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ADE SURFACES AND THEIR MODULI

VALERY ALEXEEV AND ALAN THOMPSON

Abstract

We define a class of surfaces corresponding to the ADFE root lattices
and construct compactifications of their moduli spaces as quotients of
projective varieties for Coxeter fans, generalizing Losev-Manin spaces
of curves. We exhibit modular families over these moduli spaces, which
extend to families of stable pairs over the compactifications. One simple
application is a geometric compactification of the moduli of rational
elliptic surfaces that is a finite quotient of a projective toric variety.
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1. Introduction

There are two sources of motivation for this work: Losev-Manin spaces
[LMO00] and degenerations of K3 surfaces with a nonsymplectic involution
[AET19).

Let L, 13 be the moduli space parameterizing weighted stable curves (Z, Qo+
Qoo t€ Z?jll P;) of genus 0 with 4 3 points, where 0 < ¢ < 1. Equivalently,
the singularity condition is that the n+1 points P; are allowed to collide while
the remaining two may not collide with any others. One has dim L, 13 = n.
Quite remarkably, L, 3 is a projective toric variety for the Coxeter fan (also
called the Weyl chamber fan) for the root lattice A,,, formed by the mirrors to
the roots. Of course it comes with an action of the Weyl group W(A,,) = Sp+1
permuting the points P;. The moduli space of the pairs (Z,Qp + Qo + €R)
for the divisor R = Z?jll P; with unordered points is then L, 13/S,1.

There are other ways in which L, 3 corresponds to the root lattice A,,.
For example, its interior, over which the fibers are Z ~ P!, is the torus
Hom(A,,,C*), and the discriminant locus, where some of the points P;, P;
coincide, is a union of root hypertori Uy{e® = 1} with o = e; — e; going over
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the roots of A,,. Additionally, the worst singularity that the divisor >  P; can
have is (z — 1)"*! = 0, which is an A, -singularity.

Losev and Manin asked in [LMO0O] if similar moduli spaces existed for other
root lattices. This was partially answered by Batyrev and Blume in [BB11]
where they constructed compact moduli spaces for the B, and C,, lattices
as moduli of certain pointed rational curves with an involution. Batyrev-
Blume’s method works only for infinite series of root lattices, such as ABCD,
and it breaks down for D,, where it leads to non-flat families (most fibers have
dimension 1 but some have 2).

In this paper, we generalize Losev-Manin spaces to the D,, and E,, lattices
by replacing stable curve pairs (Z, Qo+ Qoo +€R) by (KSBA) stable slc surface
pairs (X, D 4 €R) and constructing their compact moduli.

Namely, we define a class of surface pairs (X, D + eR) naturally associated
with the root lattices A,,, D,,, and E,,. We call these pairs ADFE double covers,
as all of them are double covers m: X — Y of surface pairs (Y,C + H<B).
Here, C' and D are reduced boundaries (downstairs and upstairs), R is the
ramification divisor, and B is the branch divisor of w. We call the pairs
(Y,C + H<B) the ADE pairs, and the underlying pairs (Y,C) the ADE
surfaces (with reduced boundary C).

We prove that the moduli space M of ADE pairs (equivalently of ADE
double covers) of a fixed type is a torus for the associated ADE lattice A
modulo a Weyl group W, and that the normalization of the moduli compact-
ification M is the W-quotient of a projective toric variety for a generalized
Coxeter fan corresponding to A. Moreover, for each type we construct an
explicit modular family of ADFE pairs over M and show that, after a suitable
coordinate change, the discriminant locus in M, where B is singular, is a union
of root hypertori U,{e* = 1} with « going over the roots of A. Additionally,
the worst singularity appearing in the double cover X is the surface Du Val
singularity of type A.

For A = A, we get the standard Coxeter fan and MSIC = L,y3/Snt1.
The ramification curve R = B in this case is hyperelliptic, a double cover
f+ B — Z of a rational genus 0 curve. The boundary C' has two irreducible
components defining the boundary Qo+ Q. of Z, and the ramification points
of f provide the remaining n + 1 points in the data for a stable Losev-Manin
curve (Z,Qo + Qoo + € X177 P,).

For A = D,, and E,, the fan is a generalized Coxeter fan, a coarsening of
the standard Coxeter fan. It is the normal fan of a permutahedron given by
a classical Wythoff construction.

We found these ADFE surfaces and pairs by studying degenerations of K3
surfaces of degree 2. A polarized K3 surface (X, L) of degree L? = 2 comes
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with a canonical double cover 7: X — Y. The ramification divisor R of 7 is
intrinsic to (X, L), and the pair (X, eR) is a stable slc pair. Thus, the moduli
of (KSBA) stable slc pairs provides a canonical moduli compactification F;lc
of the moduli space F5 of K3 surfaces of degree 2.

On the other hand, there exists a nice toroidal compactification Fg‘” de-
fined by the Coxeter fan for the reflection group of the root lattice associated
to Fy. The type III strata of f;or are products of W-quotients of projective
toric varieties for the Coxeter fans of certain ADF root lattices. These strata
look like the moduli spaces of degenerate stable slc pairs (Y, C + %B) whose
irreducible components (Y;, C; + 1€ B;) are some of the ADE surface pairs

2
discussed above. Indeed, we confirmed this in many examples. We deter-

mine the precise connection between F;lc and Fg"r in [AET19], which is a
continuation of this paper.

We work over the field C of complex numbers. Throughout, € will denote a
sufficiently small real number: 0 < ¢ < 1. This means that for fixed numerical
invariants there exists an €y > 0 such that the stated conditions hold for any
0 < € < ¢. Now let us explain the main results and the structure of the
present paper in more detail.

In Section 2 we define (K + D)-trivial polarized involution pairs (X, D, )
and study their basic properties. Roughly speaking, such pairs consist of a
normal surface X with an anticanonical divisor D and an involution ¢: X — X
that preserves D. They naturally appear when studying stable degenerations
of K3 surfaces with a nonsymplectic involution. We prove that the quotient
(Y,C) = (X, D)/ of an involution pair is a log del Pezzo surface of index 2,
i.e. the divisor —2(Ky + () is Cartier and ample.

Denoting by 7: X — Y the double cover, B € | — 2(Ky + C')| the branch
divisor and R C X the ramification divisor, one has Kx + D +¢eR = n*(Ky +
C'+ <B). Then the pair (X, D+ €R) is a (KSBA) stable slc pair iff the pair
(Y,C + H<B) is such.

By analogy with Kulikov degenerations of K3 surfaces, we divide the pairs
(X, D, () and their quotients (Y, C) into types I, II, III. For type I, one has
C = D = 0, the surface X is an ordinary K3 surface with Du Val singularities,
and the pair (Y,C + %B) is klt. For types IT and III, the pairs (X, D 4 €R)
and (Y,C + %B) are both not klt; these types are distinguished by the
properties of the boundary D, which is a disjoint union of smooth elliptic
curves in type II and a cycle of rational curves in type III.

With this motivation, we set out to investigate log canonical non-klt del
Pezzo surfaces with boundary (Y, C) of index 2, and the moduli spaces of log
canonical pairs (Y,C + <B), with B € | — 2(Ky + C))|.
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In Section 3 we explicitly define many examples of such surfaces (Y, C) in
an ad hoc way. Since the word type is already used for “types I, II, II1”, we
call the combinatorial classes of such surfaces shapes. Those of type III we call
ADE shapes, and of type II we call ADE shapes. We call the corresponding
surfaces (Y, C’) ADE resp. ADE surfaces, the stable pairs (Y,C + 1+EB)
ADE resp. ADE pairs, and their covers (X,D + eR) ADE resp. ADE
double covers. To each shape we associate a decorated ADE, resp. ADE
Dynkin diagram, which we use to label the shape, and a corresponding ADFE,
resp. ADE lattice. The main reason for this association comes later, when
considering the moduli spaces and their compactifications.

In the simplest cases, the surfaces Y are toric and C' is a part of the toric
boundary, with two components C1, Cs in type IIT and one component in type
II. These shapes are labeled by diagrams of types A,,, Dy, E,, Dgn, E7 and Eg
At this point there is a clear motivation behind this labeling scheme, as the
defining lattice polytopes of the toric surfaces Y contain the corresponding
Dynkin diagrams in an obvious way. In type II we also introduce several
nontoric shapes, which we call ggn,l, Z’{, and /Ta . Interestingly there is no
FEs shape; Remark 3.10 discusses some reasons for that.

Next we define a procedure, which we call priming, for producing a new lc
nonklt del Pezzo pair (Vl,él) of index 2 from an old such pair (Y, C). The
procedure consists of making weighted blowups Y/ — Y at a collection of up
to 4 points on the boundary C, and then performing a contraction Y’ — Y
defined by the divisor —2(Ky+ 4+ C') (where C” is the strict transform of C),
provided that it is big and nef.

We list all the ADE and ADE shapes, together with their basic numerical
invariants and singularities in Tables 2 and 3. In all, there are 43 ADFE shapes
and 17 ADE shapes, some of which define infinite families. Whilst this list
seems rather large, most are obtained by applying the priming operation to a
very short list of fundamental shapes. We call these fundamental shapes pure
shapes, and call the ones obtained from them by priming primed shapes.

In Section 4 we prove our first main result, which justifies our interest in
the ADE and ADE surfaces.

Theorem A. The log canonical non-kit del Pezzo surfaces (Y,C) with
2(Kx 4+ C) Cartier and C reduced (or possibly empty) are exactly the same
as the ADE and ADE surfaces (Y,C), pure and primed.

Most of the proof can be extracted from the work of Nakayama [Nak07],
with additional arguments necessary in genus 1. Nakayama’s classification
of log del Pezzo pairs of index 2 was done in very different terms and the
connection with root lattices did not appear in it.
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In Section 5, for each shape we describe the moduli spaces of ADE (i.e.
type III) pairs and their double covers. For each shape we have a root lattice
A of ADE type. It has an associated torus T := Hom(A, C*) and Weyl group
W. Then our second main result is as follows.

Theorem B. The moduli stack of ADE pairs of a fired ADE shape is

[Hom(A*,C) : pp x pa] = [Th : Wa X p2]  for pure A shapes,
[Hom(A*,C) : pp] = [Ta : W] for pure D and E shapes,
[Hom(A*,C) : upr x Wo] = [Tar : Wa x Wo]  for primed shapes.

Here, A is an ADE root lattice, A* is its dual weight lattice, ' is a lattice
satisfying A C A’ C A* given explicitly in Theorem 5.12, Ty, := Hom(A’,C*),
ppr = Hom(A*/A',C*), and the additional Weyl group Wy is given in Theo-
rem 3.32, with action described in Theorem 5.185.

This result is proved as Thms. 5.9 (for pure shapes) and 5.12 (for primed
shapes). To conclude Section 5, for each pure ADFE shape we construct a
Weyl group invariant modular family of ADFE pairs, which we call the naive
family, over the torus Thx.

In Section 6 for each ADE (i.e. type III) shape we construct a modular
compactification of the moduli space of ADFE pairs of this shape. In 6A we
begin with a general discussion of moduli compactifications using stable pairs,
and we define stable ADFE pairs. Next, for each ADE shape we construct a
Weyl group invariant family of stable slc pairs (Y, C'+ 1£€ B) over a projective
toric variety V7™ for the Coxeter fan of an appropriate over-lattice M D A* of
index 2% (Thms. 6.18, 6.26, 6.28). These theorems also describe the combina-
torial types of the stable pairs over each point of Vif*. For the ADFE surfaces
where C' has two components, the irreducible components of these pairs are
again ADFE pairs for Dynkin subdiagrams. For some of the primed ADE
shapes where C' has one or zero components, new “folded” shapes appear.

Next, we define a generalized Coxeter fan as a coarsening of the Coxeter
fan, corresponding to a decorated Dynkin diagram, and the corresponding
projective toric variety Vie™. We prove that our family is constant on the
fibers of VeX — VEemi and the types of degenerations are in a bijection with
the strata of V5™ with the moduli of the same dimension. As a consequence,
we obtain our third main theorem. This theorem follows from Thm. 6.38,
which is a slightly stronger result.

Theorem C. For each ADE shape the moduli space MﬂBE s proper and
the stable limit of ADE pairs are stable ADE pairs.

(1) For the pure ADE shapes, the normalization of M5, is V™ /Wy, a
W -quotient of the projective toric variety for the generalized Coxeter

fan.
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(2) For the primed shapes, the normalization (M5S 5) is V™ /W x W,
for a lattice extension A’ D A. The lattice A’ and the Weyl group Wy
are as in Theorem B.

The moduli spaces described in Theorem B have many automorphisms,
some of which extend to automorphisms of our compactification. In Section 7
we prove that there exists an essentially unique deformation of the naive family
such that its pullback to the torus Ty~ has the following wonderful property:
the discriminant locus becomes the union of the root hypertori {e* = 1}, with
a going over the roots of the corresponding ADE root lattice. We also prove
that this deformation extends to the compactification. This is our fourth main
theorem.

Theorem D. For each ADE shape there exists a unique deformation of
the equation f of the naive family such that Discr(f) = Discr(A). The re-
sulting canonical family of ADE pairs extends to a family of stable pairs on
the compactification for the generalized Cozeter fan. The restriction of this
compactified canonical family to a boundary stratum is the canonical family
for a smaller Dynkin diagram.

This theorem is proved in two parts, as Theorems 7.2 and 7.11. In the final
subsection 7D we use these canonical families to explicitly determine all the
possible singularities of the branch divisor B that can appear in our ADFE
pairs.

In Section 8 we discuss an application of our results and its connections
with other work. In Section 8A, as an application we construct a compactifi-
cation Mgy of the moduli space of rational elliptic surfaces with section and a
distinguished I; fiber (i.e. irreducible rational with one node). The compact-
ification is by the stable slc pairs (X, D +eR) where D is the I fiber and R is
the fixed locus of the elliptic involution. We prove that the normalization of
My is a W, -quotient of a projective toric variety for the generalized Coxeter
fan for the Fg lattice. In Section 8B we discuss the relationship of our work
to that of Gross-Hacking-Keel on moduli of anticanonical pairs [GHK15], and
in Section 8C we discuss its relationship with the classification of birational
involutions in the Cremona group Bir(P?) [BB00).

2. Log del Pezzo index 2 pairs and their double covers

Definition 2.1. A (K + D)-trivial polarized involution pair (X, D, ) con-
sists of a normal surface X with an effective reduced divisor D, and an invo-
lution ¢: X — X, «(D) = D such that

(1) Kx + D ~ 0 is a Cartier divisor linearly equivalent to 0,
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(2) the fixed locus of ¢ consists of an ample Cartier divisor R, hence-
forth called the ramification divisor, possibly along with some isolated
points, and

(3) the pair (X, D+ €R) has log canonical (lc) singularities for 0 < e < 1.

Remark 2.2. Such pairs naturally appear when studying degenerations
of K3 surfaces with an involution. In [AET19] we show that for any one
parameter degeneration of K3 surfaces S — (Z,0) with a nonsymplectic invo-
lution ts and a ramification divisor Rs, if (Sp, €Ro) is the stable slc limit of
the pairs (S, €R;) for 0 < € < 1, then each irreducible component X of the
normalization of (Sp,Rg) comes with an involution ¢ and, denoting by D its
double locus, the pair (X, D,¢) is a (K + D)-trivial polarized involution pair
as in Definition 2.1.

Let w be a global generator of the 1-dimensional space H*(Ox (Kx + D)).
The ramification divisor R is nonempty by ampleness and has no components
in common with D by the lc condition. For a generic point x € R there
are local parameters (u,v) such that ¢(u,v) = (u,—v). Then *(du A dv) =
—du A dv. Thus, the involution ¢ is non-symplectic, meaning ((w) = —w.

Let m: X — Y = X/ be the quotient map, C' = w(D) the boundary and
B = 7(R) the branch divisors. By Hurwitz formula, Kx + D = n*(Ky + C +
1p).

Lemma 2.3. There is a one-to-one correspondence between (K + D)-trivial
polarized involution pairs (X, D, ) and pairs (Y,C + %B) such that

(1) Y is a normal surface and C, B are reduced effective Weil divisors on
it.

(2) (Y,C) is a (possibly singular) del Pezzo surface with boundary of index
<2, i.e. —2(Ky + C) is an ample Cartier divisor.

(3) Be|—2(Ky +C)|; in particular B is Cartier.

(4) The pair (Y,C + H<B) has lc singularities for 0 < e < 1.

Moreover, if (1)-(4) hold then one also has
(5) For any singular pointy € Y: if y € B then y is Du Val and y & C.

Proof. Suppose (1)—(4) hold and y € B is a non Du Val singularity of Y or a
Du Val singularity with y € C. Then on a minimal resolution ¢: Y — Y there
exists an exceptional divisor F whose discrepancy with respect to Ky + C is
< 0. Since 2(Ky + C) is Cartier, one has ap(Ky + C) < —%. But B is
Cartier, so

2

< -1,

1 1 1
aE<Ky+C+ ;FEB>§ ;Le

and the pair (Y, C + <B) is not lc, a contradiction. This proves (5).
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Now let (X, D,t) be a (K + D)-trivial polarized involution pair. Using
*(w) = —w, it follows by [Koll3, Prop.2.50(4)] that for any x € X étale-
locally (X, z) — (Y, m(z)) is the index-1 cover for the pair (Y,C'+ 1 B). Thus,
m.0x = Oy ® wy (C), the divisor 2(Kx + C) is Cartier, and B = (s), s €
H°(Oy (—2(Ky +0C))). From the identity Kx +D+eR = 7*(Ky +C+£<B)
it follows that the divisor Ky +C'+ %B is ample and the pair (Y, C + %B )
has lc singularities.

Vice versa, let (Y, C + 1€ B) be a pair as above, and let X := Specy Oy @
wy (C) be the double cover corresponding to a section s € H?(Oy (—2(Ky +
())), B = (s). Thus, étale-locally it is the index-1 cover for the pair (Y,C +
iB). Then Kx + D ~ 0, Kx + D + €R is ample and Ic, and 2R = 7*(B) is
an ample Cartier divisor.

We claim that R itself is Cartier. Pick a point € R and let y = w(z) € B.
The cover 7 corresponds to the divisorial sheaf Oy (Ky + C), which is locally
free at y by (5). Then the double cover is given by a local equation u? = s,

and R is given by one local equation v = 0, so it is Cartier. O

Thus, the classification of (K + D)-trivial polarized involution pairs is re-
duced to that of del Pezzo surfaces (Y, C) with reduced boundary of index
< 2 plus a divisor B € | — 2(Ky + C)| satisfying the lc singularity condition.
In the case when C' = 0, del Pezzo surfaces of index < 2 with log terminal sin-
gularities were classified by Alexeev-Nikulin in [AN88, AN89, AN06]. There
are 50 main cases which are further subdivided into 73 cases according to the
singularities of Y. However, all these surfaces are smoothable, which follows
either by using the theory of K3 surfaces or by [HP10, Prop. 3.1]. Thus, there
are only 10 overall families, with a generic element a smooth del Pezzo surface
of degree 1 < K%, < 9 (for K%, = 8 there are two families, for Fy and F).
The dimension of the family of pairs (Y, B), equivalently of the double covers
(X,1), is 10 + K%.

Del Pezzo surfaces with a half-integral boundary C of index < 2 were classi-
fied by Nakayama in [Nak07]. An important result of Nakayama is the Smooth
Divisor Theorem [Nak07, Cor.3.20] generalizing that of [AN06, Thm.1.4.1]. Tt
says that for any del Pezzo surface (Y, C') with boundary of index < 2 a gen-
eral divisor B € | — 2(Ky + ()] is smooth and in particular does not pass
through the singularities of ¥. Thus, every such surface (Y, C) produces a
family of (K + D)-trivial polarized involution pairs (X, D, ).

Remark 2.4. The divisors C' and B play a very different role: C is fixed,
and B varies in a linear system. For this reason, we will refer to them dif-
ferently. We will call C' the boundary and say that (Y,C) is a surface with
boundary (and sometimes we will drop the words “with boundary”). We will
call (Y,C+ %B ) a pair, consisting of a surface with boundary (Y, C') plus an



10 VALERY ALEXEEV AND ALAN THOMPSON

additional choice of divisor B on it. In many cases, surfaces with boundary
are rigid, but pairs have moduli.

Let f: X — X be the minimal resolution of singularities, and let D be the
effective Z-divisor on X defined by the formula Kg + D= f*(Kx + D) ~0.
It follows from the lc condition that D is reduced.

Lemma 2.5. For the minimal resolution of a (K + D)-trivial polarized
inwvolution pair, one of the following holds:

(1) D=0, D =0, and X is canonical. Then X is a K3 surface with
ADE singularities and ¢ is an non-symplectic involution.
(I1) (X, D) is strictly log canonical and D is one or two isomorphic smooth
elliptic curve(s),
(IIT) (X, D) is strictly log canonical and D is a cycle of Pls.

Accordingly, we will say that the (K + D)-trivial polarized involution pair
(X, D, ) and the corresponding del Pezzo surface (Y, C') with boundary have
type I, I, or III. In type I (Y, C) is klt, and in types II, III it is not klt.

Proof. (I) (Compare [ANO6, Sec. 2.1]) X is either a K3 surface or an
Abelian surface. If X = X is an Abelian surface then the involution is different
from (—1) since R # 0. Thus, the induced involution ¢* on H%(QY,) is different
from (—1) and there exists a nontrivial 1-differential on X which descends to
a minimal resolution Y of Y. But Y is a del Pezzo surface with log terminal
singularities, so basic vanishing gives hO(Q%) = h'(O3) = h*(Oy) = 0. Thus,
XisaK3 surface, and we already noted that the involution is non-symplectic.

(II, III) Since wp ~ Op by adjunction, every connected component of D
is either a smooth elliptic curve or a cycle of P's. Since K 5 = —D is not
effective, X is birationally ruled over a curve E and D is a bisection. The
curve F has genus 1 or 0 since it is dominated by D. If one of the connected
components of D is a cycle of P!s then g(E) = 0 and X is rational. In that
case from H'(~D) = H'(Kg) = 0 we get h%(O5) = h%(Ox) = 1, so D is
connected. If g(FE) =1 and D has more than one connected component then
then they all must be horizontal. Thus, there must be two of them, each a
section of X — E, so they are both isomorphic to F. O

3. Definitions of ADE, ADE surfaces, pairs, and double covers

Definition 3.1. The ADE and ADE surfaces are certain normal surfaces
(Y, C) with reduced boundary defined by the explicit constructions of this
section. They are examples of log del Pezzo surfaces of index 2, i.e. each pair
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(Y, C) has log canonical singularities, and the divisor —2(Ky + C) is Cartier
and ample.

In the sense of Lemma 2.5, the ADE surfaces are of type III, and ADE
surfaces are of type II.

Definition 3.2. Given an ADE, resp. ADE surface (Y,C), let L =
—2(Ky + C) be its polarization, an ample line bundle. If B € |L| is an
effective divisor such that (V,C + 1<B) is log canonical for 0 < € < 1
then (Y,C + %B) is called an ADE, resp. ADE pair. The double cover
m: X — Y asin Lemma 2.3 is then called an ADE, resp. ADE double cover.

Remark 3.3. By Lemma 2.3(5) the points of intersection BN C' are non-
singular points of Y, and the log canonicity of (Y,C + %B) implies that
B intersects C transversally. Consequently, R intersects D transversally at
smooth points of X.

By construction, the ADFE and ADE surfaces will admit a combinatorial
classification. Since the word type is overused, we call the classes shapes. To
each shape we associate:

(1) a decorated ADE or affine, extended ADE Dynkin diagram,
(2) a decorated Dynkin symbol, e.g As or Eg, B
(3) an ordinary ADE, resp. affine ADFE root lattice, e.g. A5 or Es.

Parts (1) and (2) are equivalent, and (3) may be obtained from them by
deleting the decorations. The main reason for this association will become
apparent later, in the description of the moduli spaces and their compactifi-
cations. But in the cases where Y is toric and C' is part of its toric boundary,
they also encode some data about the defining polytope.

We divide the shapes into two classes, which we call pure and primed.
ADE and ADE surfaces of pure shape are fundamental, we define them all
explicitly in subsections 3A and 3B. In type III the pure shapes form 5 infinite
families along with 3 exceptional shapes. In type II there are 2 infinite families
and 4 exceptional shapes.

The ADE and ADE surfaces of primed shape are secondary and there are
many more of them; they can all be obtained from surfaces of pure shape by
an operation which we call “priming”, explained in subsection 3C.

3A. Toric pure shapes. The ADE surfaces (type III) of pure shape are
all toric, as are 3 of the ADE surfaces (type II) of pure shape. To construct
them we begin with polarized toric surfaces (Y, L), where L = —2(Ky + C).
Such toric surfaces correspond in a standard way with lattice polytopes P
with vertices in M ~ Z2.

Lemma 3.4. Let P be an integral polytope with o distinguished vertex p.
and (Y, L) be the corresponding polarized projective toric variety. Let C be the
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torus-invariant divisor corresponding to the sides passing through p.. Sup-
pose that all the other sides of P are at lattice distance 2 from p,.. Then
—2(Ky + C) ~ L is ample and Cartier, and the pair (Y,C) has log canonical
singularities.

Proof. Let C' =3 C! be the divisor corresponding to the sides not passing
through the vertex p,. The zero divisor of the section eP* € HO(Y,L) is
>~ d;C! where d; are the lattice distances from p, to the corresponding sides.
This gives L ~ 2C’. Combining it with the identity Ky + C + C' ~ 0
gives the first statement. It is well known that the pair (Y,C + C’) has log
canonical singularities. Thus, the smaller pair (Y, C) also has log canonical
singularities. O

Definition 3.5. We now apply this Lemma to define some of our ADFE
and ADE surfaces (Y, C) of pure shape. For each shape we list its decorated
Dynkin symbol and the vertices of its defining polytope in Table 1, and il-
lustrate them with pictures in Figures 1, 2, 3, 4. In these Figures the sides
of the polytope through p, are drawn in bold blue; they correspond to ir-
reducible components of the divisor C'. Within the polytopes we draw the
decorated Dynkin diagrams, the rules for doing this are explained in Nota-
tion 3.7. Finally, we also label some of the lattice points p;, for later use in
Section 5.

The surface Y of shape Dy, is toric with a torus-invariant boundary C only
for 2n > 6. In the D, shape we formally define (Y,C) to be either P* x P!
with a smooth diagonal C' ~ s 4+ f or, as a degenerate subcase, a quadratic
cone P(1,1,2) with a conic section.

p* p*

\\ \\ \7

Po P1 P2 P3 P4 b1 P2 P3 P4 Ps5

FIGURE 1. A shapes: Az, A5, A5, Ay

Definition 3.6. Given a surface (Y,C) of pure shape, we call the irre-
ducible components of C' sides. If (Y,C) is of type III there are two sides,
we call them left and right and decompose C = C; + C5 correspondingly. If
(Y, C) is of type II there may be one side or no sides.

Let L = —2(Ky + C). We call a side C’ long if L.C' =2 or 4, and short if
L.C'"=1or 3.
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TABLE 1. Polytopes for the pure shapes

shape  min(n) | p. | polytope vertices
A1 1 (0,2) | (0,2),(0,0), (2n,0)
A27n72 1 (07 2) ( )7 ( )7 (2n - 17 0)
Az, s 2 (0,2) | (0,2),(1,0),(2n — 1,0)
Do, 2 (2,2) | (2,2),(0,2),(0,0), (2n — 2,0)
Dy, 3 (2,2) | (2,2),(0,2),(0,0), (2n — 3,0)
“Eg (2,2) | (2,2),(0,3),(0,0),(3,0)
“E; (2,2) | (2,2),(0,3),(0,0), (4,0)
“Eg (2,2) | (2,2),(0,3),(0,0),(5,0)
Dy, 2 (2,2) | (0,2),(0,0), (2n — 4,0), (4,2)
E; (2,2) | (0,4),(0,0), (4,0)
Ey (2,2) | (0,3),(0,0), (6,0)
/ p*
Do .
P

O (O ®© /— O
n. P'=p

Po P11 P2 DP3 P4

FIGURE 2. D shapes: Dy, Dy, Dg

P3
/ p*
p2 p//
3\ 3\ 3\ N\
© © Q@ O AN

Po P1 P2 P3 P4 D5
FIGURE 3. E shapes: "E;, E7, "Eg

In the type III cases illustrated in Figures 1, 2, 3, long sides have lattice
length 2 and short sides have lattice length 1. In the type II cases illustrated
in Figure 4, long sides have lattice length 4 and short sides have lattice length
3.
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©)
©)

FI1GURE 4. Type II shapes 138, E7 and E'S_

Within each polytope in Figures 1, 2, 3, 4 we draw the corresponding
decorated Dynkin diagram, using the following rule.

Notation 3.7. Given a surface of pure shape (Y, C') defined torically by a
polytope P as above, mark a node for each lattice point on the boundary of
P which is not contained in C, and join them with edges along the boundary.
For any node that lies at a corner of P, add an additional internal node to
the diagram and connect it to the corner node. We distinguish such internal
nodes by circling them in our diagrams.

This process associates an ADE (resp. EEE) diagram to each of our
torically-defined pure shapes of type III (resp. type II), but it does not give
a bijective correspondence between diagrams and shapes. To fix this we also
need to keep track of the parity. We color the nodes of a diagram lying at
lattice length 2 from p, black, and the nodes lying at lattice length 1 from p.
white. Internal nodes are always colored white.

In the type III cases, note that each diagram has a leftmost and rightmost
node, which sit next to the left and right sides respectively. The length of the
sides may be read off from the colors of these nodes: white nodes correspond
to long sides and black nodes to short sides.

Notation 3.8. For ease of reference, to each decorated Dynkin diagram
we also associate a decorated Dynkin symbol, in a unique way. For the pure
shapes, this is given by the name of the (undecorated) Dynkin diagram, with
superscript minus signs on the left /right to denote the locations of short sides;
as noted above, this can be read off from the colors of the nodes at the ends
of the diagram. For instance, as illustrated in Figure 1, A3 has two long sides,
“A3 has two short sides, and A; has a long side on the left and a short side on
the right. In type II cases, which have only one side, we place all decorations
on the right by convention.

Remark 3.9. With this notation, the two shapes “Ag,_2 and A4,,_, are
identical up to labeling of the components of C. Where this labeling is unim-
portant, we will refer to these surfaces by the symbol A;, 5, with the short
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side on the right. There are, however, some settings in which it will be impor-
tant to keep track of the labels, such as when we come to study degenerations.

Remark 3.10. Curiously, there is no Eg shape. In our ad hoc definition
above, the process of adding internal nodes can only produce branches of
length 2. This rules out Dynkin diagram Eg, which has three branches of
length 3. A deeper reason is that in Arnold’s classification of singularities
[Arn72] the E- and Ej singularities exist in all dimensions > 2, but Eg starts
in dimension 3 and so cannot appear on a surface.

3B. Nontoric A shapes. In addition to the toric surfaces described
above, there are also three nontoric ADE surfaces (type II) of pure shape.
These are the A shapes, their decorated Dynkin diagrams and symbols are
chosen to be compatible with moduli and degenerations, although they do
not admit the same nice description in terms of polytopes as the toric shapes.
They are illustrated in Figure 5.

(1) ﬁzn_l. The surface Y is a cone over an elliptic curve and C = 0, so
there is no boundary. More precisely, let F be a line bundle of degree n > 0 on
an elliptic curve E, and let Y be the surface Projgp (O @ F). Let s, 85 be the
zero, resp. infinity sections, and let f: Y — Y be the contraction of the zero
section. Then f*Ky = K¢ + s = —54, so —Ky is ample with K2 =n. If
B € | —2Ky| is a generic section then p,(B) = n+1 and the map B — F has
2n points of ramification. Of course, the surface Y is not toric. The double
cover X — Y branched in B is unramified at the singular point, and X has
two elliptic singularities. One has R? = 2K2 = 2n.

(2) AVI The surface is the projective plane Y = P2 the boundary C
is a smooth conic, and the branch curve B is a possibly singular conic. If
B is smooth then the double cover X = P! x P!: if B is two lines then
X =TF9 =P(1,1,2) with R passing through the singular point of X. We also
include here as a degenerate subcase when P? degenerates to Y = F}. Then
X =TF9 with R not passing through the singular point.

(3) Ay . The surface is the quadratic cone Y = P(1,1,2) with minimal
resolution Y = Fy. The strict preimage of C' on Y is a divisor in the linear
system |s + 3f|, where s is the (—2)-section and f is a fiber. The curve C
passes through the vertex of the cone and is smooth at that point. The branch
curve B is a hyperplane section disjoint from the vertex. The double cover is
X = P? with an involution (z,vy,2) — (z, -y, 2), and the boundary divisor is
a smooth elliptic curve y%z = f3(z, 2).

The surface Y of shape g’{ is obtained by a “corner smoothing” of a surface
of toric shape A;: the union of two lines C; + C5 in P? is smoothed to a conic
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ORI NI
©
FiGURE 5. Nontoric type 11 A shapes: 115, Zl, gﬂ ﬁg

C. Similarly, Ao_ is obtained by a “corner smoothing” of A, . We add the star
in g’{ to distinguish it from the ordinary /~11 shape, which has no boundary.

Remark 3.11. One observes that the A shapes cannot be toric because
the Dynkin diagram is not a tree.

Remark 3.12. With the single exception of g’{, all of our decorated
Dynkin graphs are bipartite: black and white nodes appear in alternating
order.

3C. Primed shapes. Priming is a natural operation producing a new del
Pezzo surface (7/,6/) of index 2 from an old one (Y,C). Let I; ~ (y,2?) be
an ideal with support at a smooth point P; € C' whose direction is transversal
to C. A weighted blowup at I; is a composition of two ordinary blowups:
at P; and at the point P/ corresponding to the direction of I;, followed by
a contraction of an (—2)-curve, making an A; surface singularity at a point
contained in the strict preimage C’ of C'. Weighted blowups of this form are
the basis of the priming operation.

Definition 3.13. Let (Y,C) be an ADE or ADE surface and let P, ...
Py € C be distinct nonsingular points of Y and C. Choose ideals I; ~ (y, 2?)
with supports at P; and directions transversal to C (the closed subschemes
Spec Oy /I; can be thought of as vectors). Let k, denote the number of points
on side Cs, so k = Y ks. Define f: Y’ — Y to be the weighted blowup at
I = Hle I; and let C' be the strict preimage of C. Let F' = Y F; be the
sum of the exceptional divisors and L' = —2(Ky- + C'); note that L’ is a line
bundle since an A7 singularity has index 2.

Assume that L' is big, nef, and semiample. Then the priming of (Y,C) is
defined to be the pair (7/, 61) obtained by composing f with the contraction
g:Y' — Y given by |[NL'|, N > 0. The divisor ¢’ is defined to be the strict
transform of C. The resulting pair (7/,51) is an ADE or ADE surface of
primed shape.

Remark 3.14. Priming has a very simple geometric meaning for the pairs
(Y,C+1E<B). Let B € |L| be a curve such that (Y, C+1£<B) is log canonical.
By Remark 3.3 the curve B is transversal to C. In this case we take the ideals
I; to be supported at some of the points P, € B N C, with the directions
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equal to the tangent directions of B at P;. Priming then produces a new pair
(7/, c + %EI) which disconnects B from C at the points P;. If a component
of C" is completely disconnected from B’ then it is contracted on Y.

But it is on the double cover m: (X, D + eR) — (Y,C + 1< B) where the
priming operation becomes the most natural and easiest to understand. The
double cover X’ of Y’ branched in B’ is an ordinary smooth blowup of X
at the points @; = 7~ !(P;). So on the cover we simply make k ordinary
blowups at some points ; € D N R in the boundary D which are fixed by
the involution, then apply the linear system |NR'|, N > 0, provided that
R’ is big, nef and semiample, to obtain the primed pair (Y/,El + eﬁl). This
disconnects R from D at the points @Q;. If a component of D’ is completely
disconnected from R’ then it is contracted on X .

Definition 3.15. In terms of the pairs, we will call the above operation
priming of an ADE (resp. EEE) pair (Y,C + 1'2*'63), resp. priming of an
ADE(resp. ADE) double cover (X, D + ¢R). The result is an ADE(resp.
Zﬁﬁ) pair/double cover of primed shape.

We reiterate that a priming only exists if L’ is big, nef, and semiample.
Below we will give a necessary and sufficient condition for existence of a
priming that is easier to check; before that, however, we need to introduce
some basic invariants.

Definition 3.16. The basic numerical invariants of an ADE or ADE
surface (Y, C), with polarization L = —2(Ky + C), are

(1) the volume v = L?/2 > 0,
(2) the genus g = 3(Ky + L)L —1 >0,
(3) the lengths LCs > 0 of the sides.

The Hilbert polynomial of (Y, L) is x(Y,zL) = va®+ (v+1—g)x + 1. The
Hilbert polynomials of (Cs, L) are 2z + 1 for a long side and x + 1 for a short
side. It is immediate to compute these invariants for the pure shapes. We list
them in the highlighted rows of Tables 2 and 3.

Lemma 3.17. With notation as in Definition 3.13:

(1) For the main divisors, one has
C'=f*C—F, Ky =f'Ky+2F, L' =f*L-2F, Ky +L = f*(Ky+L).
(2) The basic invariants change as follows:
L'?/)2=1%2—k g(L')=g(L), L'C.=LC,—k,.

Theorem 3.18 (Allowed primings). Let (Y,C) be an ADE or ADE sur-
face of pure shape, as defined in sections 3A and 3B, and I, . .., Iy a collection
of ideals as in Definition 3.13. Then a necessary and sufficient condition for a
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priming to exist is: L'> >0 and L'C’, > 0 for the sides Cs. Under these con-
ditions, L' is big, nef, and semiample, and contracts Y’ to a normal surface
Y’ with ample Cartier divisor —2(Ky + 6/).

Proof. The conditions L'? > 0 and L'C’, > 0 are necessary since L' is big
and nef. Now assume that they are satisfied. We exclude ggn_l since its
boundary is empty and no primings are possible. We can also exclude the
shapes of volume 1, which are A; and /Nla. By Lemma 3.17 one has

U= Ky + 1) 4+ = f(Ky + L)+ C"

Thus, if Ky + L is nef then L’ is nef. One checks that for all the pure shapes
except for A; and Zf the divisor Ky + L is nef. Indeed, the surfaces of As,_1,
A5, o, A5, 5 and E7, Es_ shapes have Picard rank 1, so Ky + L is nef iff the
genus g > 0, i.e. all except A; and the excluded A, . For the Dy, 134 shapes
one has Ky + L = 0. For the other Dy, D,,_, Egn shapes Ky + L gives a
P!-fibration. Finally, for the E shapes the divisor Ky + L is big and nef: for
“Eg it is ample, for “F7 it contracts the left side C; to an E7 surface, and
for "Eg it contracts the right side C to an Eg surface.

The remaining shapes A; and Z{ are easy to check directly. In both cases
Y = P? and C is a conic: two lines for A; and a smooth conic for Z’{ The
divisor L’ is big and nef and contracts a (—1)-curve E’, the strict preimage of
a line E' with the direction of the ideal I, to a surface of shape A, resp. Zg.

Since 3L is of the form —(K{, +C’), if it is big and nef then it is automat-
ically semiample, see e.g. [Fujl2, Thm.6.1]. This concludes the proof. U

Corollary 3.19. The shapes Aspn_1, Doy, 1327“ E7 can be primed a maxi-
mum of 4 times, shapes 11277%2, 52}71, E; 3 times, and "A;,_,, Ei, Eg
2 times each.

Remark 3.20. As we can see from the above proof, the cases A} = Ay
and (ET)’ = ﬁa are special. Also, as we will see below, the dimension of the
moduli space of pairs in these cases drops after priming, but in all other cases
it is preserved. For these reasons, and to avoid redundancy in our naming
scheme, we do not allow primings of A1 and g’{

We associate decorated Dynkin diagrams and symbols to primed shapes
by modifying those of the corresponding pure shapes, as follows. Recall
that, in the pure Type III cases, each diagram has a leftmost and rightmost
node, which sit next to the left and right sides, and these nodes are colored
white/black if and only if the corresponding side is long/short.

Notation 3.21. For an ADFE shape, when priming on a long side once
we circle the corresponding white node, and when priming a second time we
also circle the neighboring black node. In the Dynkin symbol we add a prime,
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resp. double prime on the left or right, depending on whether we are priming
at a point of the left side C; or the right side C';. When priming on a short
side, we circle the corresponding black node once and turn the — superscript
into a + superscript (visually — and ’ gives +).

For an ADFE shape we add up to 4 _primes to the Dynkin symbol for a
long side in Ds,, and E7 We also turn E8 into E before adding up to two
more primes. In the corresponding decorated diagrams, we circle one node
for each prime using the following rule: first circle black nodes at the ends of
the diagram, then white nodes at the ends of the diagram, then finally black
nodes connected to circled white ones.

Remark 3.22. We note two pieces of mild ambiguity in this notation.
The first is that the decorated diagrams for the two shapes "A%, ‘A4
for "D}, 'D) are the same, so the diagram in these cases does not dlstlngulsh
left and right sides. In practice this won’t cause a problem: if we need to
distinguish sides in these cases we will use the Dynkin symbols "A%, ‘AY, resp.
"D}, 'DY.

The decorated diagrams for the shapes A7 and “A; are also identical. In
fact, in this case we find that the ADFE surfaces §42+ and “AJ are isomorphic,
so this is just another instance of the diagram not distinguishing left and right
sides. These surfaces are obtained by priming A5 and “A%, respectively, once
on the right and a surface of A5 shape is left/right symmetric (in fact it has

and also

a toric description which makes this symmetry apparent, see Lemma 3.25 and
Figure 7). One way to think of this symmetry is to consider Ay = "4} as a
symmetric ~D, shape.

Remark 3.23. If we wish to refer to an ADE or ADE surface with an
unspecified decoration (i.e. either undecorated or one of —, 7, /7, +), we will
use a question mark decoration °. For example, A;n_l refers to one of the
surfaces Ag, 1, Ay, ;, or AY _,, while ‘A3 _, refers to one of the surfaces
‘A5, or AT .

Note that circled white nodes can denote either internal nodes or long
sides on which a single priming has taken place. This apparent notational
ambiguity will be explained in the following subsection.

Example 3.24. In Fig. 6 we give several examples of such diagrams. The
surfaces in these cases are not toric. However, we can still use pseudo-toric
pictures to indicate the lengths Zé’s of the sides and the sides C? which are
contracted by Y’/ — Y'. The volume of the surface is the volume of the
polytope minus the number of primes, i.e. additional circles in the diagram
as compared to a pure shape.

We list all the resulting 43 ADE and 17 ADE shapes and their basic
invariants in Tables 2 and 3. The pure shapes are highlighted. Note that
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FIGURE 6. Decorated Dynkin diagrams for shapes "A%;, "DJ, Eg’

this table does not distinguish between left and right sides of A-shapes (see
Remark 3.9), so e.g. A5, _, and Ag,_o are listed as the same surface. The
column for the singularities is explained in section 3E.

3D. Primed shapes which are toric. We observe that some of the
primed shapes also admit toric descriptions. This provides an explanation
for a piece of notational ambiguity mentioned in the previous subsection:
the priming operation on a long edge (white node) may be interpreted as
modifying the diagram to make that node internal in the toric representation.

Lemma 3.25. The shapes Aap_1, ‘A5, o, D!

hns Abn_q are toric and can be

represented by the polytopes listed in Table 4 and illustrated in Figs. 7 and 8.

Proof. In these cases we can choose the ideals I; to be torus invariant, with
Supp I; corresponding to vertices of the polytopes of the pure shapes As,_1,
A5, _o, Dap, and I; pointing in the directions of the respective sides. Then
the blown up surface Y/ = Y is also toric, for the polytope obtained from the
old polytope by cutting corners, as in Table 4 and Fig. 8. g

1@ ®© D"
A

FIGURE 7. Toric A shapes: Ay = Ay = "D, As, Ay

Po D1 D2

Remark 3.26. For other primed shapes, the surfaces are generally not
toric but toric surfaces do appear for certain special directions of the ideals
being blown up. Some of them are shown in Fig. 9.

3E. Singularities of ADFE and ADEF surfaces.

Theorem 3.27 (Singularities). Let (Y,C) be a surface of pure shape #
Ay, A%, With notation as in Definition 3.13, when priming (Y,C) to (7/,6/)
the only curves contracted by g: Y' — Y are:
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TABLE 2. All ADFE shapes

shape  min(n) | volume genus LC, sings in nonklt(Y,C)

Ao 1 2n n—1 2,2 (n)

Ab 1 2 2n—1 n—-1 2,1 (n),A

Ab, 1 2 2n—2 n—-1 1,1 A (n), 4
o1 2 m—2 n—-1 2 (n,2;22)

A, 2 2n—-3 n—-1 1 A1, (n,2;2?)

"AY 3 n—4 n-1 (22,2, n,2;22)

A o 1 2n—1 n—-1 2,1 (n,2),4,

As_o 2 2n—2 n—-1 1,1 Ay, (n,2),4;

Af L 2 Mm—2 n—1 2 (n,2,2;22)

A3, 2 m—-3 n—-1 1 A, (n,2,2;2?)

AL, 2 2n—3 n—-1 1 (22:2,n,2), A,

"AY . 3 2n—4 n—1 (22:2,n,2,2;2?)

Ay s 2 2n—2 n—1 1,1 A, (2,n,2),4;

AL . 2 n—3 n—1 1 Ay, (2,n,2,2;2%)

AL 5 3 m—4 n—1 (22:2,2,n,2,2;22%)

Dy, 2 2n n—1 2,2

D}, 2 m—1 n—1 2,1 A

Doy, 2 n—1 n—1 1,2 A

‘DY, 2 m—2 n—1 1,1 24,

Dy 2 Mm—2 n—1 2 (2;22)

"Day, 2 2n—2 n—-1 2 (22;n)

Dy 2 2n—3 n—-1 1 A1, (2;2%)

"D}, 2 2n—-3 n—-1 1 (22;n), Ay

"Dy, 3 2n—4 n-1 (22;n,2;22)

Dy, |, 3 m—1 n—1 2,1 (2),4;

Dy 1 3 m—2 n—1 1,1 A, (2),4

Dy . 3 2n—2 n-—1 2 (2,2;22)

Dy, 3 m—3 n—1 1 Ay, (2,2;22)

"D5,_1 3 n—3 n-—-1 1 (2% n,2), Ay

"Di _, 3 m—4 n—-1 (22;n,2,2;2?)

“Ey 6 3 1,1 Ay, (3),4;

“Ef 5 3 1 Ay, (3,2;2%)

o 4 3 (22;2,3,2;22)

“F; 7 3 1,2 A

“El 6 3 1,1 24,

E; 6 3 2 (22;2)

TE, 5 3 1 (22;2), A4

“EY 5 3 1 A1,(2,3,2)

By 4 3 (2%;2,3;22)

“Eg 8 4 1,1 24

“Ef 7 4 1 Ay, (3;2%)

By 7 4 1 (2%;2), A

o 6 4 (2%;2,3;2%)

21
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TABLE 3. All ADE shapes

shape min(n) | volume genus LC sings in nonklt(Y, C)
Zgn,l 1 2n n+1 elliptic
Ar 2 0 4

Ay 1 0 3 A4
Dy, 2 2n n—1 4

D, 2 -1 n—1 3 A
Dy 2 -2 n—1 2 24,
Dy, 2 2n—-3 n—1 1 34,
Dy’ 3 n—4 n—1 (n; 2%
E; 8 3 4

E 7 3 3 A

EY 6 3 2 24
EY 5 3 1 34
By 4 3 (3;24)
Eg 9 4 3 A

Ef 8 4 24,
E{’ 7 4 1 34
EF" 6 4 (3;24)

TABLE 4. Polytopes for the toric primed shapes

shape min(n) | p. | polytope vertices

i’42n—1 2 (2a2) (272) ( ) ( )? (27’l -2 0)
//12_n—2 2 (2’ 2) (27 )7 ( )7 ( )a (2TL - 3 0)
Aoy 3 (2,2) | (2,2),(0,1),(0,0), (2n — 4,0), (n, 1)
Dy, 3 (2,2) | (2,2),(0,2),(0,0), (2n — 4,0), (n, 1)

(1) The sides C! with L'C%. = 0. These contract to nonklt(?/,él).
(2) A collection of (—2) curves disjoint from C'. These contract to Du
Val singularities disjoint from nonklt(Y, C).
Proof. Let E' be a curve with L’E’ = 0. As in the proof of Theorem 3.18, if
Ky + L is nef and E’ # C’ then (Ky'+ L')E’ =0, so Ky/E' = 0. Since E' is
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FIGURE 8. Toric D’ and A" shapes: Dj, ‘AL, 'A%

0 N\

DN

FIGURE 9. Some special toric surfaces in shapes D, ‘D)

disjoint from the boundary, it lies in the smooth part of Y. We have E'? < 0,
and by the genus formula the only possibility is B’ ~ P! with E'2 = —2. O

Corollary 3.28. The singularities of the ADE and ADE surfaces (Y,C)
lying in the nonklt locus of (Y,C) depend only on the shape and are those
listed in the last column of Tables 2 and 3.

Notation 3.29. In Tables 2 and 3 we use the following notation for sin-
gularities. We denote simple nodes by the usual A;. For cyclic quotient
singularities, whose resolutions are a chain of curves, we use the notation
(n1,ne,...,ng), where —n; is the self-intersection number of the ith curve in
the chain; note that (2,2,...,2) corresponds to the Du Val singularity A,,.
For more complicated singularities, whose resolution is not necessarily a chain
of curves, we use the following notation: (n1,ns,...,ng;2%) denotes a singu-
larity obtained by contracting a configuration of exceptional curves with the
first dual graph in Fig. 10. Note that this includes Du Val singularities of
type D,,, which are denoted by (2,2,...,2;22).

2 2 2
o—eo---—-—--&— = e —e------
ni T2 Ng—1 Nk ni UP) Ng—1 Nk
2 2 2
FIGURE 10. Singularities (ny,na,...,ng;2%) and (2%;n1,na, ..., ni; 22)
Finally, we will use the expression (22;ny,na, ..., nx; 2%) to denote a singu-

larity obtained by contracting a configuration of exceptional curves with the
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second dual graph in Fig. 10. Two apparently degenerate cases of this nota-
tion are A; = (2) and (n;22) = (2,n,2); we nonetheless use both notations,
as it is useful to make a distinction when we discuss double covers. We will
also often use (n;2%) in place of (22;n;22). Separately note that for n = 1 the
“singularities” (n) and (n,2) are in fact smooth points.

For completeness, we also note the corresponding singularities on the dou-
ble covers. The double cover of a simple node A; is always a smooth point,
and the double cover of a cyclic quotient singularity (n1,ns,...,nk) is always
a pair of cyclic quotient singularities with the same resolution; this explains
why we draw a distinction between A;, which has smooth double cover, and
(2), which has double cover a pair of (2) singularities.

The double cover of a singularity of type (ni,n2,...,nz;22) is a cyclic
quotient singularity (n1,n2,...,nk—-1,2nk —2,Nk—_1,...,n1); this explains the
second degenerate piece of notation, as (2,n,2) has double cover a pair of
(2,n,2) singularities, and (n;22) has double cover a single (2n — 2) singu-

larity. Finally, the double cover of a (22;n1,na,...,nk;22%) singularity, for
k > 2, is a cusp singularity whose resolution is a cycle of rational curves with
the negatives of self-intersections (2n; —2,n2,...,nk—1,2nt —2,Nk_1,...,N2)

ordered cyclically, and the double cover of an (n;2%) singularity is a simple
elliptic singularity whose resolution is a smooth elliptic curve with the minus
self-intersection 2n — 4.

3F. Recovering a precursor of pure shape. The aim of this subsection
is to explore to what extent the priming operation is reversible. In other words,
given an ADFE or ADE surface of primed shape, can we uniquely recover the
surface of pure shape from which it was obtained by priming?

Lemma 3.30 (Non-redundancy). When distinguishing the left and right
sides, the only redundant case in the decorated Dynkin symbol notation for the
shapes is Ay = “Ab, for which also a symmetric but degenerate notation ~D5
may be used. (See Remark 3.22. Recall also that A} = Ay, A1 = Ay, and
(A7) = Zo_ ; for this reason we do not allow primings of Ay and A*.)

When not distinguishing the left and right sides, there are also the cases
coming from the Zo symmetry of Aap—1, As,_5, D3, D4, and "Eg : As =

L, D) =Dy, Ej = "Fg, etc., including "A; = AT . (See Remarks 3.9 and

Proof. By Tables 2 and 3, most of the shapes are already distinguished by
the main invariants and singularities. The only exception is Dj,, and 'Da,, for
2n > 6. However, in these cases the sheaf Ky + L gives a P!-fibration. The
left side C is a bisection of this fibration and Cs lies in a fiber, so the two
primings are not isomorphic. O
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Definition 3.31. Let f: Y — Y be the minimal resolution of an ADE or
ADE surface (Y, C). Let Cy be the strict transforms on Y of the components
C, of C, and let F; be the f-exceptional curves. Let C+ := (Cy, F;)* C PicY
and let Ag := C+ N B*. Denote by Aég) the set of (—2) vectors in Ag, by A(()Q)
the root system generated by them, and by Wy = W(A,(JQ)) the corresponding
Weyl group. Since B? > 0, the lattice Ay is negative definite, and Aé2) and
Wy are of ADE type.

Theorem 3.32. For a surface (7/,6/) of a primed shape, its pure shape
precursor (Y, C), from which it comes by priming, is defined up to the action
of Wy. The group Wy is trivial except for the following shapes:

(1) For 2n > 6, for Day, and D, | with k primes on the left and any
number of primes on the right, and for Dy, with k primes one has
Wy = W(A¥) = S5.

(2) the following exceptional shapes of genus 1:

shape | Ay ‘A§ Dy DY 'Dy 'Dy Dy Dy Dj Dy
A A A3 A A3 A, Ay A Ay Ay Dy

For the ADE shapes for a generic surface of the given shape the Weyl
group Wy acts freely on the choices of a precursor, and for the D shapes it
acts with a degree 2 stabilizer. For a generic surface of the given shape there
are no singularities outside the set nonklt(?l,él). For special surfaces there
may exist additional Du Val singularities for all the ADE root sublattices of
Aé2), and all of these appear.

In addition, for the exceptional case "Ay; = AL of Lemma 3.30 one has
Wo = 0, and there are two choices for the As precursors, and only one
choice for A5 .

Example 3.33. For "Dg one has W(A%) = S3, and generically there are
4 choices for a precursor of shape Dg. For special choices of the directions of
priming ideals I; the surfaces may have additional singularities of types 24,
or Aj.

For D}’ one has |W(Dy4)| = 192, and generically there are 96 choices for a
precursor of shape l~?4. For special choices of the directions of priming ideals
I; the surfaces may have additional singularities of types D4, As, 341, Ao,
2141, Al-

Proof of Thm. 3.32. We computed the lattice Ay for every shape in Ta-
bles 2, 3 by a lengthy but straightforward computation. The root systems A((JQ)
are the ones stated in (1), (2). For example, for "D} one has Ay = A? @ (—4),
and the root system is A?. We skip the details.
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We find the precursors and singularities separately but then confirm that
the answer is the same as above. Let f: Y’ — Y be the first step in the
priming, before the contraction Y’ — Y (see Definition 3.13). Let E’ # C! be
a curve with L' F' = 0 and F its image on Y. As in the proofs of Theorem 3.18,
3.27, one must have (Ky + L)E = 0, and such a curve may only exist in

(1) Da,, D5, , shapes for 2n > 6, where Ky + L gives a P!-fibration
over P!,
(2) the shapes of genus 1, where Ky + L = 0.

Let us consider the case (1). The only possibilities for E are the fibers of the
P! fibration. Let P; € Cy, and I; with SuppI; = P; be an ideal appearing
in the priming. Let E be a fiber of the P! fibration passing through P;. If
the direction of I; is generic, namely it is not the direction of F then on the
blowup Y’ the preimage f~!(E) consists of two curves: the strict preimage
E' = f7Y(F) and the exceptional divisor F. Both of them are P!, and one
has (E')? = F? = —1 and E'C = FC = 1. Contracting either F or E’ gives a
pure shape precursor, so we get two choices. On the other hand, if I; has the
direction E, i.e. I; D I(E) then f~1(E) = E' UF, E’ lies in the smooth part
of Y’, and one has (E’)? = —2 and E'C = 0. The linear system |L’| contracts
E’ to an A; singularity. Thus, in this case there is one precursor and Y \6/
has an extra A; singularity.

In the case (2) for any curve E C Y one has E' - f*(Ky + L) = 0. The
shapes of genus 1 are Az, A5, A7, Dy, 54 and those obtained from these
by priming. For all of them the minimal resolution Y is a weak del Pezzo
(i.e. with big and nef —K ) of degree 2, 4, 6, or 8. To analyze both possible
precursors and singularities we computed the graphs of (—1) and (—2) curves
on the minimal resolution of singularities Y. These graphs are classically
known, see e.g. [Doll2, Ch.8]. The answers are the same as given in the
statement of the Theorem.

The exceptional case "A; = "4 of genus 1 is treated in the same way. [

4. Classification of nonklt log del Pezzo surfaces of index 2

The purpose of this Section is to prove:

Theorem A. The log canonical non-kit del Pezzo surfaces (Y,C) with
2(Kx + C) Cartier and C reduced (or possibly empty) are exactly the same
as the ADE and ADE surfaces (Y,C), pure and primed.

Log del Pezzo surfaces with boundary (Y, C') such that —2(Ky +C) is ample
and Cartier were classified by Nakayama in [Nak07], over fields of arbitrary
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characteristic. Some work is still required to extract Theorem A from his
classification. First, in [Nak07] the divisor C' is half-integral, and in our case
it should be integral.

Secondly, the case of genus g = 1 in [Nak07] is reduced to classifying log
canonical pairs (Y, C) such that Y is a Gorenstein del Pezzo surface and C' is
an effective Weil divisor with —Ky ~ 2C. The classification of such pairs is
not provided. Rather than trying to perform such a classification, we adapt
the arguments from other parts of [Nak07] to deal with this case.

For ease of the use of [Nak07], for this section only, we adopt the notation
of the latter paper. The basic setup is as follows. The log del Pezzo surface
with boundary is denoted (S, B), versus our (Y,C). At the outset, let us
mention an important general result [Nak07, Cor.3.20] generalizing that of
[AN0O6, Thm.1.4.1]:

Theorem 4.1 (Smooth Divisor Theorem). Let (S, B) be a log del Pezzo
surface with boundary of index < 2. Then a general element of the linear
system | — 2(Kg + B)| is smooth.

By [Nak07, 3.16, 3.10], the only pairs with irrational S and integral B are
cones over elliptic curves which we call Zgn,l. So below we assume that S is
rational. The minimal resolution of singularities of S is denoted by a: M — S.
One defines:

(1) An effective Z-divisor Ejy; on M by the formula Ky, = o*(Kg+ B) —
%EM. Since we assume the pair (S, B) to be lc, Eps has multiplicities 1
and 2. If B =0 and S is log terminal then Fj; is reduced. Otherwise,
there is at least one component of multiplicity 2.

(2) A big and nef line bundle Ly, = o*(—2(Kg + B)). Thus, one has
Ly = —2Ky — Eyy.

(3) The genus g(S,B) = 2(Kn + Lar)Las + 1. This is the genus of a
general element of | — 2(Kg + B)|.

This is the standard notation used in [Nak07]:

e On P?, a line is denoted by £.

e On F,, a zero section is o, an infinite section o, and a fiber £.

e On P(1,1,n), £ is the image of a fiber from F,,, i.e. a line through the
1(1,1) singular point (0,0,1). G is the image of oo on P(1,1,n);
note that oo ~ nf.

The classification of log del Pezzo surfaces with boundary is divided into
three cases:

(1) Kpr + Ly is not nef.
(2) Kpr+ Ly is nef and g > 2.
(3) Kpr+ Ly is nef and g = 1.
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4A. The case Ky, + Ly is not nef. By [Nak07, 3.11], the only cases
for us are:

(1) S =P2, degB =2 = B is a smooth conic (our A%) or two lines
(A1). )
(3) S=P(1,1,n), n>2 and B € |(§ + 2)/|, in particular n is even.
In the latter case, note that the smallest divisor not passing through the
singular point (0,0,1) is G, ~ nf. We consider the subcases:
(a) B#(0,0,1). Weneed 2+2>n = n=2,4. If n =2 then B € [3/]
is not Cartier, a contradiction. If n = 4 then B € |4¢| = |O(1)],
Ly = O(1). This is a degenerate subcase of Z’f, when P? degenerates
to F$ = P(1,1,4) (see Subsection 3B(2)).
(b) B 3 (0,0,1) and is smooth there. The strict preimage of B is then
B ~ {+Fkos for some k > 0. Then B ~ (1+kn)l = 542 = 1+kn.
It follows that n = 2 and k¥ = 1. If B is irreducible then this is our
Ay case; if B =+ Go, then this is Ay .
(¢) B 3 (0,0,1) and has two branches there. Then B ~ 2/ + koo and
B ~ (24 kn)l ~ (% + 2){. This is impossible.
4B. Kp; + Ly is nef and g > 2. Nakayama defines a basic pair to
be a projective surface X and a nonzero effective Z-divisor E so that, for
L = —-2Kx — FE one has:

(C1) Kx + L is nef,

(C2) (Kx +L)L=2g—2>0,

(C3) LE; > 0 for any irreducible component E; of E.

So, the minimal resolution of a log del Pezzo surface with boundary of index
< 2 is a basic pair, unless B = 0 and S has Du Val singularities (because then
E =0). Vice versa, by [Nak07, 3.19], any basic pair is the minimal resolution
of a log del Pezzo surface with boundary of index < 2, with the semiample
line bundle NL, N > 0, providing the contraction.

The next step is to run MMP for the divisor Kx + %L. Namely, if for some
(=1)-curve 7 one has (2Kx + L)y = —E~y < 0 then Ly = Evy = 1, the curve
~ can be contracted 7: X — Z to obtain a new basic pair (Z, Ez), and one
has Kx + L=7"(Kz + Lz), Kx + E = 7(Kz + Ez). Here, E; = 7.(F)
and it is again nonzero.

The minimal basic pairs, without the (—1)-curves as above are P? and F,,,
and it is easy to list the possibilities for £ on them. Nakayama proves that the
morphism ¢: M — X to a minimal basic pair is a sequence of blowups of the
simplest type which can be conveniently locally encoded by a zero-dimensional
subscheme A of a smooth curve, i.e. a subscheme given by an ideal I = (y, z*)
for some local parameters x,y and k > 0. If u: Y — X is a simple blowup
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then Iy = p*I = (y, 2%~ !) ® Oy (=T'), where T is the exceptional (—1)-curve
of . Then one continues to eliminate Iy by induction, making k£ blowups in
total. Equivalently, one can blow up the ideal I and then take the minimal
resolution.

In this way, we obtain a triple (X, F, A) satisfying

(F1) (X, E) is a minimal basic pair, L = —2Kx — F.

(F2) A is empty or a zero-dimensional subscheme of X which is locally a
subscheme of a smooth curve,

(F3) A is a subscheme of E considered as a subscheme of X (recall that E
is an effective Cartier divisor with multiplicities 1 or 2) such that for
every reduced irreducible component E; of E one has LE; > deg(AN

Nakayama calls these quasi fundamental triplets. Vice versa, by [Nak07, 4.2
for any quasi fundamental triplet (X, E,A) the pair (M, E;) obtained by
eliminating A is a basic pair, that is the minimal resolution of singularities of
a log del Pezzo surface with boundary. Thus, one is reduced to enumerating
quasi fundamental triplets.

For a given basic pair (M, Ejs), the sequence of blowdowns of (—1)-curves
and thus the resulting quasi fundamental triplet (X, E,A) are not unique.
To cure this, Nakayama defines a fundamental triplet that satisfies additional
normalizing conditions [Nak07, Def. 4.3]. He then proves in [Nak07, 4.9] that
the fundamental triplet exists and is unique in most cases, including all the
cases when (S, B) is strictly log canonical — the case that we operate in. For
this case, the possible fundamental triplets are listed in [Nak07, 4.7(2)].

It remains to consider these fundamental triplets and the resulting minimal
resolutions M. But first, we can narrow down the possibilities for A since our
situation is restricted by the condition that B is integral and not half-integral
as in [Nak07].

Definition 4.2. We introduce the following simple subschemes A C FE.

E A deg(A) multp(A N Ez)
()| (y,2) 1 1
(1| (g% 2 2
(=) | W) (y,2?) 2 2
(1) | W) e 2 1
(+) | ) P y+ex?),e#0 4 2

An alternative description for the last subscheme is (y + ex?, 2*).

The subschemes appearing in this definition are given suggestive names,
which reflect the notation used for priming in Section 3C. The reason for this
will become clear in the proof of Theorem 4.8.
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Lemma 4.3. The effect of eliminating the subschemes of Definition 4.2 is
as follows.

(-) EM=1E;+0I, T2 =-1, BTy =1, Lyl =1

)1 Ey = 1E;+ 001 + 0y, T2 = -1, T2 = -2, BT, =TIy =1,
1 2
Lyl =1.
—) Eay = 2E; +2I'1 + 1T, T2 = -1, T2 = -2, E;I'y, = 'y, = 1,
1 2
Lyl =1.
/ E]V[ = QEZ + ].Fl +0F2, FQ = —2, FQ = —]., EZFl = 1“11“2 = 1,
1 2
LTy =1.

(+) By =2E; +2I'; +1T9 + 113+ 0Ty, I3 =173 =13 = -2, '] = -1,
El)=T1Ty=T1Is=T3'y =1, Ly 'y =1.
It is pictured in Fig. 11.

() [0 [T (0 [4] [Ex2——0
) [ — o4
) [ —

FicUure 11. Effect of eliminating simple subschemes

Proof. This is direct computation, following [Nak07, Sec.2]. O

Notation 4.4. In Fig. 11, the rectangle with label “d” denotes an irre-
ducible component E; of E with E? = —d. The small nodes are P!’s of square
(—1), the large ones of square (—2). Rectangles and nodes are shown in bold
black, resp. gray or white, if they appear in Ej; with multiplicity 2, resp. 1
or 0. The half-edges denote multp(A N E;), which are 2 (double line) or 1
(single line). When we are working with a geometric triple (X, B + 1;“6 D),
where D € | —2Kg — E| is a section, these half edges are the local intersection
numbers DFE; at a point P € D N E;. The double edge means that D is
tangent to E; at P.

The following lemma is a direct consequence of a proof from [Nak07].

Lemma 4.5. The pair (S, B) is log canonical iff for every irreducible com-
ponent E; of E in the fundamental triplet (X, E,A), one has multg(E;) < 2,
A is disjoint from the nodes of the double part _LE_ of E, and multp(ANE;) <
2 for every irreducible component E; with multg(E;) = 2 and all P € A.
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Proof. Follows immediately from the proof of [Nak07, Cor. 4.7]. O

Theorem 4.6. Let (M, Eyy) be a basic pair with M the minimal resolution
of singularities of a strictly log canonical log del Pezzo surface with boundary
(S, B) of index < 2 with integral B, and let ¢: M — X be a contraction to
a minimal basic pair so that (M, Ep) is obtained from a quasi fundamental
triplet (X, E,A) by eliminating the 0-dimensional scheme A. Then

(1) If a component E; of E has multiplicity 1 then its strict preimage on
M must be isomorphic to P! and have Ef < —2.

(2) Additionally, assume that A is disjoint from the singular part of Eyeq
and that for every irreducible component E; of E with multg(E;) =1,
one has multp(A N E;) < 2. Then the only connected components of
A are the five subschemes of Def. /.2.

Remark 4.7. Concerning the additional assumptions of (2), we note that
they are satisfied for the strictly log canonical fundamental triplets by [Nak07,
4.6]. So we can ignore them in the case g(5, B) > 2.

Proof. (1) Our condition for the integrality of B means that all components
of Ej; of multiplicity 1 must be contracted by a: M — S. They are all P'’s
with B2 < —2.

(2) We then go through the short list of subschemes with multp(ANE;) <
2, eliminating those that lead to (—1)-curves I" with multg,, (I') = 1. For
example, the case A = (z,y) C E = (y?) is eliminated. O

Nakayama defined fundamental triplets (X, E, A) (without “quasi”) in or-
der to obtain uniqueness for them, in most cases. We pick a different nor-
malization: we pick (X, E) to correspond to one of the pure shapes and all
connected components of A to be of type (/).

Theorem 4.8. Let (S, B) be a log del Pezzo surface with boundary (S, B)
of index < 2 of genus g(S, B) > 2. Then it is one of the following shapes or
is obtained from them by any allowable primings as in Theorem 3.18.

(1) Doy, Dan, D3, 1, Asn_1, Agy o, A, 4 for 2n > 6.
(2) By, “E:, Ey.
() By, Eg.

Proof. We go through the complete list [Nak07, 4.7(2)] of fundamental
triplets and see that they are as above.

Case [n;2,e]s forn >0, e < max(4,n+1) with multy F < 2 for any £ < F.
This means that X =F,, and F = 20 + F, where F ~ el is a sum of several
fibers, each with multiplicity < 2, and ANo = (). We have L ~ 20+ (4—e)¢
and Lo =4 —e.

If e = 0 then A = (). This is E2n+8, o we obtain Da,, for 2m > 8.
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If e = 1 then we must have A = (-), that is two disjoint copies of (-)
contained in a fiber F, or (—); which is a degeneration of it. Let us use
the extended notation [n;2,0; -], resp. [n;2,0;—1] by writing A at the end.
Note that we must apply (-) twice, otherwise F is a (—1)-curve in Ey; with
multiplicity 1, which is not allowed by Theorem 4.6.

Contracting one of the (—1)-curves back and then F;, we can view this as
the quasi fundamental triplet [n — 1;2,0;/], which is Eén 16 Thus, we get
l~)§m for 2m > 6.

In the degenerate case A = (—); of (), the direction of the “prime” coin-
cides with the direction of the fiber £ on F,,_; for the triplet [n —1;2,0;/]. In
that case the strict preimage of this fiber gives an extra (—2)-curve, and the
surface Y acquires an extra A; singularity outside of B.

If e = 2 and F = {; 4 {5 then we get [n—2;2,0; /] this way, which is D%, 4.
Since n > 1, we get 5’2'm for 2m > 6. Similarly when e = 3,4 and F is the
sum of e distinct fibers, we get DY/ and DJ” for 2m > 6. Similar to the
above, for every priming the preimage of the corresponding fiber ¢ gives an
(—2)-curve which gives an additional singularity of Y.

Now consider the case when e = 2 and F' = 2/ is a double fiber. If A =
then this is Dap44, i.e. Doy, for 2m > 6. For A = —, 7,11, + we get D5, 1,
D)., Dy D3 | for 2m > 6. Adding single fibers to F, i.e. F'=2(+{; or
20 + 01 + {5, gives priming on the left side, which produces all the cases ‘D’
and "D? for 2m > 6.

Finally, e = 4, F = 2/1 +205 and A = ) gives Ag,,_1. Adding A = —, 1,11, +
adds corresponding decorations in the A case, with each —, + decreasing the
index by 1.

Case [1;2,2]a00: Y =F1, E =204, and A = (. This is D.

Case [2]2 with multp(ANL) < 2 for any P € £: Y = P2 E = 2 and
L = O(4). For A = 0, this is E7. For A = (=), resp. (——), this is “Er,
“Eg . Considering various other possibilities for A leads to all the allowable
primings of E7, "B, "Ej.

Case [2;1,2]a4 with multp(ANE) <2 forany P€L:Y =Fq, E =0+ 2,
deg(AN¥¢) <3 and ANo =0. For A =0 this is ES_, and for A = (—) this is
“Eg . Considering various other possibilities for A leads to all the allowable
primings of Eg and "Eg .

Case [0;2,1]o. This is a typo, this is a klt case so it does not appear. O

4C. Ky + Ly is nef and g = 1. In this case the main result of [Nak07]
is (3.12) which says that S must be a Gorenstein log del Pezzo surface and
2B ~ —Kg. To apply it in our case, we would have to find all Gorenstein
del Pezzo surfaces with Du Val singularities and Kg divisible by 2 as a Weil
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divisor — of which there are many — and then consider all the possibilities for
B.

Instead, we adopt a different strategy. Let us define a weak basic pair
with the same definition as a basic pair but dropping the condition (C2) that
2g — 2 > 0. Similarly, we define a weak quasi fundamental triplet (X, E,A)
by asking that X in (F1) is merely a weak minimal basic pair. Then:

(1) Tt is still true that Kps + Ly is nef for any weak basic pair obtained
by eliminating a 0-dimensional scheme of a weak fundamental triple
(X, E,A): the corresponding proofs in [Nak07, 4.2, 3.14 nefness] go
through.

(2) We have additional conditions Ky + Ly = Ky + Epyr = 0 by [Nak07,
3.12].

(3) Our Theorem 4.6 still holds.

(4) We have to check separately that Ly is big, this condition is no longer
automatic. However, this is easy to do: L?/2 drops by deg(A)/2, i.e.
by 1 under the operations (/), (—)1, (—), and by 2 under ().

Lemma 4.9. The weak fundamental triplets for strictly lc pairs (S, B) are:

(1) X =P2%, E =201 + (.

(2) X =Fy, and (a) E =20+ 2, (b) E =20+ 4, + {3, (¢c) E=2D,
D~o+ 4.

(3) X =Fy, and (a) E =20+ 20, + {3, (b)) E =20 + {1 + {2+ {3,

(¢c) E=0+00+2¢ (d) E=204 +¥.

(4) X :IFQ, and (CL) E: 20’+2€1 +2£2, (b) E:20'+2€1 +£2+€3,

(c) E=20+1+ly+ L3+ 4y, (d) E=0+20+ 0w, (¢) E =204.

Proof. Immediate: X = P? or F,, L = —Kx must be nef, and F =
—2Kx — L must have at least one component of multiplicity 2. We simply
list the possibilities. O

Theorem 4.10. Let (S, B) be a log del Pezzo surface with boundary (S, B)
of index < 2 of genus g(S,B) = 1. Then it is one of one of the shapes 54,
Dy, Az, A5, “A7, oris obtained from one of them by any allowable primings
as in Theorem 3.18.

Proof. The pairs of Lemma 4.9 in which all components of E have multi-
plicity 2 already appear in our classification: (2a) Dy, (2¢) Dy, (4a) As, (4e)
degenerate case of 54. Our first step is to reduce all other cases to them.

Let us begin with case (1). The line ¢3 must be blown up at least once by
Theorem 4.6(1). Thus, we are reduced to case (2).

Now consider for example case (2b). The fiber £; must be blown up at
least once, again by Theorem 4.6(1). Let 7: X’ — X be the first blowup at a
point P € E and let Ey be the exceptional (—1)-curve. We have Kx/ + E’ =
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T(Kx + FE)=0. If P=1/{;No then Ey appears in E’ with coefficient 2,
otherwise it appears with coefficient 0; either way it is even. Let X’ — X" be
the contraction of the strict preimage of ¢1, which is a (—1)-curve on X’. We
obtain another minimal model M — X" for M which has fewer components
of multiplicity 1 in FE.

This way, we reduce all cases to the purely even cases above except cases
(3¢c) and (4d). Consider now (3c). The curve o has to be blown up at least
once. Blowing up and contracting the strict preimage of a fiber reduces to the
case (3a) which was already considered. The case (4d) reduces to (3c) and
then to (3a).

So now we are reduced to the pairs of shapes Dy, As, D, and the pairs
obtained from them by eliminating 0-dimensional subschemes A. The condi-
tions of Theorem 4.6(2) hold, so the connected components of A have types
(1), (=), (+). In the cases Dy, A3 we also have deg(AN E;) <2 fori=1,2.
In all three cases, deg(A) < 6 by the condition L3, > 0.

So let us now begin with D4 and consider different possibilities for A. If
one or two components of A are (—) then we get respectively Dy = A% and
“D; = ~Aj. If the components are (4) then we get respectively D = A% and
Dy = "A;. When the components of A are (/), we get the usual primings.

For Dy, A = () gives D} and A = (——) gives 'A}, with other combina-
tions of (=), (+), () giving primings of those. For Aj, it is easier: A = (—),
(—,—), (+) etc. gives the usual A, , “A], A3 and adding (/)’s gives the usual
primings. 0

This completes the proof of Theorem A. We now switch back from the
notation of [Nak07] to our notation 7: (X, D + €R) — (V,C + :<B).

5. Moduli of ADE pairs

5A. Two-dimensional projections of ADFE lattices. Here, we fix the
notations from representation theory and prove a number of basic results that
will be used in the remainder of the paper.

Notation 5.1. A will denote one of the root lattices A,,, D,, E,, and
A* D A its dual, the weight lattice. One has A* = @ ;Za; and A* =
@;_Zw;, where «; are the simple roots and w; the fundamental weights
(same as fundamental coweights). One has (o, @;) = 0.

Notation 5.2. We label the nodes of the Dynkin diagrams as in Figs. 1,
2, 3. For example, for the Fg diagram we denote the nodes by p”, pl, ph,
Po, - - -,ps4. For the D,, diagram they are p”, pi = ', po,...,Pn—3. We use the
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same notation to denote the roots and fundamental weights, i.e. we call them
o’ o) = d, ete.

In addition, for each of the polytopes P in Figs. 1, 2, 3 we have the special
vertex p, and two vertices py, p,, which are the end points of the left and right
sides. For example, for the Eg diagram one has p, = p4 and p, = ps, and for
D,, they are py = ph and p, = pn—a.

Definition 5.3. We define the extended weight lattice as A* @ Z2, and we
denote the basis of Z? by {w;, @, }.

Lemma 5.4. For pure ADE shapes, the rule w; — p; — px defines a
homomorphism

b: N © Ty ® Zoo, 25 72
The projection w1 : N* & Zwy ® Zw, — N* identifies ker ¢ with A. The ho-
momorphism ¢ is surjective for D, E shapes, and one has coker ¢ = Zs for A
shapes.

Proof. Any root o can be expressed as o = ) (o, w) with the sum going

over the n fundamental weights . In particular, if p;_1, p;, p;11 are three
consecutive nodes in a chain then

[
(5.1) o = 2w — Wi—1 — Wiyl — 2P; — Pic1 — Pit1 =0
For an end node p; next to p, one has
[
(5.2) Q — @y = 2wW; — Wi—1 — W —> 2p; —Pi—1 —Pr =0

and similarly for the node next to p,. For a node pg occurring at a corner of
the polytope, one has

(5.3) a0:2w0—w1—w’1—w”£>2po—p1—p’1—p”+p*:0

Thus, A = («) C ker ¢, and it is easy to see that the equality holds. O

Recall that the finite group A* /A is Z,, 41 for A,,, Z3 for Doy, Z4 for Dy, 1,
and Zs, Zs, 0 for Eg, Er, Eg respectively.

Corollary 5.5. Z2/{py — p«,pr — p«) is equal to A* /A for the pure D and
E shapes, and (A*/A) ® Zy for the pure A shapes.

Lemma 5.6. For primed ADE shapes which admit a toric description (see
Subsection 3D) the rule w — p — p. defines a homomorphism ¢: A* ® Zw, B
Lo, 2 72, The projection mwy: A* ® Zwoy ® Zw, — N* identifies ker ¢ with
A C N C A* given below

shape AN'/A  generators
Q42n— 1 i’42_7172 0
IA/27L—1 ZQ Wn

D), for n even, resp. odd Zs @' resp. @'
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Proof. For the corner node py in Ag,_1, A5, 5 one uses the corner rela-
tion (5.3) with @’ replaced by wy, and similarly for D},. Additionally: for
‘A, one has w,, — wy — w, 2, 0, and for Dy, one has ¢(w, + |5 |we) =
¢(w'), resp. = ¢(w”). See Fig. 8 for the node notations. O

5B. Moduli of ADFE pairs of pure shapes. In this subsection we prove
the first part of Theorem B. Recall that in Section 3 we associated to each
ADE pair (Y,C+1££B) an ADEF root lattice. We use the notation introduced
in Section 5A.

Definition 5.7. We define the tori 7o = Hom(A, C*) and Th~ = Hom(A*, C*)
both isomorphic to (C*)™. We also define a finite multiplicative group pa =
Hom(A*/A,C*). Thus, pip = ptny1 for A,, p2 for Doy, py for Do, 1, and it
is us, pe, 1 for Eg, Er, Fg respectively.

Warning 5.8. The theorem below is for pairs in which we distinguish the
two sides Cy and Cy. The moduli stack for the pairs with a single C' is the
Zs-quotient for the shapes with the left / right symmetry, and is the same for
the nonsymmetric shapes.

Theorem 5.9. The moduli stack of ADE pairs of a fixed pure ADE shape
18

[Hom(A*,C) : pup X po] = [Ta : W X pa]  for A shapes
[Hom(A*,C) : pp] = [Ta : W4] for D and E shapes.

Remark 5.10. The first presentation is convenient for finding automor-
phism groups. In particular, the maximal automorphism group that a pair
can have is up X uo for A shapes and up for D and E shapes. The second
form is convenient for compactifications, which in Section 6 are shown to be
quotients of toric varieties by Weyl groups.

Proof. We first note that the pair (Y,C + %B) is log canonical near the
boundary C' iff the divisor B intersects C' transversally. Vice versa, with this
condition satisfied the pair (Y,C + %B) for 0 < € <« 1 is automatically
log canonical. Otherwise, the pair (Y,C + %B) is not log canonical. But
by [Sho92, 6.9] the non-klt locus must be connected, with a single exception
when it may have two components, both of them simple, i.e. on a resolution
each should give a unique curve with discrepancy —1. For an ADFE surface
the curve C' = C + C5 is connected with two irreducible components, so they
are not simple. (We thank V.V. Shokurov for this argument.)

Each of the ADFE shapes is toric, and the polarized toric variety (Y, L)
corresponds to a lattice polytope P as in Figs. 1, 2, 3. However, C = C; + (s
gives only part of the toric boundary. Fixing the torus structure is equivalent
to making a choice for the remainder of the torus boundary: one curve for
the A shapes and two curves for the D, E shapes. With this choice made
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(Y, L) is a polarized toric surface, and the equation of B is f € H°(Y,L) =
Bmezznp Ce™, where e = zkyl,

For the A shapes the remaining toric boundary has the equation 3% €
HO(Y,L). All the other choices for the toric boundary differ by the transfor-
mation y — y + a(x). Completing the square we can make the coefficients of
the monomials yz? in f all zero. By rescaling z — ax, ¥y — Sy we can put
the equation f in the form given in Table 5. In this table, A’ denotes either
A, or A depending on the parity of n, and similarly for D, E.

TABLE 5. Normal forms for the equation f = fyary + fayn Of
divisor B

shape  fhary fayn

ALy 414 gt x4+ ...+ cpz”

A (I 42"t p(eew + ..+ cppia?)

D! 2?2+ 4+ a2 aytdyteotart.. tepzr" T

Bl 2?4+ 42 laytdy ey e tart . gt

For the D and FE shapes the remaining toric boundary has the equation
(ry)? € HO(Y,L). All other choices for the toric boundary differ by the
transformations = — = + a, y — y + b(z), with degb(z) < §(n — 3) for D,
and degb(z) < 3(n —4) for E,; and then rescaling = and y. Using such
transformations, one can put the equation f in the form given in Table 5 in
an essentially unique way .

The only remaining choice is the normalization of fi,q4ry, which is unique up
to the action of Hom(Z?2/{py — p«, pr — s ), C*), equal to uys by Corollary 5.5.
The end result is a normal form, given in Table 5, which is unique up to pa.
This gives the stack [A™ : pa]. Finally, in the A shapes every pair has an
additional po automorphism y — —y. This gives the first presentation of the
moduli stack, as a pp X pe, resp. pa quotient of A”.

It is a well known and easy to prove fact that the ring of invariants C[A*]"a
is the polynomial ring C[x1,...,Xxn), where x; = x(w;) are the characters
of the fundamental weights ([Bou05, Ch.8, §7, Thm.2]). In other words,
Ta+ /Wy = A™, with the coordinates y;. The pp-actions on Th~ and A™
are given by the compatible (A*/A)-gradings; thus they commute with the
W-action. The pp action on Ty« is free, and Tx«/up = Tx. Thus

(A" pa] = [(Tas = W) pa] = [(Tax  pa) = W] = [Ta : W1,

giving the second presentation. For the A shapes the additional ps action
commutes with both us and W. O
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5C. Moduli of ADFE pairs of toric primed shapes. We state the
theorem analogous to Theorem 5.9 for the primed ADE shapes which admit
a toric description (see Section 3D). It can be proved analogously to the
theorem above, using Lemma 5.6, or can be seen as an immediate consequence
of Theorem 5.12.

Theorem 5.11. The moduli stack of ADE pairs of a fixed toric primed
shape is

[Hom(A*,C) : pp/] = [Tar : W], where Tar = Hom(A',C*),

puar = Hom(A*/A',C*), and the lattice A C A" C A* is given in Lemma 5.6.
5D. Moduli of ADE pairs of all primed shapes. In this subsection
we find the moduli stack for all primed shapes, including those which do not
admit a toric description, and in doing so complete the proof of Theorem B.
We still mark the sides as left and right, even if some or all of the boundary
curves are contracted.
Theorem 5.12. The moduli stack of pairs of a fixed primed shape is

[HOIH(A*7(C) Dupar X WO] = [TA/ : WA X Wo],
where ppr = Hom(A*/A',C*) and the lattice A C A" C A* is as follows:

shape AN/A generators
! TA—
Asp_1,45, 5 0
A7
A2n71 Zg TWn
D, for n even, resp. odd Zs @’ resp. w'”

2n g
! mM—
'Day,, resp. 'Dy, 4 Zio Won—3, TESP. Wan_4
D}, for n even, resp. odd 7o X Loy wap—3,0 , T€SP. Wap—_3,w"
-1/

E7 Zg w3

For shapes 'S and S the lattices A’ are the same as for the unprimed shape
S, and similarly for TS resp. St and the unprimed shapes —S resp. S~. The
additional Weyl group Wy is the one given in Theorem 3.32, and its action is
described in Theorem 5.183.

Proof. The pair (?/,6/1 —}—6/2 + 1'2"65/) is obtained from a pair (Y, C; +Cy+
#B) of pure shape by blowing up several points P; € BN C' at the ideals I;
with directions equal to the tangent directions of B, and then contracting by
the semiample line bundle L’. This construction works for the entire family
over A = Hom(A*,C): we blow up sections and it is easy to see that the
sheaf £’ in the family is relatively semiample.

When priming on a short side, or priming twice on a long side, there are
no choices for [] ;. The only 2:1 choice is when there is a long side Cs and
we prime only at one of the two points in B N Cs. Secondly, as stated in
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Theorem 3.32, for some shapes of genus 1 there is more than one precursor.
These choices define an additional quotient by Wj. 0

5E. Definitions of the naive ADFE families. For the toric ADFE shapes
A, ’A, D and E we define explicit modular families of ADFE pairs over the torus
Tr~. We call these the naive families. Blowing up the sections corresponding
to the points in C'N B, we obtain the naive families for all the primed ADFE
shapes.

For the A -shapes, where A’ is either A,, or A;, depending upon the parity
of n, we take the equation of Table 5 with ¢; = x; = x(@;), the characters
of the fundamental weights, and with y* rescaled to —(%)?, which will be
convenient when we come to discuss degenerations.

We recall that the A, root lattice is (e; — e;) C Z"*! and the dual weight
lattice is AY = (f;), where f; = e; —p, p = n%‘_l > €4, so that Z?Ill i = 0.
Thus, C[A*] = C[tT,... ,tfﬂ]/(n ty — 1) and C[A] = Clt;/t;], with t; = efi.
The first torus is Ta« = {[]t; = 1} € (C*)"*L, and the second one is Ty =
(C*)"*+1/diag C*. One has T = Tx~/tins1-

The Weyl group is S,41, and the characters of the fundamental weights
are the symmetric polynomials x; = o;(¢;). Therefore, the defining equation
of the naive family is

2 ntl 2
(5.4) A”: f:—(%) +H(m+ti):—<%) 14 x4 X" T
i=1

For A shapes we number the nodes 2,...,n + 1 (cf. Fig. 1) and the
equation is as follows, where X = 0;-1(t;):

(5.5)
n+1

. 2 2
_A;l f=- (%) +x H(x+ti) = — (%) +x (1 +x2r+ .. X1 + x"'H) .
i=1

For the toric shapes with one corner, i.e. D!, “E’ and ‘A’ (here again
the ? is either no decoration or a —, depending upon the parity), we make
the following change of coordinates. We begin with the affine equation of a
double cover X — Y of the form

F(x,y,2) = —ayz + 22 + "z + p(x) + q(y) = 0.
Introducing the variable w = z — 1 (zy — ¢’), the equation becomes

Ty — o
2

2
w? + f(z,y) =0, flz,y) = — ( ) +p(z) +q(y)
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with the same p(z), ¢(y). Thus, the affine equation of the branch curve B is
f(z,y), which we accept as our main equation. Explicitly, the families are:

" 2
(5.6) A% f = — (mygc ) +ytcoterrt o epox 24t

1 2
(5.7) D:l = — (my;c ) +y2 +c/1y+00 +clx+~--+cn,3x”_3+xn_2
8—E?. —— zy—c”’ 2 3 /.2 / n—4 n—3
(5.8YE,: f 5 +ydthyP+cdyteot o topar" i+

In all of these families we take the coefficients to be ¢ = x(w), the fundamental
characters, i.e. the characters of the fundamental weights corresponding to
the n nodes of the Dynkin diagram, using our Notation 5.2.

5F. Action of the extra Weyl group Wy. When a pure shaped pre-
cursor is not uniquely determined, as in Theorem 3.32, there is an additional
Weyl group Wy acting on the pure shape moduli torus Th,. We divide by it
in Theorem 5.12.

Theorem 5.13. The Weyl group Wy of Theorem 3.32 acts on Th: as
follows:

(1) Genus > 1. For 'D}, and 'D}, _, shapes, Wy = W(A;) = So acts by
an automorphism of the D-lattice switching the two short legs p' and
p". For "D}, and "D}, . shapes, one has Wy = W(A?) = S2. The
first So acts by switching the two short legs p' and p”'. The second S
gives an additional Sy automorphism of the pair (Y,C + %B)

(2) Genus 1. For the following shapes the action is as in (1) under the
identifications: Ay = 'Dy, 'AY = "D, D}y = 'Dy, D} = "Dy. For D)
the group Wy = W(As2) = Ss acts by permuting the three legs of the
Dy diagram. For 'DJ, one has Wy = W (A3) = Sy = S5 x S3. Here,
Ss acts by permuting the legs and S3 gives an extra automorphism
group of the pair (Y,C + %B)

Proof. (1) From the equation (5.7) of the D-family we see that the side C;
is defined by (yo : y1) = (0 : 1), where y = ZTI) There are two points x = +2 on
C1 at which one can prime. For x = 2, consider the map ¢4 : y — C;j';/ -,
x +— x. It is easy to check that the equation (5.7) maps to the same equation
but with ¢’ and ¢ switched. The map o, is a rational map for a surface

of D? shape but it becomes regular on the blowup, a surface of ‘D’ shape.

1 ’
Cc —cC

Similarly, for priming at = —2 the map ¢_: y — <5 +y works the same
way. The composition ¢_ o p.: y+— c;;; + C;i'g/ —y, x — x exchanges the

two branches of the curve B, a two-section of the P!-fibration. For surfaces
Y of D? and 'D” shapes this is a rational involution. It becomes a regular
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involution of a surface of /D’ shape, where B is disconnected from C;. Case
(2) is checked similarly. O

Definition 5.14. Let Wyg C Wy be the subgroup which acts trivially on
the the points of Ty, giving extra automorphisms of the pairs.

Corollary 5.15. The group Wy /Woyo acts by diagram automorphisms of
the decorated Dynkin diagram, permuting the short legs, all of them white
circled wertices: for 'D5., ‘D51, "D5. . "D5 ., 'AL A4 it is two legs, and
for 'Djy, 'DJ three legs, cf. Fig. 6.

6. Compactifications of moduli of ADE pairs

6A. Stable pairs in general and stable ADE pairs. We recall some
standard definitions from the theory of moduli of stable pairs. We note in
particular a close relationship between the contents of this subsection and
work of Hacking [Hac04a, Hac04b], who studied similar ideas in the context
of moduli of plane curves.

Definition 6.1. A pair (X,B = > b;B;) consisting of a reduced variety
and a Q-divisor is semi log canonical (slc) if X is Sa, has at worst double
crossings in codimension 1, and for the normalization v: X” — X writing

v*(Kx + B) = Kxv + B,

the pair (X”, B¥) is log canonical. Here BY = D + > b;v~!(B;) and D is the
double locus.

Definition 6.2. A pair (X, B) consisting of a connected projective variety
X and a Q-divisor B is stable if

(1) (X, B) has slc singularities, in particular Kx + B is Q-Cartier.
(2) The Q-divisor Kx + B is ample.

Next we introduce the objects that we are interested in here: We could
work equivalently with the pairs (Y,C + %B) or with their double covers
(X, D + eR). We choose the former.

Definition 6.3. For a fixed degree e € N a fixed rational number 0 < € <1,
a stable del Pezzo pair of type (e, €) is a pair (Y,C + %B) such that

(1) 2(Kx +C)+B~0
(2) The divisor B is an ample Cartier divisor of degree B? = e.
(3) (Y,C + L££B) is stable in the sense of Definition 6.2.

Definition 6.4. A family of stable del Pezzo pairs of type (e, €) is a flat
morphism f: (V,C + F<B) — S such that w%?S(C)** ~ Oy locally on S,
the divisor B is a relative Cartier divisor, such that every fiber is a stable del
Pezzo pair of type (e, e). We will denote by /\/lfilg(e, €) its moduli stack.
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Proposition 6.5. For a fized degree e there exists an €p(e) > 0 such that
for any 0 < € < € the moduli stacks M®'(e,eq) and M(e,€) coincide.
The stack M®'°(e,€y) is a Deligne-Mumford stack of finite type with a coarse
moduli space M®'°(e, ey) which is a separated algebraic space.

Proof. For a fixed surface Y, there exists an 0 < ¢y < 1 such that the
pair (Y,C + %B) is slc iff B does not contain any centers of log canonical
singularities of (Y, C + %B): images of the divisors with codiscrepancy b; = 1
on a log resolution of singularities Z — Y* — Y. There are finitely many
of such centers. Then for any € < ¢, the pair (Y,C + 1JFTE"B) is slc iff
(Y,C + 1< B) is. Now since B is ample Cartier of a fixed degree, the family

2
of the pairs is bounded, and the number €y with this property can be chosen

universally.

We refer to [KSB88, Koll5], [Ale06] for the existence and projectivity of
the moduli space of stable pairs (X, > b;B;). There are complications arising
in the construction when some coefficients b; < % and when the divisor B is
not Q-Cartier, all of which are not present in this situation. 0

Definition 6.6. For a fixed ADE shape, we denote by M5, ., the closure
of the moduli space of ADFE pairs of this shape in Mjlﬁ(e, €o) for e = B2, with
the reduced scheme structure.

In this Section will show that M3S, ; is proper and that in fact the stable
limits of ADFE pairs are of a very special kind: they are stable ADE pairs.
We will also show that the normalization of M3S,, is an explicit projective
toric variety for a generalized Coxeter fan.

Definition 6.7. A stable ADE pair is a stable del Pezzo pair (Y, C+ 1'{6 B)
such that its normalization is a union of ADE pairs (Y}, C + < BY).

Theorem 6.8. For a stable ADE pair the irreducible components are of

two kinds:

(1) normal, i.e. v: Y} =5 Yy, or

(2) folded: the morphism v: Y} — Yy is an isomorphism outside of C,
and is a double cover P* — P' on one or two sides C} , — Cys,
s = 1,2. In this case, the side C} . is necessarily a long side of the
ADE pair.

Proof. The normalization of a stable pair is an isomorphism outside of the
double locus and is 2:1 on the double locus, so these are the two possibilities.
The side must be long because v* By, - Ollc/,s =2By - Cisisevenand > 2. O

Definition 6.9. We will call the surfaces of type (2) in the above theorem
the folded shapes. We denote a fold by adding the f superscript to the corre-
sponding long side, e.g. Agnfl, Mgnfl, 71§n, §4£n71. We define the decorated
Dynkin diagrams for these shapes by double circling the corresponding end
(unfilled) node. We do not draw any pictures for these here.
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Next, we extend the naive families of ADFE pairs, defined in section 5E,
to families of stable pairs over a projective toric variety corresponding to the
Coxeter fan. We start with the A,, case.

6B. Compactifications of the naive families for the A shapes. Re-
call that Ty~ = Spec C[A*]. We define the following elements of the homoge-
neous ring C[A*][z, y][£], with the grading defined by deg& = 1.

Definition 6.10. In the A’ shape, where the ? denotes either no dec-
oration or a — depending upon the parity of n, for each node pi,...,p,
of the Dynkin diagram we introduce a degree 2 element u; = e®iz’ - £2,
where e®i € C[A*] is the monomial corresponding to the fundamental weight
w; € A*. In addition, we introduce the degree 2 elements ug = 1 - £? and
Upp1 = "L €2, corresponding to the left and right nodes p; = po and
Pr = DPnt1, and u, = y? - £2 corresponding to the vertex p,. Similarly, in the
74; shape we define the elements uq,..., Uy and wu,.

Because even the simplest ADE surface of Aj-shape is a weighted projec-
tive space IP(1,1,2), it is convenient to introduce some square roots.

Definition 6.11. For the even nodes py; we introduce the degree 1 ele-
ments of the ring R[¢]: vy; = e™2/22% - € and v, = y - £. Thus, v3; = ug; and
02 = u,.

We recall that in the naive families (5.4), (5.5) we take the coefficients
¢; = Xi, the fundamental characters. As in Section 5A, let «; be the simple
roots.

Definition 6.12. Set a; = e~ for all 4, and for odd indices set by 11 =
e~2i+1/2_ Finally, define normalized coefficients ¢; = e~ ®ic;.

It is well known that for any dominant weight A € A* the character () €
C[A*] is a W-invariant Laurent polynomial whose highest weight is A and
the other weights are of the form g = X\ — > n;a; for some n; > 0. Thus, ¢
are polynomials in a;’s, and ¢, = 1 + (higher terms in a;).

With these notations, we consider the equation f of the naive family (5.4)
to be the following homogeneous degree 2 element in C[A*][z,y][¢] (similarly
for A?):

Ux

2
(6.1) f=- (5) +ug + Crug + ...+ Cutty + Upy1 € C[AY][,y] - €2

For the construction of the family one might as well work with the ring
C[2A*] but we will use the minimal choice for clarity.

Definition 6.13. Let M be the lattice obtained by adjoining to A* the
vectors wy; /2 and agi+1/2 for all &. Let M = M N Y R>o(—«;) and R =
C[M™]. Thus, Spec R is a normal affine toric variety which is a ud-cover of
A™ = Spec C[a;] for some N.
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Definition 6.14 (Compactified naive families for the A?, A’ shapes).
Let S be the graded subring of R[z,y][£] generated by ve;, ug;t1, and v,. The
compactified naive family is Y := ProjS — Spec R with a relative Cartier
divisor B = (f), f € H°(O(2)). We note that since the subring S? is
generated in degree 1, the sheaf Opyj 5(2) is invertible and ample.

Example 6.15. For the A; shape, the A; root lattice has C[A*] = C[tE, t£]/(t1t2—
1) = C[t*], with t = e*/2. The family is Proj S — A' = SpecC[b;], where
S = Rlv.,vg,u1,v1]/(vova — bruy). One has y; =t +t~1 =#(1+b}), and the
equation of the divisor B is

F= (%)t B 40}
Setting by = 0 gives the degenerate fiber P(1,1,2) UP(1, 1,2) with the coor-
dinates v, vg, U1, TeSp. U, Vs, u1, glued along a P! with the coordinate u;.
The restriction of f to P(v., v, u1) is v2 + vZ + uy, and for P(v., ve,u1) it is
v2 +v3 + uy. Thus, the degenerate fiber is a union of two ADE pairs A, Ao
glued along a short side.

For the A shape the family is Proj S — A! = SpecC[a1], where S =
R[uy,ve,us)/(ujuz — a1v3), and the equation of the divisor is

2
f = — <%k> +u; + (1+a2)v§+u2.
Setting a; = 0 gives the degenerate fiber P(1,1,2)UP(1,1,2) with the coordi-
nates v, Vg, U1, Tesp. Uy, Vg, u3, which is the union of two ADE pairs AgAy
glued along a long side, a P! with the coordinate vs.

The general case is essentially a generalization of this simple example. The
degenerations of pairs for the slightly more complicated A5 shape are illus-
trated in Fig. 12.

Y N L L

N N N N

o o o

Po P1 P2 P3

D«

FIGURE 12. A5 and its degenerations: A, Ay, 414, and Ay ApA,

Definition 6.16. The Coxeter fan for a root lattice A is the fan on Ap = Ay
obtained by cutting this vector space by the mirrors a- to the roots a. Its
maximal cones are chambers, the translates of the positive chamber under
the action of the Weyl group Wx. We denote by V7™ the torus embedding of
Ty = Hom(M, C*) for the Coxeter fan of A,,.
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Lemma 6.17. The following relations hold:

(1) (Primary) vo;vaire = bojp1tsit1 and ug;—1usiy1 = ag;v5;.
(2) (Secondary) ugi—1usji1 = v%ivgj A, Voi_oUgjy = vgiugj -bo;_1 A, and
V2;—2V2542 = V2;V2j5 * bgi_lsz_;,_lA, where A = HiJ:Qi ag .
Proof. An easy direct check using equations (5.1), (5.2). O

Theorem 6.18. The compactified family ) = ProjS — Spec R of shape
A? or TA? is flat. The degenerate fibers are over the subsets given by setting
some a;’s to zero. Every fiber of this family is a stable ADE pair which is
a union of ADE pairs of shapes obtained by subdividing the A’ resp. A’
polytope into integral subpolytopes of smaller A shapes by intervals from the
vertex p, to the points p; for which one has a; = 0.

The W -translates of this family glue into a flat Wy -invariant family (¥, C+

%B) — VX of stable ADE pairs.

Proof. Let t € Spec R be a closed point and ); be a fiber over ¢. Suppose
that some ag(t) = 0 or bi(t) = 0. The relations of Lemma 6.17 imply that
any two (u or v) variables with indices ¢ < k and j > k multiply to give zero.
On the other hand, the product of two variables with indices 4, j for which the
coordinates with ¢ < k < j satisfy ag(¢), bx(t) # 0, is a nonzero monomial.

Let P be the polytope corresponding to the shape A, resp. “A’. The
above equations define a stable toric variety Z = UZ for the polyhedral
decomposition P = UP; obtained by cutting P by the intervals from the
vertex p, to the points py for each k with ap = 0 or by = 0, cf. [Ale02]. In
other words, Z is a reduced seminormal variety which is a union of projective
toric varieties, glued along torus orbits.

The fiber ) is a closed subscheme of Z. But the Hilbert polynomial of
Z with respect to O(2) is the same as for a general fiber, a projective toric
variety for the polytope P. By the semicontinuity of Hilbert polynomials in
families, )y = Z. Since the base Ty~ is reduced, the constancy of the Hilbert
polynomial implies that the family is flat.

The equation f restricts on each irreducible component to the naive equa-
tion of an ADE pair for a smaller A shape by Lemma 6.19.

The Wy-translates of this family automatically glue into a Wj-invariant
family over a torus embedding of T for the Coxeter fan of A,, because the u,v
variables map to the corresponding variables for a different choice of positive
roots, and the equation f is W-invariant. Flatness is a local condition, so it
holds. g

Lemma 6.19. Let A be a an irreducible ADE root lattice with Dynkin
diagram A and Weyl group W = (w, | o € A). Let B € A be a simple
root, and A’ be the lattice (not necessarily irreducible) corresponding to A’ =
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AN\ B, with Weyl group W' = (w, | a # B). Let v be the natural restriction
homomorphism

rikle™® a€ Al = kle™*, a e A, e P50, e e @ fora#f.

Then for the normalized fundamental character X, = ¢~ %xx, corresponding
to a simple root o one has

r(Xa) =

Xa fora#p

Proof. Consider a dominant weight p € A*. We first make an elementary

{1 fora=p

observation about the weight diagram of the highest weight representation
V(u). The weight diagram is obtained by starting with the highest weight
=Y mywy and subtracting simple roots ay if the corresponding coordinate
m of u is positive. Thus, for ;1 = wg the first and only move down is to the
weight ;1 — 3. This says that X(ws) = 1+e~7(...). Therefore, r(X(wp)) = 1.

For o # (3, the moves down in the weight diagram of V(w,) not involving
B are the same as the moves in the Dynkin diagram A\ . So the mono-
mials appearing in r()?(wa)) for the Dynkin diagram A and the monomials
appearing in X(w,) for the Dynkin diagram A \ 3 are the same.

We have to show that the coefficients of these monomials are also the same.
This follows from the Weyl character formula

w(A+p)
Luew (W) , where p = Z w@.

x(A) =
ZwEW E(M)ew(p) well

Isolating the terms e on the top and the bottom where the linear function
(8, 1) takes the maximum, and setting other terms to zero gives the same
Weyl Character formula expression for the Weyl group W’. This concludes
the proof. O

Remark 6.20. The construction of the family of curve pairs over the
Losev-Manin space for A,, follows from this by an easy simplification: the two-
dimensional polytope is replaced by [0,n + 1] and there are only u; variables,
all of degree 1.

6C. Compactifications of the naive families for the A, D, FE
shapes. Before stating the general result, we begin with an elementary ex-
ample.

Example 6.21. An ADF surface (Y,C = C; + C5) of shape Dy is Y =
P' x P!, with C; = s, Cy = f a section and a fiber. In an ADFE pair
(Y,C + <B), the divisor B is in the linear system |2s+2f|. There are three
obvious toric degenerations corresponding to removing the nodes p}, po, p1
in the Dynkin diagram, shown in the middle three pictures of Figure 13. In
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, D«
Y2 .
p
v °'@ @ o
/.
Po P1 P2

FIGURE 13. D, and its degenerations Ay As, A1 A1, A% Ay, As

the degeneration corresponding to p} we get a 3-dimensional family of stable
ADE pairs with two components corresponding to Ay As. By symmetry, we
get AL Ay surfaces for the node p;.

The toric degeneration for the node pg is already somewhat unusual. Here
P! x P! degenerates to P?UP?, and the stable ADE pairs of shape A; A; form
only a 2-dimensional family, so some moduli are lost.

Additionally, there is an obvious nontoric degeneration of P! x P! to a
quadratic cone P(1,1,2), with the limits of C7, Cs passing through the vertex,
and B a double section. These are pairs of shape A3 forming a 3-dimensional
family.

Definition 6.22. In the A’ D! “E’
decoration or a — depending upon the parity of n, we introduce the following
elements of the homogeneous ring C[A*][z, y][¢]:

wp= et € vy = ™Al = ey € u, = ey g

shapes, where 7 denotes either no

We also have the u variables for the left and right sides py, p, and, when these
are even, their square roots, the v variables. Additionally, we define a special
non-monomial variable v, = (zy — ¢”) - € of degree 1.

As before, the coefficients ¢ = x(w) are the characters of the fundamental
weights, and we define the normalized characters by ¢ = e"%¢. With these
notations, the naive families (5.6), (5.7), (5.8) become

(6.2) A%: f = — (%)2 +u) + Coug + Crur + -+ CpoUp 2 + Up_1
(6.3)Dy: f=—(%)

_ 2 N N
(6.4)°EL: f=— (%) +ub+chuh + Auf + Couo + -+ + Co—alin—a + Un—3

2 - ~ ~
+ uy + Cjuy + Coup + C1ur + - + Cr_3Up—3 + Up—2

Definition 6.23. Let M be the lattice obtained by adjoining to A* the vec-
tors wa; /2, wh; /2, aziy1/2 (for all i), and &’ /2. Let MT = M Ny, Rxo(—a)
and R = C[MT].

We define a; = e~ resp. a, = e_‘)‘g, for each node p; in the Dynkin
diagram, and also a” = e~ For the odd nodes poir1 we define bo;y 1 =
e~241/2 resp. by, 4 = e 2i+1/2 and also b’ = e="/2.
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Definition 6.24 (Compactified naive families for the A, D, E shapes). Let
S be the graded subring of Rz, y|[{] generated by vai, uzit1, vy;, Uy, and
vx. The compactified naive family is Y := Proj S — Spec R with a relative
Cartier divisor B = (f), f € H°(O(2)). We note that since the subring S
is generated in degree 1, the sheaf Op,.j5(2) is invertible and ample.
Lemma 6.25. The following relations hold:

(1) The same monomial relations as in Lemma 6.17 for the variables
g, v, with i >0, and for the variables u}, v}, vo.
(2) A non-monomial “corner” relation uju} = agvg(¢"vo + b"vy).
(3) For each ul,v] variable and each u;,v; variable lying on the different
sides of vy, the same equations as in Lemma 6.17, but with A =
~I1, b’ . 24
c UO;Z v HkJ:Qiak'
Proof. We check the non-monomial relation. The LHS is e’”l*wixy - €4,

[he RHS:
_ 3 1 1 1
e a0+2w0(e w +2w00// e FQ Yy —e s C”)'§4

The equality now follows from —w” + %w” = f%a” and —ag + %wo — %a” =
w1 + @, which hold because o’ = 2w” — wy and oy = 2wy — w1 — @) — @
The proof of part (3) is formally the same as for the secondary monomial
relations, with each term ¢’vg + b”v, contributing an extra zy. O

Theorem 6.26. The compactified families ) = Proj S — Spec R of ‘A,
D!, “E! shapes are flat. The degenerate fibers are over the subsets given by
setting some a’s to zero. Every fiber is a stable ADE pair which is a union
of ADE pairs of shapes obtained as follows:

(1) For the degenerations a; = 0 and a; = 0: by subdividing the cor-
responding polytope into integral subpolytopes by intervals from the
vertex p. to the point p;, resp. p.

(2) For the degeneration o” = 0: by “straightening the corner”, i.e. to
the shape obtained by removing the node p’’ from the Dynkin diagram.

The W -translates of these families glue into flat W -invariant families
,C+ 1‘2"58) — Vip* of stable ADE pairs over a torus embedding of Thy =
Hom(M,C*) for the Cozeter fan of Ay, resp. Dy, resp. E,.

Proof. The proof for the toric degenerations is the same as in Theorem 6.18.
Gluing the family over Spec R to a W-invariant family over a projective toric
variety for the Coxeter fan is also the same. We do not repeat these parts.
Instead, we concentrate on the degenerations involving the corner relation (2)
of Lemma 6.25.

When ag = 0 we get the toric relation ujuj = 0 which as before gives

a stable ADFE pair for the subdivision of our polytope into two polytopes
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obtained by cutting it from p, to po into the shapes “A,, A’ . The only
observation here is that m +m’ = n —2, not n — 1, so the moduli count drops
by two, not one.

When b = 0, we also get ¢/ = 1 by Lemma 6.19, and the corner relation
becomes ujuj = agvg. Thus, the new set of relations is equivalent to those
for the A7 | shape. The equations (6.2), (6.3), (6.4) reduce to the equation
(6.1). O

6D. Compactifications of the naive families for all primed shapes.
Theorems 6.18, 6.26 describe all stable ADFE pairs that appear as degener-
ations of ADFE pairs of pure shapes. In particular, irreducible components
of degenerate pairs (Y,C + %B) are normal, and they are ADFE pairs for
smaller shapes. For some degenerations of pairs of primed shapes the folded
shapes of Definition 6.9 appear.

Definition 6.27. The Priming Rules are A} — Ay, Ay — Ag; A — 0,
Ay — 0; and A — f, A9 — f are folds applied to the neighboring surface.

Theorem 6.28. For each primed shape, there exists a flat family of stable
ADE pairs (¥,C + 1<B) — Vi over the a torus embedding of Hom(M, C*)
for the Coxeter fan of A,, resp. Dy, resp. E,, where M is the lattice defined
in Definition 6.13 for the A shapes and Definition 6.23 for D, E shapes. The
fibers over the toric strata of Vi* are computed by starting with the fibers of
the family for the pure shape and then applying the Priming Rules one prime
at a time.

Example 6.29. We list the degenerate fibers in the compactified families
for the pure shape A, (see Fig. 12) and the corresponding fibers in the families
for the primed shapes A5, "A;, AF.

shape shapes of degenerations

A5 Ay AT A1 Ay Ay AoAy

Ay | AT Ay — A5 Ay — Ay

A | A A A AL — Af Ay AAT — Ag A

Before proving the theorem, we explain the meaning of the Priming Rules.
Lemma 6.30. One has the following:
(1) Priming a surface of shape Ay gives a surface of shape Ay .
(2) Priming a surface Y of shape Aqy on the long side Cy gives a surface
Y’ and a nef line bundle L' such that (L')?> =0 and |L'| contracts Y’
to P, with the other side C1 mapping isomorphically to P'.
(3) Priming a surface Y of shape “Ag on the short side Cy gives a surface
Y’ and a nef line bundle L' such that (L')?> = 0 and |L'| contracts Y’
to P, with the other side Cy folding 2:1 to P'.
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Proof. We proved in (1) in Theorem 3.18 already, see also Remark 3.20.
Parts (2,3) are easy computations. O

Proof of Thm. 6.28. Let f: (J,C + %B) — Vir* be a family for a pure
shape. It comes with canonical sections: one for a short side of the shape,
and two disjoint sections for a long side. Now make a weighted blow up one
of the sections to obtain a family f’: (3',C' + £<B’) — Vi*. Then the
sheaf L' = Oy/(—2(Kyr/z + C') is invertible and relatively nef. As in proof
of Theorem 3.18, this sheaf is relatively semiample and gives a contraction
V' — YV to a family f': (J’,C" + %@) — V* over the same base. For
a reducible fiber Y/ = UY] of the family f’, the sheaf £’ is ample on all
components Y, except possibly on the blown up surface on the end. For this
surface the resulting surface 7;6 is given by Lemma 6.30. The other sections of
Y — V£ map to disjoint sections of )’ — V¥, We then repeat the process
for the second prime, etc. O

Remark 6.31. Theorem 6.28 extends to the degenerations of surfaces of
shapes with folds, e.g. Agn_l as follows: the degenerations are the same as
for the shape with a long side, but that long side is folded.

6E. A generalized Coxeter fan. As Examples 6.21 and 6.29 show, the
families (),C + %B) — Vi over the projective toric variety for the Cox-
eter fan have repeating fibers over certain boundary strata. Here we define a
coarser generalized Coxeter fan and a birational contraction p: VX — Viemi
such that the families are constant on the fibers of p and such that the cor-
respondence between the isomorphism classes of the pairs (Y, C + IJQFGB ) and
the points of V3™ is finite to one.

The Coxeter fan 7°°* on the vector space Ng = Agr = Aj is obtained by
cutting it with the mirror hyperplanes o’ for the roots a € A. Another
definition is: it is the normal fan to the permutahedron, Conv(Wy.p), the
convex hull of the W -orbit of a generic point p in the interior of the positive
chamber C* = {a > 0}, where A = {a} are the simple roots. In particular,
the maximal cones of the Coxeter fan are in a bijection with the vertices of
Conv(Wy.p) and with the elements of the Weyl group W = Wy.

Definition 6.32. For a proper subset A? C A of the simple roots, let
p € CT be a point such that a-p =0 for « € A® and a-p > 0 for « € A\ A°.
A generalized permutahedron is the convex hull Conv(Wj.p) and a generalized
Cozeter fan 75°™ is defined to be its normal fan.

Definition 6.33. We will call A° the irrelevant subset. For S C A we
define its relevant content S™' to be the union of the connected components
not lying in A®. We will call a connected component S’ of S C A idrrelevant
if 8" c A°.

The proof of the following lemma is straightforward.
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Lemma 6.34. (1) The W-orbits of cones of T¢°* are in bijection with
the subsets S C A wia: S — Conv(Ws.p), where Wg C Wy is the
Weyl subgroup generated by the simple roots a € S.

(2) The W-orbits of cones of 7°°* are in bijection with the subsets without
wrrelevant connected components.

(3) The fan 5™ is a coarsening of the fan T°° and the morphism p: VX —
Vveemi of the corresponding projective toric varieties is proper and bi-

{¢l0).¢

rational.

(4) The image of a torus orbit Og C V™ is Ogeas C V™. One has
dim Og = |S| and dim Ogear = |S™!|. If S has no irrelevant compo-
nents the morphism Og — Ogra is an isomorphism.

Definition 6.35. For a decorated Dynkin diagram of a (possibly primed)
shape, we define the irrelevant subset A% C A to be the set of circled white
(i.e. unfilled) nodes.

Example 6.36. In the pure D, “F shapes, and also in the toric A shape,
the interior circled white node is irrelevant, see Figs. 2, 3, 7. In the toric
shapes D’ and A’ the irrelevant subset consists of two nodes, see Fig. 8. In
the primed shapes there may be more irrelevant nodes, cf. Fig 6.

Theorem 6.37. The pairs in the family (¥,C + 1£<B) — VP> are iso-

CoX semi

morphic on each fiber of the contraction p: Vip* — V™. The correspon-
dence between the points of V3™ and the isomorphism classes of the pairs
(Y,C + £ B) is finite to one.

Proof. Consider a codimension 1 orbit of V;7* corresponding to setting
a = e~ “ to zero for a single node of the Dynkin diagram p. By Theorems 6.26
and 6.28 the dimension of the family over the boundary stratum drops by 2

instead of the expected 1 exactly when one of the following happens:

(1) In the /A, D, E shapes, we remove the corner node pg, leaving the
circled white node p” isolated.
(2) A single left-most or right-most white node which in our shape is
primed or doubly primed (so white and circled) becomes an isolated
A or 'A; after a node next to it is removed.
In both cases this happens precisely when the subdiagram S = A — p corre-
sponding to the codimension 1 orbit of V{* has an irrelevant component, a
single node.

We now observe that for any shape the irrelevant subset consists of sev-
eral disjoint isolated nodes. There is a drop in the moduli count by one for
each of them. On the other hand, for the orbits Og for S without irrelevant
components, the restriction of the family to Og is the naive family for the
Dynkin diagram S. The set of the isomorphism classes in the latter family
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is Og modulo a finite Weyl group Wg x Wy and a finite multiplicative group
ps. This proves the statement. 0
6F. Description of the compactified moduli space of ADFE pairs.
We now prove Theorem C. In fact we will prove the following slightly stronger
result, which contains more information about the toric primed shapes.
Theorem 6.38. For each ADE shape the moduli space Mj%E s proper
and the stable limit of ADE pairs are stable ADE pairs.

(1) For the pure ADE shapes, the normalization (M3, )" is V™ /Wy,
a Wp-quotient of the projective toric variety for the generalized Cox-
eter fan.

(2) For the toric primed shapes 542”_1,.712_”72, ‘AL, 1, Db, withn > 3,
the normalization (M5, )" is V™ /W with the lattice A’ described
in Theorem 5.11.

(3) For an arbitrary primed shape, the normalization (M3$, ;)" is ViS™ /W x
Wo, for a lattice extension A" D A. The lattice A’ and the Weyl group
Wo are described in Theorem 5.12.

Proof. (1) By Theorems 6.18, 6.26, 6.28, every one-parameter family of
ADE pairs has a limit which is a stable ADFE pair, since it has a limit (after
a finite base change) in the family over Vi*. By Theorem 6.37 the classify-
ing morphism ¢: V3™ /W — M5 . is finite-to-one. By Theorem 5.9 on a
dense open set it equals Hom(M,C*)/W — Hom(A,C*)/W, and it factors
through the homomorphism Hom(M, C*) — Hom(A, C*), the quotient by the
finite multiplicative group g := Hom(M/A,C*). Thus, ¢ factors through
Viemi = ysemi/y - and the morphism Vie™ — M5 o is finite to one and
an isomorphism over an open dense subset. Since V3™ is normal, it is the
normalization of lefj o

Parts (2) and (3) are proved the same way. O

Remark 6.39. Theorem 6.38 extends to surfaces of shapes with folds, e.g.
Agn_l, cf. Remark 6.31.

7. Canonical families and their compactifications

In the previous Section we compactified the stack of ADFE pairs — which
for the pure shapes is [A™ : ua] — and extended the naive family over it to
a family of stable pairs. However, [A™ : pa] has many automorphisms, and
consequently in the equation f of the divisor B we have a lot of freedom for the
coefficients ¢; = ¢;(x1,- .., Xn) as polynomials in the fundamental characters.
Many of these choices extend to the compactification.
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Example 7.1. For the A; shape the moduli stack is [A! : us], and we write
A' as the quotient of the torus C; by the Weyl group Wy = Zo, t — ¢t 1.
The compactification is [P! : us]. The equation of B is f = 1 + cix + 22,
where in the naive family we have ¢; = x; =t +t~!. We can apply to A! an
automorphism ¢; — ac; + b, with a,b € C and a # 0, then pull the family
back to C;. This automorphism extends to the compactification P! of A,
but the coordinate change is not compatible with the pa-action (i.e. with the
(A*/A)-grading) unless b = 0, since (—1) € pg acts by ac; +b — —ac; + b,
so it is not an automorphism of [Al! : us]. In this case the naive family is
effectively unique.

However, for the root systems D, (n > 5) and E,, (n = 6,7,8) there ex-
ist dominant weights A < w; lying below the fundamental weights and with
A = w; in A*/A, and we can modify the coefficients ¢; = x; by adding lin-
ear combinations of their characters x(A). For example, for Eg there are
23 dominant weights A below wy, and A*/A = 0. Counting all fundamen-
tal weights @ and their lower terms, there is a C°' worth of choices for
c = X(@) + X acw rx(XN), all extending to automorphisms of our moduli
compactification.

In this Section we show that the naive family can be deformed in an essen-
tially unique way so that the new family, which we call the canonical family,
has the following wonderful property: the discriminant locus in T, over which
the divisor B in our ADFE pairs become singular, is a union of root hypertori
{e* = 1}, with a going over the roots of the lattice A.

We then show that the canonical family extends to the compactification and
that on the boundary strata it restricts to the canonical families for smaller
Dynkin diagrams.

7A. Two notions of the discriminant. Let f(x,y) be one of the poly-
nomials in the equations (5.4)—(5.8), which we related to the root lattices
A=A,, D,, E,. There are two different notions of the discriminant in this
situation:

(1) The discriminant Discr(f) of a polynomial f(z,y). This is a polyno-
mial in the coefficients ¢; of f for which the zero set of f on Y \ C is
singular. If ¢; = ¢;(x;) are polynomials in the fundamental characters
of the lattice A, then Discr(f) becomes a polynomial in ;.

(2) The discriminant Discr(A) of the lattice, the square of the expression

1—[ (ea/g B efa/2) — Z e(w)e”?,  where p = Z w = % Z Q.

acedt weWx well acedt
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appearing in the Weyl character formula. Discr(A) is Wj-invariant,
so it is also a polynomial in the fundamental characters. The zero set
of Discr(A) is obviously the union of the root hypertori e* = 1.

The following theorem forms the first part of Theorem D. We prove it
separately for the A, D, E shapes in Theorems 7.3, 7.5, 7.7, respectively.

Theorem 7.2. For each ADE pair of pure shape, there exists a unique
deformation of the form ¢ = x(w) + (lower terms) of the naive equation such
that Discr(f) = Discr(A).

7B. Canonical families.
?

resp. A’ in Theo-

n’

Theorem 7.3 (A shapes). For the pure shapes A
rem 7.2 one has c; = X;, 7€SP. C; = Xi—1-
Proof. For A the curve —1y? + ¢() is singular iff ¢(2) has a double root.

If
n+1

c(x) = H(w—i—ti) =141+ ...+ xpz" + 2"t
i=1

then this happens iff e%~% =t,/t; = 1. Here, e; — e; are precisely the roots
of A,. Thus, the statement holds for ¢; = x;. For A, there are no lower
weights below the fundamental weights, so the solution is unique. The open
sets Y\ C for the shapes A’ and A’ are the same, so this argument applies
to the A’ shapes as well. O

Recall from section 5E that for the D and E shapes there are two equivalent
forms of the equation: F(z,y,z) and f(x,y), and the latter is obtained from
the former by completing the square in z. For D,, one has the following root
lattice, weight lattice, Weyl group, fundamental roots «a;, and fundamental
weights w;:

A= {(ai) e = dle; | Zai is even}, A* :Z”+%Zei.

Wa =751 %8,

: / "
Op_o_j=¢€;—ep1fori<n—2 o) =en_1—€n, & =en_1+e,.

1 1 n—1 1 n
Wnoai = eri<n—2 w = 3 (—en + Z&) @' = 3 (Zel>
k=1 =1 =1

Denoting by o; the i-th symmetric polynomial, the fundamental characters
are

o tr O9s(tk
Xi = Gn727i(tf) fori <n— 2, Xll = 2820 28+1( )7 X// = ZSZO 28( )a

VIt v Itk

where £ are t1,t7 %, ..ty tt
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Definition 7.4. Let fi(z) be the polynomials defined recursively by fo =
1, fi =z, and fry2 = frr1— fr. These are the Fibonacci polynomials, except
for the signs and a shift in degrees by 1. One has fo = 2% — 1, f3 = 2% — 2z,
etc.

Theorem 7.5 (D shapes). For the D} shapes, in Theorem 7.2 one has
d, = x1, & = X", and the expression for c(x) can be obtained from the

generating function
zx) = Y cir'xd =Y a()rt =Y pil@)x’
4,520 120 j>0

by substituting x; for x’ and setting xn—2 =1 and x; =0 for j >n—2. One

has
i

1 ‘ _ X
W)= T mm o S Toaa e
2 p 33) 7 and p2k+1 = fufrr1-
(3) ¢i; =04if j—i is odd ori > j. Otherwise,
k . .
Ciipok = Z(_l)p <Z +P) — (—1) Z <z + k.f 11— 2q)'
p>0 ‘ 4=0 '

The central fiber has a D,, singularity at (x,y,z) = (=2, —2"73, —2n73),
Example 7.6. For D; we obtain for the following expressions for ¢(z):

Xo + x17 + x22” + xs2(z® — 1) + xa(2® — 1)* + (2 — 1)(2® — 22) =
(xo +x4) + (x1 — x3 +2)z + (x2 — 2xa)2% + (x3 — 3)2® + xa2* + 2°

and for any lower D,, the formulas can be obtained from these by truncation.

Proof of Thm. 7.5. We start with the polynomial f(x,y) in equation (5.7).
As a quadratic polynomial in y, it represents a curve which is a double cover
of A'. This curve is singular when the following polynomial in z

Discr, (f) = (2% — 4)c(z) + i’z + &2 + 2

has a double root. On the other hand, the polynomial p(x) = [[}_, (z+t;+t; ")
has a double root iff some ¢; —&—t;l =1t —&—t;l, ie. tﬁ;l = 1lort;t; = 1. These
are exactly the root hypertori for the root lattice D,,.

Thus, Discr(f) = Discr(A) iff Discry(f) = p(x). The coefficients of p(x)
are o;(ty +1; "), and they are invariant under the W(D,,)-action, so they are
polynomials in the fundamental characters x; listed above. The rest of the
proof is a combinatorial manipulation to get the exact formula. From this
procedure we see that the solution is unique. O

Theorem 7.7 (E shapes). For the “E} shapes, in Theorem 7.2 one has

n
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EGI

/! 1 / ! / !
c=x"-6 Co = X2 T =X1— X2

co=x0—3X"+9  ca=x1—xp c=x2
E7:
" =" —6xs3 cy = x5 —25 ¢ = x1 — x2 — 16x%, + 206
co = Xo — 3x(@" + @3) + x(2005) — 12x] + Ix(2w3) + 162 + 69x5 — 548
cr=x1—x(wh+w3) —6x"+28x3  co=x2—2xp+23  c3=x3

Es:

" =x" —6x3 — 35x5 + 920x4 — 57505 ey = X5 — 25x4 + 2325
= x4 — x2 — 16x(wwh + wq) — 44x" + 206 (2004)+
+ 360x3 + 2196 x5 — 512464 + 2401900
co = Xo — 3x(@" + @3) + x(2wh + w4) — 12x(w] + w4) — 28x(wh + @)+
+9x(2wm3) + 16x (w2 + w4) — 68x1 + 69x(wwy + 2c04) + 212x () + w3)+
+1024x(w"” + w4) + 236X (20h) + 2453 — 548x(3w04)—
— 5228x (s + w4) — 1507x2 — 42656 (wwh + ww4) — 107636x" +
+ 488553 (2t04) + 6400643 + 29884045 — 520273604 + 1484779780
c1 = x1 — X(wh + @3) — 6x(@” + wy) + 2x(2wh) — 17X} +
+ 28x (w3 + w4) — T9x2 + 383X (wwh + w4) + 1429y" —
— 4414 (2t04) + 84x3 — 49768x5 + 2719344 + 4528192
c2 = x2 — 2x(wh + @4) — 9x" + 23x(2004) — 114x3 + 601x5 + 7673 x4 — 955955
c3 = X3 — 3X5 — 170x4 + 23405 c4 = x4 — 248

The central fiber with an Eg, resp. Er, resp. Eg singularity is

Eg: xyz = 22 + 722 + y° + 27y + 324y + 2700 + 324z + 2722 + 23 at
(z,y,2) = (—6,—6,—18).

Eq7: zyz = 22 + 5762 + y3 + 108y? + 5184y + 193536 + 17280z + 129622 +
5623 + 24 at (x,y,2) = (=12, —24, —144).

Eg: xyz =22 +y3 +2° at (0,0,0).

The formulas for the polynomials F(z, y, z) were found by Etingof, Oblomkov,
Rains in [EORO7] in a completely different context, as relations for the centers
of certain non-commutative algebras associated to affine star-shaped Dynkin
diagrams l~?4, Eg, E7, Es. We found them independently, using Tjurina’s con-
struction as explained below. The answer given above is in terms of the
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additive basis of characters of dominant weights, which is needed for comput-
ing the degenerations in Theorem 7.11. Once we recomputed our answer in
the polynomial basis of the fundamental characters y; and did a web search
for the largest coefficient, a single mathematical match came up, to [EORO7,
Sec. 9].

Before proving the theorem, we begin with preliminary observations and
lemmas.

In [Tju70] Tjurina constructed a versal deformation of an Eg singularity
as a family over A® = the parameter space for 8 smooth points on a cuspidal
cubic C' (note that one has C'\ cusp ~ Al). See also [DPT80, p.190]. The
discriminant locus of this family is a union of affine hyperplanes e® = 0 for the
roots a € Fg. Our observation is that replacing the cuspidal cubic by a nodal
cubic C (so that C' \ node ~ C*) gives a multiplicative version of Tjurina’s
family over (C*)® that we are after.

The lattice Eg can be realized as an intermediate sublattice of index 3 in
Ag C Eg C Af. The lattice Af is generated by e; — p, where 1 < i <9 and
p = %Z?:l e;. The lattice Ag is generated by e; — e;, and the intermediate
lattice Fg is obtained by adding £ — e; — es — e3, where £ = 3p.

Now let C be an irreducible curve of genus 1, so C is either smooth, or has
a node, or a cusp. Let G = Pic® C, so either an elliptic curve (with a choice
of 0), or C* 3 1, or G, > 0. The nonsingular locus C? is a G-torsor.

Lemma 7.8. Let A, Eg be the standard root lattices, and A}, the dual
lattice. Then:

(1) Hom(A4,,G) = A} @ G = G""!/diagG = (C°)"*1 /G parametrizes
(n + 1) nonsingular points P; on C modulo translations by G.

(2) Hom(A%,G) = A, @G ={(g1,---,9n+1) | 2_ 9: = 0} parametrizes the
choice of an origin Py € C° plus (n + 1) nonsingular points P; € C°
such that (n+ 1)Py ~ > P;.

(3) Hom(Es,G) = Eg ® G parametrizes embeddings C C P? as a cubic
curve plus 8 points P; € C°, or equivalently embeddings C C P? plus
9 points P; € C° such that H?Zl P; =1 in the group law of C°. Thus,
Py is the 9th base point of the pencil |C| of cubic curves on P? through
P17 AN 7Pg .

Proof. We have A = Z"*!/diagZ and A, = {(a1,...,an41) € Z"T1 |
> a; = 0}, so (1) and (2) follow. Hence, Hom(A}, G) parametrizes em-
beddings C C P? with 8 points and a choice of a flex, and Es ® G =
Hom(Aj§, G)/GJ[3] forgets the flex. O

Thus, the torus T'a: parametrizes 8 smooth points Py, ..., Ps on a nodal
cubic curve C' C P? with a chosen flex, and the torus Tg, the same, but
forgetting the flex. We now take a concrete rational nodal cubic C' C P?
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given by the equation gp = —uvw + v* + w? with a rational parametrization
(w:v:w) = —1:t:—t?), so that the singular point of C is (1: 0 : 0)
corresponding to ¢t = 0 or co. Now consider a family over A® of cubics

g1 = Z aiju3_i_jviwj, apog = 1, al] = 0
1,§>0, i+5<3

Then any pencil of cubic curves, parametrized by z, with a smooth generic
fiber which has C' at x = oo has a unique representation by a polynomial
g(x;u,v,w) = xgo + g1. It is a simple exercise to put this pencil into the
Weierstrass form ¢? = y® + A(z)y + B(x) using Nagell’s algorithm or simply
by using the [Sagel7] function WeierstrassForm. The polynomials A(x), B(x)
have degrees 4 and 5 (not 6 since C' is singular). The following is an easy
explicit computation:

Lemma 7.9. There is a unique change of coordinates of the form x +—
z+d, y— y+ ax?+ bx + ¢ which leaves the fiber C at x = oo in the pencil
intact and takes the polynomial f(x,y) = y> + A(z)y + B(x) into the form of
the equation (5.8) for Eg.

We will use this to build a family over (C*)® with the required properties.
We pick ti,...,ts in C* arbitrarily and then also tg so that H?:1 t; = 1. Using
the rational parametrization of the nodal cubic C, this gives 9 smooth points
pP,...,PyeC.

Lemma 7.10. The pencil g(x;u, v, w) passes through the points Py, ..., Py

iff
ajp =08 Qo1 =01 Q21 = —02+05 —08 Q12 = —01+ 04— 07
asp = —3+0¢ apz3=—-3+03 ax =—01+07 a2 =02 —0s,
where o; are the elementary symmetric polynomials in tq,...,tg.

Proof. We plug the rational parametrization (u : v : w) = (3 -1 : ¢ :
—t2) into g1 (u,v,w) to obtain a monic polynomial of degree 9 with constant
coefficient —1 which we set equal to szl(xftk) = Zzzo(fl)"ﬂaixi. Then
we solve the resulting linear equations for a;;. O

Proof of Thm. 7.7. Define the pencil g(z;u,v,w) as in Lemma 7.10, con-
vert into Weierstrass form ¢? = y® + A(z)y + B(x), then apply Lemma 7.9
to obtain a polynomial f(z,y) in the form of equation (5.8). The coefficients
¢; in the resulting expression for f(z,y) satisfy ¢; € C[A3]%, so we obtain
a family parametrized by the torus T(Af) = Hom(A%, C*). The final very
computationally intensive step, accomplished using [Sagel7], is to rewrite it
in terms of the characters of Fg.

We now prove that the discriminant Discr(f) of this family of polynomials
coincides with the discriminant Discr(Eg). We have a trivial family X0 =
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P? x Taz — Ta; with 9 sections, call them s1,...,sg, corresponding to the
points P; € CY. Let X", 1 < n < 9, be the family obtained by performing a
smooth blowup of At along the strict preimage of s,,.

On each fiber the points P, ..., Py € P? are in an almost general position
because they lie on an irreducible cubic (see [DPT80, p.39]). This means that
— K ys is relatively nef and semiample, and defines a contraction to a family
X8 — T(A}) of del Pezzo surfaces with relatively ample —Kxs and with Du
Val singularities.

On the other hand, X%isa family of Jacobian elliptic surfaces with a section
sg corresponding to the last point Py. The linear system |Nsg|, N > 0 gives
a contraction X° — X? to a family of surfaces with ADFE singularities. Let zg
be an elliptic involution w — —w for this choice of a zero section. It descends
to an involution zg of X® which in turn descends to an involution g of A8.
It is easy to see that the quotients are families of the surfaces X°/19 = Fo
and Y® = X8/ig = F = P(1,1,2). The families of the polynomials f(z,v)
written above are just the equations of the branch curves. On each fiber, the
ramification curve passes through the singular point of the nodal cubic C.
Blowing up the image of this point on Y?® finally gives the toric Fg-surface Y
as in Fig. 3 corresponding to the Newton polytope of f(x,y).

The branch curve f = 0 is singular iff the double cover X8 is singular. This
happens precisely when the points P, ..., Ps are not in general position:

(1) some 3 out of 9 points P;, P;, Py, lic on a line <= the complementary
6 points lie on a conic <= t;t;t, = 1.
(2) some 2 out of 9 points P; = P; (i > j) coincide <= the complemen-
tary 7 points lie on a cubic which also has a node at P; <= t; =t;.
These are precisely the root loci for the roots of Eg in terms of the lattice A§,
with t; = e®~P. For our explicit parametrization of the nodal cubic C this
can be seen from

-1t —t
det |t3 —1 t; —t3| = (tatjtr — 1)(ti — t5)(ts — te)(t; — tx).
-1 t, —t3

This shows that Discr(f) is a product of the equations (e® —1) of the root loci,
and it is easy to see that they appear with multiplicity 1. Thus, Discr(f) =
=+ Discr(Eg).

This completes the proof in the Fg case. The E; and Eg cases are obtained
as degenerations of this construction. In the E7 we blow up 7 smooth points
of the cubic C' and the node Ps. Then there exists a unique point Py which
is infinitely near to Pg such that all the cubics in the pencil |C — Py — - - - Py|
pass through Py. In other words, Py is a point on the exceptional divisor Fg
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of the blowup at Pg corresponding to a direction tg # 0,00 at Py for which
we can write an explicit equation. Blowing up at Py gives an elliptic surface
X% — P! with a zero section and an elliptic involution. The preimage of C
on X7 is an I, Kodaira fiber, instead of an I; fiber in the Fg case. In the
same way as above, the discriminant locus is a union of root loci for the roots
of E7.

The F§ case is a further degeneration. We pick 6 smooth points on C' plus
the node P; plus an infinitely near point Py — P; corresponding to one of
the directions at the node. Then there exists a unique infinitely near point
Py — Pg such that all the cubics in the pencil |C' — P; — - - - Pg| pass through
Py. Blowing up at Py gives an elliptic surface X9 — P! with a zero section
and an elliptic involution. The preimage of C' on X9 is an I3 Kodaira fiber.
In the same way as above, the discriminant locus is a union of root loci for
the roots of Ej.

For the uniqueness, write ¢; = Xi+ZA<w7¢ ciaxX(A). The weights A < w; all
lie below g, there are 23 of them, and the partial order on them is described
in Remark 7.12. Equating Discr(f) = Discr(A) gives a system of polynomial
equations in ¢; x which is upper triangular: There is a linear equation for the
highest coefficient ¢; » with no other coefficients present, so with a unique
solution. Then the equation for the next coefficient c;\/ is linear with a
unique solution once the higher coefficients are known, etc. The solutions are
obtained recursively, in a unique way at every step. O

7C. Compactifications of the canonical families. In this subsection
we prove the remaining portion of Theorem D.

Theorem 7.11. The canonical family extends to the compactifications
Vir™ of Theorems 6.18, 6.26, 6.28. The restriction of the compactified canon-
ical family to a boundary stratum is the canonical family for a smaller Dynkin
diagram.

Proof. For the compactification we use exactly the same formulas as in
Theorems 6.18, 6.26, 6.28, and the proofs go through unchanged. Indeed, the
only fact we used was that the leading monomial in each coefficient c is e®,
and that the other monomials are of the form e* for some weights of the form
w=w—a-— Zﬁ ngB. These are automatically satisfied if we modify x(w)
only by adding characters of some lower weights A < w.

For the fact that a canonical family restricts to canonical families on the
boundary strata, a sketch of a possible proof, which can be made precise, is
that the defining property of the canonical family is automatically satisfied
for the restrictions. Instead, we check the equations directly.
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For A,, the check is immediate: the coefficients X; of equation (6.1) restrict
to X; by Lemma 6.19, so (6.1) restricts to the A,, family for a smaller A,,
diagram.

For D,, there are no dominant weights below @', @w”, and the dominant
weights below w; are w;ta, W;44, etc., with the relations

(71) Wi — Wit2 ZO/—‘r(X”—FQOéo—F"'—|-20£i—|-04i+1.

By Lemma 6.19, the character x(\) = e*Y()\) under the degeneration a; =
e~ % — 0 goes to:

(1) 0if in the expression A = w — > nya one has ny, > 0, or to

(2) X(p(N)) if na, =0, where p(w;) = 0 and p(w;) = w; for j # i.
Thus, under the degenerations a’ = 0, resp. a” = 0 all the lower weights
disappear, and we are left with an equation for the 4,,_1, resp. A,,_; family.
Under the degeneration a; = 0, the limit surface has two components, and
on the left, resp. right, surface the equation becomes the D; o, resp. A, _;_3
family if ¢ > 0. For ¢ = 0 we get the equations of A; and A,,_s.

The Fjg case is the hardest to analyze. We computed the poset of dominant
weights below w( in Table 6. Every line is a “cover”, a minimal step in the
partial order, and we write the difference as a positive combination of simple
roots. The difference in a cover is known to be equal to the highest root of
some connected Dynkin subdiagram, see e.g. [Ste98, Thm.2.6]. We give this
diagram in the last column. The corollary of that table is Table 7 showing the
weights that do survive under degenerations. All other lower weights under
these and all other degenerations vanish. From this table we immediately see
for example that when either of the coordinates a”, af, ag, a1 is zero, then
all the lower weights vanish and we are left with the equations of the A or A
shapes.

In the degeneration ay = 0 the Eg equation of Theorem 7.7 reduces to
c(x) = (xo + xa) + (1 = x3 +2)7 + (x2 — 2x4)2® + (x3 — 3)2° + xa* + 27,
which is precisely the equation of the canonical D7 family from Example 7.6.

For the degeneration a4 = 0 one can check that the Fg equation reduces
to the canonical E7 equation of Theorem 7.7, and for ag = 0 it reduces to the
Fg equation. The other cases are checked similarly. The F; and Eg cases now
follow. 0

Remark 7.12. As we see, the poset of the dominant weights below the
8 fundamental weights of Fg is very complicated. We make the following
interesting observation. Associate to the 8 nodes of the Dynkin diagram the
following points in Z*: p; = (i,0,0), p} = (0,4,0), py = (0,0, k), and choose
the special point p, = (1,1,1). Consider the projection ¢: Eg — Z & Z> by
the rule ¢¥(w) = (1,p — p«). Then for a fundamental weight w, a dominant
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weight A satisfies A < @ iff ¥(w — A) is a non-negative combination of the 8
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TABLE 6. Partial order on dominant weights of Eg below wq

higher lower o oy o) ap a1 as az ay
wo WIQ + o 1 1 2 1 D4
) 20, + oy | 1 1 2 2 2 1 Dy
@yt w2 { @ + w3 11 1 1 1 As
2wl + oy wh + oy Ay
” wi+wy |1 1 1 1 1 As
@t @ { 903 2 1 2 3 2 1 Eq
w,l + s { w/gl + w% 1 2 1 Dy
w" 4 wy 1 1 1 1 1|4
2w03 wo + Wy 1 Ay
wh+ 2wy | 1 1 2 2 2 1 Dg
w2+ @ { o 1 1 1|4
, 300, 2 2 3 4 3 2 1 E;
@2 + 2@ { wh + w3 114
3@4 w3 + g 1 A1
w” + wh w1 1 1 1 1 Ay
w1 WIQ + w3 1 1 2 2 1 D5
, S 11 1 1 1 1 Ag
@y T w3 20, 1 1 2 2 2 2 1|D,
w/, + w4 w3 + Wy 2 1 2 3 2 1 E6
o 1 11 1 1| Ag
w3 —+ w04 w2 1 A2
2, W] 1 Ay
s wh+wy |1 1 2 2 2 1 Dg
, 2w, 2 2 3 4 3 1 | B
w2 + @ { o 1 1 1 1 1 1 1|4,
2@4 w3 1 A1
w'! w3 2 1 2 3 2 1 FEs
w3 o, 1 1 2 2 2 1| Dy
w) Wy 2 2 3 4 3 2 1 E;
w4 0 3 2 4 6 5 4 2 | By

vectors ¢ (w;) and the vector (—1,0,0,0).

The same procedure works for D,,, Eg, E7. In the D,, case this becomes an
especially easy way to see the relation (7.1). Our two-dimensional projection
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TABLE 7. For Eg, the dominant weights A < w in ¢ which
survive degenerations

a’2:0 a2:0 a3=0 a4=0
c’ w3 w3
CIQ T4
Cll () () () 2’W4
wh + oy
co | wh+wy | wh+we | wh+wy | wh+ we 23
2wl + wy w” + ws | 2wl +ws  we + wy
203 w” + w3 wh+ 2wy
w) + w4 3wy
¢ | wh+ws wh+ws | wh+ws w3+ wy
2, w'” + wy
¢y | wh+wy wh + wy 204
C3 ’(DIQ

of section 5A is a further projection from Z2 to Z? obtained by “completing
the square in the z variable”.

7D. Singularities of divisors in ADFE pairs. By Theorem 7.2, the
singularities of B N (Y \ C) in the canonical families occur on the fibers Y;
for t € Ug{e* = 1}, the union of root hypertori. Generically, these are
A; singularities. On the intersections of several hypertori some worse sin-
gularities occur. Below we describe them explicitly. For each of the lat-
tices A = A, D,, E, the singularity over the point 1 € T~ is that same
Ay, Dy, E,. However, there are zero-dimensional strata of the hypertori ar-
rangement different from 1. Some other maximal rank singularities occur on
the fibers over those points.

Definition 7.13. Let A be an ADE lattice with a root system ® and
Dynkin diagram A, and let G be some abelian group which we will write mul-
tiplicatively. Let ¢ € Hom(A, G) be a homomorphism. Define the sublattice

Ay = (| t(a) = 1) C A generated by the roots aw € ® Nker(t).

It is well known that a sublattice of an ADFE lattice generated by some of
the roots is a direct sum of root lattices corresponding to smaller ADE Dynkin
diagrams. All such root sublattices can be obtained by the Dynkin-Borel-de
Siebenthal (DBS) algorithm, see [Dyn52, Thms. 5.2, 5.3], as follows. Make
several of the steps (DBS1): replace a connected component of the Dynkin
diagram by an extended Dynkin diagram and then remove a node; and then
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several of the steps (DBS2): remove a node. Below, we determine which of
these lattices are realizable as A;.

All root sublattices are listed in [Dyn52, Tables 9-11]. The answer is as
follows. Recall that the lattice A,, C Z"*! is generated by the roots e; —e;. All
root sublattices of A,, are of the form A7, |_1®- - @ A|r,|—1, where ;- - Ul =
{1,...,n+ 1} is a partition, |I;| > 1. Here, Ay, |1 = 0 if |I;| = 1.

The lattice D,, C Z" is generated by the roots e; £ ;. All root sublattices
of D, are of the form Aj; -1 © - @® Ay, -1 ® Dy, ® -+ © D)y, |, where
Lu---ul,uJiu---ud, ={1,...,n} is a partition, |I;| > 1 and |J;| > 2. Dy
and D3 are a special case. They are isomorphic to 24; and Ag respectively
as abstract lattices, but they are different as sublattices of D,,.

The sublattices of Eg, E7, Fg are listed in [Dyn52, Table 11] but note the
typos: in the Eg table one of the two A7 + A; is Bz + Ay, and Ag + Ao should
be Eg + As.

Definition 7.14. Let M C A be two ADF lattices. Let Tors(A/M) be the
torsion subgroup of A/M and im(® N Mg) C Tors(A/M) be the image of the
set of roots o € ® N Mg. We define the closure im(® N Mg) to be the subset of
Tors(A/M) consisting of the elements x # 0 such that 0 # nz € im(® N Mg)
for some n € N; plus z = 0. Both im(® N M) and im(® N Mg) are finite sets,
and a priori neither of them has to be a group.

Lemma 7.15. Let M C A be two ADE lattices. Let G be an abelian group
containing Z", where r = tk A—rk M. Then M = Ay for some t € Hom(A, G)
iff there exists a homomorphism ¢: Tors(A/M) — G such that for any 0 #
x € im(® N Mg) one has ¢(z) # 0.

Proof. Of course one must have M C ker(t), so the question is whether
there exists a homomorphism A/M — G which does not map any roots not
lying in M to zero. We have A/M = Z" & Tors(A/M). An embedding Z" — G
can always be adjusted by an element of GL(r,Z) so that the images of roots
not in Tors(A/M) do not map to zero. So the only condition is on im(® N Mg)
in Tors(A/M) or, equivalently, on its closure. O

Corollary 7.16. Let M C A be two ADE lattices and let k be an al-
gebraically closed field of characteristic zero. If the group Tors(A/M) is
cyclic then M = Ay for some t € Hom(A,C*). In the opposite direction,
if im(® N Mg) contains a non-cyclic subgroup then M # A; for any t €
Hom(A, C*).

Proof. This follows from the fact that any finite cyclic group can be em-
bedded into C*, and there are no non-cyclic finite subgroups in C*. O
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Theorem 7.17. Let A be an irreducible ADE lattice and M be an ADE
root sublattice. Assume that the field k is algebraically closed of character-
istic zero. Then M = Ay for some t € Hom(A, C*) iff any of the following
equivalent conditions holds:

(1) Tors(A/M) is cyclic.

(2) M is obtained from A by a single DBS1 step and then some DBS2
steps.

(3) M corresponds to a proper subdiagram of the extended Dynkin diagram
A.

(4) M corresponds to a subdiagram A of the following Dynkin diagrams:
Ap: An; D,,: Dy, or DuDy C D, witha+b=n, a,b> 2.
Egi Eg, A5A1, 3A2,’ E7.‘ E7, D6A17 A7, A5A2, 2A3A1,‘
EgZ Eg, E7A1, E6A2, DS, D5A3, Ag, A7A1, 2A4, A5A2A1.

(5) M is not one of the following forbidden sublattices:
D,: a sublattice with > 3 D-blocks; E;: Dy3A, TAy, 6A;
Eg: 4A2, 2D4, D62A1, D44A1, 2A32A1, 8A1,D43A1,7A1,A34A1,6A1.

Proof. We first prove the equivalence of the conditions (1-5). For one direc-
tion, the identity ) x mqa = 0 implies that if the Dynkin diagram A(M)
is obtained from A by removing one node (i.e. by a single DBS1 step) then
the cotorsion group is cyclic of the order equal to the multiplicity m, of the
removed node in the highest root of A. Any sublattice of these lattices ob-
tained by DBS2 steps also has cyclic cotorsion. The lists in (4) are simply the
lattices obtained by one DBSI step. To complete the equivalence of (1-5) for
E,, we use Dynkin’s lists of sublattices together with [Per90, Table 1] which
gives the torsion groups, and check the finitely many cases. The D,, case is
easy.

Now let M be a sublattice as in (1). Then M = A; for some t € Hom(A, C*)
by Cor. 7.16. Vice versa, let M be one of the sublattices with a non-cyclic
Tors(A/M), which are listed in (5). If A = D,, and M has r > 3 D-blocks then
Tors(A/M) = Z5 " and we easily calculate im(®NMg) to be {0, e;, e;+e; | 1 <
i,j <r—1}. This set contains a non-cyclic subgroup Z3 = {0, e, €2, €1 + €2},
so M # A; by Cor. 7.16.

For each sublattice of E; and Fg listed in (5) we explicitly compute im(® N
Mg). We have (AN Mg)/M C M*/M, so we find the images of the roots
a € ®N Mg in M*/M. The result is as follows. For 84; the set im(® N Mg)
has 15 elements and contains Z3; for 2A3 2A; it has 7 elements and its closure
is Z4 ® Zg; for 4A5 it has 8 elements and its closure is Z3. In all the other
cases, one has im(® N Mg) = Tors(A/M). We conclude that M # A; by
Cor. 7.16. O
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Theorem 7.18. Consider a canonical family of ADE pairs of Theorems 7.3,
7.5, 1.7. Then for a point t € T, the singularities of the curve By N (Y; \ Ct)
and of the double cover X; \ D; near Ry are Du Val of the type corresponding
to the lattice Ay. In particular, a curve is singular iff t lies in a union of root
hypertori {e® = 1}, and for t = 1 there is a unique singularity of the same
Du Val type as the root lattice.

Proof. The A, case is obvious: the curve —y%/4 + c(z), c(z) = [[(z + ;)
has singularities A,,, -1, ..., Am,—1, each occurring when some my, of the ¢;’s
coincide, i.e. when several of the monomials e** =% vanish at the same time.

Let Discr, (f) = [[i_,(x+t;+t; ') as in the proof of Thm. 7.5. It is easy to
see that for every root © # £2 of Discr, of multiplicity m, the curve f = 0 has
an A,,_i-singularity, and if = 2 is a root of Discr, of multiplicity m then f
has a D,,-singularity. This includes D3 = Az, Dy = 2A;, and D7 = smooth.
On the other hand, the root tori are of the form {tit;ﬂ = 1}. The irreducible
components of A; correspond to the disjoint subsets I C {1,...,n} of indices
for which t; = t;ﬂ for i,7 € I. If t; # £1, ie. t; + t;l # 42, then the
component is of the A|;_;-type; otherwise it is of the D|r-type.

In the E,, cases the singularities are Du Val by construction in the proof of
7.7. Using notation as in the proof, let us fix a linear function ¢ on Eg C A§
such that ¢(p) > p(e1) > -+ > p(es), and let the positive roots o be those
with ¢(a) > 0. Then for any subroot system of Fg the simple roots are
exactly the roots that are realizable by irreducible (—2)-curves on X8 ¢; — e;
for ¢ > j (preimages of the exceptional divisors F; of blowups at P;), £ —e; —
e; — e, (preimages of lines passing through 3 points P;, P;, Py), 2¢ — 22:1 €,
(preimages of conics through 6 points), and 3¢ — 2e; — ZZ=1 e;, (preimages
of nodal cubics through 8 points). So for every ¢ € Hom(FEg,C*), the simple
roots in the lattice A; are realized by (—2)-curves on Xg which contract to
a configuration of singularities on X® with the same Dynkin diagram as A.
The F7 and Eg cases are done similarly. O

Remark 7.19. By the proof of Theorem 7.7, the surfaces in the Fg, E7, Eg
families correspond to rational elliptic fibrations with an I3, I, I fiber respec-
tively. The singularity type of the double cover X; \ D, is obtained from the
Kodaira type of the elliptic fibration by dropping one I3, I, I; fiber respec-
tively (it gives a singularity of X; lying in the boundary Dy; of type As, Aj,
or none resp.) and converting the other Kodaira fibers into the ADFE singu-
larities.

As a check, we note that the list of maximal sublattices in Theorem 7.17(4)
is equivalent to the list of the rational extremal non-isotrivial elliptic fibra-
tions in [MP86, Thm. 4.1], and that the full list of sublattices in Theorem
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7.17 is consistent with the full list of Kodaira fibers of rational elliptic fibra-
tions in [Per90]. Persson’s list contains 6 surfaces with an I, fiber for which
the corresponding sublattice of Eg has non-cyclic cotorsion: I3 215 (Dg2A1),
I3 315 (D4 3A1), 214215 (2A32A,), 14415 (As4Ay), 413 (4A3), 612 (64;). But
DgAy, Dy2Aq, 2A3 Ay, A33A; and 5A; are sublattices of E; and 345 is a
sublattice of Fg, all with cyclic cotorsion.

8. Applications and connections with other works

8A. Toric compact moduli of rational elliptic surfaces. Let M),
be the moduli space of smooth rational elliptic relatively minimal surfaces
S — P! with a section E. Let M. (I1) be the moduli space of such surfaces
(S, E, F) together with a fixed I; Kodaira fiber F' (i.e. a rational nodal curve).
This is a 12 : 1 cover of a dense open subset of M, since a generic rational
elliptic surface has 12 I; fibers.

Theorem 8.1. There exists a moduli compactification of Moy (I1) by stable
sle pairs whose normalization is the quotient V™ /Wy of the projective toric
variety V™ for the generalized Cozeter fan by the Weyl group W, where A
is the root lattice Eyg.

Proof. Let j: S — S be the elliptic involution with respect to the section
E and EU R be the fixed locus of j. Contracting the (—2)-curves in the fibers
which are disjoint from the section E and then F itself gives a pair (X, D+e€R)
which is an ADFE double cover of shape Eg. Vice versa, any pair (X, D+€eR) of
Ej shape is a del Pezzo surface of degree 1 with Du Val singularities. Blowing
up the unique base point of | — Kx| and resolving the singularities gives a
rational elliptic fibration S — P! and the strict preimage of D is an I; fiber
of this fibration. This theorem is now the Fg case of Theorem 6.38. O

Similarly, the F7 compactified family gives a moduli compactification My (I>)
of the moduli space M (I2) of rational elliptic surfaces with an I, Kodaira
fiber; the Eg family gives My (I3); the Dy family gives My (14); and the ‘A;
family gives My (I5).

8B. Moduli of Looijenga pairs after Gross-Hacking-Keel. A Looi-
jenga pair is a smooth rational surface ()? , 5) such that Kg + D ~ 0 and
D is a cycle of rational curves. In [GHK15], Gross-Hacking-Keel construct
moduli of Looijenga pairs of a fixed type, given by the configuration of the
rational curves D. The result is as follows. First, one defines the lattice
A C PicX as the orthogonal to the irreducible components of 57 and the
torus Ta = Hom(A, C*). One glues several copies of this moduli torus along
dense open subsets into a nonseparated scheme U and divides it by a group
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Adm of admissible monodromies, including reflections in the (—2)-curves ap-
pearing on some deformations of ()? , ZN)) The non-separatedness is expected
since X in this setup are smooth surfaces without a polarization. The sepa-
rated quotient of [U/Adm] is [Ta/Adm].

For an ADE double cover (X, D + €R), the minimal resolution of singu-
larities ()~(,l~)) is a Looijenga pair. In Theorems 5.9, 5.11, 5.12 we proved
that the moduli space of ADE pairs and of their double covers is a torus
T = Hom(A’,C*) modulo a certain Weyl group W x Wy. The lattices A,
A’ and the Weyl groups Wy, Wy were introduced in Section 5. We now relate
them to the lattices naturally associated to Looijenga pairs with a nonsym-
plectic involution.

Definition 8.2. Let (X D) be a Looijenga pair with an involution. Let
A = D% be the sublattice of Pic X which is orthogonal to the curves in the
boundary. Assume that there is an involution ¢: X — X with L(D) = D.
We define A} and A_ as the (+1)-eigensublattices of the induced involution
t*: A — A. Denote by A® the set of (—2)-vectors in A_, and by W the
group generated by reflections in them.

Theorem 8.3. Let (Y,C + 1£<B) be an ADE pair and (X, D+ €R) be its
double cover, with the minimal resolution ()Z', 5) Then one has A = A_ and
Wy =w?, Further, ' C AJAL, with equality if and only if the shape has
no doubly primed sides. For a doubly primed shape S” (resp. "S), AJA, is
the same as for the shape S (resp. 'S); it thus contains A’ as a sublattice of
index 2V, where N is the number of sides on which the shape has a double
prime.

Proof. We prove the statement in representative D cases, with the other
cases done by similar computations.

(D2y,) The easiest model for a generic surface X = X of this shape is as a
blowup of P! x P! with a section s and a fiber f at 2n points lying on a curve
in |2s+ f|. Using e; for the exceptional divisors in Pic X, the boundary curves
are D1 ~ 2s+ f — Zfil ei, and Dy ~ f. Then A is generated by the roots
e;—eir1, 1 <i<2n—1and f—e; — ey forming a Dy, Dynkin diagram. The
involution acts by f — f, s+— s+nf — 21221 e;, €, — [ —e;. Thus, it acts
as (—1) on A and A_ is the root lattice A of type Ds,. In this case Ay =0
and A/AL =A_=A=A\".

(D5,,) The surface X is obtained from the one for D, by a blowup at
one of the two points in R N Dsy. Denoting by g the exceptional divisor, one
has D; ~ 2s + f — 221 e;, and Dy ~ f — g. The lattice A is generated
by the 2n roots above and an additional root 5 = s — e; — g. This forms
a Dynkin diagram obtained by attaching an additional node 3 to one of the
short legs of Ds,,, o’ or o’. Without loss of generality, let us say Sa’ = 1. The
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involution ¢ acts on the vectors s, f,e; the same way as above, and t*g = g.
Thus, A, is spanned by the vector t = 8+ ¢* and A_ is the same Dy, root
lattice as before. We have an orthogonal projection p: A — %A_ identifying
A/AL with a sublattice of 2A_ generated by A_ and the image p(3). For
a root @ € A_ one has p(f)a = Ba, so fo’ = 1 and Br = 0 for the other
roots «. Thus, p(8) = w’, the fundamental weight @’ for the root o/, and
A/AL =A+ @ isour A.

('‘Day,) The surface X is obtained from the one for Da,, by a blowup at one
of the two points in R N D;. Denoting by ¢ the exceptional divisor again,
one has Dy ~ 2s+ f — Zle e; — g, and Dy ~ f. The lattice A is generated
by the 2n roots above and an additional root 8 = es, — g. This forms a
Dynkin diagram obtained by attaching an additional node S to the long leg
of Da,, i.e. to aia,,—3 in our notation. The (—1)-eigenspace A_ is again the
Ds,, root lattice generated by the first 2n roots. The space A is generated
by t = 8+ 8 = f —2g. The orthogonal projection p identifies A/A with
A_ + p(a). And since one has SBas,—3 = 1 and f is orthogonal to the other
2n—1 roots, p(8) = way—3. So one has A/A, = A+wq,_3 = A, as claimed.

('D},,) Similarly, in A one has two extra roots 51 = s —e; — g1 and B2 =
€2, — g2 whose images in £A_ are @’ or @” depending on the parity of n,
and @b, 4, so A/AL = A’ again.

When priming a surface of shape S twice on the same side (say on the
right), there are two exceptional divisors gi,g2. Then A(S”) = A(S") @
Z(g1 — g2), AL (S") = AL () ®Z(g1 — g2), A_(S") = A_(S"). Therefore,
A/JAL(S") = A/AL(S’). This applies to DY},,, "Da,, and all the other doubly
primed shapes. O

Next, we define an action of the Weyl group W of the lattice Ag = C+tNB+
introduced in Def. 3.31.

Definition 8.4. Let 7: X — Y be an double cover of a ADFE pair with
a branch divisor B. Let #: X — Y be a double cover of its resolution of

singularities. Let e € AéQ) be a cycle, so e € C*+ N B+ and e = —2. Then
mre = e1 + ey with t*e; = eq, e% = e% = —2 and ejey = 0.
We define vy = 7*(e) = e1 +e3 € Ay and v— = e; —es € A_. The

composition of two reflections we, o we, = we, 0cw,, acts on A_ as a reflection
w,_ in the (—4)-vector v_, and on Ay as a reflection w, in the (—4)-vector
V.

Lemma 8.5. Given e € Ay, we, o we, is well defined up to a conjugation
by W,

Proof. Suppose we have another decomposition vy = e; +ey = €} +¢}. One
has e; = $(vy +v_) and €] = 1(vy +v_). Then e} = =1+ Fv_v’. Since
A_ C Rt and R? > 0, A_ is negative definite. Thus, |[v_v" | < 4, and we
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conclude that eje] = —1. The elements we, o w,, and w,r ow,, are conjugate
by the reflection we, ¢ = we, ;. Finally, e —ej € A_ and (e —e))? = -2,
80 We, —ef € W£2). Il

Definition 8.6. We define the Weyl group W£2’4) as the group of reflec-

(2

tions of A generated by W_>* and the elements w,, o w,, for e € Ay. By the

above, it preserves both A_ and A, with w? acting trivially on A . Thus,
we have the induced actions of W®* on A_ and of W£2’4)/W£2) on Ay.

Theorem 8.7. One has W£2’4)/W£2) = Wy. The subgroup Wy from
Definition 5.1/ is the subgroup of Wy which acts trivially on A_.

Proof. We compute the action of Wy in the representative D cases using
the same notation as in the proof of Theorem 8.3. The lattice A, N R* can be
identified with 7*(Ag) and the (—4)-vectors vy in Ay N R+ with the vectors
7*(e) for e € A(()z).

(Da2p) Ao = 0 and Ay = 0; there is nothing to check.

(D5,,) One has t* = 2n — 8. This equals —4 only for n = 2 and then
D) = 'Dy.

(‘Day,) One has - *8 = 0. So for the generator t = 5+ 8 = f — 2g of
A, one has t? = —4. Indeed, t = vy = 7*e for the generator e of Ag. Then
v_ =8 —1*8 = 2e5, — f. Reflection w,_ in this vector fixes all roots of the
D,,, diagram except for w,_(a,—3) = @ := eg,—1+ea, — f. Together with the
other 2n roots, « forms the ﬁgn diagram in which a,,_3, a are two short legs.
Thus, w,_ acts as an outer automorphism of A(Dsz,) swapping two short legs.
This is the same action for Wy = Ss which we computed in subsection 5F.

("Day) One has Ay = (f — 2g1,92 — g1). The only vectors vy of square
—4in Ay are f —2g; and f — 2g9, which are the pullbacks of the two vectors
in A(()z). For both of them we get the same vector v_ = 2es, — f. Thus,
wg) o wg) and wg) o wg) for these two vectors act in the same way on A_
but differently on A,. We conclude that they generate Ss x S; and their
difference acts trivially on A_. This is the same description of Wy = Sy x So
and Wy = Ss as in 5F.

('D}) 7*Ag is generated by v} = B + *B1 and vi = By + 1*fa, f1 =
s—e; —gi and B2 = eq — go. Then v = —f —e; + ey + e3 + e4 and
v2 = —f 4+ 2e4. Denote by —a the highest root, so that together with the
other 4 roots it forms the Dy diagram. Then w,1 swaps o’ and «, and w,2
swaps a1 and «. Thus, Wy acts as the group S3 of outer automorphisms of
A(Dy), the same as in 5F. O

We now describe, without proof, how our moduli stack of ADFE pairs
(equivalently, up to the ps-cover, the stack of ADE double covers with involu-
tion), which by Theorem 5.12 equals [Ty, : Wx x W), is related to the moduli
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of Looijenga pairs. In the moduli torus Ta of Looijenga pairs the subtorus
Ta/a, corresponds to the pairs admitting a nonsymplectic involution. The
moduli stack is the quotient of it by the group of admissible monodromies of
Ta leaving Ty, invariant. A part of this group is obvious: reflections w®
in the vectors in A(_Q). Also, for each side which has a double prime there is
a root g; — go which gives a quotient by us that forgets the ordering of the
two primed points. This accounts for the fact that A’ is a sublattice of A/A
for shapes with doubly primed sides. Less obviously, for each e € AE)Q), with
7*(e) = e1 + ea, while the reflections w., and w,, by themselves do not fix
A_, their composition we, o we, does.

One thus takes a quotient of Ty, by w® = W followed by a quotient by
W / WEQ) = Wy. The subgroup Wyg C WY / WEQ) acts trivially on the
coarse moduli space Ty, but nontrivially on the stack, giving extra automor-
phisms of the pairs.

8C. Involutions in the Cremona group. Classically, the involutions
in the Cremona group Cr(IP?), the group of birational automorphisms of P2,
are of three types: De Jonquiéres, Geiser, and Bertini. For a nice modern
treatment that uses equivariant MMP, see [BB00]. For a (K + D)-trivial
polarized involution pair (X, D,¢), if X is rational then ¢ is an involution in
Cr(P?).

Theorem 8.8. Let (X, D,t) be a (K + D)-trivial polarized involution pair
with rational surface X and a smooth ramification curve R. Then

(1) If (X, D,t) is of shape f), D, or A (pure or primed) then v is De
Jonquiéres.

(2) If it is of shape 1777, E7, or Eg (pure or primed) then v is Geiser.

(3) If it is of shape Eg or Es (pure or primed) then v is Bertini.

Proof. By [BB00, Prop. 2.7], the type of the involution is uniquely deter-
mined by the normalization R of the ramification curve R: for De Jonquitres
Ris hyperelliptic, for Geiser it is non-hyperelliptic of genus 3, and for Bertini
it is non-hyperelliptic of genus 4. In the D-D-A cases the branch curve B ~ R
is a two-section of a ruling, so it is hyperelliptic. In the E7—E7—E6 cases R is a
quartic curve in P2, so a non-hyperelliptic curve of genus 3, and in the Eg—Eg
cases it is a section of O(1) on the quadratic cone F9, so a non-hyperelliptic
curve of genus 4. O

Remark 8.9. When R has nodes, the involution may easily be of a differ-
ent type. When it has > 2 nodes, the involution is always De Jonquieres.

We can give an alternative proof for the classification of the double covers
(X,D) — (Y, C) of log canonical non-klt surfaces using [BB00] in some cases:
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Theorem 8.10. Let (X, D, ) be a (K + D)-trivial polarized involution pair
with rational X. Suppose that X is smooth outside of the boundary D, and in
particular that the ramification curve R is smooth. Then the quotient (Y,C)
of this pair is an ADE or ADE surface defined in Section 3.

Sketch of the proof. Let X be the minimal resolution of X , it comes with
an induced involution . [BB00, Thm. 1.4] gives six possibilities for the pair
(X, 7) when it is minimal, i.e. there does not exist one or two (—1)-curves that
can be equivariantly contracted to another smooth surface with an involution.
In our case, X is obtained from such a minimal surface by a sequence of single
or double blowups which satisfy two conditions: they have to be involution-
invariant, and there are no (—2)-curves disjoint from B.

It follows that X is obtained by blowups at the points B N R, either one
involution-invariant point or two points exchanged by the involution. We
analyze them directly. The different cases of [BB00, Thm. 1.4] then lead to
the following:

(i) impossible, i.e. does not lead to a (K + D)-trivial polarized involution
pair with ample R. N
) (i@)sm is impossible, and (ii), gives the D-D-A shapes.
) Ay and Aj.
(IV) 4’{7 Al.
) E7, "E;, "E; and the primed shapes.
) Eg, "Eg and the primed shapes.

O

One could try to extend the results of this section to classify families of log
del Pezzo pairs, in which the surface Y may acquire singularities away from
the boundary. This would give an alternative proof of Theorem A. For this,
we would first need to know that the branch divisor B can be smoothed. This
is known, see [Nak07, Cor.3.20]. Secondly, we would also need to know that
the singular points of the surface Y away from the boundary can be smoothed.
For surfaces without the boundary, this is [HP10, Prop. 3.1]. For the pairs
(Y, C) with boundary this does not seem to be easy to prove directly. This
follows a posterior: from the classification of all log del Pezzo surfaces with
boundary given in Sections 3 and 4.
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