, we conducted a user study involving 14 users (6
graduate students and 8 developers from industry) to participate.
We randomly selected 80 code entities that have both existing com-
ments and propagated comments (with a total of 160 comments).
The generated comments are propagated from other places and
must be syntactically different from the existing ones. They are
mainly from Commons Collections, JDK, and Guava, and have even
coverage for the three comment types. To diversify our selection,
these code entities are selected from different source files. To avoid
bias, we mix the propagated comments and the existing comments,
and thus the users are unaware of whether a comment is propa-
gated or existing. For each comment, we provide the corresponding
code, and ask users to evaluate the comments from the following
three perspectives: Meaningfulness (is a comment of high quality
in helping developers understand code), Consistency (is a com-
ment consistent with code), and Naturalness (does a comment
effectively convey information as a natural language sentence).
The users are asked to evaluate each comment based on the
widely-adopted five-point Likert scale [45], and the scores 1,2,3,4,5
separately represent strongly disagree, disagree, neither agree nor
disagree, agree and strongly agree. Note that the numerical results
of these questions are not important as they are dependent on the
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Table 6: Comment Propagation Improvement

erspective Property What How-it-is-done
Project #N #1 #W #N #1 #W #N #1 #W
JDK 26862 11 243 1580 1 0 242 n.a. 0
Collections 2404 11 42 93 0 0 34 na. 0
Guava 5344 0 2 447 0 0 1 na. 0
Joda-Time 2757 0 5 79 0 0 3 na. 0
ApacheDB 1607 0 0 102 0 0 18 n.a. 0
Table 7: Code Bug Detection
Project Version #Bugs Buggy Method Confirmed
CompositeCollection.iterator() Yes
Collections 4.2 29  CompositeMap.removeComposited(final Map<K, V>) Yes
Guava 250 6 Throwables.getRootCause(Throwable) No
Utilities.printClasspath() Yes
ApacheDB 32 ConsoleFileOutput.getDirectory() No
C%})SiStEHCY —Propagated
3.95 —Existing
3.90
385
3.8¢
Naturalness“ Meaningfulness

Figure 6: User Study Comparison Result

quality of the original comments (recall our propagated comments
also originate from existing comments). Instead, the comparative
results of the two kinds of comments are important. Fig. 6 shows
the comparison results between propagated comments (blue) and
existing comments (red): 3.88 vs 3.86 for consistency, 3.85 vs 3.84
for meaningfulness, and 3.98 vs 4.00 for naturalness. Overall, the
results indicate propagated comments align well with existing ones
in terms of quality. Further inspection shows that the slightly worse
results regarding naturalness are due to our sampling bias: the
propagated comments are 16.7% shorter than the existing comments
and the users seem to consider longer comments are more natural.

7.3 Effectiveness in Improving Comments

To answer RQ3, we evaluate the effectiveness of our comment prop-
agation in three aspects: 1) inferring new comments for code entities
that do not have existing comments; 2) identifying incomplete com-
ments which may be misleading for users or developers; and 3)
detecting wrong comments that might lead to bugs. The result is
shown in Table 6, and the columns #N, #l and #W present the num-
ber of new comments, incomplete comments and wrong comments,
respectively. Here a new comment means the code entity where
the comment is propagated to does not have any comment before.
Note that we do not give the number of incomplete how-it-is-done-
comments since it is unnecessary and impractical to comment all
the implementation details.

Based on the number of new comments shown in Table 6 and the
accuracy in Table 5, we can see that our technique can effectively
generate new comments, which can be further used to facilitate
understanding and maintain documentation. By manually check-
ing some of the newly-generated comments, we find that many
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comments describe exceptional behaviors including the type of
exception and the corresponding exception-trigger condition. Such
comments are usually considered very important since a majority
of bugs are caused by triggering exceptions. For example, we can
generate the new comment “Throws IllegalArgumentException if
the size is less than 1” for constructor CircularFifoQueue(Collection),
which conveys that the parameter collection should have a size
larger than 0. Without such a comment, bugs are easily introduced
since very few methods have such requirements and developers are
insensitive to them. Moreover, among the new comments, precise
functional comments are inferred for 87 native methods that have
neither comments nor source code. These comments can serve as
manuals for developers to leverage these native methods.

We also identify 11 incomplete comments which can be seen as
inconsistencies between comments and code. Our propagated com-
ments can be used to complement existing comments to address

such inconsistencies and reduce the risk of introducing bugs when
the code is used. For example, “Returns true if this list changed as

a result of the call.” is the existing comment of method addAll() in
class RoleList, and “Returns true if the RoleList specified is null.” is
one propagated comment of the method. By analyzing the code, we
can see the propagated comment is correct, meaning the existing
one is incomplete. In addition, we detect many wrong comments
that would be misleading and even lead to bugs. For example, in
the project Apache Commons Collection, we generate the propa-
gated comment “throws IndexOutOfBoundsException if index <0
or index >= size()” which is inconsistent with the existing comment
“throws IndexOutOfBoundsException if index <0 or index > size()”
of method setlterator in class Collatinglterator. We confirmed our
propagated comment is correct, and developers also confirmed this
and corrected the existing wrong comment [3].

7.4 Effectiveness in Bug Detection

To answer RQ4, we write a script to extract code whose propa-
gated comments describe behaviors related to NullPointerException
and IndexOutOfBoundsException based on buggy patterns. For Null-
PointerException, the buggy pattern is the code that does not check
whether the return value of a method (whose comments state a null
value may be returned) is null before dereferencing it. For Index-
OutOfBoundsException, the buggy pattern is the code that does not
check if the returned value of a method (whose comments state -1
may be returned) is -1 before using it to access an array.

Table 7 reports the bug detection results including, from left
to right, the project, the project version, the number of detected
bugs, the buggy method and whether the reported bug is confirmed.
Due to the space limitations, not all the bugs are presented in the
table. In total, our script reports 57 bugs. By manually checking
them, we believe 37 of them are true bugs. We have reported the
37 bugs to the developers, among which, 30 bugs have already
been confirmed and fixed by developers [4, 5], while the remaining
ones await confirmation. For the false positives, the main reason is
that our analysis script is not context-sensitive and hence cannot
identify cases in which users will never pass parameters that trigger
the function to return null or -1. It is a limitation of our scanner,
not comment derivation.
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8 THREATS TO VALIDITY

The threat to construct validity is the bias that may be introduced
during the manual labeling of comments (Section 4). To mitigate
this threat, each comment was categorized by two developers inde-
pendently, and a third developer would manually resolve all cases
when two developers disagreed. We assessed the labeling relia-
bility by measuring the inter-coder agreement (Section 4). In the
future, we will further minimize the threat by inviting more devel-
opers to categorize comments. The threat to internal validity is the
potential overfitting problem of the machine learning algorithms.
To minimize this, we randomly selected 80% of the dataset as the
training data and applied a five-fold cross validation. The threat
to external validity is that it is plausible the classifiers produced
on our training data would have low accuracy when categorizing
comments from other projects. To alleviate this threat, we prepared
labeled comments from four different software projects that cover
different types of functionalities (e.g., Java collection framework
and calendar system). While we believe that the comments from
these software systems well represent comments in other software
projects, we do not intend to draw any general conclusions. In the
future, we will train the classifiers with more labeled comments
of other kinds of systems to improve the generalizability. The user
study was conducted with 14 users and 80 code entities. While we
tasked each user with a lot of code and comment, we will extend
the study to a larger user group.

9 RELATED WORK

Comment Classification. Researchers in [58] proposed a taxon-
omy based on meanings of comments and manually classified 1050
comments. They found 52.6% of these comments can be leveraged
to improve software reliability and increase programmer produc-
tivity. In [52], researchers empirically studied API directives which
are constraints about usages of APIs, and built a corresponding
taxonomy. The authors of [46] leveraged grounded methods and an-
alytical approaches to build a taxonomy of knowledge types in API
reference documentation and manually classified 5574 randomly-
sampled documentation units to assess the knowledge they contain.
Based on this taxonomy, the researchers in [43] trained a classifier
for each knowledge type and assigned only one label to each docu-
ment unit based on nine features and their semantic and statistical
combinations. In comparison, each classifier in our work classi-
fies comments into different perspectives and code entities. The
work [29] built a taxonomy of comments to investigate developers’
commenting habits while the work [74] studied comment cate-
gorization to provide better quantitative insights about comment
quality assessment. Researchers in [60, 61] produced a taxonomy
of comments and investigated how often each category occurs by
manually classifying more than 2,000 code comments. Unlike them,
we develop the taxonomy to treat a comment as an attribute of a
code entity and thus we can leverage program analysis techniques
to infer, propagate, update and reason about comments. It is unclear
how to propagate comments based on existing taxonomies.

Comment Generation. There are efforts of generating comments
from source code/code changes, based on manually crafted tem-
plates [13, 19, 47, 48, 53, 54, 66, 71-73], information retrieval [27,
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28, 32, 84, 85], and machine translation [14, 31, 33, 35, 62]. The
techniques [84, 85] are most closely related and they generated
comments for a code snippet by using comments of its code clone.
However, they did not distinguish between comments of different
perspectives and thus may generate many wrong comments. Also
they did not utilize techniques like data flow analysis to propagate
comments, which is our novelty. Our technique differs from com-
ment generation in a few aspects. Comment generation produces
comments from code. However, different projects have different
coding and comment styles. A generation technique trained on a set
of projects or based on rules may not generate good comments on
other projects. Instead of generating comments from code, we prop-
agate existing comments to code entities that are not commented
by leveraging program analysis. Our technique is less sensitive to
such styles as it only classifies comments instead of generating
them. Comment propagation is deterministic and rigorous through
program analysis. Secondly, generating comments for complex code
that even humans can hardly understand is error-prone. For such
cases, our technique can leverage existing comments (from other
places). Thirdly, evaluating quality of generated comments, such
as their naturalness, is a hard challenge. Our technique is largely
immune to this. Finally, our technique can propagate comments to
methods without code while existing work requires code as input.
On the other hand, comment generation and comment propagation
are complementary. Through propagation, we can produce a much
larger training set for generation techniques. Generated comments
can be propagated through our technique.

Comment-Code Inconsistency Detection. Research has been
conducted on improving API documentation maintenance such as
reporting potential code-comment inconsistencies as code evolves [21,
67], detecting existing code-comment inconsistencies [77-79, 89,
91], and enriching documentation (e.g., with code samples) [26, 34,
37,75, 76, 82]. They do not aim to explicitly propagate comments
as first-class objects and thus our efforts are complementary.

10 CONCLUSION

We build a comprehensive comment taxonomy from different per-
spectives with various levels of granularity and propose using pro-
gram analysis to propagate comments. We develop a prototype CPC.
Our experiments show that CPC can generate 41573 new comments
with 88% accuracy. The derived comments are used to detect 37
new code bugs in 5 real-world projects with 30 confirmed and fixed
by developers. We also identify 304 defects in existing comments,
including 12 incomplete comments and 292 wrong comments. Our
user study confirms propagated comments align well with existing
comments regarding quality.
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