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Atom interferometers in optical cavities benefit from strong laser intensities and high-quality
wavefronts. The laser frequency pairs that are needed for driving Raman transitions (often generated
by phase modulating a monochromatic beam) form multiple standing waves in the cavity, resulting in
a periodic spatial variation of the properties of the atom-light interaction along the cavity axis. Here,
we model this spatial dependence and calculate two-photon Rabi frequencies and ac Stark shifts.
We compare the model to measurements performed with varying cavity and pulse parameters such
as cavity offset from the carrier frequency and the longitudinal position of the atom cloud. We show
how setting cavity parameters to optimal values can increase the Raman transition efficiency at all
positions in the cavity and nearly double the contrast in a Mach-Zehnder cavity atom interferometer
in comparison to the unoptimized case.

I. INTRODUCTION

Cavity atom interferometers [1] manipulate matter
waves using light coupled into an optical cavity. In re-
cent years, cavity atom interferometers have been used
for testing fundamental physics [2, 3] and studying forces
induced by blackbody radiation [4]. Using an optical res-
onator to mediate atom-light interactions [5–7] provides
clean uniform wavefronts that maintain the coherence of
spatially-separated atomic wave packets, enabling inter-
ferometry times as long as 20 seconds [8]. The frequen-
cies required to drive two-photon Raman transitions for
beamsplitter operations can be generated by phase mod-
ulating a single diode laser, cancelling laser noise. How-
ever, interference between the frequency components of
the phase-modulated light inside the cavity leads to spa-
tial variation in the Raman pulse efficiency, which can
result in large residual ac Stark phase shifts between the
beamsplitter pulses. While this variation can be sup-
pressed by judicious choice of the single-photon detun-
ing [9] or by filtering out frequency components [10, 11],
maximizing the performance of a cavity interferometer
requires a detailed model of these interference effects.
Here, we model the atom-light interaction inside the cav-
ity, and show how to use this model to improve the perfor-
mance of a cavity atom interferometer. First, we theoret-
ically describe the spatially dependent two-photon Rabi
frequency and the differential ac Stark phase shift as a
function of the parameters of the cavity. Then, we ex-
perimentally verify these predictions in our cavity atom
interferometer [1, 12]. We demonstrate how the transfer
function of an optical cavity can be utilized to change the
amplitude and phase of the intra-cavity electric fields,
providing control over the constructive and destructive
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interference criteria. Finally, we use the model to op-
timize the cavity parameters and improve contrast in a
Mach-Zehnder cavity atom interferometer, by increasing
the Raman pulse efficiency and ac Stark phase cancella-
tion of the beamsplitter operations.

II. RAMAN TRANSITIONS WITH PHASE
MODULATED LIGHT

In our cavity atom interferometer [1], beamsplitter and
mirror operations are applied using a two-photon Ra-
man transition between two hyperfine ground states of
cesium, |F = 3〉 and |F = 4〉 in the 62S1/2 manifold, with

frequency difference ∆Cs
hfs = 2π · 9 192 631 770 Hz (Fig.

1a). The excited state |e〉 is the 62P3/2 manifold, con-
nected to the ground state by the 852 nm D2 line. To
drive transitions between the hyperfine ground states of
cesium, a fiber EOM is driven with a modulation fre-
quency ωmod near the cesium hyperfine difference fre-
quency, ωmod ≈ ∆Cs

hfs (Fig. 1b), resulting in an output
field of

Eout(t) =ELe
iωLt+iβ sin(ωmodt)

=EL

∞∑
m=−∞

Jm(β)eiωmt, (1)

where ωm = ωL + mωmod, EL and ωL are respectively
the amplitude and frequency of the incident laser beam,
Jm are the Bessel functions of the first kind, and β is
the modulation index. We define ∆ as the single photon
red-detuning (which is 2π · 49 GHz in our case), so that

ωL = ω3e −∆, (2)

where ω3e is the resonance frequency of the |F = 3〉 to
|e〉 transition. On two-photon resonance,

ωmod = ∆Cs
hfs − δac − 2δDopp(t), (3)

where δac is a two-photon detuning induced by the dif-
ferential ac Stark shift of the two ground states, and
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Figure 1. (a) Cesium energy levels driven by the frequency
components of a phase-modulated laser beam. Raman transi-
tions are driven between the hyperfine ground states |F = 3〉
and |F = 4〉 via the excited state |e〉. Multiple pairs of fre-
quency components, separated by ωmod, simultaneously sat-
isfy the Raman resonance. The carrier frequency, ωL = ωm=0,
is red-detuned by ∆ ≈ 2π · 49 GHz from the |F = 3〉 to |e〉
transition. (b) Spectrum of incident phase modulated light
with center frequency ωL. The output of the fiber EOM is
coupled into a vertically oriented optical cavity with length
L = 37.5 cm and FSR = 399.845 MHz. The gravitational ac-
celeration is denoted by ḡ. (c) Multi-chromatic light, depicted
with Lorentzians colored according to their detuning from the
carrier frequency (red or blue detuned), is resonant with mul-
tiple longitudinal modes of the optical cavity, depicted with
grey shaded Lorentzians. Since the linewidth of the cavity,
γ = 2π·3.03 MHz, is much smaller than ωmod ≈ ∆Cs

hfs = 2π·9.2
GHz necessary to drive Raman transitions in cesium, the first
pair of sidebands are resonant with the cavity 23 FSR away
from the carrier. The detuning between the first order side-
bands when ωmod = ∆Cs

hfs and the cavity resonance 23 FSR
away is defined as δhf

offset.

δDopp(t) is the Doppler shift of the atom cloud. The
latter is time-dependent, as the cesium atoms are in free
fall along the vertical cavity axis. To stay on two-photon
resonance, we ramp the EOM modulation frequency at
d
dtωmod = 2π · 23.0 kHz

ms during the interferometer. For
atoms freely falling for 120 ms, ωmod must change by
2π · 2.76 MHz to compensate for Doppler shift due to
gravity.

III. MULTI-CHROMATIC LIGHT IN AN
OPTICAL CAVITY

The phase modulated light is coupled into a cavity, as
seen in Fig. 1b. The length L of the cavity in our experi-
ment has been adjusted such that 23 free spectral ranges
(FSR) is almost equal to ∆Cs

hfs. Therefore, EOM side-
bands separated by ∆Cs

hfs can be simultaneously resonant
with the cavity. We measure L = 37.4886(2) cm, inferred
from FSR = 399.845(2) MHz. Because the cavity length
is not aligned to a perfect integer multiple of the hyper-
fine frequency difference, we define the hyperfine offset

δhf
offset = 2π · 23 · FSR−∆Cs

hfs ≈ 2π · 3.80 MHz. (4)

If the EOM is driven at ∆Cs
hfs and the carrier is resonant

with longitudinal mode q of the cavity (ωL = ωq), ω1

(the first-order blue EOM sideband) is red-detuned from
the cavity’s longitudinal mode q + 23 by δhf

offset and ω−1

is blue-detuned from the longitudinal mode q − 23 by
−δhf

offset. The frequency detuning of the sidebands within
the different longitudinal modes of the cavity is depicted
in Fig. 1c.

The cavity linewidth at λ = 852 nm is γ = 2π · 3.03(5)
MHz. Since γ, δhf

offset, and δDopp are all of comparable
magnitude, they must be taken into account to model
the cavity atom interferometer. In addition, the laser
at ωL can be offset from cavity resonance by an amount
δcav, giving sideband m a frequency offset from cavity
resonance of

δmcav = δcav +m
(
δhf
offset + ωmod −∆Cs

hfs

)
. (5)

The magnitude and phase of the circulating electric
field within the cavity can be written in terms of these fre-
quency components and their relative detunings. In the
cavity, the upwards and downwards propagating beams
form a standing wave when superimposed. This allows
us to write the magnitude of the electric field in E(z, t)
the cavity as

E(z, t) =
∑
j

Ej cos (ωjt− ϕj − kjz)

+
∑
l

El cos (ωlt− ϕl + klz)

= −2
∑
m

Em sin(ωmt− ϕm) sin(kmz). (6)

The indices j, l respectively enumerate the downward and
upward propagating beam. We have assumed highly re-
flective mirrors, so that the electric field amplitudes and
frequencies of the upward and downward propagating
beams can be considered equal. We denote km ≡ ωm/c
(where c is the speed of light), and ϕm as the phase of



3

the mth frequency component, [13]

ϕm = arg

(
Ẽm, circ

Ẽm, inc

)

= arctan

 −r1r2 sin
(
δmcav
FSR

)
1− r1r2 cos

(
δmcav
FSR

)
 , (7)

where Ẽm, circ(inc) is the complex-valued circulating field
of the resonator for sideband m, and ri is the reflectiv-
ity of cavity mirror i. The amplitude of each frequency
component within the cavity depends on the cavity offset
δmcav and scales with a factor

s(δmcav) =

√
(γ/2)

2

δmcav
2 + (γ/2)

2 . (8)

As a result, the single-photon Rabi frequency Ωm for the
mth EOM sideband is

Ωm = Jm(β)s(δmcav)ΩL, (9)

where ΩL is the single-photon Rabi frequency for the full
electric field strength without modulation.

IV. RAMAN TRANSITIONS IN THE CAVITY

As shown in Appendix A, solving the Schrödinger
equation that describes the interaction between the
atoms and the multi-chromatic light in the cavity re-
veals a pattern that admits a simple expression of the
Rabi frequency and ac Stark shift. The two-photon Rabi
frequency ΩR is given by

4Ω2
R =

N∑
m,n=−N+1

Rmn (10)

with

Rmn =
ΩmΩm−1ΩnΩn−1

(∆−m∆Cs
hfs)(∆− n∆Cs

hfs)

× cos (2(n−m)khfsz + ϕm − ϕm−1 − ϕn + ϕn−1) ,
(11)

where Ωm is the single-photon Rabi frequency between
the ground states and the excited state for frequency
component m, and khfs = ∆Cs

hfs/c. N is the highest or-
der sidebands we include. At typical modulation depths
β ∼ 1.2, the electric field strength of the m > 2 sidebands
before the cavity are small and can be neglected.

Each term Rmn represents the interference between a
(m,m − 1) and a (n, n − 1) pair of sidebands driving
Raman transitions. For m = n the expression reduces
to the usual two-photon Rabi frequency associated with
each pair driving a Raman transition. For m 6= n, the
Raman pairs interfere with each other constructively or

destructively depending on the phases ϕi of the beams,
and spatial location z.

Each frequency component contributes its own ac
Stark shift to the hyperfine levels, which is calculated in
Appendix A as the difference of the diagonal elements in
the interaction matrix for the effective two-level system.
As the single photon detuning (∆ ∼ GHz) is much larger
than the two-photon detuning (δ ∼ kHz), the relevant
quantity for the two-photon resonance is the differential
ac Stark shift of the two ground states that shifts the
two-photon resonance condition. The absolute shift of
the ground states can be neglected. The total differen-
tial ac Stark shift

δac =
N∑

m=−N
Sm, (12)

is found to be the sum of the ac Stark shifts of the indi-
vidual frequency components m,

Sm =
Ω2
m

4

(
1

∆− (m+ 1)∆Cs
hfs

− 1

∆−m∆Cs
hfs

)
. (13)

Together, Eqs. 10 and 12 with the definitions of ωmod,
δmcav, ϕm and Ωm, predict the Rabi frequencies and light
shifts for cesium atoms in our optical cavity. This is the
model we set out to find, and in the next section, we
will compare our theoretical description of intra-cavity
Raman transitions with in-situ measurements performed
in our cavity atom interferometer (Figs. 2 and 3).

V. MEASURING OF THE TWO-PHOTON RABI
FREQUENCY AND THE AC STARK SHIFT

To test the predictions of our model, we have mea-
sured the Rabi frequency of the Raman transition and
the differential ac Stark shift of the two ground states
in our cavity atom interferometer. Our setup has been
described in [1]. We laser cool cesium atoms and launch
them upwards into free-fall along the cavity mode. While
the atoms are freely falling, we apply laser pulses and
measure the two-photon Rabi frequency ΩR and ac Stark
shift δac as a function of parameters such as the cavity-
laser detuning and free-fall time after the launch.

A. The two-photon Rabi frequency

Figure 2a shows a simulation of the Rabi frequency
in our cavity as a function of the time of flight of the
atom cloud and the cavity offset. This is calculated from
Eqs. (10, 12), by inserting the atom position as func-
tion of free-fall time and the appropriate time-dependent
δDopp(t). The colored lines indicate times at which we
compare the measured Rabi frequency and cavity offset
to theory.

To measure the Rabi frequency, we drive Rabi oscilla-
tions using a square pulse of varying duration generated
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Figure 2. (a) Simulation of the Rabi frequency, ΩR, versus
δcav and time of flight. The colored lines correspond to the
data presented in Fig. (b), (c) and (d). (b) On the left axis,
Rabi frequency versus time of flight. The spatial beat note
of the Raman beam pairs can be seen, as well as a general
downward trend as ωmod is linearly ramped to account for
the Doppler shift, moving the sidebands out of the cavity
lineshape resulting in lower light intensity in the cavity. On
the right axis, the atom cloud position is plotted as a function
of time of flight. The cloud passes the same Rabi dead zone
twice. (c), (d) Measured Rabi frequency as a function of
cavity offset compared to simulation, near a (c) maximum
(t = 2.0 ms) and (d) minimum (t = 16.5 ms) of the δcav = 0
MHz spatial beat note, respectively.

by an acousto-optic modulator (AOM) and measure the
probability that the atom undergoes a transition. For
comparison with theory, we fit Rabi oscillations of the
atomic cloud to a model which accounts for the cloud’s
thermal expansion, and extract the peak Rabi flopping
of atoms at the center of the cavity mode ΩR from our
fit. A complete description of how ΩR is extracted from
a fit to the Rabi oscillations of the ensemble can be found
in Appendix B. This more complex fit model is required
because the cavity beam waist is roughly the size of the
atom cloud.

In Fig. 2b we present the measured two-photon Rabi
frequency ΩR as a function of free-fall time at δcav = 0.
Different free-fall times correspond to different locations
along the the cavity axis, and trajectory of the atoms is

indicated on the second y-axis of Fig. 2b. The general de-
creasing trend of the Rabi frequency over time is caused
by ωmod being linearly ramped to stay on two-photon
resonance with the falling atoms. This causes the cavity
detuning of the sidebands to increase, reducing the am-
plitude of the intracavity field over time (see Eq. 8). For
the modulation depth used (β = 1.08), the carrier and
first order sidebands dominate, as higher order sidebands
out of the EOM are weak and almost entirely suppressed
by the cavity. As a result, the dominating spatial pe-
riodicity of the interference is 2π/khfs ' 1.63 cm, which
is comparable to the distance the atoms move over 120
ms in free fall. The low Rabi frequencies at ≈ 17 ms
and ≈ 103 ms show atoms passing the same region of
destructive interference between the Raman pairs twice,
since the atoms reach the apex of their trajectory after
60 ms.

Figs. 2c and 2d show the Rabi frequency as a function
of cavity offset for atoms at two locations: an amplitude
maximum and minimum, respectively, of the Rabi fre-
quency spatial beat note with δcav = 0 MHz. Near the
minimum, the Rabi frequency can be increased by detun-
ing the laser from cavity resonance in either direction.
This alleviates the destructive interference by changing
the relative phase of the interfering beams (Eq. 7), while
also emphasizing one sideband over the other within the
cavity lineshape (Eq. 8).

B. The ac Stark shift

In this section, we describe our measurement of the ac
Stark shift in the cavity for different cavity and modula-
tion parameters. Contrary to the Rabi frequency, the ac
Stark shift δac has no spatial dependence because it has
no interference terms, as seen in Eq. 13. However it does
depend on the cavity offset, δcav, and modulation depth,
β.

We measure the ac Stark shift of a given laser pulse by
using the microwave Ramsey procedure [14] depicted in
Fig. 3a. A microwave π/2-pulse with frequency ∆Cs

hfs −
δRamsey puts the atoms into an equal superposition of
|F = 3〉 and |F = 4〉. The system evolves at a rate of ∆Cs

hfs
for a time TRamsey = 1 ms after which we apply another
microwave π/2-pulse to close the Ramsey interferometer.
A Raman pulse of duration τ = 40 µs is applied during
the Ramsey time TRamsey to impart an ac Stark phase
shift of ∆φac = δac · τ on the atoms. We detune ωmod

from Raman resonance by 2π · 1 MHz (for β = 1.08)
and 2π · 1.5 MHz (for β = 1.55) such that laser pulse
does not drive transitions, and we measure interference
fringes by varying δRamsey. The different detunings are
chosen to increase the visibility of ac Stark shift induced
by the higher order sidebands for a higher modulation
depth. The phase of the interference signal is obtained
by fitting a sine to the excitation fraction as a function of
δRamsey (Fig. 3b). The variation of the ac Stark-induced
phase shift with the amplitude of the ac Stark Raman
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Figure 3. (a) Pulse sequence of the in-situ ac Stark shift
measurement using a microwave Ramsey interferometer. (b)
Ramsey fringes measured for different pulse amplitudes. The
frequency of the microwave π/2-pulses is scanned by an
amount δRamsey to obtain interference fringes which accrue
phase at a rate of 2π/T , as observed in the population os-
cillations of atoms between states |F = 3〉 and |F = 4〉. (c)
Phase shift, in radians, as a function of pulse amplitude,
Ap, in arbitrary units. The ac Stark phase shift, measured
as the phase offset of fringes in (b), increases linearly with
the pulse amplitude, at a rate determined by the duration
of the ac Stark pulse τ , and the ac Stark energy level shift
∆φac = δac · τ . (d) ac Stark shift measured as a function of
cavity offset δcav for two different modulation depths β. Dif-
ferent modulation frequencies were used as well, as seen from
the sideband peak locations (ωmod = ∆Cs

hfs − 2π · 1.500 [1.000]
MHz for β = 1.08 [1.55]).

pulse Ap (in arbitrary units) is shown in Fig. 3c.

We extract the ac Stark energy level shift δac in Fig.
3d by measuring how the light-induced phase shift ∆φac

varies with pulse amplitude, for a fixed pulse duration τ ;
that is, the measurements of δac in Fig. 3d correspond
to the slope measured in Fig. 3c, divided by the ac Stark
pulse width τ .

Fig. 3d shows strong agreement between the measured
and predicted ac Stark shifts for two modulation depths
β. The only free parameter in the theory curve is the am-
plitude scaling (as the overall amplitude is unimportant).
At high modulation depth (shown in green), second-order
sidebands become visible as additional peaks in the ac
Stark shift spectrum. In addition, the positive (blue)

sidebands are observed to cause stronger ac Stark shifts.
This is expected at negative cavity detuning, as the blue
sidebands have a smaller detuning to the single-photon
transition (see Fig. 1).

VI. INCREASING CONTRAST OF A
MACH-ZEHNDER ATOM INTERFEROMETER

We now use the model to improve the performance
of a Mach-Zehnder atom interferometer, by exploiting
how the cavity parameters change the Rabi frequency
and ac Stark shift. In a Mach-Zehnder atom interferom-
eter, the ac Stark shifts applied during the beamsplitter
pulses should ideally cancel [14, 15]. However, a sensitive
Mach-Zehnder atom interferometer requires a long pulse
separation time T , which requires the atom-light inter-
actions to happen at different locations along the cav-
ity axis, between which the Rabi frequency ΩR can vary
greatly. Since the duration τ of a π/2 pulse is τ = π

2
1

ΩR
,

the ac Stark phase shift resulting from such a beamsplit-
ter pulse is ϕac = π

2
δac
ΩR

. Making this phase shift equal
for both beamsplitter pulses thus requires detailed un-
derstanding of the Rabi frequency and ac Stark shift.

To optimize the interferometer performance, we en-
gineer the interferometer to 1) cancel the ac Stark shift
phase between pulses and 2) minimize the ac Stark phase
added to the interferometer by each pulse. The latter
helps, as cloud expansion and other effects make per-
fect cancellation of the residual total ac Stark phase shift
∆ϕac

res := |ϕac
1 − ϕac

3 | impossible for all atoms simulta-
neously. In particular, applying interferometer pulses at
locations where the Rabi frequency is low (the Rabi dead
zone) necessitates more powerful or longer pulses to real-
ize beamsplitters; combined with the inhomogenous ad-
dressing of a thermal atom cloud, these lower Rabi fre-
quencies can result in a large residual light shift between
the first and final pulses that significantly reduces inter-
ferometer contrast.

To demonstrate this, we run a Mach-Zehnder inter-
ferometer where the first beamsplitter pulse is applied
close to the amplitude minimum of the Rabi beat note,
while the third beamsplitter occurs at a maximum, which
results in poor ac Stark phase shift matching. This cor-
responds to a Mach-Zehnder with T = 10 ms, where the
three pulses occur at 20, 30, and 40 ms after launch, as
shown in Fig. 4a. For this extreme configuration, the
calculated ac Stark phase shift for a π/2 pulse is plotted
as a function of cavity offset and time of flight in Fig.
4b. For δcav = 0, the phase shift of the first and third
pulses, indicated by the dotted lines, has poor cancella-
tion and leaves over 1 radian of residual phase shift in
the interferometer.

Nonetheless, the interferometer performance can be re-
covered by offsetting the cavity detuning when applying
interferometry pulses to modify the Rabi frequency and
the ac Stark shift. In Fig. 4c, we present the measured
contrast as a function of δcav alongside the calculated
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Figure 4. (a) Schematic of the Mach-Zehnder atom interfer-
ometer with T = 10 ms. Atoms fall along the cavity axis (g
denotes the direction of gravity), and T was chosen such that
the beamsplitter pulses occur at different extrema along the
spatial Rabi beat note (see Fig. 2b). (b) Theoretical ac Stark
phase shift ϕac = π

2
δac
ΩR

of a π/2-pulse as a function of cavity

offset and time of flight. The first π/2-pulse at 20 ms is near
the Rabi dead zone for δcav = 0, causing it to induce a large
phase shift as the pulse is long. However, by changing δcav

for all pulses it is possible to reduce ϕac
1 to match ϕac

3 more
efficiently. (c) Interferometer contrast vs. cavity offset δcav.
The contrast measurements are plotted with red data points,
while the solid cyan line represents the calculated residual ac
Stark shift phase from the first and third beamsplitter pulses
|ϕac

1 −ϕac
3 |. In dashed purple the normalized cavity lineshape

s(δcav)2 is plotted for δcav = 0. We observe that the contrast
decreases significantly at δcav ≈ 0, where |ϕac

1 − ϕac
3 | is large.

residual phase shift ∆ϕac
res. This shows how the contrast

increases when ∆ϕac
res is minimized. Also shown in dashed

purple is the cavity lineshape, indicating the relative am-
plitude of the carrier frequency when varying the cavity
offset. The fringe contrast was improved from ≈ 34%
with δcav = 0 (where ∆ϕac

res is large) to over 60% by
setting δcav near −2π · 2 MHz to minimize ∆ϕac

res, as pre-
dicted by the model. This shows how the cavity can be
utilized as a tool to recover and optimize interferometry
pulses at arbitrary locations along the cavity axis, despite
the spatially varying Rabi frequency that results from us-
ing phase-modulated light to drive Raman transitions.

VII. CONCLUSION

We have developed and experimentally confirmed a
model of intra-cavity Raman pulses driven by phase mod-
ulated light. In turn, this model has allowed us to nearly
double the contrast of a Mach-Zehnder cavity atom in-
terferometer. The cavity provides intensity enhancement
and mode-filtering of the interferometer beam, which has
been instrumental in achieving 20-s hold times in a lattice
interferometer [8], but it also makes the Rabi frequency
of beamsplitter pulses spatially dependent, which can af-
fect the contrast of the interferometer and its systematic
effects. We have shown that these problems can be over-
come by using the cavity resonance to adjust the ampli-
tude and phase of the electric field components, to max-
imize Rabi frequency at necessary locations while mini-
mizing the ac Stark shift between the pulses.

The freedom to perform interferometry pulses at arbi-
trary locations along the cavity axis is critical for mea-
surements where the atomic trajectory has been opti-
mized to measure a specific potential gradient. This is
often needed in precision measurements based on atom-
source mass interactions, such as in searches for screened
dark energy candidates [2, 3, 16], observing a gravita-
tional analogue of the Aharanov-Bohm effect [17], or
measurements of the gravitational constant G [18–20].

The techniques demonstrated in this work will be rele-
vant when implementing new ideas in cavity atom inter-
ferometry, such as using higher-order transverse modes
for more sophisticated optical traps, performing high-
order Bragg diffraction for large momentum transfer
atom optics [21], or incorporating spin squeezing of atoms
in optical cavities [22, 23] for quantum-enhanced atom
interferometry.
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Appendix A: Solving the three-level system for a
multi-chromatic standing wave

We wish to derive the Rabi frequency of the two-
photon Raman transition between two hyperfine ground
states, here generalized as |1〉 and |2〉, of a three-level
atomic system, as depicted in Fig. 1c. Our derivation
will follow Refs. [10, 11], who consider two-photon Rabi
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oscillations driven by one pair of Raman resonant side-
bands, resulting in two interfering Raman transitions.
We extend these results to describe a standing wave in an
optical cavity consisting of N frequency components and
N − 1 interfering frequency pairs on Raman resonance.

We write the state vector ψ̂(t) as a superposition of
the eigenstates of the Hamiltonian,

ψ̂(t) =
∑
i

Ci(t)e
−iΦi(t) |i〉 (A1)

for i ∈ {1, 2, e}. The Ci are real probability amplitudes,
and Φi(t) are time-dependent phases of the states. The
Hamiltonian for the full three-level system is

Ĥ(t) =

 E0
1 0 Ve1(t)

0 E0
2 Ve2(t)

V1e(t) V2e(t) E0
e

 (A2)

where E0
i are the ground state energies of the levels, and

Vij(t) = Vji(t) = −d ·E(t) (A3)

is the interaction between the dipole moment d and the
electric field E(t). The elements coupling states |1〉 and
|2〉 are H12 = H21 = 0 due to orthogonality (no direct
transition between these states). In order to determine
the other matrix elements, we write the single photon
Rabi frequency for the mth frequency component as

Ωm,i =
1

~
〈i|d ·Em |e〉 , (A4)

where i = 1, 2. We assume that Ωm,1 = Ωm,2. Using
Eqs. (A3, A4) and the electric field Eq. 6, we obtain

V1e(t) = V2e(t) = 2

N∑
m=−N

~Ωm sin(ωmt− ϕm) sin(kmz).

(A5)
We will take Ωm to be real, and absorb any complex
phase in to the electric field phase ϕm. To find differential
equations for the probability amplitudes in Eq. (A1), we
start from the Schrödinger equation,

i~
d

dt
Ci(t) =[E0

i − ~Φ̇i(t)]Ci(t)

+
3∑
j=1

VijCi(t)e
i(Φi(t)−Φj(t)),

(A6)

where we define the time-dependent state phases Φ̇i as

Φ̇1 = E0
1/~

Φ̇2 = E0
2/~− δac

Φ̇e = E0
e/~,

(A7)

where δac is a frequency shift of |2〉 that we later will solve
for in order to extract the differential light shift of the

two ground states. The differential phases then become,

Φ1 − Φe =
1

~
(E0

1 − E0
e )t =− ω1et

Φ2 − Φe =
1

~
(E0

2 − E0
e )t =− ω2et− δact

(A8)

where ω1e and ω2e are the resonance frequencies from |1〉
→ |e〉, and |2〉 → |e〉, respectively, which are given by

ω1e = ωm + ∆−m(∆Cs
hfs + δac) (A9)

ω2e = ω1e −∆Cs
hfs + δac. (A10)

Using the definitions of phases in Eq. A7 removes the
unperturbed energies from the diagonal elements of the
Hamiltonian. The probability amplitudes therefore sat-
isfy

i~
d

dt
C1(t) = V (t)Ce(t)e

−iω1et (A11)

i~
d

dt
C2(t) = δacC2 + V (t)Ce(t)e

−i(ω2e+δac)t (A12)

i~
d

dt
Ce(t) = V (t)C2(t)ei(ω2e+δac)t + V (t)C1(t)eiω1et.

(A13)

We now adiabatically eliminate the excited state to de-
scribe the system as an effective two-level system. Since
∆ is much larger than the linewidth of the single pho-
ton transition, the population of the excited state will
be small and varying quickly. We can therefore integrate
Eq. (A13), assuming C1 and C2 to be constant,

i~Ce(t) = C2

∫
dtV (t)ei(ω2e+δac)t + C1

∫
dtV (t)eiω1et.

(A14)

We can use this to eliminate Ce from Eqs. (A11) and
(A12).

As the final step, we apply the rotating wave approxi-
mation (RWA) by eliminating any terms oscillating faster
than the evolution of the state population, i.e., terms os-
cillating at a sum frequency. The system we wish to solve
can now be written as

(
Ċ1

Ċ2

)
=

1

4

(
A B
C D

)(
C1

C2

)
, (A15)



8

where

A =
N∑

m=−N

Ω2
m

∆−m∆Cs
hfs

, (A16)

B =
N∑

m=−N+1

Ωm−1Ωme
i((km−1+km)z+φm−1−φm)

(∆−m∆Cs
hfs)

,

(A17)

C =
N∑

m=−N+1

Ωm−1Ωme
−i((km−1+km)z+φm−1−φm)

(∆−m∆Cs
hfs)

,

(A18)

D =
N∑

m=−N

Ω2
m

∆− (m+ 1)∆Cs
hfs

− 4δac. (A19)

If the atoms starts in |1〉 (i.e. C1(t = 0) = 1, C2(t = 0) =
0), the two-level system described in Eq. A15 oscillates
between states |1〉 and |2〉 as

|C1(t)|2 = 1− Λ sin2

(
ΩR
2
t

)
(A20)

|C2(t)|2 = Λ sin2

(
ΩR
2
t

)
(A21)

with

Λ =
4BC

(A−D)2 + 4BC
(A22)

and

ΩR =
1

4

√
(A−D)2 + 4BC (A23)

where ΩR is the two-photon Rabi frequency. Full contrast
in the resulting population oscillation between the two
states is achieved when Λ → 1 which occurs for A = D.
Setting Eq. A16 equal to Eq. A19, we then solve for the
δac, the differential light shift of the two ground states.
This defines δac in Eq. 12.

The two-photon Rabi frequency ΩR is found by multi-
plying Eq. A17 and A18, 4Ω2

R = BC,

4Ω2
R =

N∑
n,m=−N+1

Ωm−1ΩmΩn−1Ωn
(∆−m∆Cs

hfs)(∆− n∆Cs
hfs)

×e−i(2(m−n)khfsz+φm−φm−1−φn+φn−1),

(A24)

where we have used that 2(m−n)khfs = km+km−1−kn−
kn−1. Using the symmetry of indices m and n, the terms
in the sum can be organized into conjugate pairs that
are rewritten as cosines, and we arrive at the solution
presented in Eqs. 10 and 11. This describes how each
sideband pair affects the total two-photon Rabi frequency
for intracavity Raman transitions.

Appendix B: Rabi frequency fit model

The fit model accounts for the comparable sizes of the
atom cloud and the Raman beams’ waist. We model the
atom cloud density as a spherical Gaussian, given by

natom(r) =
N0

π3/2σ3
exp

(
− r

2

σ2

)
(B1)

where σ is the 1
e radius of the atom cloud, N0 is the

total number of atoms in the cloud, and r is the position
displacement from the center of the cloud. The Gaussian
beam profile has intensity given by

I(ρ) = I0

(
w0

w(z)

)2

exp

(
− 2ρ2

w(z)2

)
≈ I0 exp

(
−2ρ2

w2
0

)
(B2)

where ρ is the distance from the beam center transverse
to the propagation axis. In the second line, we have
assumed a weakly diverging beam such that w(z) ≈ w0

(in our experiment, the Rayleigh range of the cavity mode
is zR = 1.90 m, justifying this assumption). The waist
of our cavity is w0 = 718 µm. The intensity Iatom,i seen
by a given atom i depends on its coordinate ρi, which we
can parameterize by

Iatom,i = αiI0, (B3)

where αi = exp
(
− 2ρ2i
w2

0

)
is a unitless variable ∈ [0, 1].

Given the atom distribution Eq. B1, it can be shown [12]
that the probability distribution fA(α) for the variable α

(a) (b)

(c) (d)

TOF = 6 ms TOF = 12 ms

TOF = 18 ms TOF = 27 ms

Ω0 = 2π × 32.9 kHz Ω0 = 2π × 13.2 kHz

Ω0 = 2π × 1.2 kHz Ω0 = 2π × 22.2 kHz

Figure 5. Fitting the Rabi floppings for different time of
flights (TOF). (a), (b) and (d) are at spatial positions with
medium to high Rabi frequencies, while (c) is in the dead
zone. For such a low Rabi frequency, decoherence across the
atomic cloud leads to a very low peak excitation fraction (note
the different y-scaling on the plots).
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across the atom cloud is

fA(α) = xαx−1, (B4)

where x =
w2

0

2σ2 .
Each atom undergoes Rabi flopping according to

P (α, t) =
αΩR,0

Ω̃R,α
sin2

(
1

2
Ω̃R,αt

)
(B5)

where ΩR,0 is the two-photon Rabi frequency at the cen-

ter of the beam, and Ω̃R,α =
√

(αΩR,0)
2

+ (αδac)
2

is the

generalized two-photon Rabi frequency which includes an
α-dependent ac Stark shift. The average probability P
over the cloud can then be found by integrating over the
α distribution,

P (t) =

∫ 1

0

dα fA(α)P (α, t). (B6)

Included in our model is the finite, time-dependent size
of the atom cloud. We assume a Gaussian distribution

of velocities as well, such that the cloud size is given by

σ(t) =
√
σ2

0 + σ2
vt

2, (B7)

where σ0 = 300 µm is the initial size of the cloud at t = 0,

and σv =
√

kBT
mCs

is the velocity 1
e spread at temperature

T = 300 nK, set by the temperature after Raman side-
band cooling [24]. kB is the Boltzmann constant, and
mCs is the mass of the cesium-133 atom.

We fit measured data to the model Eq. B6 to extract
the two-photon Rabi frequency ΩR,0 as a function of cav-
ity parameters. ΩR,0 and δac are the only fit parameters.
In Fig. 5 such fits are shown. For very low Rabi frequen-
cies (Fig. 5c) the relative uncertainty on the fit increases,
since the peak of the excitation fraction is very low. This
makes it harder to distinguish between a slightly higher
Rabi frequency or a detuning induced by the ac Stark
shift.
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