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ADE SURFACES AND THEIR MODULI

VALERY ALEXEEV AND ALAN THOMPSON

Abstract

We define a class of surfaces corresponding to the ADE root lattices

and construct compactifications of their moduli spaces as quotients of
projective varieties for Coxeter fans, generalizing Losev-Manin spaces

of curves. We exhibit modular families over these moduli spaces, which

extend to families of stable pairs over the compactifications. One simple
application is a geometric compactification of the moduli of rational

elliptic surfaces that is a finite quotient of a projective toric variety.
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1. Introduction

There are two sources of motivation for this work: Losev-Manin spaces

[LM00] and degenerations of K3 surfaces with a nonsymplectic involution

[AET19].

Let Ln+3 be the moduli space parameterizing weighted stable curves (Z,Q0+

Q∞+ε
∑n+1
i=1 Pi) of genus 0 with n+3 points, where 0 < ε� 1. Equivalently,

the singularity condition is that the n+1 points Pi are allowed to collide while

the remaining two may not collide with any others. One has dimLn+3 = n.

Quite remarkably, Ln+3 is a projective toric variety for the Coxeter fan (also

called the Weyl chamber fan) for the root lattice An, formed by the mirrors to

the roots. Of course it comes with an action of the Weyl group W (An) = Sn+1

permuting the points Pi. The moduli space of the pairs (Z,Q0 + Q∞ + εR)

for the divisor R =
∑n+1
i=1 Pi with unordered points is then Ln+3/Sn+1.

There are other ways in which Ln+3 corresponds to the root lattice An.

For example, its interior, over which the fibers are Z ' P1, is the torus

Hom(An,C∗), and the discriminant locus, where some of the points Pi, Pj
coincide, is a union of root hypertori ∪α{eα = 1} with α = ei − ej going over



ADE SURFACES AND THEIR MODULI 3

the roots of An. Additionally, the worst singularity that the divisor
∑
Pi can

have is (x− 1)n+1 = 0, which is an An-singularity.

Losev and Manin asked in [LM00] if similar moduli spaces existed for other

root lattices. This was partially answered by Batyrev and Blume in [BB11]

where they constructed compact moduli spaces for the Bn and Cn lattices

as moduli of certain pointed rational curves with an involution. Batyrev-

Blume’s method works only for infinite series of root lattices, such as ABCD,

and it breaks down for Dn where it leads to non-flat families (most fibers have

dimension 1 but some have 2).

In this paper, we generalize Losev-Manin spaces to the Dn and En lattices

by replacing stable curve pairs (Z,Q0+Q∞+εR) by (KSBA) stable slc surface

pairs (X,D + εR) and constructing their compact moduli.

Namely, we define a class of surface pairs (X,D+ εR) naturally associated

with the root lattices An, Dn, and En. We call these pairs ADE double covers,

as all of them are double covers π : X → Y of surface pairs (Y,C + 1+ε
2 B).

Here, C and D are reduced boundaries (downstairs and upstairs), R is the

ramification divisor, and B is the branch divisor of π. We call the pairs

(Y,C + 1+ε
2 B) the ADE pairs, and the underlying pairs (Y,C) the ADE

surfaces (with reduced boundary C).

We prove that the moduli space M of ADE pairs (equivalently of ADE

double covers) of a fixed type is a torus for the associated ADE lattice Λ

modulo a Weyl group W , and that the normalization of the moduli compact-

ification M
slc

is the W -quotient of a projective toric variety for a generalized

Coxeter fan corresponding to Λ. Moreover, for each type we construct an

explicit modular family of ADE pairs over M and show that, after a suitable

coordinate change, the discriminant locus in M , where B is singular, is a union

of root hypertori ∪α{eα = 1} with α going over the roots of Λ. Additionally,

the worst singularity appearing in the double cover X is the surface Du Val

singularity of type Λ.

For Λ = An we get the standard Coxeter fan and M
slc

= Ln+3/Sn+1.

The ramification curve R = B in this case is hyperelliptic, a double cover

f : B → Z of a rational genus 0 curve. The boundary C has two irreducible

components defining the boundary Q0 +Q∞ of Z, and the ramification points

of f provide the remaining n+ 1 points in the data for a stable Losev-Manin

curve (Z,Q0 +Q∞ + ε
∑n+1
i=1 Pi).

For Λ = Dn and En the fan is a generalized Coxeter fan, a coarsening of

the standard Coxeter fan. It is the normal fan of a permutahedron given by

a classical Wythoff construction.

We found these ADE surfaces and pairs by studying degenerations of K3

surfaces of degree 2. A polarized K3 surface (X,L) of degree L2 = 2 comes
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with a canonical double cover π : X → Y . The ramification divisor R of π is

intrinsic to (X,L), and the pair (X, εR) is a stable slc pair. Thus, the moduli

of (KSBA) stable slc pairs provides a canonical moduli compactification F
slc

2

of the moduli space F2 of K3 surfaces of degree 2.

On the other hand, there exists a nice toroidal compactification F
tor

2 de-

fined by the Coxeter fan for the reflection group of the root lattice associated

to F2. The type III strata of F
tor

2 are products of W -quotients of projective

toric varieties for the Coxeter fans of certain ADE root lattices. These strata

look like the moduli spaces of degenerate stable slc pairs (Y,C+ 1+ε
2 B) whose

irreducible components (Yi, Ci + 1+ε
2 Bi) are some of the ADE surface pairs

discussed above. Indeed, we confirmed this in many examples. We deter-

mine the precise connection between F
slc

2 and F
tor

2 in [AET19], which is a

continuation of this paper.

We work over the field C of complex numbers. Throughout, ε will denote a

sufficiently small real number: 0 < ε� 1. This means that for fixed numerical

invariants there exists an ε0 > 0 such that the stated conditions hold for any

0 < ε ≤ ε0. Now let us explain the main results and the structure of the

present paper in more detail.

In Section 2 we define (K + D)-trivial polarized involution pairs (X,D, ι)

and study their basic properties. Roughly speaking, such pairs consist of a

normal surface X with an anticanonical divisor D and an involution ι : X → X

that preserves D. They naturally appear when studying stable degenerations

of K3 surfaces with a nonsymplectic involution. We prove that the quotient

(Y,C) = (X,D)/ι of an involution pair is a log del Pezzo surface of index 2,

i.e. the divisor −2(KY + C) is Cartier and ample.

Denoting by π : X → Y the double cover, B ∈ | − 2(KY + C)| the branch

divisor and R ⊂ X the ramification divisor, one has KX +D+ εR = π∗(KY +

C+ 1+ε
2 B). Then the pair (X,D+ εR) is a (KSBA) stable slc pair iff the pair

(Y,C + 1+ε
2 B) is such.

By analogy with Kulikov degenerations of K3 surfaces, we divide the pairs

(X,D, ι) and their quotients (Y,C) into types I, II, III. For type I, one has

C = D = 0, the surface X is an ordinary K3 surface with Du Val singularities,

and the pair (Y,C + 1+ε
2 B) is klt. For types II and III, the pairs (X,D+ εR)

and (Y,C + 1+ε
2 B) are both not klt; these types are distinguished by the

properties of the boundary D, which is a disjoint union of smooth elliptic

curves in type II and a cycle of rational curves in type III.

With this motivation, we set out to investigate log canonical non-klt del

Pezzo surfaces with boundary (Y,C) of index 2, and the moduli spaces of log

canonical pairs (Y,C + 1+ε
2 B), with B ∈ | − 2(KY + C)|.
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In Section 3 we explicitly define many examples of such surfaces (Y,C) in

an ad hoc way. Since the word type is already used for “types I, II, III”, we

call the combinatorial classes of such surfaces shapes. Those of type III we call

ADE shapes, and of type II we call ÃD̃Ẽ shapes. We call the corresponding

surfaces (Y,C) ADE resp. ÃD̃Ẽ surfaces, the stable pairs (Y,C + 1+ε
2 B)

ADE resp. ÃD̃Ẽ pairs, and their covers (X,D + εR) ADE resp. ÃD̃Ẽ

double covers. To each shape we associate a decorated ADE, resp. ÃD̃Ẽ

Dynkin diagram, which we use to label the shape, and a corresponding ADE,

resp. ÃD̃Ẽ lattice. The main reason for this association comes later, when

considering the moduli spaces and their compactifications.

In the simplest cases, the surfaces Y are toric and C is a part of the toric

boundary, with two components C1, C2 in type III and one component in type

II. These shapes are labeled by diagrams of types An, Dn, En, D̃2n, Ẽ7 and Ẽ8.

At this point there is a clear motivation behind this labeling scheme, as the

defining lattice polytopes of the toric surfaces Y contain the corresponding

Dynkin diagrams in an obvious way. In type II we also introduce several

nontoric shapes, which we call Ã2n−1, Ã∗1, and Ã−0 . Interestingly there is no

Ẽ6 shape; Remark 3.10 discusses some reasons for that.

Next we define a procedure, which we call priming, for producing a new lc

nonklt del Pezzo pair (Y
′
, C
′
) of index 2 from an old such pair (Y,C). The

procedure consists of making weighted blowups Y ′ → Y at a collection of up

to 4 points on the boundary C, and then performing a contraction Y ′ → Y
′

defined by the divisor −2(KY ′ + C ′) (where C ′ is the strict transform of C),

provided that it is big and nef.

We list all the ADE and ÃD̃Ẽ shapes, together with their basic numerical

invariants and singularities in Tables 2 and 3. In all, there are 43 ADE shapes

and 17 ÃD̃Ẽ shapes, some of which define infinite families. Whilst this list

seems rather large, most are obtained by applying the priming operation to a

very short list of fundamental shapes. We call these fundamental shapes pure

shapes, and call the ones obtained from them by priming primed shapes.

In Section 4 we prove our first main result, which justifies our interest in

the ADE and ÃD̃Ẽ surfaces.

Theorem A. The log canonical non-klt del Pezzo surfaces (Y,C) with

2(KX + C) Cartier and C reduced (or possibly empty) are exactly the same

as the ADE and ÃD̃Ẽ surfaces (Y,C), pure and primed.

Most of the proof can be extracted from the work of Nakayama [Nak07],

with additional arguments necessary in genus 1. Nakayama’s classification

of log del Pezzo pairs of index 2 was done in very different terms and the

connection with root lattices did not appear in it.
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In Section 5, for each shape we describe the moduli spaces of ADE (i.e.

type III) pairs and their double covers. For each shape we have a root lattice

Λ of ADE type. It has an associated torus TΛ := Hom(Λ,C∗) and Weyl group

WΛ. Then our second main result is as follows.

Theorem B. The moduli stack of ADE pairs of a fixed ADE shape is

[Hom(Λ∗,C) : µΛ × µ2] = [TΛ : WΛ × µ2] for pure A shapes,

[Hom(Λ∗,C) : µΛ] = [TΛ : WΛ] for pure D and E shapes,

[Hom(Λ∗,C) : µΛ′ ×W0] = [TΛ′ : WΛ oW0] for primed shapes.

Here, Λ is an ADE root lattice, Λ∗ is its dual weight lattice, Λ′ is a lattice

satisfying Λ ⊂ Λ′ ⊂ Λ∗ given explicitly in Theorem 5.12, TΛ′ := Hom(Λ′,C∗),
µΛ′ := Hom(Λ∗/Λ′,C∗), and the additional Weyl group W0 is given in Theo-

rem 3.32, with action described in Theorem 5.13.

This result is proved as Thms. 5.9 (for pure shapes) and 5.12 (for primed

shapes). To conclude Section 5, for each pure ADE shape we construct a

Weyl group invariant modular family of ADE pairs, which we call the naive

family, over the torus TΛ∗ .

In Section 6 for each ADE (i.e. type III) shape we construct a modular

compactification of the moduli space of ADE pairs of this shape. In 6A we

begin with a general discussion of moduli compactifications using stable pairs,

and we define stable ADE pairs. Next, for each ADE shape we construct a

Weyl group invariant family of stable slc pairs (Y,C+ 1+ε
2 B) over a projective

toric variety V cox
M for the Coxeter fan of an appropriate over-lattice M ⊃ Λ∗ of

index 2k (Thms. 6.18, 6.26, 6.28). These theorems also describe the combina-

torial types of the stable pairs over each point of V cox
M . For the ADE surfaces

where C has two components, the irreducible components of these pairs are

again ADE pairs for Dynkin subdiagrams. For some of the primed ADE

shapes where C has one or zero components, new “folded” shapes appear.

Next, we define a generalized Coxeter fan as a coarsening of the Coxeter

fan, corresponding to a decorated Dynkin diagram, and the corresponding

projective toric variety V semi
M . We prove that our family is constant on the

fibers of V cox
M → V semi

M and the types of degenerations are in a bijection with

the strata of V semi
M , with the moduli of the same dimension. As a consequence,

we obtain our third main theorem. This theorem follows from Thm. 6.38,

which is a slightly stronger result.

Theorem C. For each ADE shape the moduli space M slc
ADE is proper and

the stable limit of ADE pairs are stable ADE pairs.

(1) For the pure ADE shapes, the normalization of M slc
ADE is V semi

Λ /WΛ, a

WΛ-quotient of the projective toric variety for the generalized Coxeter

fan.
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(2) For the primed shapes, the normalization (M slc
ADE)ν is V semi

Λ′ /WΛoW0,

for a lattice extension Λ′ ⊃ Λ. The lattice Λ′ and the Weyl group W0

are as in Theorem B.

The moduli spaces described in Theorem B have many automorphisms,

some of which extend to automorphisms of our compactification. In Section 7

we prove that there exists an essentially unique deformation of the naive family

such that its pullback to the torus TΛ∗ has the following wonderful property:

the discriminant locus becomes the union of the root hypertori {eα = 1}, with

α going over the roots of the corresponding ADE root lattice. We also prove

that this deformation extends to the compactification. This is our fourth main

theorem.

Theorem D. For each ADE shape there exists a unique deformation of

the equation f of the naive family such that Discr(f) = Discr(Λ). The re-

sulting canonical family of ADE pairs extends to a family of stable pairs on

the compactification for the generalized Coxeter fan. The restriction of this

compactified canonical family to a boundary stratum is the canonical family

for a smaller Dynkin diagram.

This theorem is proved in two parts, as Theorems 7.2 and 7.11. In the final

subsection 7D we use these canonical families to explicitly determine all the

possible singularities of the branch divisor B that can appear in our ADE

pairs.

In Section 8 we discuss an application of our results and its connections

with other work. In Section 8A, as an application we construct a compactifi-

cation M ell of the moduli space of rational elliptic surfaces with section and a

distinguished I1 fiber (i.e. irreducible rational with one node). The compact-

ification is by the stable slc pairs (X,D+ εR) where D is the I1 fiber and R is

the fixed locus of the elliptic involution. We prove that the normalization of

M ell is a WE8
-quotient of a projective toric variety for the generalized Coxeter

fan for the E8 lattice. In Section 8B we discuss the relationship of our work

to that of Gross-Hacking-Keel on moduli of anticanonical pairs [GHK15], and

in Section 8C we discuss its relationship with the classification of birational

involutions in the Cremona group Bir(P2) [BB00].

2. Log del Pezzo index 2 pairs and their double covers

Definition 2.1. A (K +D)-trivial polarized involution pair (X,D, ι) con-

sists of a normal surface X with an effective reduced divisor D, and an invo-

lution ι : X → X, ι(D) = D such that

(1) KX +D ∼ 0 is a Cartier divisor linearly equivalent to 0,
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(2) the fixed locus of ι consists of an ample Cartier divisor R, hence-

forth called the ramification divisor, possibly along with some isolated

points, and

(3) the pair (X,D+ εR) has log canonical (lc) singularities for 0 < ε� 1.

Remark 2.2. Such pairs naturally appear when studying degenerations

of K3 surfaces with an involution. In [AET19] we show that for any one

parameter degeneration of K3 surfaces S → (Z, 0) with a nonsymplectic invo-

lution ιS and a ramification divisor RS , if (S0, εR0) is the stable slc limit of

the pairs (St, εRt) for 0 < ε � 1, then each irreducible component X of the

normalization of (S0,R0) comes with an involution ι and, denoting by D its

double locus, the pair (X,D, ι) is a (K +D)-trivial polarized involution pair

as in Definition 2.1.

Let ω be a global generator of the 1-dimensional space H0
(
OX(KX +D)

)
.

The ramification divisor R is nonempty by ampleness and has no components

in common with D by the lc condition. For a generic point x ∈ R there

are local parameters (u, v) such that ι(u, v) = (u,−v). Then ι∗(du ∧ dv) =

−du ∧ dv. Thus, the involution ι is non-symplectic, meaning ι(ω) = −ω.

Let π : X → Y = X/ι be the quotient map, C = π(D) the boundary and

B = π(R) the branch divisors. By Hurwitz formula, KX +D ≡ π∗(KY +C+
1
2B).

Lemma 2.3. There is a one-to-one correspondence between (K+D)-trivial

polarized involution pairs (X,D, ι) and pairs (Y,C + 1+ε
2 B) such that

(1) Y is a normal surface and C,B are reduced effective Weil divisors on

it.

(2) (Y,C) is a (possibly singular) del Pezzo surface with boundary of index

≤ 2, i.e. −2(KY + C) is an ample Cartier divisor.

(3) B ∈ | − 2(KY + C)|; in particular B is Cartier.

(4) The pair (Y,C + 1+ε
2 B) has lc singularities for 0 < ε� 1.

Moreover, if (1)–(4) hold then one also has

(5) For any singular point y ∈ Y : if y ∈ B then y is Du Val and y 6∈ C.

Proof. Suppose (1)–(4) hold and y ∈ B is a non Du Val singularity of Y or a

Du Val singularity with y ∈ C. Then on a minimal resolution g : Ỹ → Y there

exists an exceptional divisor E whose discrepancy with respect to KY + C is

< 0. Since 2(KY + C) is Cartier, one has aE(KY + C) ≤ − 1
2 . But B is

Cartier, so

aE

(
KY + C +

1 + ε

2
B

)
≤ −1

2
− 1 + ε

2
< −1,

and the pair (Y,C + 1+ε
2 B) is not lc, a contradiction. This proves (5).
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Now let (X,D, ι) be a (K + D)-trivial polarized involution pair. Using

ι∗(ω) = −ω, it follows by [Kol13, Prop.2.50(4)] that for any x ∈ X étale-

locally (X,x)→ (Y, π(x)) is the index-1 cover for the pair (Y,C+ 1
2B). Thus,

π∗OX = OY ⊕ ωY (C), the divisor 2(KX + C) is Cartier, and B = (s), s ∈
H0
(
OY (−2(KY +C))

)
. From the identity KX+D+εR ≡ π∗(KY +C+ 1+ε

2 B)

it follows that the divisor KY +C+ 1+ε
2 B is ample and the pair (Y,C+ 1+ε

2 B)

has lc singularities.

Vice versa, let (Y,C+ 1+ε
2 B) be a pair as above, and let X := SpecY OY ⊕

ωY (C) be the double cover corresponding to a section s ∈ H0
(
OY (−2(KY +

C))
)
, B = (s). Thus, étale-locally it is the index-1 cover for the pair (Y,C +

1
2B). Then KX + D ∼ 0, KX + D + εR is ample and lc, and 2R = π∗(B) is

an ample Cartier divisor.

We claim that R itself is Cartier. Pick a point x ∈ R and let y = π(x) ∈ B.

The cover π corresponds to the divisorial sheaf OY (KY +C), which is locally

free at y by (5). Then the double cover is given by a local equation u2 = s,

and R is given by one local equation u = 0, so it is Cartier. �

Thus, the classification of (K + D)-trivial polarized involution pairs is re-

duced to that of del Pezzo surfaces (Y,C) with reduced boundary of index

≤ 2 plus a divisor B ∈ | − 2(KY + C)| satisfying the lc singularity condition.

In the case when C = 0, del Pezzo surfaces of index ≤ 2 with log terminal sin-

gularities were classified by Alexeev-Nikulin in [AN88, AN89, AN06]. There

are 50 main cases which are further subdivided into 73 cases according to the

singularities of Y . However, all these surfaces are smoothable, which follows

either by using the theory of K3 surfaces or by [HP10, Prop. 3.1]. Thus, there

are only 10 overall families, with a generic element a smooth del Pezzo surface

of degree 1 ≤ K2
Y ≤ 9 (for K2

Y = 8 there are two families, for F0 and F1).

The dimension of the family of pairs (Y,B), equivalently of the double covers

(X, ι), is 10 +K2
Y .

Del Pezzo surfaces with a half-integral boundary C of index ≤ 2 were classi-

fied by Nakayama in [Nak07]. An important result of Nakayama is the Smooth

Divisor Theorem [Nak07, Cor.3.20] generalizing that of [AN06, Thm.1.4.1]. It

says that for any del Pezzo surface (Y,C) with boundary of index ≤ 2 a gen-

eral divisor B ∈ | − 2(KY + C)| is smooth and in particular does not pass

through the singularities of Y . Thus, every such surface (Y,C) produces a

family of (K +D)-trivial polarized involution pairs (X,D, ι).

Remark 2.4. The divisors C and B play a very different role: C is fixed,

and B varies in a linear system. For this reason, we will refer to them dif-

ferently. We will call C the boundary and say that (Y,C) is a surface with

boundary (and sometimes we will drop the words “with boundary”). We will

call (Y,C+ 1+ε
2 B) a pair, consisting of a surface with boundary (Y,C) plus an
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additional choice of divisor B on it. In many cases, surfaces with boundary

are rigid, but pairs have moduli.

Let f : X̃ → X be the minimal resolution of singularities, and let D̃ be the

effective Z-divisor on X̃ defined by the formula KX̃ + D̃ = f∗(KX +D) ∼ 0.

It follows from the lc condition that D̃ is reduced.

Lemma 2.5. For the minimal resolution of a (K + D)-trivial polarized

involution pair, one of the following holds:

(I) D = 0, D̃ = 0, and X is canonical. Then X is a K3 surface with

ADE singularities and ι is an non-symplectic involution.

(II) (X,D) is strictly log canonical and D̃ is one or two isomorphic smooth

elliptic curve(s),

(III) (X,D) is strictly log canonical and D̃ is a cycle of P1s.

Accordingly, we will say that the (K +D)-trivial polarized involution pair

(X,D, ι) and the corresponding del Pezzo surface (Y,C) with boundary have

type I, II, or III. In type I (Y,C) is klt, and in types II, III it is not klt.

Proof. (I) (Compare [AN06, Sec. 2.1]) X̃ is either a K3 surface or an

Abelian surface. If X̃ = X is an Abelian surface then the involution is different

from (−1) since R 6= 0. Thus, the induced involution ι∗ on H0(Ω1
X) is different

from (−1) and there exists a nontrivial 1-differential on X which descends to

a minimal resolution Ỹ of Y . But Y is a del Pezzo surface with log terminal

singularities, so basic vanishing gives h0(Ω1
Ỹ

) = h1(OỸ ) = h1(OY ) = 0. Thus,

X̃ is a K3 surface, and we already noted that the involution is non-symplectic.

(II, III) Since ωD̃ ' OD̃ by adjunction, every connected component of D̃

is either a smooth elliptic curve or a cycle of P1s. Since KX̃ = −D̃ is not

effective, X̃ is birationally ruled over a curve E and D̃ is a bisection. The

curve E has genus 1 or 0 since it is dominated by D̃. If one of the connected

components of D̃ is a cycle of P1s then g(E) = 0 and X is rational. In that

case from H1(−D̃) = H1(KX̃) = 0 we get h0(OD̃) = h0(OX̃) = 1, so D̃ is

connected. If g(E) = 1 and D̃ has more than one connected component then

then they all must be horizontal. Thus, there must be two of them, each a

section of X̃ → E, so they are both isomorphic to E. �

3. Definitions of ADE, ÃD̃Ẽ surfaces, pairs, and double covers

Definition 3.1. The ADE and ÃD̃Ẽ surfaces are certain normal surfaces

(Y,C) with reduced boundary defined by the explicit constructions of this

section. They are examples of log del Pezzo surfaces of index 2, i.e. each pair
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(Y,C) has log canonical singularities, and the divisor −2(KY + C) is Cartier

and ample.

In the sense of Lemma 2.5, the ADE surfaces are of type III, and ÃD̃Ẽ

surfaces are of type II.

Definition 3.2. Given an ADE, resp. ÃD̃Ẽ surface (Y,C), let L =

−2(KY + C) be its polarization, an ample line bundle. If B ∈ |L| is an

effective divisor such that (Y,C + 1+ε
2 B) is log canonical for 0 < ε � 1

then (Y,C + 1+ε
2 B) is called an ADE, resp. ÃD̃Ẽ pair. The double cover

π : X → Y as in Lemma 2.3 is then called an ADE, resp. ÃD̃Ẽ double cover.

Remark 3.3. By Lemma 2.3(5) the points of intersection B ∩C are non-

singular points of Y , and the log canonicity of (Y,C + 1+ε
2 B) implies that

B intersects C transversally. Consequently, R intersects D transversally at

smooth points of X.

By construction, the ADE and ÃD̃Ẽ surfaces will admit a combinatorial

classification. Since the word type is overused, we call the classes shapes. To

each shape we associate:

(1) a decorated ADE or affine, extended ÃD̃Ẽ Dynkin diagram,

(2) a decorated Dynkin symbol, e.g −A−5 or Ẽ−8 ,

(3) an ordinary ADE, resp. affine ÃD̃Ẽ root lattice, e.g. A5 or Ẽ8.

Parts (1) and (2) are equivalent, and (3) may be obtained from them by

deleting the decorations. The main reason for this association will become

apparent later, in the description of the moduli spaces and their compactifi-

cations. But in the cases where Y is toric and C is part of its toric boundary,

they also encode some data about the defining polytope.

We divide the shapes into two classes, which we call pure and primed.

ADE and ÃD̃Ẽ surfaces of pure shape are fundamental, we define them all

explicitly in subsections 3A and 3B. In type III the pure shapes form 5 infinite

families along with 3 exceptional shapes. In type II there are 2 infinite families

and 4 exceptional shapes.

The ADE and ÃD̃Ẽ surfaces of primed shape are secondary and there are

many more of them; they can all be obtained from surfaces of pure shape by

an operation which we call “priming”, explained in subsection 3C.

3A. Toric pure shapes. The ADE surfaces (type III) of pure shape are

all toric, as are 3 of the ÃD̃Ẽ surfaces (type II) of pure shape. To construct

them we begin with polarized toric surfaces (Y, L), where L = −2(KY + C).

Such toric surfaces correspond in a standard way with lattice polytopes P

with vertices in M ' Z2.

Lemma 3.4. Let P be an integral polytope with a distinguished vertex p∗
and (Y,L) be the corresponding polarized projective toric variety. Let C be the
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torus-invariant divisor corresponding to the sides passing through p∗. Sup-

pose that all the other sides of P are at lattice distance 2 from p∗. Then

−2(KY +C) ∼ L is ample and Cartier, and the pair (Y,C) has log canonical

singularities.

Proof. Let C ′ =
∑
C ′i be the divisor corresponding to the sides not passing

through the vertex p∗. The zero divisor of the section ep∗ ∈ H0(Y, L) is∑
diC

′
i where di are the lattice distances from p∗ to the corresponding sides.

This gives L ∼ 2C ′. Combining it with the identity KY + C + C ′ ∼ 0

gives the first statement. It is well known that the pair (Y,C + C ′) has log

canonical singularities. Thus, the smaller pair (Y,C) also has log canonical

singularities. �

Definition 3.5. We now apply this Lemma to define some of our ADE

and ÃD̃Ẽ surfaces (Y,C) of pure shape. For each shape we list its decorated

Dynkin symbol and the vertices of its defining polytope in Table 1, and il-

lustrate them with pictures in Figures 1, 2, 3, 4. In these Figures the sides

of the polytope through p∗ are drawn in bold blue; they correspond to ir-

reducible components of the divisor C. Within the polytopes we draw the

decorated Dynkin diagrams, the rules for doing this are explained in Nota-

tion 3.7. Finally, we also label some of the lattice points pi, for later use in

Section 5.

The surface Y of shape D̃2n is toric with a torus-invariant boundary C only

for 2n ≥ 6. In the D̃4 shape we formally define (Y,C) to be either P1 × P1

with a smooth diagonal C ∼ s + f or, as a degenerate subcase, a quadratic

cone P(1, 1, 2) with a conic section.

p∗

p0 p1 p2 p3 p4

p∗

p1 p2 p3 p4 p5

Figure 1. A shapes: A3, −A−3 , A−2 , A−0

Definition 3.6. Given a surface (Y,C) of pure shape, we call the irre-

ducible components of C sides. If (Y,C) is of type III there are two sides,

we call them left and right and decompose C = C1 + C2 correspondingly. If

(Y,C) is of type II there may be one side or no sides.

Let L = −2(KY +C). We call a side C ′ long if L.C ′ = 2 or 4, and short if

L.C ′ = 1 or 3.
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Table 1. Polytopes for the pure shapes

shape min(n) p∗ polytope vertices

A2n−1 1 (0, 2) (0, 2), (0, 0), (2n, 0)

A−2n−2 1 (0, 2) (0, 2), (0, 0), (2n− 1, 0)
−A−2n−3 2 (0, 2) (0, 2), (1, 0), (2n− 1, 0)

D2n 2 (2, 2) (2, 2), (0, 2), (0, 0), (2n− 2, 0)

D−2n−1 3 (2, 2) (2, 2), (0, 2), (0, 0), (2n− 3, 0)
−E−6 (2, 2) (2, 2), (0, 3), (0, 0), (3, 0)
−E7 (2, 2) (2, 2), (0, 3), (0, 0), (4, 0)
−E−8 (2, 2) (2, 2), (0, 3), (0, 0), (5, 0)

D̃2n 2 (2, 2) (0, 2), (0, 0), (2n− 4, 0), (4, 2)

Ẽ7 (2, 2) (0, 4), (0, 0), (4, 0)

Ẽ−8 (2, 2) (0, 3), (0, 0), (6, 0)

p∗

p′′

p0 p1 p2 p3 p4

p′=p′1

p′2

Figure 2. D shapes: D4, D−5 , D6

p∗

p′′

p0 p1 p2 p3 p4 p5

p′1

p′2

p′3

Figure 3. E shapes: −E−6 , −E7, −E−8

In the type III cases illustrated in Figures 1, 2, 3, long sides have lattice

length 2 and short sides have lattice length 1. In the type II cases illustrated

in Figure 4, long sides have lattice length 4 and short sides have lattice length

3.
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Figure 4. Type II shapes D̃8, Ẽ7 and Ẽ−8

Within each polytope in Figures 1, 2, 3, 4 we draw the corresponding

decorated Dynkin diagram, using the following rule.

Notation 3.7. Given a surface of pure shape (Y,C) defined torically by a

polytope P as above, mark a node for each lattice point on the boundary of

P which is not contained in C, and join them with edges along the boundary.

For any node that lies at a corner of P , add an additional internal node to

the diagram and connect it to the corner node. We distinguish such internal

nodes by circling them in our diagrams.

This process associates an ADE (resp. ÃD̃Ẽ) diagram to each of our

torically-defined pure shapes of type III (resp. type II), but it does not give

a bijective correspondence between diagrams and shapes. To fix this we also

need to keep track of the parity. We color the nodes of a diagram lying at

lattice length 2 from p∗ black, and the nodes lying at lattice length 1 from p∗
white. Internal nodes are always colored white.

In the type III cases, note that each diagram has a leftmost and rightmost

node, which sit next to the left and right sides respectively. The length of the

sides may be read off from the colors of these nodes: white nodes correspond

to long sides and black nodes to short sides.

Notation 3.8. For ease of reference, to each decorated Dynkin diagram

we also associate a decorated Dynkin symbol, in a unique way. For the pure

shapes, this is given by the name of the (undecorated) Dynkin diagram, with

superscript minus signs on the left/right to denote the locations of short sides;

as noted above, this can be read off from the colors of the nodes at the ends

of the diagram. For instance, as illustrated in Figure 1, A3 has two long sides,
−A−3 has two short sides, and A−2 has a long side on the left and a short side on

the right. In type II cases, which have only one side, we place all decorations

on the right by convention.

Remark 3.9. With this notation, the two shapes −A2n−2 and A−2n−2 are

identical up to labeling of the components of C. Where this labeling is unim-

portant, we will refer to these surfaces by the symbol A−2n−2, with the short
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side on the right. There are, however, some settings in which it will be impor-

tant to keep track of the labels, such as when we come to study degenerations.

Remark 3.10. Curiously, there is no Ẽ6 shape. In our ad hoc definition

above, the process of adding internal nodes can only produce branches of

length 2. This rules out Dynkin diagram Ẽ6, which has three branches of

length 3. A deeper reason is that in Arnold’s classification of singularities

[Arn72] the Ẽ7 and Ẽ8 singularities exist in all dimensions ≥ 2, but Ẽ6 starts

in dimension 3 and so cannot appear on a surface.

3B. Nontoric Ã shapes. In addition to the toric surfaces described

above, there are also three nontoric ÃD̃Ẽ surfaces (type II) of pure shape.

These are the Ã shapes, their decorated Dynkin diagrams and symbols are

chosen to be compatible with moduli and degenerations, although they do

not admit the same nice description in terms of polytopes as the toric shapes.

They are illustrated in Figure 5.

(1) Ã2n−1. The surface Y is a cone over an elliptic curve and C = 0, so

there is no boundary. More precisely, let F be a line bundle of degree n > 0 on

an elliptic curve E, and let Ỹ be the surface ProjE(O⊕F). Let s, s∞ be the

zero, resp. infinity sections, and let f : Ỹ → Y be the contraction of the zero

section. Then f∗KY = KỸ + s = −s∞, so −KY is ample with K2
Y = n. If

B ∈ |−2KY | is a generic section then pa(B) = n+1 and the map B → E has

2n points of ramification. Of course, the surface Y is not toric. The double

cover X → Y branched in B is unramified at the singular point, and X has

two elliptic singularities. One has R2 = 2K2
Y = 2n.

(2) Ã
∗
1. The surface is the projective plane Y = P2, the boundary C

is a smooth conic, and the branch curve B is a possibly singular conic. If

B is smooth then the double cover X = P1 × P1; if B is two lines then

X = F0
2 = P(1, 1, 2) with R passing through the singular point of X. We also

include here as a degenerate subcase when P2 degenerates to Y = F0
4. Then

X = F0
2 with R not passing through the singular point.

(3) Ã
−
0 . The surface is the quadratic cone Y = P(1, 1, 2) with minimal

resolution Ỹ = F2. The strict preimage of C on Ỹ is a divisor in the linear

system |s + 3f |, where s is the (−2)-section and f is a fiber. The curve C

passes through the vertex of the cone and is smooth at that point. The branch

curve B is a hyperplane section disjoint from the vertex. The double cover is

X = P2 with an involution (x, y, z) 7→ (x,−y, z), and the boundary divisor is

a smooth elliptic curve y2z = f3(x, z).

The surface Y of shape Ã∗1 is obtained by a “corner smoothing” of a surface

of toric shape A1: the union of two lines C1 +C2 in P2 is smoothed to a conic
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Figure 5. Nontoric type II Ã shapes: Ã5, Ã1, Ã∗1, Ã−0

C. Similarly, Ã−0 is obtained by a “corner smoothing” of A−0 . We add the star

in Ã∗1 to distinguish it from the ordinary Ã1 shape, which has no boundary.

Remark 3.11. One observes that the Ã shapes cannot be toric because

the Dynkin diagram is not a tree.

Remark 3.12. With the single exception of Ã∗1, all of our decorated

Dynkin graphs are bipartite: black and white nodes appear in alternating

order.

3C. Primed shapes. Priming is a natural operation producing a new del

Pezzo surface (Y
′
, C
′
) of index 2 from an old one (Y,C). Let Ii ' (y, x2) be

an ideal with support at a smooth point Pi ∈ C whose direction is transversal

to C. A weighted blowup at Ii is a composition of two ordinary blowups:

at Pi and at the point P ′i corresponding to the direction of Ii, followed by

a contraction of an (−2)-curve, making an A1 surface singularity at a point

contained in the strict preimage C ′ of C. Weighted blowups of this form are

the basis of the priming operation.

Definition 3.13. Let (Y,C) be an ADE or ÃD̃Ẽ surface and let P1, . . . ,

Pk ∈ C be distinct nonsingular points of Y and C. Choose ideals Ii ' (y, x2)

with supports at Pi and directions transversal to C (the closed subschemes

SpecOY /Ii can be thought of as vectors). Let ks denote the number of points

on side Cs, so k =
∑
ks. Define f : Y ′ → Y to be the weighted blowup at

I =
∏k
i=1 Ii and let C ′ be the strict preimage of C. Let F =

∑
Fi be the

sum of the exceptional divisors and L′ = −2(KY ′ +C ′); note that L′ is a line

bundle since an A1 singularity has index 2.

Assume that L′ is big, nef, and semiample. Then the priming of (Y,C) is

defined to be the pair (Y
′
, C
′
) obtained by composing f with the contraction

g : Y ′ → Y
′

given by |NL′|, N � 0. The divisor C
′

is defined to be the strict

transform of C. The resulting pair (Y
′
, C
′
) is an ADE or ÃD̃Ẽ surface of

primed shape.

Remark 3.14. Priming has a very simple geometric meaning for the pairs

(Y,C+ 1+ε
2 B). Let B ∈ |L| be a curve such that (Y,C+ 1+ε

2 B) is log canonical.

By Remark 3.3 the curve B is transversal to C. In this case we take the ideals

Ii to be supported at some of the points Pi ∈ B ∩ C, with the directions
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equal to the tangent directions of B at Pi. Priming then produces a new pair

(Y
′
, C
′
+ 1+ε

2 B
′
) which disconnects B from C at the points Pi. If a component

of C ′ is completely disconnected from B′ then it is contracted on Y
′
.

But it is on the double cover π : (X,D + εR) → (Y,C + 1+ε
2 B) where the

priming operation becomes the most natural and easiest to understand. The

double cover X ′ of Y ′ branched in B′ is an ordinary smooth blowup of X

at the points Qi = π−1(Pi). So on the cover we simply make k ordinary

blowups at some points Qi ∈ D ∩ R in the boundary D which are fixed by

the involution, then apply the linear system |NR′|, N � 0, provided that

R′ is big, nef and semiample, to obtain the primed pair (X
′
, D
′
+ εR

′
). This

disconnects R from D at the points Qi. If a component of D′ is completely

disconnected from R′ then it is contracted on X
′
.

Definition 3.15. In terms of the pairs, we will call the above operation

priming of an ADE(resp. ÃD̃Ẽ) pair (Y,C + 1+ε
2 B), resp. priming of an

ADE(resp. ÃD̃Ẽ) double cover (X,D + εR). The result is an ADE(resp.

ÃD̃Ẽ) pair/double cover of primed shape.

We reiterate that a priming only exists if L′ is big, nef, and semiample.

Below we will give a necessary and sufficient condition for existence of a

priming that is easier to check; before that, however, we need to introduce

some basic invariants.

Definition 3.16. The basic numerical invariants of an ADE or ÃD̃Ẽ

surface (Y,C), with polarization L = −2(KY + C), are

(1) the volume v = L2/2 > 0,

(2) the genus g = 1
2 (KY + L)L− 1 ≥ 0,

(3) the lengths LCs > 0 of the sides.

The Hilbert polynomial of (Y, L) is χ(Y, xL) = vx2 + (v+ 1− g)x+ 1. The

Hilbert polynomials of (Cs, L) are 2x+ 1 for a long side and x+ 1 for a short

side. It is immediate to compute these invariants for the pure shapes. We list

them in the highlighted rows of Tables 2 and 3.

Lemma 3.17. With notation as in Definition 3.13:

(1) For the main divisors, one has

C ′ = f∗C−F, KY ′ = f∗KY +2F, L′ = f∗L−2F, KY ′+L
′ = f∗(KY +L).

(2) The basic invariants change as follows:

L′2/2 = L2/2− k, g(L′) = g(L), L′C ′s = LCs − ks.

Theorem 3.18 (Allowed primings). Let (Y,C) be an ADE or ÃD̃Ẽ sur-

face of pure shape, as defined in sections 3A and 3B, and I1, . . . , Ik a collection

of ideals as in Definition 3.13. Then a necessary and sufficient condition for a
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priming to exist is: L′2 > 0 and L′C ′s ≥ 0 for the sides Cs. Under these con-

ditions, L′ is big, nef, and semiample, and contracts Y ′ to a normal surface

Y
′

with ample Cartier divisor −2(KY
′ + C

′
).

Proof. The conditions L′2 > 0 and L′C ′s ≥ 0 are necessary since L′ is big

and nef. Now assume that they are satisfied. We exclude Ã2n−1 since its

boundary is empty and no primings are possible. We can also exclude the

shapes of volume 1, which are A−0 and Ã−0 . By Lemma 3.17 one has

1

2
L′ = (KY ′ + L′) + C ′ = f∗(KY + L) + C ′.

Thus, if KY +L is nef then L′ is nef. One checks that for all the pure shapes

except for A1 and Ã∗1 the divisor KY +L is nef. Indeed, the surfaces of A2n−1,

A−2n−2, −A−2n−3 and Ẽ7, Ẽ−8 shapes have Picard rank 1, so KY +L is nef iff the

genus g ≥ 0, i.e. all except A1 and the excluded A−0 . For the D4, D̃4 shapes

one has KY + L = 0. For the other D2n, D−2n−1, D̃2n shapes KY + L gives a

P1-fibration. Finally, for the E shapes the divisor KY + L is big and nef: for
−E−6 it is ample, for −E7 it contracts the left side C1 to an Ẽ7 surface, and

for −E−8 it contracts the right side C2 to an Ẽ−8 surface.

The remaining shapes A1 and Ã∗1 are easy to check directly. In both cases

Y = P2 and C is a conic: two lines for A1 and a smooth conic for Ã∗1. The

divisor L′ is big and nef and contracts a (−1)-curve E′, the strict preimage of

a line E with the direction of the ideal I, to a surface of shape A−0 , resp. Ã−0 .

Since 1
2L
′ is of the form −(K ′Y +C ′), if it is big and nef then it is automat-

ically semiample, see e.g. [Fuj12, Thm.6.1]. This concludes the proof. �

Corollary 3.19. The shapes A2n−1, D2n, D̃2n, Ẽ7 can be primed a maxi-

mum of 4 times, shapes Ã−2n−2, D̃−2n−1, Ẽ−8 3 times, and −A−2n−2, −E−6 , −E−8
2 times each.

Remark 3.20. As we can see from the above proof, the cases A′1 = A−0
and (Ã∗1)′ = Ã−0 are special. Also, as we will see below, the dimension of the

moduli space of pairs in these cases drops after priming, but in all other cases

it is preserved. For these reasons, and to avoid redundancy in our naming

scheme, we do not allow primings of A1 and Ã∗1.

We associate decorated Dynkin diagrams and symbols to primed shapes

by modifying those of the corresponding pure shapes, as follows. Recall

that, in the pure Type III cases, each diagram has a leftmost and rightmost

node, which sit next to the left and right sides, and these nodes are colored

white/black if and only if the corresponding side is long/short.

Notation 3.21. For an ADE shape, when priming on a long side once

we circle the corresponding white node, and when priming a second time we

also circle the neighboring black node. In the Dynkin symbol we add a prime,
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resp. double prime on the left or right, depending on whether we are priming

at a point of the left side C1 or the right side C2. When priming on a short

side, we circle the corresponding black node once and turn the − superscript

into a + superscript (visually − and ′ gives +).

For an ÃD̃Ẽ shape, we add up to 4 primes to the Dynkin symbol for a

long side in D̃2n and Ẽ7. We also turn Ẽ−8 into Ẽ+
8 before adding up to two

more primes. In the corresponding decorated diagrams, we circle one node

for each prime using the following rule: first circle black nodes at the ends of

the diagram, then white nodes at the ends of the diagram, then finally black

nodes connected to circled white ones.

Remark 3.22. We note two pieces of mild ambiguity in this notation.

The first is that the decorated diagrams for the two shapes ′′A′3,
′A′′3 and also

for ′′D′4,
′D′′4 are the same, so the diagram in these cases does not distinguish

left and right sides. In practice this won’t cause a problem: if we need to

distinguish sides in these cases we will use the Dynkin symbols ′′A′3,
′A′′3 , resp.

′′D′4,
′D′′4 .

The decorated diagrams for the shapes ′A+
2 and ′′A−2 are also identical. In

fact, in this case we find that the ADE surfaces ′A+
2 and −A′′2 are isomorphic,

so this is just another instance of the diagram not distinguishing left and right

sides. These surfaces are obtained by priming ′A−2 and −A′2, respectively, once

on the right and a surface of ′A−2 shape is left/right symmetric (in fact it has

a toric description which makes this symmetry apparent, see Lemma 3.25 and

Figure 7). One way to think of this symmetry is to consider ′A−2 = −A′2 as a

symmetric −D−2 shape.

Remark 3.23. If we wish to refer to an ADE or ÃD̃Ẽ surface with an

unspecified decoration (i.e. either undecorated or one of −, ′, ′′,+), we will

use a question mark decoration ?. For example, A?
2n−1 refers to one of the

surfaces A2n−1, A′2n−1, or A′′2n−1, while ′A?
2n−2 refers to one of the surfaces

′A−2n−2 or ′A+
2n−2.

Note that circled white nodes can denote either internal nodes or long

sides on which a single priming has taken place. This apparent notational

ambiguity will be explained in the following subsection.

Example 3.24. In Fig. 6 we give several examples of such diagrams. The

surfaces in these cases are not toric. However, we can still use pseudo-toric

pictures to indicate the lengths LC
′
s of the sides and the sides C ′s which are

contracted by Y ′ → Y
′
. The volume of the surface is the volume of the

polytope minus the number of primes, i.e. additional circles in the diagram

as compared to a pure shape.

We list all the resulting 43 ADE and 17 ÃD̃Ẽ shapes and their basic

invariants in Tables 2 and 3. The pure shapes are highlighted. Note that
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Figure 6. Decorated Dynkin diagrams for shapes ′′A′3, ′′D+
5 , Ẽ+

8
′

this table does not distinguish between left and right sides of A-shapes (see

Remark 3.9), so e.g. A−2n−2 and −A2n−2 are listed as the same surface. The

column for the singularities is explained in section 3E.

3D. Primed shapes which are toric. We observe that some of the

primed shapes also admit toric descriptions. This provides an explanation

for a piece of notational ambiguity mentioned in the previous subsection:

the priming operation on a long edge (white node) may be interpreted as

modifying the diagram to make that node internal in the toric representation.

Lemma 3.25. The shapes ′A2n−1, ′A−2n−2, D′2n, ′A′2n−1 are toric and can be

represented by the polytopes listed in Table 4 and illustrated in Figs. 7 and 8.

Proof. In these cases we can choose the ideals Ii to be torus invariant, with

Supp Ii corresponding to vertices of the polytopes of the pure shapes A2n−1,

A−2n−2, D2n, and Ii pointing in the directions of the respective sides. Then

the blown up surface Y ′ = Y
′

is also toric, for the polytope obtained from the

old polytope by cutting corners, as in Table 4 and Fig. 8. �

p0 p1 p2

p′1
p′′

Figure 7. Toric ′A shapes: ′A−2 = −A′2 = −D−2 , ′A3, ′A−4

Remark 3.26. For other primed shapes, the surfaces are generally not

toric but toric surfaces do appear for certain special directions of the ideals

being blown up. Some of them are shown in Fig. 9.

3E. Singularities of ADE and ÃD̃Ẽ surfaces.

Theorem 3.27 (Singularities). Let (Y,C) be a surface of pure shape 6=
A1, Ã

∗
1. With notation as in Definition 3.13, when priming (Y,C) to (Y

′
, C
′
)

the only curves contracted by g : Y ′ → Y
′

are:
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Table 2. All ADE shapes

shape min(n) volume genus LCs sings in nonklt(Y,C)

A2n−1 1 2n n− 1 2, 2 (n)

A′2n−1 2 2n− 1 n− 1 2, 1 (n), A1
′A′2n−1 2 2n− 2 n− 1 1, 1 A1, (n), A1

A′′2n−1 2 2n− 2 n− 1 2 (n, 2; 22)
′A′′2n−1 2 2n− 3 n− 1 1 A1, (n, 2; 22)
′′A′′2n−1 3 2n− 4 n− 1 (22; 2, n, 2; 22)

A−2n−2 1 2n− 1 n− 1 2, 1 (n, 2), A1
′A−2n−2 2 2n− 2 n− 1 1, 1 A1, (n, 2), A1

A+
2n−2 2 2n− 2 n− 1 2 (n, 2, 2; 22)
′A+

2n−2 2 2n− 3 n− 1 1 A1, (n, 2, 2; 22)
′′A−2n−2 2 2n− 3 n− 1 1 (22; 2, n, 2), A1
′′A+

2n−2 3 2n− 4 n− 1 (22; 2, n, 2, 2; 22)
−A−2n−3 2 2n− 2 n− 1 1, 1 A1, (2, n, 2), A1
−A+

2n−3 2 2n− 3 n− 1 1 A1, (2, n, 2, 2; 22)
+A+

2n−3 3 2n− 4 n− 1 (22; 2, 2, n, 2, 2; 22)

D2n 2 2n n− 1 2, 2

D′2n 2 2n− 1 n− 1 2, 1 A1
′D2n 2 2n− 1 n− 1 1, 2 A1
′D′2n 2 2n− 2 n− 1 1, 1 2A1

D′′2n 2 2n− 2 n− 1 2 (2; 22)
′′D2n 2 2n− 2 n− 1 2 (22;n)
′D′′2n 2 2n− 3 n− 1 1 A1, (2; 22)
′′D′2n 2 2n− 3 n− 1 1 (22;n), A1
′′D′′2n 3 2n− 4 n− 1 (22;n, 2; 22)

D−2n−1 3 2n− 1 n− 1 2, 1 (2), A1
′D−2n−1 3 2n− 2 n− 1 1, 1 A1, (2), A1

D+
2n−1 3 2n− 2 n− 1 2 (2, 2; 22)
′D+

2n−1 3 2n− 3 n− 1 1 A1, (2, 2; 22)
′′D−2n−1 3 2n− 3 n− 1 1 (22;n, 2), A1
′′D+

2n−1 3 2n− 4 n− 1 (22;n, 2, 2; 22)
−E−6 6 3 1, 1 A1, (3), A1
−E+

6 5 3 1 A1, (3, 2; 22)
+E+

6 4 3 (22; 2, 3, 2; 22)
−E7 7 3 1, 2 A1
−E′7 6 3 1, 1 2A1
+E7 6 3 2 (22; 2)
+E′7 5 3 1 (22; 2), A1
−E′′7 5 3 1 A1, (2, 3, 2)
+E′′7 4 3 (22; 2, 3; 22)
−E−8 8 4 1, 1 2A1
−E+

8 7 4 1 A1, (3; 22)
+E−8 7 4 1 (22; 2), A1
+E+

8 6 4 (22; 2, 3; 22)
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Table 3. All ÃD̃Ẽ shapes

shape min(n) volume genus LC sings in nonklt(Y,C)

Ã2n−1 1 2n n+ 1 elliptic

Ã∗1 2 0 4

Ã−0 1 0 3 A1

D̃2n 2 2n n− 1 4

D̃′2n 2 2n− 1 n− 1 3 A1

D̃′′2n 2 2n− 2 n− 1 2 2A1

D̃′′′2n 2 2n− 3 n− 1 1 3A1

D̃′′′′2n 3 2n− 4 n− 1 (n; 24)

Ẽ7 8 3 4

Ẽ′7 7 3 3 A1

Ẽ′′7 6 3 2 2A1

Ẽ′′′7 5 3 1 3A1

Ẽ′′′′7 4 3 (3; 24)

Ẽ−8 9 4 3 A1

Ẽ+
8 8 4 2 2A1

Ẽ+′
8 7 4 1 3A1

Ẽ+′′
8 6 4 (3; 24)

Table 4. Polytopes for the toric primed shapes

shape min(n) p∗ polytope vertices
′A2n−1 2 (2, 2) (2, 2), (0, 1), (0, 0), (2n− 2, 0)
′A−2n−2 2 (2, 2) (2, 2), (0, 1), (0, 0), (2n− 3, 0)
′A′2n−1 3 (2, 2) (2, 2), (0, 1), (0, 0), (2n− 4, 0), (n, 1)

D′2n 3 (2, 2) (2, 2), (0, 2), (0, 0), (2n− 4, 0), (n, 1)

(1) The sides C ′s with L′C ′s = 0. These contract to nonklt(Y
′
,C
′
).

(2) A collection of (−2) curves disjoint from C ′. These contract to Du

Val singularities disjoint from nonklt(Y,C).

Proof. Let E′ be a curve with L′E′ = 0. As in the proof of Theorem 3.18, if

KY +L is nef and E′ 6= C ′s then (KY ′ +L′)E′ = 0, so KY ′E
′ = 0. Since E′ is
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p0 p1 p2 p3 p4

p′′ p5
p′

p2 p3 p4 p5 p6

p1 p7

Figure 8. Toric D′ and ′A′ shapes: D′8, ′A′5, ′A′7

Figure 9. Some special toric surfaces in shapes ′D−7 , ′D′4

disjoint from the boundary, it lies in the smooth part of Y ′. We have E′2 < 0,

and by the genus formula the only possibility is E′ ' P1 with E′2 = −2. �

Corollary 3.28. The singularities of the ADE and ÃD̃Ẽ surfaces (Y,C)

lying in the nonklt locus of (Y,C) depend only on the shape and are those

listed in the last column of Tables 2 and 3.

Notation 3.29. In Tables 2 and 3 we use the following notation for sin-

gularities. We denote simple nodes by the usual A1. For cyclic quotient

singularities, whose resolutions are a chain of curves, we use the notation

(n1, n2, . . . , nk), where −ni is the self-intersection number of the ith curve in

the chain; note that (2, 2, . . . , 2) corresponds to the Du Val singularity An.

For more complicated singularities, whose resolution is not necessarily a chain

of curves, we use the following notation: (n1, n2, . . . , nk; 22) denotes a singu-

larity obtained by contracting a configuration of exceptional curves with the

first dual graph in Fig. 10. Note that this includes Du Val singularities of

type Dn, which are denoted by (2, 2, . . . , 2; 22).

n1 n2 nk−1 nk

2

2 2

2

n1 n2 nk−1 nk

2

2

Figure 10. Singularities (n1, n2, . . . , nk; 22) and (22;n1, n2, . . . , nk; 22)

Finally, we will use the expression (22;n1, n2, . . . , nk; 22) to denote a singu-

larity obtained by contracting a configuration of exceptional curves with the
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second dual graph in Fig. 10. Two apparently degenerate cases of this nota-

tion are A1 = (2) and (n; 22) = (2, n, 2); we nonetheless use both notations,

as it is useful to make a distinction when we discuss double covers. We will

also often use (n; 24) in place of (22;n; 22). Separately note that for n = 1 the

“singularities” (n) and (n, 2) are in fact smooth points.

For completeness, we also note the corresponding singularities on the dou-

ble covers. The double cover of a simple node A1 is always a smooth point,

and the double cover of a cyclic quotient singularity (n1, n2, . . . , nk) is always

a pair of cyclic quotient singularities with the same resolution; this explains

why we draw a distinction between A1, which has smooth double cover, and

(2), which has double cover a pair of (2) singularities.

The double cover of a singularity of type (n1, n2, . . . , nk; 22) is a cyclic

quotient singularity (n1, n2, . . . , nk−1, 2nk−2, nk−1, . . . , n1); this explains the

second degenerate piece of notation, as (2, n, 2) has double cover a pair of

(2, n, 2) singularities, and (n; 22) has double cover a single (2n − 2) singu-

larity. Finally, the double cover of a (22;n1, n2, . . . , nk; 22) singularity, for

k ≥ 2, is a cusp singularity whose resolution is a cycle of rational curves with

the negatives of self-intersections (2n1−2, n2, . . . , nk−1, 2nk−2, nk−1, . . . , n2)

ordered cyclically, and the double cover of an (n; 24) singularity is a simple

elliptic singularity whose resolution is a smooth elliptic curve with the minus

self-intersection 2n− 4.

3F. Recovering a precursor of pure shape. The aim of this subsection

is to explore to what extent the priming operation is reversible. In other words,

given an ADE or ÃD̃Ẽ surface of primed shape, can we uniquely recover the

surface of pure shape from which it was obtained by priming?

Lemma 3.30 (Non-redundancy). When distinguishing the left and right

sides, the only redundant case in the decorated Dynkin symbol notation for the

shapes is ′A−2 = −A′2, for which also a symmetric but degenerate notation −D−2
may be used. (See Remark 3.22. Recall also that A′1 = A−0 , ′A1 = −A0, and

(Ã∗1)′ = Ã−0 ; for this reason we do not allow primings of A1 and Ã∗1.)

When not distinguishing the left and right sides, there are also the cases

coming from the Z2 symmetry of A2n−1, −A−2n−3, −D−2 , D4, and −E−6 : ′A5 =

A′5, D′4 = ′D4, E−6 = −E6, etc., including ′′A−2 = ′A+
2 . (See Remarks 3.9 and

3.22.)

Proof. By Tables 2 and 3, most of the shapes are already distinguished by

the main invariants and singularities. The only exception is D′2n and ′D2n for

2n ≥ 6. However, in these cases the sheaf KY + L gives a P1-fibration. The

left side C1 is a bisection of this fibration and C2 lies in a fiber, so the two

primings are not isomorphic. �
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Definition 3.31. Let f : Ỹ → Y be the minimal resolution of an ADE or

ÃD̃Ẽ surface (Y,C). Let C̃s be the strict transforms on Ỹ of the components

Cs of C, and let Fi be the f -exceptional curves. Let C⊥ := 〈Cs, Fi〉⊥ ⊂ Pic Ỹ

and let Λ0 := C⊥∩B⊥. Denote by ∆
(2)
0 the set of (−2) vectors in Λ0, by Λ

(2)
0

the root system generated by them, and by W0 = W (∆
(2)
0 ) the corresponding

Weyl group. Since B2 > 0, the lattice Λ0 is negative definite, and Λ
(2)
0 and

W0 are of ADE type.

Theorem 3.32. For a surface (Y
′
, C
′
) of a primed shape, its pure shape

precursor (Y,C), from which it comes by priming, is defined up to the action

of W0. The group W0 is trivial except for the following shapes:

(1) For 2n ≥ 6, for D2n and D−2n−1 with k primes on the left and any

number of primes on the right, and for D̃2n with k primes one has

W0 = W (Ak1) = Sk2 .

(2) the following exceptional shapes of genus 1:

shape ′A′3
′A′′3 D′4 D′′4

′D′4
′D′′4 D̃4 D̃′4 D̃′′4 D̃′′′4

Λ
(2)
0 A1 A2

1 A1 A2
1 A2 A3 A1 A2 A3 D4

For the ADE shapes for a generic surface of the given shape the Weyl

group W0 acts freely on the choices of a precursor, and for the D̃ shapes it

acts with a degree 2 stabilizer. For a generic surface of the given shape there

are no singularities outside the set nonklt(Y
′
,C
′
). For special surfaces there

may exist additional Du Val singularities for all the ADE root sublattices of

Λ
(2)
0 , and all of these appear.

In addition, for the exceptional case ′′A−2 = +A′2 of Lemma 3.30 one has

W0 = 0, and there are two choices for the −A2 precursors, and only one

choice for A−2 .

Example 3.33. For ′′D6 one has W (A2
1) = S2

2 , and generically there are

4 choices for a precursor of shape D6. For special choices of the directions of

priming ideals Ii the surfaces may have additional singularities of types 2A1

or A1.

For D̃′′′4 one has |W (D4)| = 192, and generically there are 96 choices for a

precursor of shape D̃4. For special choices of the directions of priming ideals

Ii the surfaces may have additional singularities of types D4, A3, 3A1, A2,

2A1, A1.

Proof of Thm. 3.32. We computed the lattice Λ0 for every shape in Ta-

bles 2, 3 by a lengthy but straightforward computation. The root systems Λ
(2)
0

are the ones stated in (1), (2). For example, for ′′D′′2n one has Λ0 = A2
1⊕〈−4〉,

and the root system is A2
1. We skip the details.
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We find the precursors and singularities separately but then confirm that

the answer is the same as above. Let f : Y ′ → Y be the first step in the

priming, before the contraction Y ′ → Y
′
(see Definition 3.13). Let E′ 6= C ′s be

a curve with L′E′ = 0 and E its image on Y . As in the proofs of Theorem 3.18,

3.27, one must have (KY + L)E = 0, and such a curve may only exist in

(1) D2n, D−2n−1 shapes for 2n ≥ 6, where KY + L gives a P1-fibration

over P1,

(2) the shapes of genus 1, where KY + L = 0.

Let us consider the case (1). The only possibilities for E are the fibers of the

P1 fibration. Let Pi ∈ C1, and Ii with Supp Ii = Pi be an ideal appearing

in the priming. Let E be a fiber of the P1 fibration passing through Pi. If

the direction of Ii is generic, namely it is not the direction of E then on the

blowup Y ′ the preimage f−1(E) consists of two curves: the strict preimage

E′ = f−1
∗ (E) and the exceptional divisor F . Both of them are P1, and one

has (E′)2 = F 2 = − 1
2 and E′C = FC = 1. Contracting either F or E′ gives a

pure shape precursor, so we get two choices. On the other hand, if Ii has the

direction E, i.e. Ii ⊃ I(E) then f−1(E) = E′ ∪ F , E′ lies in the smooth part

of Y ′, and one has (E′)2 = −2 and E′C = 0. The linear system |L′| contracts

E′ to an A1 singularity. Thus, in this case there is one precursor and Y
′ \C ′

has an extra A1 singularity.

In the case (2) for any curve E ⊂ Y one has E′ · f∗(KY + L) = 0. The

shapes of genus 1 are A3, A−2 , −A−1 , D4, D̃4 and those obtained from these

by priming. For all of them the minimal resolution Ỹ is a weak del Pezzo

(i.e. with big and nef −KỸ ) of degree 2, 4, 6, or 8. To analyze both possible

precursors and singularities we computed the graphs of (−1) and (−2) curves

on the minimal resolution of singularities Ỹ . These graphs are classically

known, see e.g. [Dol12, Ch.8]. The answers are the same as given in the

statement of the Theorem.

The exceptional case ′′A−2 = +A′2 of genus 1 is treated in the same way. �

4. Classification of nonklt log del Pezzo surfaces of index 2

The purpose of this Section is to prove:

Theorem A. The log canonical non-klt del Pezzo surfaces (Y,C) with

2(KX + C) Cartier and C reduced (or possibly empty) are exactly the same

as the ADE and ÃD̃Ẽ surfaces (Y,C), pure and primed.

Log del Pezzo surfaces with boundary (Y,C) such that −2(KY +C) is ample

and Cartier were classified by Nakayama in [Nak07], over fields of arbitrary
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characteristic. Some work is still required to extract Theorem A from his

classification. First, in [Nak07] the divisor C is half-integral, and in our case

it should be integral.

Secondly, the case of genus g = 1 in [Nak07] is reduced to classifying log

canonical pairs (Y,C) such that Y is a Gorenstein del Pezzo surface and C is

an effective Weil divisor with −KY ∼ 2C. The classification of such pairs is

not provided. Rather than trying to perform such a classification, we adapt

the arguments from other parts of [Nak07] to deal with this case.

For ease of the use of [Nak07], for this section only, we adopt the notation

of the latter paper. The basic setup is as follows. The log del Pezzo surface

with boundary is denoted (S,B), versus our (Y,C). At the outset, let us

mention an important general result [Nak07, Cor.3.20] generalizing that of

[AN06, Thm.1.4.1]:

Theorem 4.1 (Smooth Divisor Theorem). Let (S,B) be a log del Pezzo

surface with boundary of index ≤ 2. Then a general element of the linear

system | − 2(KS +B)| is smooth.

By [Nak07, 3.16, 3.10], the only pairs with irrational S and integral B are

cones over elliptic curves which we call Ã2n−1. So below we assume that S is

rational. The minimal resolution of singularities of S is denoted by α : M → S.

One defines:

(1) An effective Z-divisor EM on M by the formula KM = α∗(KS +B)−
1
2EM . Since we assume the pair (S,B) to be lc, EM has multiplicities 1

and 2. If B = 0 and S is log terminal then EM is reduced. Otherwise,

there is at least one component of multiplicity 2.

(2) A big and nef line bundle LM = α∗(−2(KS + B)). Thus, one has

LM = −2KM − EM .

(3) The genus g(S,B) = 1
2 (KM + LM )LM + 1. This is the genus of a

general element of | − 2(KS +B)|.
This is the standard notation used in [Nak07]:

• On P2, a line is denoted by `.

• On Fn, a zero section is σ, an infinite section σ∞, and a fiber `.

• On P(1, 1, n), ¯̀ is the image of a fiber from Fn, i.e. a line through the
1
n (1, 1) singular point (0, 0, 1). σ̄∞ is the image of σ∞ on P(1, 1, n);

note that σ̄∞ ∼ n¯̀.

The classification of log del Pezzo surfaces with boundary is divided into

three cases:

(1) KM + LM is not nef.

(2) KM + LM is nef and g ≥ 2.

(3) KM + LM is nef and g = 1.
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4A. The case KM + LM is not nef. By [Nak07, 3.11], the only cases

for us are:

(1) S = P2, degB = 2 =⇒ B is a smooth conic (our Ã∗1) or two lines

(A1).

(3) S = P(1, 1, n), n ≥ 2 and B ∈ |(n2 + 2)¯̀|, in particular n is even.

In the latter case, note that the smallest divisor not passing through the

singular point (0, 0, 1) is σ̄∞ ∼ n¯̀. We consider the subcases:

(a) B 63 (0, 0, 1). We need n
2 +2 ≥ n =⇒ n = 2, 4. If n = 2 then B ∈ |3¯̀|

is not Cartier, a contradiction. If n = 4 then B ∈ |4¯̀| = |O(1)|,
LM = O(1). This is a degenerate subcase of Ã∗1, when P2 degenerates

to F0
4 = P(1, 1, 4) (see Subsection 3B(2)).

(b) B 3 (0, 0, 1) and is smooth there. The strict preimage of B is then

B̃ ∼ `+kσ∞ for some k ≥ 0. Then B ∼ (1+kn)¯̀ =⇒ n
2 +2 = 1+kn.

It follows that n = 2 and k = 1. If B is irreducible then this is our

Ã−0 case; if B = ¯̀+ σ̄∞ then this is A−0 .

(c) B 3 (0, 0, 1) and has two branches there. Then B̃ ∼ 2` + kσ∞ and

B ∼ (2 + kn)¯̀∼ (n2 + 2)¯̀. This is impossible.

4B. KM + LM is nef and g ≥ 2. Nakayama defines a basic pair to

be a projective surface X and a nonzero effective Z-divisor E so that, for

L = −2KX − E one has:

(C1) KX + L is nef,

(C2) (KX + L)L = 2g − 2 > 0,

(C3) LEi ≥ 0 for any irreducible component Ei of E.

So, the minimal resolution of a log del Pezzo surface with boundary of index

≤ 2 is a basic pair, unless B = 0 and S has Du Val singularities (because then

E = 0). Vice versa, by [Nak07, 3.19], any basic pair is the minimal resolution

of a log del Pezzo surface with boundary of index ≤ 2, with the semiample

line bundle NL, N � 0, providing the contraction.

The next step is to run MMP for the divisor KX + 1
2L. Namely, if for some

(−1)-curve γ one has (2KX + L)γ = −Eγ < 0 then Lγ = Eγ = 1, the curve

γ can be contracted τ : X → Z to obtain a new basic pair (Z,EZ), and one

has KX + L = τ∗(KZ + LZ), KX + E = τ∗(KZ + EZ). Here, EZ = τ∗(E)

and it is again nonzero.

The minimal basic pairs, without the (−1)-curves as above are P2 and Fn,

and it is easy to list the possibilities for E on them. Nakayama proves that the

morphism φ : M → X to a minimal basic pair is a sequence of blowups of the

simplest type which can be conveniently locally encoded by a zero-dimensional

subscheme ∆ of a smooth curve, i.e. a subscheme given by an ideal I = (y, xk)

for some local parameters x, y and k > 0. If µ : Y → X is a simple blowup



ADE SURFACES AND THEIR MODULI 29

then IY = µ∗I = (y, xk−1)⊗OY (−Γ), where Γ is the exceptional (−1)-curve

of µ. Then one continues to eliminate IY by induction, making k blowups in

total. Equivalently, one can blow up the ideal I and then take the minimal

resolution.

In this way, we obtain a triple (X,E,∆) satisfying

(F1) (X,E) is a minimal basic pair, L = −2KX − E.

(F2) ∆ is empty or a zero-dimensional subscheme of X which is locally a

subscheme of a smooth curve,

(F3) ∆ is a subscheme of E considered as a subscheme of X (recall that E

is an effective Cartier divisor with multiplicities 1 or 2) such that for

every reduced irreducible component Ei of E one has LEi ≥ deg(∆∩
Ei).

Nakayama calls these quasi fundamental triplets. Vice versa, by [Nak07, 4.2]

for any quasi fundamental triplet (X,E,∆) the pair (M,EM ) obtained by

eliminating ∆ is a basic pair, that is the minimal resolution of singularities of

a log del Pezzo surface with boundary. Thus, one is reduced to enumerating

quasi fundamental triplets.

For a given basic pair (M,EM ), the sequence of blowdowns of (−1)-curves

and thus the resulting quasi fundamental triplet (X,E,∆) are not unique.

To cure this, Nakayama defines a fundamental triplet that satisfies additional

normalizing conditions [Nak07, Def. 4.3]. He then proves in [Nak07, 4.9] that

the fundamental triplet exists and is unique in most cases, including all the

cases when (S,B) is strictly log canonical – the case that we operate in. For

this case, the possible fundamental triplets are listed in [Nak07, 4.7(2)].

It remains to consider these fundamental triplets and the resulting minimal

resolutions M . But first, we can narrow down the possibilities for ∆ since our

situation is restricted by the condition that B is integral and not half-integral

as in [Nak07].

Definition 4.2. We introduce the following simple subschemes ∆ ⊂ E.

E ∆ deg(∆) multP (∆ ∩ Ei)
( · ) (y) (y, x) 1 1

(−)1 (y) (y, x2) 2 2

(−) (y2) (y, x2) 2 2

( ′ ) (y2) (y2, x) 2 1

(+) (y2) (y2, y + εx2), ε 6= 0 4 2

An alternative description for the last subscheme is (y + εx2, x4).

The subschemes appearing in this definition are given suggestive names,

which reflect the notation used for priming in Section 3C. The reason for this

will become clear in the proof of Theorem 4.8.
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Lemma 4.3. The effect of eliminating the subschemes of Definition 4.2 is

as follows.

( · ) EM = 1Ei + 0Γ1, Γ2
1 = −1, EiΓ1 = 1, LMΓ1 = 1.

(−)1 EM = 1Ei + 0Γ1 + 0Γ2, Γ2
1 = −1, Γ2

2 = −2, EiΓ1 = Γ1Γ2 = 1,

LMΓ1 = 1.

(−) EM = 2Ei + 2Γ1 + 1Γ2, Γ2
1 = −1, Γ2

2 = −2, EiΓ1 = Γ1Γ2 = 1,

LMΓ1 = 1.

( ′ ) EM = 2Ei + 1Γ1 + 0Γ2, Γ2
1 = −2, Γ2

2 = −1, EiΓ1 = Γ1Γ2 = 1,

LMΓ2 = 1.

(+) EM = 2Ei + 2Γ1 + 1Γ2 + 1Γ3 + 0Γ4, Γ2
1 = Γ2

2 = Γ2
3 = −2, Γ2

4 = −1,

EiΓ1 = Γ1Γ2 = Γ1Γ3 = Γ3Γ4 = 1, LMΓ4 = 1.

It is pictured in Fig. 11.

( · ) d d+ 1 (−)1 d d+ 2

(−) d d+ 2( ′ ) d d+ 1

(+) d d+ 2

Figure 11. Effect of eliminating simple subschemes

Proof. This is direct computation, following [Nak07, Sec.2]. �
Notation 4.4. In Fig. 11, the rectangle with label “d” denotes an irre-

ducible component Ei of E with E2
i = −d. The small nodes are P1’s of square

(−1), the large ones of square (−2). Rectangles and nodes are shown in bold

black, resp. gray or white, if they appear in EM with multiplicity 2, resp. 1

or 0. The half-edges denote multP (∆ ∩ Ei), which are 2 (double line) or 1

(single line). When we are working with a geometric triple (X,B + 1+ε
2 D),

where D ∈ |−2KS−E| is a section, these half edges are the local intersection

numbers DEi at a point P ∈ D ∩ Ei. The double edge means that D is

tangent to Ei at P .

The following lemma is a direct consequence of a proof from [Nak07].

Lemma 4.5. The pair (S,B) is log canonical iff for every irreducible com-

ponent Ei of E in the fundamental triplet (X,E,∆), one has multE(Ei) ≤ 2,

∆ is disjoint from the nodes of the double part xEy of E, and multP (∆∩Ei) ≤
2 for every irreducible component Ei with multE(Ei) = 2 and all P ∈ ∆.
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Proof. Follows immediately from the proof of [Nak07, Cor. 4.7]. �

Theorem 4.6. Let (M,EM ) be a basic pair with M the minimal resolution

of singularities of a strictly log canonical log del Pezzo surface with boundary

(S,B) of index ≤ 2 with integral B, and let φ : M → X be a contraction to

a minimal basic pair so that (M,EM ) is obtained from a quasi fundamental

triplet (X,E,∆) by eliminating the 0-dimensional scheme ∆. Then

(1) If a component Ei of E has multiplicity 1 then its strict preimage on

M must be isomorphic to P1 and have E2
i ≤ −2.

(2) Additionally, assume that ∆ is disjoint from the singular part of Ered

and that for every irreducible component Ei of E with multE(Ei) = 1,

one has multP (∆ ∩ Ei) ≤ 2. Then the only connected components of

∆ are the five subschemes of Def. 4.2.

Remark 4.7. Concerning the additional assumptions of (2), we note that

they are satisfied for the strictly log canonical fundamental triplets by [Nak07,

4.6]. So we can ignore them in the case g(S,B) ≥ 2.

Proof. (1) Our condition for the integrality of B means that all components

of EM of multiplicity 1 must be contracted by α : M → S. They are all P1’s

with E2
i ≤ −2.

(2) We then go through the short list of subschemes with multP (∆∩Ei) ≤
2, eliminating those that lead to (−1)-curves Γ with multEM (Γ) = 1. For

example, the case ∆ = (x, y) ⊂ E = (y2) is eliminated. �

Nakayama defined fundamental triplets (X,E,∆) (without “quasi”) in or-

der to obtain uniqueness for them, in most cases. We pick a different nor-

malization: we pick (X,E) to correspond to one of the pure shapes and all

connected components of ∆ to be of type (′).
Theorem 4.8. Let (S,B) be a log del Pezzo surface with boundary (S,B)

of index ≤ 2 of genus g(S,B) ≥ 2. Then it is one of the following shapes or

is obtained from them by any allowable primings as in Theorem 3.18.

(1) D̃2n, D2n, D−2n−1, A2n−1, A−2n−2, −A−2n−3 for 2n ≥ 6.

(2) Ẽ7, −E7, −E−6 .

(3) Ẽ−8 , −E−8 .

Proof. We go through the complete list [Nak07, 4.7(2)] of fundamental

triplets and see that they are as above.

Case [n; 2, e]2 for n ≥ 0, e ≤ max(4, n+1) with mult` F ≤ 2 for any ` ≤ F .

This means that X = Fn and E = 2σ + F , where F ∼ e` is a sum of several

fibers, each with multiplicity ≤ 2, and ∆∩σ = ∅. We have L ∼ 2σ∞+(4−e)`
and Lσ = 4− e.

If e = 0 then ∆ = ∅. This is D̃2n+8, so we obtain D̃2m for 2m ≥ 8.
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If e = 1 then we must have ∆ = (··), that is two disjoint copies of (·)
contained in a fiber F , or (−)1 which is a degeneration of it. Let us use

the extended notation [n; 2, 0; ··], resp. [n; 2, 0;−1] by writing ∆ at the end.

Note that we must apply (·) twice, otherwise F̃ is a (−1)-curve in EM with

multiplicity 1, which is not allowed by Theorem 4.6.

Contracting one of the (−1)-curves back and then Fi, we can view this as

the quasi fundamental triplet [n − 1; 2, 0; ′], which is D̃′2n+6. Thus, we get

D̃′2m for 2m ≥ 6.

In the degenerate case ∆ = (−)1 of (··), the direction of the “prime” coin-

cides with the direction of the fiber ` on Fn−1 for the triplet [n− 1; 2, 0; ′]. In

that case the strict preimage of this fiber gives an extra (−2)-curve, and the

surface Y acquires an extra A1 singularity outside of B.

If e = 2 and F = `1 +`2 then we get [n−2; 2, 0; ′′] this way, which is D̃′′2n+4.

Since n ≥ 1, we get D̃′′2m for 2m ≥ 6. Similarly when e = 3, 4 and F is the

sum of e distinct fibers, we get D̃′′′2m and D̃′′′′2m for 2m ≥ 6. Similar to the

above, for every priming the preimage of the corresponding fiber ` gives an

(−2)-curve which gives an additional singularity of Y .

Now consider the case when e = 2 and F = 2` is a double fiber. If ∆ = ∅
then this is D2n+4, i.e. D2m for 2m ≥ 6. For ∆ = −, ′, ′′,+ we get D−2m−1,

D′2m, D′′2m, D+
2m−1 for 2m ≥ 6. Adding single fibers to F , i.e. F = 2`+ `1 or

2` + `1 + `2, gives priming on the left side, which produces all the cases ′D?

and ′′D? for 2m ≥ 6.

Finally, e = 4, F = 2`1 +2`2 and ∆ = ∅ gives A2n−1. Adding ∆ = −, ′, ′′,+
adds corresponding decorations in the A case, with each −,+ decreasing the

index by 1.

Case [1; 2, 2]2∞: Y = F1, E = 2σ∞, and ∆ = ∅. This is D̃6.

Case [2]2 with multP (∆ ∩ `) ≤ 2 for any P ∈ `: Y = P2, E = 2` and

L = O(4). For ∆ = ∅, this is Ẽ7. For ∆ = (−), resp. (−−), this is −E7,
−E−6 . Considering various other possibilities for ∆ leads to all the allowable

primings of Ẽ7, −E7, −E−6 .

Case [2; 1, 2]2+ with multP (∆∩ `) ≤ 2 for any P ∈ `: Y = F2, E = σ+ 2`,

deg(∆∩ `) ≤ 3 and ∆∩ σ = ∅. For ∆ = ∅ this is Ẽ−8 , and for ∆ = (−) this is
−E−8 . Considering various other possibilities for ∆ leads to all the allowable

primings of Ẽ−8 and −E−8 .

Case [0; 2, 1]0. This is a typo, this is a klt case so it does not appear. �

4C. KM + LM is nef and g = 1. In this case the main result of [Nak07]

is (3.12) which says that S must be a Gorenstein log del Pezzo surface and

2B ∼ −KS . To apply it in our case, we would have to find all Gorenstein

del Pezzo surfaces with Du Val singularities and KS divisible by 2 as a Weil
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divisor – of which there are many – and then consider all the possibilities for

B.

Instead, we adopt a different strategy. Let us define a weak basic pair

with the same definition as a basic pair but dropping the condition (C2) that

2g − 2 > 0. Similarly, we define a weak quasi fundamental triplet (X,E,∆)

by asking that X in (F1) is merely a weak minimal basic pair. Then:

(1) It is still true that KM + LM is nef for any weak basic pair obtained

by eliminating a 0-dimensional scheme of a weak fundamental triple

(X,E,∆): the corresponding proofs in [Nak07, 4.2, 3.14 nefness] go

through.

(2) We have additional conditions KM +LM = KM +EM = 0 by [Nak07,

3.12].

(3) Our Theorem 4.6 still holds.

(4) We have to check separately that LM is big, this condition is no longer

automatic. However, this is easy to do: L2/2 drops by deg(∆)/2, i.e.

by 1 under the operations (′), (−)1, (−), and by 2 under (′′).
Lemma 4.9. The weak fundamental triplets for strictly lc pairs (S,B) are:

(1) X = P2, E = 2`1 + `2.

(2) X = F0, and (a) E = 2σ + 2`, (b) E = 2σ + `1 + `2, (c) E = 2D,

D ∼ σ + `.

(3) X = F1, and (a) E = 2σ + 2`1 + `2, (b) E = 2σ + `1 + `2 + `3,

(c) E = σ + σ∞ + 2`, (d) E = 2σ∞ + `.

(4) X = F2, and (a) E = 2σ + 2`1 + 2`2, (b) E = 2σ + 2`1 + `2 + `3,

(c) E = 2σ + `1 + `2 + `3 + `4, (d) E = σ + 2`+ σ∞, (e) E = 2σ∞.

Proof. Immediate: X = P2 or Fn, L = −KX must be nef, and E =

−2KX − L must have at least one component of multiplicity 2. We simply

list the possibilities. �

Theorem 4.10. Let (S,B) be a log del Pezzo surface with boundary (S,B)

of index ≤ 2 of genus g(S,B) = 1. Then it is one of one of the shapes D̃4,

D4, A3, A−2 , −A−1 , or is obtained from one of them by any allowable primings

as in Theorem 3.18.

Proof. The pairs of Lemma 4.9 in which all components of E have multi-

plicity 2 already appear in our classification: (2a) D4, (2c) D̃4, (4a) A3, (4e)

degenerate case of D̃4. Our first step is to reduce all other cases to them.

Let us begin with case (1). The line `2 must be blown up at least once by

Theorem 4.6(1). Thus, we are reduced to case (2).

Now consider for example case (2b). The fiber `1 must be blown up at

least once, again by Theorem 4.6(1). Let τ : X ′ → X be the first blowup at a

point P ∈ E and let E0 be the exceptional (−1)-curve. We have KX′ +E′ =
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τ∗(KX + E) = 0. If P = `1 ∩ σ then E0 appears in E′ with coefficient 2,

otherwise it appears with coefficient 0; either way it is even. Let X ′ → X ′′ be

the contraction of the strict preimage of `1, which is a (−1)-curve on X ′. We

obtain another minimal model M → X ′′ for M which has fewer components

of multiplicity 1 in E.

This way, we reduce all cases to the purely even cases above except cases

(3c) and (4d). Consider now (3c). The curve σ∞ has to be blown up at least

once. Blowing up and contracting the strict preimage of a fiber reduces to the

case (3a) which was already considered. The case (4d) reduces to (3c) and

then to (3a).

So now we are reduced to the pairs of shapes D4, A3, D̃4 and the pairs

obtained from them by eliminating 0-dimensional subschemes ∆. The condi-

tions of Theorem 4.6(2) hold, so the connected components of ∆ have types

(′), (−), (+). In the cases D4, A3 we also have deg(∆ ∩ Ei) ≤ 2 for i = 1, 2.

In all three cases, deg(∆) ≤ 6 by the condition L2
M > 0.

So let us now begin with D4 and consider different possibilities for ∆. If

one or two components of ∆ are (−) then we get respectively D−3 = A′3 and
−D−2 = −A′2. If the components are (+) then we get respectively D+

3 = A′′3 and
−D+

2 = ′′A−3 . When the components of ∆ are (′), we get the usual primings.

For D̃4, ∆ = (−) gives D′4 and ∆ = (−−) gives ′A′3, with other combina-

tions of (−), (+), (′) giving primings of those. For A3, it is easier: ∆ = (−),

(−,−), (+) etc. gives the usual A−2 , −A−1 , A+
2 and adding (′)’s gives the usual

primings. �

This completes the proof of Theorem A. We now switch back from the

notation of [Nak07] to our notation π : (X,D + εR)→ (Y,C + 1+ε
2 B).

5. Moduli of ADE pairs

5A. Two-dimensional projections of ADE lattices. Here, we fix the

notations from representation theory and prove a number of basic results that

will be used in the remainder of the paper.

Notation 5.1. Λ will denote one of the root lattices An, Dn, En, and

Λ∗ ⊃ Λ its dual, the weight lattice. One has Λ∗ = ⊕ni=1Zαi and Λ∗ =

⊕ni=1Z$i, where αi are the simple roots and $i the fundamental weights

(same as fundamental coweights). One has 〈αi, $j〉 = σij .

Notation 5.2. We label the nodes of the Dynkin diagrams as in Figs. 1,

2, 3. For example, for the E8 diagram we denote the nodes by p′′, p′1, p′2,

p0, . . . , p4. For the Dn diagram they are p′′, p′1 = p′, p0, . . . , pn−3. We use the
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same notation to denote the roots and fundamental weights, i.e. we call them

α′′, α′1 = α′, etc.

In addition, for each of the polytopes P in Figs. 1, 2, 3 we have the special

vertex p∗ and two vertices p`, pr which are the end points of the left and right

sides. For example, for the E8 diagram one has p` = p′3 and pr = p5, and for

Dn they are p` = p′2 and pr = pn−2.

Definition 5.3. We define the extended weight lattice as Λ∗⊕Z2, and we

denote the basis of Z2 by {$l, $r}.
Lemma 5.4. For pure ADE shapes, the rule $i 7→ pi − p∗ defines a

homomorphism

φ : Λ∗ ⊕ Z$` ⊕ Z$r
φ−→ Z2.

The projection π1 : Λ∗ ⊕ Z$` ⊕ Z$r → Λ∗ identifies kerφ with Λ. The ho-

momorphism φ is surjective for D,E shapes, and one has cokerφ = Z2 for A

shapes.

Proof. Any root α can be expressed as α =
∑
$〈α,$〉 with the sum going

over the n fundamental weights $. In particular, if pi−1, pi, pi+1 are three

consecutive nodes in a chain then

(5.1) αi = 2$i −$i−1 −$i+1
φ−→ 2pi − pi−1 − pi+1 = 0

For an end node pi next to pr one has

(5.2) αi −$r = 2$i −$i−1 −$r
φ−→ 2pi − pi−1 − pr = 0

and similarly for the node next to p`. For a node p0 occurring at a corner of

the polytope, one has

(5.3) α0 = 2$0 −$1 −$′1 −$′′
φ−→ 2p0 − p1 − p′1 − p′′ + p∗ = 0

Thus, Λ = 〈α〉 ⊂ kerφ, and it is easy to see that the equality holds. �
Recall that the finite group Λ∗/Λ is Zn+1 for An, Z2

2 for D2n, Z4 for D2n−1,

and Z3, Z2, 0 for E6, E7, E8 respectively.

Corollary 5.5. Z2/〈p` − p∗, pr − p∗〉 is equal to Λ∗/Λ for the pure D and

E shapes, and (Λ∗/Λ)⊕ Z2 for the pure A shapes.

Lemma 5.6. For primed ADE shapes which admit a toric description (see

Subsection 3D) the rule $ 7→ p− p∗ defines a homomorphism φ : Λ∗ ⊕Z$` ⊕
Z$r

φ−→ Z2. The projection π1 : Λ∗ ⊕ Z$` ⊕ Z$r → Λ∗ identifies kerφ with

Λ ⊂ Λ′ ⊂ Λ∗ given below

shape Λ′/Λ generators
′A2n−1,

′A−2n−2 0
′A′2n−1 Z2 $n

D′2n for n even, resp. odd Z2 $′ resp. $′′
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Proof. For the corner node p0 in ′A2n−1,
′A−2n−2 one uses the corner rela-

tion (5.3) with $′ replaced by $`, and similarly for D′2n. Additionally: for
′A′2n−1 one has $n −$` −$r

φ−→ 0, and for D2n one has φ($r + bn2 c$`) =

φ($′), resp. = φ($′′). See Fig. 8 for the node notations. �
5B. Moduli of ADE pairs of pure shapes. In this subsection we prove

the first part of Theorem B. Recall that in Section 3 we associated to each

ADE pair (Y,C+ 1+ε
2 B) an ADE root lattice. We use the notation introduced

in Section 5A.

Definition 5.7. We define the tori TΛ = Hom(Λ,C∗) and TΛ∗ = Hom(Λ∗,C∗)
both isomorphic to (C∗)n. We also define a finite multiplicative group µΛ =

Hom(Λ∗/Λ,C∗). Thus, µΛ = µn+1 for An, µ2
2 for D2n, µ4 for D2n−1, and it

is µ3, µ2, 1 for E6, E7, E8 respectively.

Warning 5.8. The theorem below is for pairs in which we distinguish the

two sides C1 and C2. The moduli stack for the pairs with a single C is the

Z2-quotient for the shapes with the left / right symmetry, and is the same for

the nonsymmetric shapes.

Theorem 5.9. The moduli stack of ADE pairs of a fixed pure ADE shape

is

[Hom(Λ∗,C) : µΛ × µ2] = [TΛ : WΛ × µ2] for A shapes

[Hom(Λ∗,C) : µΛ] = [TΛ : WΛ] for D and E shapes.

Remark 5.10. The first presentation is convenient for finding automor-

phism groups. In particular, the maximal automorphism group that a pair

can have is µΛ × µ2 for A shapes and µΛ for D and E shapes. The second

form is convenient for compactifications, which in Section 6 are shown to be

quotients of toric varieties by Weyl groups.

Proof. We first note that the pair (Y,C + 1+ε
2 B) is log canonical near the

boundary C iff the divisor B intersects C transversally. Vice versa, with this

condition satisfied the pair (Y,C + 1+ε
2 B) for 0 < ε � 1 is automatically

log canonical. Otherwise, the pair (Y,C + 1
2B) is not log canonical. But

by [Sho92, 6.9] the non-klt locus must be connected, with a single exception

when it may have two components, both of them simple, i.e. on a resolution

each should give a unique curve with discrepancy −1. For an ADE surface

the curve C = C1 +C2 is connected with two irreducible components, so they

are not simple. (We thank V.V. Shokurov for this argument.)

Each of the ADE shapes is toric, and the polarized toric variety (Y,L)

corresponds to a lattice polytope P as in Figs. 1, 2, 3. However, C = C1 +C2

gives only part of the toric boundary. Fixing the torus structure is equivalent

to making a choice for the remainder of the torus boundary: one curve for

the A shapes and two curves for the D,E shapes. With this choice made
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(Y, L) is a polarized toric surface, and the equation of B is f ∈ H0(Y,L) =

⊕m∈Z2∩P Cem, where e(k,l) = xkyl.

For the A shapes the remaining toric boundary has the equation y2 ∈
H0(Y,L). All the other choices for the toric boundary differ by the transfor-

mation y 7→ y + a(x). Completing the square we can make the coefficients of

the monomials yxi in f all zero. By rescaling x 7→ αx, y 7→ βy we can put

the equation f in the form given in Table 5. In this table, A?
n denotes either

An or A−n depending on the parity of n, and similarly for D,E.

Table 5. Normal forms for the equation f = fbdry + fdyn of

divisor B

shape fbdry fdyn

A?
n y2 + 1 + xn+1 c1x+ . . .+ cnx

n

−A?
n y2 + x(1 + xn+1) x(c2x+ . . .+ cn+1x

n)

D?
n x2y2 + y2 + xn−2 c′′xy + c′1y + c0 + c1x+ . . .+ cn−3x

n−3

−E?
n x2y2 + y3 + xn−3 c′′xy + c′1y + c′2y

2 + c0 + c1x+ . . .+ cn−4x
n−4

For the D and E shapes the remaining toric boundary has the equation

(xy)2 ∈ H0(Y,L). All other choices for the toric boundary differ by the

transformations x 7→ x + a, y 7→ y + b(x), with deg b(x) ≤ 1
2 (n − 3) for Dn

and deg b(x) ≤ 1
2 (n − 4) for En; and then rescaling x and y. Using such

transformations, one can put the equation f in the form given in Table 5 in

an essentially unique way .

The only remaining choice is the normalization of fbdry, which is unique up

to the action of Hom(Z2/〈p`− p∗, pr − p∗〉,C∗), equal to µΛ by Corollary 5.5.

The end result is a normal form, given in Table 5, which is unique up to µΛ.

This gives the stack [An : µΛ]. Finally, in the A shapes every pair has an

additional µ2 automorphism y 7→ −y. This gives the first presentation of the

moduli stack, as a µΛ × µ2, resp. µΛ quotient of An.

It is a well known and easy to prove fact that the ring of invariants C[Λ∗]WΛ

is the polynomial ring C[χ1, . . . , χn], where χi = χ($i) are the characters

of the fundamental weights ([Bou05, Ch.8, §7, Thm.2]). In other words,

TΛ∗/WΛ = An, with the coordinates χi. The µΛ-actions on TΛ∗ and An
are given by the compatible (Λ∗/Λ)-gradings; thus they commute with the

W -action. The µΛ action on TΛ∗ is free, and TΛ∗/µΛ = TΛ. Thus

[An : µΛ] = [(TΛ∗ : W ) : µΛ] = [(TΛ∗ : µΛ) : W ] = [TΛ : W ],

giving the second presentation. For the A shapes the additional µ2 action

commutes with both µΛ and W . �
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5C. Moduli of ADE pairs of toric primed shapes. We state the

theorem analogous to Theorem 5.9 for the primed ADE shapes which admit

a toric description (see Section 3D). It can be proved analogously to the

theorem above, using Lemma 5.6, or can be seen as an immediate consequence

of Theorem 5.12.

Theorem 5.11. The moduli stack of ADE pairs of a fixed toric primed

shape is

[Hom(Λ∗,C) : µΛ′ ] = [TΛ′ : WΛ], where TΛ′ = Hom(Λ′,C∗),

µΛ′ = Hom(Λ∗/Λ′,C∗), and the lattice Λ ⊂ Λ′ ⊂ Λ∗ is given in Lemma 5.6.

5D. Moduli of ADE pairs of all primed shapes. In this subsection

we find the moduli stack for all primed shapes, including those which do not

admit a toric description, and in doing so complete the proof of Theorem B.

We still mark the sides as left and right, even if some or all of the boundary

curves are contracted.

Theorem 5.12. The moduli stack of pairs of a fixed primed shape is

[Hom(Λ∗,C) : µΛ′ ×W0] = [TΛ′ : WΛ oW0],

where µΛ′ = Hom(Λ∗/Λ′,C∗) and the lattice Λ ⊂ Λ′ ⊂ Λ∗ is as follows:

shape Λ′/Λ generators
′A2n−1,

′A−2n−2 0
′A′2n−1 Z2 $n

D′2n for n even, resp. odd Z2 $′ resp. $′′
′D2n, resp. ′D−2n−1 Z2 $2n−3, resp. $2n−4
′D′2n for n even, resp. odd Z2 × Z2 $2n−3, $

′, resp. $2n−3, $
′′

−E′7 Z2 $3

For shapes ′′S and S′′ the lattices Λ′ are the same as for the unprimed shape

S, and similarly for +S resp. S+ and the unprimed shapes −S resp. S−. The

additional Weyl group W0 is the one given in Theorem 3.32, and its action is

described in Theorem 5.13.

Proof. The pair (Y
′
, C
′
1 +C

′
2 + 1+ε

2 B
′
) is obtained from a pair (Y,C1 +C2 +

1+ε
2 B) of pure shape by blowing up several points Pi ∈ B ∩C at the ideals Ii

with directions equal to the tangent directions of B, and then contracting by

the semiample line bundle L′. This construction works for the entire family

over An = Hom(Λ∗,C): we blow up sections and it is easy to see that the

sheaf L′ in the family is relatively semiample.

When priming on a short side, or priming twice on a long side, there are

no choices for
∏
Ii. The only 2:1 choice is when there is a long side Cs and

we prime only at one of the two points in B ∩ Cs. Secondly, as stated in
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Theorem 3.32, for some shapes of genus 1 there is more than one precursor.

These choices define an additional quotient by W0. �

5E. Definitions of the naive ADE families. For the toric ADE shapes

A, ′A, D and E we define explicit modular families of ADE pairs over the torus

TΛ∗ . We call these the naive families. Blowing up the sections corresponding

to the points in C ∩ B, we obtain the naive families for all the primed ADE

shapes.

For the A?
n-shapes, where A?

n is either An or A−n depending upon the parity

of n, we take the equation of Table 5 with ci = χi = χ($i), the characters

of the fundamental weights, and with y2 rescaled to −(y2 )2, which will be

convenient when we come to discuss degenerations.

We recall that the An root lattice is 〈ei − ej〉 ⊂ Zn+1 and the dual weight

lattice is A∗n = 〈fi〉, where fi = ei − p, p = 1
n+1

∑
ei, so that

∑n+1
i=1 fi = 0.

Thus, C[Λ∗] = C[t±1 , . . . , t
±
n+1]/(

∏
tk − 1) and C[Λ] = C[ti/tj ], with ti = efi .

The first torus is TΛ∗ = {∏ ti = 1} ⊂ (C∗)n+1, and the second one is TΛ =

(C∗)n+1/diagC∗. One has TΛ = TΛ∗/µn+1.

The Weyl group is Sn+1, and the characters of the fundamental weights

are the symmetric polynomials χi = σi(tk). Therefore, the defining equation

of the naive family is

(5.4) A?
n : f = −

(y
2

)2

+

n+1∏
i=1

(x+ ti) = −
(y

2

)2

+ 1 +χ1x+ . . . χnx
n +xn+1.

For −A?
n shapes we number the nodes 2, . . . , n + 1 (cf. Fig. 1) and the

equation is as follows, where χk = σi−1(ti):

(5.5)

−A?
n : f = −

(y
2

)2

+x
n+1∏
i=1

(x+ti) = −
(y

2

)2

+x
(
1 + χ2x+ . . . χn+1x

n + xn+1
)
.

For the toric shapes with one corner, i.e. D?
n, −E?

n and ′A?
n (here again

the ? is either no decoration or a −, depending upon the parity), we make

the following change of coordinates. We begin with the affine equation of a

double cover X → Y of the form

F (x, y, z) = −xyz + z2 + c′′z + p(x) + q(y) = 0.

Introducing the variable w = z − 1
2 (xy − c′′), the equation becomes

w2 + f(x, y) = 0, f(x, y) = −
(
xy − c′′

2

)2

+ p(x) + q(y)
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with the same p(x), q(y). Thus, the affine equation of the branch curve B is

f(x, y), which we accept as our main equation. Explicitly, the families are:

′A?
n : f = −

(
xy−c′′

2

)2

+ y + c0 + c1x+ · · ·+ cn−2x
n−2 + xn−1(5.6)

D?
n : f = −

(
xy−c′′

2

)2

+ y2 + c′1y + c0 + c1x+ · · ·+ cn−3x
n−3 + xn−2(5.7)

−E?
n : f = −

(
xy−c′′

2

)2

+ y3 + c′2y
2 + c′1y + c0 + · · ·+ cn−4x

n−4 + xn−3(5.8)

In all of these families we take the coefficients to be c = χ($), the fundamental

characters, i.e. the characters of the fundamental weights corresponding to

the n nodes of the Dynkin diagram, using our Notation 5.2.

5F. Action of the extra Weyl group W0. When a pure shaped pre-

cursor is not uniquely determined, as in Theorem 3.32, there is an additional

Weyl group W0 acting on the pure shape moduli torus TΛ′ . We divide by it

in Theorem 5.12.

Theorem 5.13. The Weyl group W0 of Theorem 3.32 acts on TΛ′ as

follows:

(1) Genus > 1. For ′D?
2n and ′D?

2n−1 shapes, W0 = W (A1) = S2 acts by

an automorphism of the D-lattice switching the two short legs p′ and

p′′. For ′′D?
2n and ′′D?

2n−1 shapes, one has W0 = W (A2
1) = S2

2 . The

first S2 acts by switching the two short legs p′ and p′′. The second S2

gives an additional S2 automorphism of the pair (Y,C + 1+ε
2 B).

(2) Genus 1. For the following shapes the action is as in (1) under the

identifications: ′A′3 = ′D−3 , ′A′′3 = ′′D−3 , D′4 = ′D4, D′′4 = ′′D4. For ′D′4
the group W0 = W (A2) = S3 acts by permuting the three legs of the

D4 diagram. For ′D′′4 , one has W0 = W (A3) = S4 = S3 n S2
2 . Here,

S3 acts by permuting the legs and S2
2 gives an extra automorphism

group of the pair (Y,C + 1+ε
2 B).

Proof. (1) From the equation (5.7) of the D-family we see that the side C1

is defined by (y0 : y1) = (0 : 1), where y = y1

y0
. There are two points x = ±2 on

C1 at which one can prime. For x = 2, consider the map ϕ+ : y 7→ c′′+c′

x−2 − y,

x 7→ x. It is easy to check that the equation (5.7) maps to the same equation

but with c′ and c′′ switched. The map ϕ+ is a rational map for a surface

of D? shape but it becomes regular on the blowup, a surface of ′D? shape.

Similarly, for priming at x = −2 the map ϕ− : y 7→ c′′−c′
x+2 + y works the same

way. The composition ϕ− ◦ ϕ+ : y 7→ c′′−c′
x+2 + c′′+c′

x−2 − y, x 7→ x exchanges the

two branches of the curve B, a two-section of the P1-fibration. For surfaces

Y of D? and ′D? shapes this is a rational involution. It becomes a regular



ADE SURFACES AND THEIR MODULI 41

involution of a surface of ′′D? shape, where B is disconnected from C1. Case

(2) is checked similarly. �
Definition 5.14. Let W00 ⊂ W0 be the subgroup which acts trivially on

the the points of TΛ′ , giving extra automorphisms of the pairs.

Corollary 5.15. The group W0/W00 acts by diagram automorphisms of

the decorated Dynkin diagram, permuting the short legs, all of them white

circled vertices: for ′D?
2n, ′D?

2n−1, ′′D?
2n, ′′D?

2n−1, ′A′3, ′A′′3 it is two legs, and

for ′D′4, ′D′′4 three legs, cf. Fig. 6.

6. Compactifications of moduli of ADE pairs

6A. Stable pairs in general and stable ADE pairs. We recall some

standard definitions from the theory of moduli of stable pairs. We note in

particular a close relationship between the contents of this subsection and

work of Hacking [Hac04a, Hac04b], who studied similar ideas in the context

of moduli of plane curves.

Definition 6.1. A pair (X,B =
∑
biBi) consisting of a reduced variety

and a Q-divisor is semi log canonical (slc) if X is S2, has at worst double

crossings in codimension 1, and for the normalization ν : Xν → X writing

ν∗(KX +B) = KXν +Bν ,

the pair (Xν , Bν) is log canonical. Here Bν = D+
∑
biν
−1(Bi) and D is the

double locus.

Definition 6.2. A pair (X,B) consisting of a connected projective variety

X and a Q-divisor B is stable if

(1) (X,B) has slc singularities, in particular KX +B is Q-Cartier.

(2) The Q-divisor KX +B is ample.

Next we introduce the objects that we are interested in here: We could

work equivalently with the pairs (Y,C + 1+ε
2 B) or with their double covers

(X,D + εR). We choose the former.

Definition 6.3. For a fixed degree e ∈ N a fixed rational number 0 < ε ≤ 1,

a stable del Pezzo pair of type (e, ε) is a pair (Y,C + 1+ε
2 B) such that

(1) 2(KX + C) +B ∼ 0

(2) The divisor B is an ample Cartier divisor of degree B2 = e.

(3) (Y,C + 1+ε
2 B) is stable in the sense of Definition 6.2.

Definition 6.4. A family of stable del Pezzo pairs of type (e, ε) is a flat

morphism f : (Y, C + 1+ε
2 B) → S such that ω⊗2

Y/S(C)∗∗ ' OY locally on S,

the divisor B is a relative Cartier divisor, such that every fiber is a stable del

Pezzo pair of type (e, ε). We will denote by Mslc
dp(e, ε) its moduli stack.
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Proposition 6.5. For a fixed degree e there exists an ε0(e) > 0 such that

for any 0 < ε ≤ ε0 the moduli stacks Mslc(e, ε0) and Mslc(e, ε) coincide.

The stack Mslc(e, ε0) is a Deligne-Mumford stack of finite type with a coarse

moduli space M slc(e, ε0) which is a separated algebraic space.

Proof. For a fixed surface Y , there exists an 0 < ε0 � 1 such that the

pair (Y,C + 1+ε
2 B) is slc iff B does not contain any centers of log canonical

singularities of (Y,C + 1
2B): images of the divisors with codiscrepancy bi = 1

on a log resolution of singularities Z → Y ν → Y . There are finitely many

of such centers. Then for any ε < ε0, the pair (Y,C + 1+ε0
2 B) is slc iff

(Y,C + 1+ε
2 B) is. Now since B is ample Cartier of a fixed degree, the family

of the pairs is bounded, and the number ε0 with this property can be chosen

universally.

We refer to [KSB88, Kol15], [Ale06] for the existence and projectivity of

the moduli space of stable pairs (X,
∑
biBi). There are complications arising

in the construction when some coefficients bi ≤ 1
2 and when the divisor B is

not Q-Cartier, all of which are not present in this situation. �
Definition 6.6. For a fixed ADE shape, we denote by M slc

ADE the closure

of the moduli space of ADE pairs of this shape in M slc
dP(e, ε0) for e = B2, with

the reduced scheme structure.

In this Section will show that M slc
ADE is proper and that in fact the stable

limits of ADE pairs are of a very special kind: they are stable ADE pairs.

We will also show that the normalization of M slc
ADE is an explicit projective

toric variety for a generalized Coxeter fan.

Definition 6.7. A stable ADE pair is a stable del Pezzo pair (Y,C+ 1+ε
2 B)

such that its normalization is a union of ADE pairs t(Y νk , C
ν
k + 1+ε

2 Bνk ).

Theorem 6.8. For a stable ADE pair the irreducible components are of

two kinds:

(1) normal, i.e. ν : Y νk
∼−→ Yk, or

(2) folded: the morphism ν : Y νk → Yk is an isomorphism outside of Ck,

and is a double cover P1 → P1 on one or two sides Cνk,s → Ck,s,

s = 1, 2. In this case, the side Cνk,s is necessarily a long side of the

ADE pair.

Proof. The normalization of a stable pair is an isomorphism outside of the

double locus and is 2:1 on the double locus, so these are the two possibilities.

The side must be long because ν∗Bk · Cνk,s = 2Bk · Ck,s is even and ≥ 2. �
Definition 6.9. We will call the surfaces of type (2) in the above theorem

the folded shapes. We denote a fold by adding the f superscript to the corre-

sponding long side, e.g. Af2n−1, fAf2n−1, −Af2n, ′Af2n−1. We define the decorated

Dynkin diagrams for these shapes by double circling the corresponding end

(unfilled) node. We do not draw any pictures for these here.
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Next, we extend the naive families of ADE pairs, defined in section 5E,

to families of stable pairs over a projective toric variety corresponding to the

Coxeter fan. We start with the An case.

6B. Compactifications of the naive families for the A shapes. Re-

call that TΛ∗ = SpecC[Λ∗]. We define the following elements of the homoge-

neous ring C[Λ∗][x, y][ξ], with the grading defined by deg ξ = 1.

Definition 6.10. In the A?
n shape, where the ? denotes either no dec-

oration or a − depending upon the parity of n, for each node p1, . . . , pn
of the Dynkin diagram we introduce a degree 2 element ui = e$ixi · ξ2,

where e$i ∈ C[Λ∗] is the monomial corresponding to the fundamental weight

$i ∈ Λ∗. In addition, we introduce the degree 2 elements u0 = 1 · ξ2 and

un+1 = xn+1 · ξ2, corresponding to the left and right nodes pl = p0 and

pr = pn+1, and u∗ = y2 · ξ2 corresponding to the vertex p∗. Similarly, in the
−A?
n shape we define the elements u1, . . . , un+2 and u∗.

Because even the simplest ADE surface of A−0 -shape is a weighted projec-

tive space P(1, 1, 2), it is convenient to introduce some square roots.

Definition 6.11. For the even nodes p2i we introduce the degree 1 ele-

ments of the ring R[ξ]: v2i = e$2i/2xi · ξ and v∗ = y · ξ. Thus, v2
2i = u2i and

v2
∗ = u∗.

We recall that in the naive families (5.4), (5.5) we take the coefficients

ci = χi, the fundamental characters. As in Section 5A, let αi be the simple

roots.

Definition 6.12. Set ai = e−αi for all i, and for odd indices set b2i+1 =

e−α2i+1/2. Finally, define normalized coefficients ĉi = e−$ici.

It is well known that for any dominant weight λ ∈ Λ∗ the character χ(λ) ∈
C[Λ∗] is a WΛ-invariant Laurent polynomial whose highest weight is λ and

the other weights are of the form µ = λ−∑niαi for some ni ≥ 0. Thus, ĉk
are polynomials in ai’s, and ĉk = 1 + (higher terms in ai).

With these notations, we consider the equation f of the naive family (5.4)

to be the following homogeneous degree 2 element in C[Λ∗][x, y][ξ] (similarly

for −A?
n):

(6.1) f = −
(v∗

2

)2

+ u0 + ĉ1u1 + . . .+ ĉnun + un+1 ∈ C[Λ∗][x, y] · ξ2

For the construction of the family one might as well work with the ring

C[ 1
2Λ∗] but we will use the minimal choice for clarity.

Definition 6.13. Let M be the lattice obtained by adjoining to Λ∗ the

vectors $2i/2 and α2i+1/2 for all i. Let M+ = M ∩∑R≥0(−αi) and R =

C[M+]. Thus, SpecR is a normal affine toric variety which is a µN2 -cover of

An = SpecC[ai] for some N .
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Definition 6.14 (Compactified naive families for the A?
n, −A?

n shapes).

Let S be the graded subring of R[x, y][ξ] generated by v2i, u2i+1, and v∗. The

compactified naive family is Y := ProjS → SpecR with a relative Cartier

divisor B = (f), f ∈ H0(O(2)). We note that since the subring S(2) is

generated in degree 1, the sheaf OProjS(2) is invertible and ample.

Example 6.15. For theA1 shape, theA1 root lattice has C[Λ∗] = C[t±1 , t
±
2 ]/(t1t2−

1) ∼= C[t±], with t = eα1/2. The family is ProjS → A1 = SpecC[b1], where

S = R[v∗, v0, u1, v1]/(v0v2 − b1u1). One has χ1 = t+ t−1 = t(1 + b21), and the

equation of the divisor B is

f = −
(v∗

2

)2

+ v2
0 + (1 + b21)u1 + v2

2 .

Setting b1 = 0 gives the degenerate fiber P(1, 1, 2) ∪ P(1, 1, 2) with the coor-

dinates v∗, v0, u1, resp. v∗, v2, u1, glued along a P1 with the coordinate u1.

The restriction of f to P(v∗, v0, u1) is v2
∗ + v2

0 + u1, and for P(v∗, v2, u1) it is

v2
∗ + v2

2 + u1. Thus, the degenerate fiber is a union of two ADE pairs A−0
−A0

glued along a short side.

For the −A−1 shape the family is ProjS → A1 = SpecC[a1], where S =

R[u1, v2, u3]/(u1u3 − a1v
4
2), and the equation of the divisor is

f = −
(v∗

2

)2

+ u1 + (1 + a2)v2
2 + u2.

Setting a1 = 0 gives the degenerate fiber P(1, 1, 2)∪P(1, 1, 2) with the coordi-

nates v∗, v2, u1, resp. v∗, v2, u3, which is the union of two ADE pairs −A0A
−
0

glued along a long side, a P1 with the coordinate v2.

The general case is essentially a generalization of this simple example. The

degenerations of pairs for the slightly more complicated A−2 shape are illus-

trated in Fig. 12.

p∗

p0 p1 p2 p3

Figure 12. A−2 and its degenerations: A−0
−A−1 , A1A

−
0 , and A−0

−A0A
−
0

Definition 6.16. The Coxeter fan for a root lattice Λ is the fan on ΛR = Λ∗R
obtained by cutting this vector space by the mirrors α⊥ to the roots α. Its

maximal cones are chambers, the translates of the positive chamber under

the action of the Weyl group WΛ. We denote by V cox
M the torus embedding of

TM = Hom(M,C∗) for the Coxeter fan of An.
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Lemma 6.17. The following relations hold:

(1) (Primary) v2iv2i+2 = b2i+1u2i+1 and u2i−1u2i+1 = a2iv
4
2i.

(2) (Secondary) u2i−1u2j+1 = v2
2iv

2
2j ·A, v2i−2u2j+1 = v2iv

2
2j ·b2i−1A, and

v2i−2v2j+2 = v2iv2j · b2i−1b2j+1A, where A =
∏2j
k=2i ak.

Proof. An easy direct check using equations (5.1), (5.2). �

Theorem 6.18. The compactified family Y = ProjS → SpecR of shape

A?
n or −A?

n is flat. The degenerate fibers are over the subsets given by setting

some ai’s to zero. Every fiber of this family is a stable ADE pair which is

a union of ADE pairs of shapes obtained by subdividing the A?
n, resp. −A?

n,

polytope into integral subpolytopes of smaller A shapes by intervals from the

vertex p∗ to the points pi for which one has ai = 0.

The WΛ-translates of this family glue into a flat WΛ-invariant family (Y, C+
1+ε

2 B)→ V cox
M of stable ADE pairs.

Proof. Let t ∈ SpecR be a closed point and Yt be a fiber over t. Suppose

that some ak(t) = 0 or bk(t) = 0. The relations of Lemma 6.17 imply that

any two (u or v) variables with indices i < k and j > k multiply to give zero.

On the other hand, the product of two variables with indices i, j for which the

coordinates with i < k < j satisfy ak(t), bk(t) 6= 0, is a nonzero monomial.

Let P be the polytope corresponding to the shape A?
n, resp. −A?

n. The

above equations define a stable toric variety Z = ∪Zs for the polyhedral

decomposition P = ∪Ps obtained by cutting P by the intervals from the

vertex p∗ to the points pk for each k with ak = 0 or bk = 0, cf. [Ale02]. In

other words, Z is a reduced seminormal variety which is a union of projective

toric varieties, glued along torus orbits.

The fiber Yt is a closed subscheme of Z. But the Hilbert polynomial of

Z with respect to O(2) is the same as for a general fiber, a projective toric

variety for the polytope P . By the semicontinuity of Hilbert polynomials in

families, Yt = Z. Since the base TΛ∗ is reduced, the constancy of the Hilbert

polynomial implies that the family is flat.

The equation f restricts on each irreducible component to the naive equa-

tion of an ADE pair for a smaller A shape by Lemma 6.19.

The WΛ-translates of this family automatically glue into a WΛ-invariant

family over a torus embedding of TM for the Coxeter fan of An because the u, v

variables map to the corresponding variables for a different choice of positive

roots, and the equation f is W -invariant. Flatness is a local condition, so it

holds. �

Lemma 6.19. Let Λ be a an irreducible ADE root lattice with Dynkin

diagram ∆ and Weyl group W = 〈wα | α ∈ ∆〉. Let β ∈ ∆ be a simple

root, and Λ′ be the lattice (not necessarily irreducible) corresponding to ∆′ =
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∆ \ β, with Weyl group W ′ = 〈wα | α 6= β〉. Let r be the natural restriction

homomorphism

r : k[e−α, α ∈ ∆]→ k[e−α, α ∈ ∆′], e−β 7→ 0, e−α 7→ e−α for α 6= β.

Then for the normalized fundamental character χ̂α = e−$αχα corresponding

to a simple root α one has

r(χ̂α) =

{
1 for α = β

χ̂α for α 6= β

Proof. Consider a dominant weight µ ∈ Λ∗. We first make an elementary

observation about the weight diagram of the highest weight representation

V (µ). The weight diagram is obtained by starting with the highest weight

µ =
∑
mk$k and subtracting simple roots αs if the corresponding coordinate

ms of µ is positive. Thus, for µ = $β the first and only move down is to the

weight µ−β. This says that χ̂($β) = 1 + e−β(. . . ). Therefore, r(χ̂($β)) = 1.

For α 6= β, the moves down in the weight diagram of V ($α) not involving

β are the same as the moves in the Dynkin diagram ∆ \ β. So the mono-

mials appearing in r
(
χ̂($α)

)
for the Dynkin diagram ∆ and the monomials

appearing in χ̂($α) for the Dynkin diagram ∆ \ β are the same.

We have to show that the coefficients of these monomials are also the same.

This follows from the Weyl character formula

χ(λ) =

∑
w∈W ε(w)ew(λ+ρ)∑
w∈W ε(w)ew(ρ)

, where ρ =
∑
$∈Π

$.

Isolating the terms eµ on the top and the bottom where the linear function

(β, µ) takes the maximum, and setting other terms to zero gives the same

Weyl Character formula expression for the Weyl group W ′. This concludes

the proof. �

Remark 6.20. The construction of the family of curve pairs over the

Losev-Manin space for An follows from this by an easy simplification: the two-

dimensional polytope is replaced by [0, n+ 1] and there are only ui variables,

all of degree 1.

6C. Compactifications of the naive families for the ′A, D, −E
shapes. Before stating the general result, we begin with an elementary ex-

ample.

Example 6.21. An ADE surface (Y,C = C1 + C2) of shape D4 is Y =

P1 × P1, with C1 = s, C2 = f a section and a fiber. In an ADE pair

(Y,C+ 1+ε
2 B), the divisor B is in the linear system |2s+ 2f |. There are three

obvious toric degenerations corresponding to removing the nodes p′1, p0, p1

in the Dynkin diagram, shown in the middle three pictures of Figure 13. In
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p∗

p′′

p0 p1 p2

p′1

p′2

Figure 13. D4 and its degenerations A−0
′A3, A1A1, A′3

−A0, A3

the degeneration corresponding to p′1 we get a 3-dimensional family of stable

ADE pairs with two components corresponding to A−0
′A3. By symmetry, we

get A′3
−A0 surfaces for the node p1.

The toric degeneration for the node p0 is already somewhat unusual. Here

P1×P1 degenerates to P2∪P2, and the stable ADE pairs of shape A1A1 form

only a 2-dimensional family, so some moduli are lost.

Additionally, there is an obvious nontoric degeneration of P1 × P1 to a

quadratic cone P(1, 1, 2), with the limits of C1, C2 passing through the vertex,

and B a double section. These are pairs of shape A3 forming a 3-dimensional

family.

Definition 6.22. In the ′A?
n, D?

n, −E?
n shapes, where ? denotes either no

decoration or a − depending upon the parity of n, we introduce the following

elements of the homogeneous ring C[Λ∗][x, y][ξ]:

ui = e$ixi · ξ2, v2i = e$2i/2xi · ξ, u′i = e$
′
iyi · ξ2, v′2i = e$

′
2i/2yi · ξ.

We also have the u variables for the left and right sides p`, pr and, when these

are even, their square roots, the v variables. Additionally, we define a special

non-monomial variable v∗ = (xy − c′′) · ξ of degree 1.

As before, the coefficients c = χ($) are the characters of the fundamental

weights, and we define the normalized characters by ĉ = e−$c. With these

notations, the naive families (5.6), (5.7), (5.8) become

′A?
n : f = −

(
v∗
2

)2
+ u′1 + ĉ0u0 + ĉ1u1 + · · ·+ ĉn−2un−2 + un−1(6.2)

D?
n : f = −

(
v∗
2

)2
+ u′2 + ĉ′1u

′
1 + ĉ0u0 + ĉ1u1 + · · ·+ ĉn−3un−3 + un−2(6.3)

−E?
n : f = −

(
v∗
2

)2
+ u′3 + ĉ′2u

′
2 + ĉ′1u

′
1 + ĉ0u0 + · · ·+ ĉn−4un−4 + un−3(6.4)

Definition 6.23. Let M be the lattice obtained by adjoining to Λ∗ the vec-

tors $2i/2, $′2i/2, α2i+1/2 (for all i), and α′′/2. Let M+ = M ∩∑αR≥0(−α)

and R = C[M+].

We define ai = e−αi , resp. a′i = e−α
′
i , for each node pi in the Dynkin

diagram, and also a′′ = e−α
′′
. For the odd nodes p2i+1 we define b2i+1 =

e−α2i+1/2, resp. b′2i+1 = e−α
′
2i+1/2, and also b′′ = e−α

′′/2.
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Definition 6.24 (Compactified naive families for the ′A,D,E shapes). Let

S be the graded subring of R[x, y][ξ] generated by v2i, u2i+1, v′2i, u
′
2i+1, and

v∗. The compactified naive family is Y := ProjS → SpecR with a relative

Cartier divisor B = (f), f ∈ H0(O(2)). We note that since the subring S(2)

is generated in degree 1, the sheaf OProjS(2) is invertible and ample.

Lemma 6.25. The following relations hold:

(1) The same monomial relations as in Lemma 6.17 for the variables

ui, vi, with i ≥ 0, and for the variables u′i, v
′
i, v0.

(2) A non-monomial “corner” relation u1u
′
1 = a0v

3
0(ĉ′′v0 + b′′v∗).

(3) For each u′i, v
′
i variable and each ui, vi variable lying on the different

sides of v0, the same equations as in Lemma 6.17, but with A =
ĉ′′v0+b′′v∗

v0

∏2j
k=2i ak.

Proof. We check the non-monomial relation. The LHS is e$1+$′1xy · ξ4.

The RHS:

e−α0+ 3
2$0
(
e−$

′′+ 1
2$0c′′ + e−

1
2α
′′
xy − e− 1

2α
′′
c′′
)
· ξ4

The equality now follows from −$′′+ 1
2$
′′ = − 1

2α
′′ and −α0 + 3

2$0− 1
2α
′′ =

$1 +$′1, which hold because α′′ = 2$′′−$0 and α0 = 2$0−$1−$′1−$′′.
The proof of part (3) is formally the same as for the secondary monomial

relations, with each term ĉ′′v0 + b′′v∗ contributing an extra xy. �

Theorem 6.26. The compactified families Y = ProjS → SpecR of ′A?
n,

D?
n, −E?

n shapes are flat. The degenerate fibers are over the subsets given by

setting some a’s to zero. Every fiber is a stable ADE pair which is a union

of ADE pairs of shapes obtained as follows:

(1) For the degenerations ai = 0 and a′i = 0: by subdividing the cor-

responding polytope into integral subpolytopes by intervals from the

vertex p∗ to the point pi, resp. p′i.
(2) For the degeneration a′′ = 0: by “straightening the corner”, i.e. to

the shape obtained by removing the node p′′ from the Dynkin diagram.

The W -translates of these families glue into flat WΛ-invariant families

(Y, C + 1+ε
2 B) → V cox

M of stable ADE pairs over a torus embedding of TM =

Hom(M,C∗) for the Coxeter fan of An, resp. Dn, resp. En.

Proof. The proof for the toric degenerations is the same as in Theorem 6.18.

Gluing the family over SpecR to a W -invariant family over a projective toric

variety for the Coxeter fan is also the same. We do not repeat these parts.

Instead, we concentrate on the degenerations involving the corner relation (2)

of Lemma 6.25.

When a0 = 0 we get the toric relation u1u
′
1 = 0 which as before gives

a stable ADE pair for the subdivision of our polytope into two polytopes
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obtained by cutting it from p∗ to p0 into the shapes ?Am′A
?
m. The only

observation here is that m+m′ = n− 2, not n− 1, so the moduli count drops

by two, not one.

When b′′ = 0, we also get ĉ′′ = 1 by Lemma 6.19, and the corner relation

becomes u1u
′
1 = a0v

4
0 . Thus, the new set of relations is equivalent to those

for the ?A?
n−1 shape. The equations (6.2), (6.3), (6.4) reduce to the equation

(6.1). �
6D. Compactifications of the naive families for all primed shapes.

Theorems 6.18, 6.26 describe all stable ADE pairs that appear as degener-

ations of ADE pairs of pure shapes. In particular, irreducible components

of degenerate pairs (Y,C + 1+ε
2 B) are normal, and they are ADE pairs for

smaller shapes. For some degenerations of pairs of primed shapes the folded

shapes of Definition 6.9 appear.

Definition 6.27. The Priming Rules are A′1 → A−0 , ′A1 → −A0; −A′0 → 0,
′A−0 → 0; and A+

0 → f , +A0 → f are folds applied to the neighboring surface.

Theorem 6.28. For each primed shape, there exists a flat family of stable

ADE pairs (Y, C+ 1+ε
2 B)→ V cox

M over the a torus embedding of Hom(M,C∗)
for the Coxeter fan of An, resp. Dn, resp. En, where M is the lattice defined

in Definition 6.13 for the A shapes and Definition 6.23 for D,E shapes. The

fibers over the toric strata of V cox
M are computed by starting with the fibers of

the family for the pure shape and then applying the Priming Rules one prime

at a time.

Example 6.29. We list the degenerate fibers in the compactified families

for the pure shape A−2 (see Fig. 12) and the corresponding fibers in the families

for the primed shapes ′A−2 , ′′A−2 , A+
2 .

shape shapes of degenerations

A−2 A−0
−A−1 A1A

−
0 A−0

−A0A
−
0

′A−2
′A−0
−A−1 → −A−1

′A1A
−
0 → −A0A

−
0

′A−0
−A0A

−
0 → −A0A

−
0

′′A−2
+A−1

+A0A
−
0 → fA−0

+A0A
−
0 → fA−0

A+
2 A−0

−A+
1 A1A

+
0 → Af1 A−0

−A0A
+
0 → A−0

−Af0

Before proving the theorem, we explain the meaning of the Priming Rules.

Lemma 6.30. One has the following:

(1) Priming a surface of shape A1 gives a surface of shape A−0 .

(2) Priming a surface Y of shape −A0 on the long side C2 gives a surface

Y ′ and a nef line bundle L′ such that (L′)2 = 0 and |L′| contracts Y ′

to P1, with the other side C1 mapping isomorphically to P1.

(3) Priming a surface Y of shape −A0 on the short side C1 gives a surface

Y ′ and a nef line bundle L′ such that (L′)2 = 0 and |L′| contracts Y ′

to P1, with the other side C2 folding 2:1 to P1.
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Proof. We proved in (1) in Theorem 3.18 already, see also Remark 3.20.

Parts (2,3) are easy computations. �

Proof of Thm. 6.28. Let f : (Y, C + 1+ε
2 B) → V cox

M be a family for a pure

shape. It comes with canonical sections: one for a short side of the shape,

and two disjoint sections for a long side. Now make a weighted blow up one

of the sections to obtain a family f ′ : (Y ′, C′ + 1+ε
2 B′) → V cox

M . Then the

sheaf L′ = OY′(−2(KY′/Z + C ′) is invertible and relatively nef. As in proof

of Theorem 3.18, this sheaf is relatively semiample and gives a contraction

Y ′ → Y ′ to a family f̄ ′ : (Y ′, C′ + 1+ε
2 B′) → V cox

M over the same base. For

a reducible fiber Y ′ = ∪Y ′k of the family f ′, the sheaf L′ is ample on all

components Y ′k except possibly on the blown up surface on the end. For this

surface the resulting surface Y
′
k is given by Lemma 6.30. The other sections of

Y → V cox
M map to disjoint sections of Y ′ → V cox

M . We then repeat the process

for the second prime, etc. �

Remark 6.31. Theorem 6.28 extends to the degenerations of surfaces of

shapes with folds, e.g. Af2n−1 as follows: the degenerations are the same as

for the shape with a long side, but that long side is folded.

6E. A generalized Coxeter fan. As Examples 6.21 and 6.29 show, the

families (Y, C + 1+ε
2 B) → V cox

M over the projective toric variety for the Cox-

eter fan have repeating fibers over certain boundary strata. Here we define a

coarser generalized Coxeter fan and a birational contraction ρ : V cox
M → V semi

M

such that the families are constant on the fibers of ρ and such that the cor-

respondence between the isomorphism classes of the pairs (Y,C + 1+ε
2 B) and

the points of V semi
M is finite to one.

The Coxeter fan τ cox on the vector space NR = ΛR = Λ∗R is obtained by

cutting it with the mirror hyperplanes α⊥ for the roots α ∈ Λ. Another

definition is: it is the normal fan to the permutahedron, Conv(WΛ.p), the

convex hull of the WΛ-orbit of a generic point p in the interior of the positive

chamber C+ = {α ≥ 0}, where ∆ = {α} are the simple roots. In particular,

the maximal cones of the Coxeter fan are in a bijection with the vertices of

Conv(WΛ.p) and with the elements of the Weyl group W = WΛ.

Definition 6.32. For a proper subset ∆0 ⊂ ∆ of the simple roots, let

p ∈ C+ be a point such that α ·p = 0 for α ∈ ∆0 and α ·p > 0 for α ∈ ∆\∆0.

A generalized permutahedron is the convex hull Conv(WΛ.p) and a generalized

Coxeter fan τ semi is defined to be its normal fan.

Definition 6.33. We will call ∆0 the irrelevant subset. For S ⊂ ∆ we

define its relevant content Srel to be the union of the connected components

not lying in ∆0. We will call a connected component S′ of S ⊂ ∆ irrelevant

if S′ ⊂ ∆0.

The proof of the following lemma is straightforward.
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Lemma 6.34. (1) The W -orbits of cones of τ cox are in bijection with

the subsets S ⊂ ∆ via: S 7→ Conv(WS .p), where WS ⊂ WΛ is the

Weyl subgroup generated by the simple roots α ∈ S.

(2) The W -orbits of cones of τ cox are in bijection with the subsets without

irrelevant connected components.

(3) The fan τ semi is a coarsening of the fan τ cox and the morphism ρ : V cox →
V semi of the corresponding projective toric varieties is proper and bi-

rational.

(4) The image of a torus orbit OS ⊂ V cox is OSrel ⊂ V semi. One has

dimOS = |S| and dimOSrel = |Srel|. If S has no irrelevant compo-

nents the morphism OS
∼−→ OSrel is an isomorphism.

Definition 6.35. For a decorated Dynkin diagram of a (possibly primed)

shape, we define the irrelevant subset ∆0 ⊂ ∆ to be the set of circled white

(i.e. unfilled) nodes.

Example 6.36. In the pure D, −E shapes, and also in the toric ′A shape,

the interior circled white node is irrelevant, see Figs. 2, 3, 7. In the toric

shapes D′ and ′A′ the irrelevant subset consists of two nodes, see Fig. 8. In

the primed shapes there may be more irrelevant nodes, cf. Fig 6.

Theorem 6.37. The pairs in the family (Y, C + 1+ε
2 B) → V cox

M are iso-

morphic on each fiber of the contraction ρ : V cox
M → V semi

M . The correspon-

dence between the points of V semi
M and the isomorphism classes of the pairs

(Y,C + 1+ε
2 B) is finite to one.

Proof. Consider a codimension 1 orbit of V cox
M corresponding to setting

a = e−α to zero for a single node of the Dynkin diagram p. By Theorems 6.26

and 6.28 the dimension of the family over the boundary stratum drops by 2

instead of the expected 1 exactly when one of the following happens:

(1) In the ′A, D, E shapes, we remove the corner node p0, leaving the

circled white node p′′ isolated.

(2) A single left-most or right-most white node which in our shape is

primed or doubly primed (so white and circled) becomes an isolated

A′1 or ′A1 after a node next to it is removed.

In both cases this happens precisely when the subdiagram S = ∆ − p corre-

sponding to the codimension 1 orbit of V cox
M has an irrelevant component, a

single node.

We now observe that for any shape the irrelevant subset consists of sev-

eral disjoint isolated nodes. There is a drop in the moduli count by one for

each of them. On the other hand, for the orbits OS for S without irrelevant

components, the restriction of the family to OS is the naive family for the

Dynkin diagram S. The set of the isomorphism classes in the latter family
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is OS modulo a finite Weyl group WS oW0 and a finite multiplicative group

µS . This proves the statement. �

6F. Description of the compactified moduli space of ADE pairs.

We now prove Theorem C. In fact we will prove the following slightly stronger

result, which contains more information about the toric primed shapes.

Theorem 6.38. For each ADE shape the moduli space M slc
ADE is proper

and the stable limit of ADE pairs are stable ADE pairs.

(1) For the pure ADE shapes, the normalization (M slc
ADE)ν is V semi

Λ /WΛ,

a WΛ-quotient of the projective toric variety for the generalized Cox-

eter fan.

(2) For the toric primed shapes ′A2n−1, ′A−2n−2, ′A′2n−1, D′2n with n ≥ 3,

the normalization (M slc
ADE)ν is V semi

Λ′ /WΛ with the lattice Λ′ described

in Theorem 5.11.

(3) For an arbitrary primed shape, the normalization (M slc
ADE)ν is V semi

Λ′ /WΛo
W0, for a lattice extension Λ′ ⊃ Λ. The lattice Λ′ and the Weyl group

W0 are described in Theorem 5.12.

Proof. (1) By Theorems 6.18, 6.26, 6.28, every one-parameter family of

ADE pairs has a limit which is a stable ADE pair, since it has a limit (after

a finite base change) in the family over V cox
M . By Theorem 6.37 the classify-

ing morphism φ : V semi
M /W → M slc

ADE is finite-to-one. By Theorem 5.9 on a

dense open set it equals Hom(M,C∗)/W → Hom(Λ,C∗)/W , and it factors

through the homomorphism Hom(M,C∗)→ Hom(Λ,C∗), the quotient by the

finite multiplicative group µ := Hom(M/Λ,C∗). Thus, φ factors through

V semi
Λ = V semi

M /µ, and the morphism V semi
M → M slc

ADE is finite to one and

an isomorphism over an open dense subset. Since V semi
M is normal, it is the

normalization of M slc
ADE .

Parts (2) and (3) are proved the same way. �

Remark 6.39. Theorem 6.38 extends to surfaces of shapes with folds, e.g.

Af2n−1, cf. Remark 6.31.

7. Canonical families and their compactifications

In the previous Section we compactified the stack of ADE pairs – which

for the pure shapes is [An : µΛ] – and extended the naive family over it to

a family of stable pairs. However, [An : µΛ] has many automorphisms, and

consequently in the equation f of the divisor B we have a lot of freedom for the

coefficients ci = ci(χ1, . . . , χn) as polynomials in the fundamental characters.

Many of these choices extend to the compactification.
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Example 7.1. For the A1 shape the moduli stack is [A1 : µ2], and we write

A1 as the quotient of the torus C∗t by the Weyl group WΛ = Z2, t → t−1.

The compactification is [P1 : µ2]. The equation of B is f = 1 + c1x + x2,

where in the naive family we have c1 = χ1 = t+ t−1. We can apply to A1 an

automorphism c1 7→ ac1 + b, with a, b ∈ C and a 6= 0, then pull the family

back to C∗t . This automorphism extends to the compactification P1 of A1,

but the coordinate change is not compatible with the µΛ-action (i.e. with the

(Λ∗/Λ)-grading) unless b = 0, since (−1) ∈ µ2 acts by ac1 + b 7→ −ac1 + b,

so it is not an automorphism of [A1 : µ2]. In this case the naive family is

effectively unique.

However, for the root systems Dn (n ≥ 5) and En (n = 6, 7, 8) there ex-

ist dominant weights λ < $i lying below the fundamental weights and with

λ ≡ $i in Λ∗/Λ, and we can modify the coefficients ci = χi by adding lin-

ear combinations of their characters χ(λ). For example, for E8 there are

23 dominant weights λ below $0, and Λ∗/Λ = 0. Counting all fundamen-

tal weights $ and their lower terms, there is a C51 worth of choices for

c = χ($) +
∑
λ<$ cλχ(λ), all extending to automorphisms of our moduli

compactification.

In this Section we show that the naive family can be deformed in an essen-

tially unique way so that the new family, which we call the canonical family,

has the following wonderful property: the discriminant locus in TΛ, over which

the divisor B in our ADE pairs become singular, is a union of root hypertori

{eα = 1}, with α going over the roots of the lattice Λ.

We then show that the canonical family extends to the compactification and

that on the boundary strata it restricts to the canonical families for smaller

Dynkin diagrams.

7A. Two notions of the discriminant. Let f(x, y) be one of the poly-

nomials in the equations (5.4)–(5.8), which we related to the root lattices

Λ = An, Dn, En. There are two different notions of the discriminant in this

situation:

(1) The discriminant Discr(f) of a polynomial f(x, y). This is a polyno-

mial in the coefficients ci of f for which the zero set of f on Y \ C is

singular. If ci = ci(χj) are polynomials in the fundamental characters

of the lattice Λ, then Discr(f) becomes a polynomial in χj .

(2) The discriminant Discr(Λ) of the lattice, the square of the expression

∏
α∈Φ+

(eα/2 − e−α/2) =
∑
w∈WΛ

ε(w)ew.ρ, where ρ =
∑
$∈Π

$ =
1

2

∑
α∈Φ+

α.
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appearing in the Weyl character formula. Discr(Λ) is WΛ-invariant,

so it is also a polynomial in the fundamental characters. The zero set

of Discr(Λ) is obviously the union of the root hypertori eα = 1.

The following theorem forms the first part of Theorem D. We prove it

separately for the A,D,E shapes in Theorems 7.3, 7.5, 7.7, respectively.

Theorem 7.2. For each ADE pair of pure shape, there exists a unique

deformation of the form c = χ($) + (lower terms) of the naive equation such

that Discr(f) = Discr(Λ).

7B. Canonical families.

Theorem 7.3 (A shapes). For the pure shapes A?
n, resp. −A?

n, in Theo-

rem 7.2 one has ci = χi, resp. ci = χi−1.

Proof. For A?
n the curve − 1

4y
2 + c(x) is singular iff c(x) has a double root.

If

c(x) =
n+1∏
i=1

(x+ ti) = 1 + χ1x+ . . .+ χnx
n + xn+1

then this happens iff eei−ej = ti/tj = 1. Here, ei − ej are precisely the roots

of An. Thus, the statement holds for ci = χi. For An there are no lower

weights below the fundamental weights, so the solution is unique. The open

sets Y \ C for the shapes A?
n and −A?

n are the same, so this argument applies

to the −A?
n shapes as well. �

Recall from section 5E that for the D and E shapes there are two equivalent

forms of the equation: F (x, y, z) and f(x, y), and the latter is obtained from

the former by completing the square in z. For Dn one has the following root

lattice, weight lattice, Weyl group, fundamental roots αi, and fundamental

weights $i:

Λ =
{

(ai) ∈ Zn = ⊕Zei |
∑

ai is even
}
, Λ∗ = Zn +

1

2

∑
ei.

WΛ = Zn−1
2 o Sn,

αn−2−i = ei − ei+1 for i ≤ n− 2, α′1 = en−1 − en, α′′ = en−1 + en.

$n−2−i =
i∑

k=1

ek, i ≤ n− 2, $′1 =
1

2

(
−en +

n−1∑
i=1

ei

)
, $′′ =

1

2

(
n∑
i=1

ei

)
Denoting by σi the i-th symmetric polynomial, the fundamental characters

are

χi = σn−2−i(t
±
k ) for i ≤ n− 2, χ′1 =

∑
s≥0 σ2s+1(tk)√∏

tk
, χ′′ =

∑
s≥0 σ2s(tk)√∏

tk
,

where t±k are t1, t
−1
1 , . . . , tn, t

−1
n .



ADE SURFACES AND THEIR MODULI 55

Definition 7.4. Let fk(x) be the polynomials defined recursively by f0 =

1, f1 = x, and fk+2 = xfk+1−fk. These are the Fibonacci polynomials, except

for the signs and a shift in degrees by 1. One has f2 = x2 − 1, f3 = x3 − 2x,

etc.

Theorem 7.5 (D shapes). For the D?
n shapes, in Theorem 7.2 one has

c′1 = χ′1, c′′ = χ′′, and the expression for c(x) can be obtained from the

generating function

c(x, χ) =
∑
i,j≥0

cijx
iχj =

∑
i≥0

ci(χ)xi =
∑
j≥0

pj(x)χj

by substituting χj for χj and setting χn−2 = 1 and χj = 0 for j > n− 2. One

has

(1) c(x, χ) =
1

(1− χ2)(1− xχ+ χ2)
and ci(χ) =

χi

(1− χ4)(1 + χ2)i
.

(2) p2k(x) = f2
k and p2k+1 = fkfk+1.

(3) cij = 0 if j − i is odd or i > j. Otherwise,

ci,i+2k =
k∑
p≥0

(−1)p
(
i+ p

i

)
= (−1)k

∑
q≥0

(
i+ k − 1− 2q

i− 1

)
.

The central fiber has a Dn singularity at (x, y, z) = (−2,−2n−3,−2n−3).

Example 7.6. For D7 we obtain for the following expressions for c(x):

χ0 + χ1x+ χ2x
2 + χ3x(x2 − 1) + χ4(x2 − 1)2 + (x2 − 1)(x3 − 2x) =

(χ0 + χ4) + (χ1 − χ3 + 2)x+ (χ2 − 2χ4)x2 + (χ3 − 3)x3 + χ4x
4 + x5

and for any lower Dn the formulas can be obtained from these by truncation.

Proof of Thm. 7.5. We start with the polynomial f(x, y) in equation (5.7).

As a quadratic polynomial in y, it represents a curve which is a double cover

of A1. This curve is singular when the following polynomial in x

Discry(f) = (x2 − 4)c(x) + c′1c
′′x+ c′1

2 + c′′2

has a double root. On the other hand, the polynomial p(x) =
∏n
i=1(x+ti+t

−1
i )

has a double root iff some ti+ t−1
i = tj + t−1

j , i.e. tit
−1
j = 1 or titj = 1. These

are exactly the root hypertori for the root lattice Dn.

Thus, Discr(f) = Discr(Λ) iff Discry(f) = p(x). The coefficients of p(x)

are σi(tk + t−1
k ), and they are invariant under the W (Dn)-action, so they are

polynomials in the fundamental characters χi listed above. The rest of the

proof is a combinatorial manipulation to get the exact formula. From this

procedure we see that the solution is unique. �

Theorem 7.7 (E shapes). For the −E?
n shapes, in Theorem 7.2 one has
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E6:

c′′ = χ′′ − 6 c′2 = χ′2 c′1 = χ′1 − χ2

c0 = χ0 − 3χ′′ + 9 c1 = χ1 − χ′2 c2 = χ2

E7:

c′′ = χ′′ − 6χ3 c′2 = χ′2 − 25 c′1 = χ′1 − χ2 − 16χ′2 + 206

c0 = χ0 − 3χ($′′ +$3) + χ(2$′2)− 12χ′1 + 9χ(2$3) + 16χ2 + 69χ′2 − 548

c1 = χ1 − χ($′2 +$3)− 6χ′′ + 28χ3 c2 = χ2 − 2χ′2 + 23 c3 = χ3

E8:

c′′ = χ′′ − 6χ3 − 35χ′2 + 920χ4 − 57505 c′2 = χ′2 − 25χ4 + 2325

c′1 = χ′1 − χ2 − 16χ($′2 +$4)− 44χ′′ + 206χ(2$4)+

+ 360χ3 + 2196χ′2 − 51246χ4 + 2401900

c0 = χ0 − 3χ($′′ +$3) + χ(2$′2 +$4)− 12χ($′1 +$4)− 28χ($′2 +$′′)+

+ 9χ(2$3) + 16χ($2 +$4)− 68χ1 + 69χ($′2 + 2$4) + 212χ($′2 +$3)+

+ 1024χ($′′ +$4) + 236χ(2$′2) + 2453χ′1 − 548χ(3$4)−
− 5228χ($3 +$4)− 1507χ2 − 42656χ($′2 +$4)− 107636χ′′+

+ 488553χ(2$4) + 640064χ3 + 2988404χ′2 − 52027360χ4 + 1484779780

c1 = χ1 − χ($′2 +$3)− 6χ($′′ +$4) + 2χ(2$′2)− 17χ′1+

+ 28χ($3 +$4)− 79χ2 + 383χ($′2 +$4) + 1429χ′′−
− 4414χ(2$4) + 84χ3 − 49768χ′2 + 271934χ4 + 4528192

c2 = χ2 − 2χ($′2 +$4)− 9χ′′ + 23χ(2$4)− 114χ3 + 601χ′2 + 7673χ4 − 955955

c3 = χ3 − 3χ′2 − 170χ4 + 23405 c4 = χ4 − 248

The central fiber with an E6, resp. E7, resp. E8 singularity is

E6: xyz = z2 + 72z + y3 + 27y2 + 324y + 2700 + 324x + 27x2 + x3 at

(x, y, z) = (−6,−6,−18).

E7: xyz = z2 + 576z + y3 + 108y2 + 5184y+ 193536 + 17280x+ 1296x2 +

56x3 + x4 at (x, y, z) = (−12,−24,−144).

E8: xyz = z2 + y3 + x5 at (0, 0, 0).

The formulas for the polynomials F (x, y, z) were found by Etingof, Oblomkov,

Rains in [EOR07] in a completely different context, as relations for the centers

of certain non-commutative algebras associated to affine star-shaped Dynkin

diagrams D̃4, Ẽ6, Ẽ7, Ẽ8. We found them independently, using Tjurina’s con-

struction as explained below. The answer given above is in terms of the
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additive basis of characters of dominant weights, which is needed for comput-

ing the degenerations in Theorem 7.11. Once we recomputed our answer in

the polynomial basis of the fundamental characters χi and did a web search

for the largest coefficient, a single mathematical match came up, to [EOR07,

Sec. 9].

Before proving the theorem, we begin with preliminary observations and

lemmas.

In [Tju70] Tjurina constructed a versal deformation of an E8 singularity

as a family over A8 = the parameter space for 8 smooth points on a cuspidal

cubic C (note that one has C \ cusp ' A1). See also [DPT80, p.190]. The

discriminant locus of this family is a union of affine hyperplanes eα = 0 for the

roots α ∈ E8. Our observation is that replacing the cuspidal cubic by a nodal

cubic C (so that C \ node ' C∗) gives a multiplicative version of Tjurina’s

family over (C∗)8 that we are after.

The lattice E8 can be realized as an intermediate sublattice of index 3 in

A8 ⊂ E8 ⊂ A∗8. The lattice A∗8 is generated by ei − p, where 1 ≤ i ≤ 9 and

p = 1
9

∑9
i=1 ei. The lattice A8 is generated by ei − ej , and the intermediate

lattice E8 is obtained by adding `− e1 − e2 − e3, where ` = 3p.

Now let C be an irreducible curve of genus 1, so C is either smooth, or has

a node, or a cusp. Let G = Pic0 C, so either an elliptic curve (with a choice

of 0), or C∗ 3 1, or Ga 3 0. The nonsingular locus C0 is a G-torsor.

Lemma 7.8. Let An, E8 be the standard root lattices, and A∗n the dual

lattice. Then:

(1) Hom(An, G) = A∗n ⊗ G = Gn+1/diagG = (C0)n+1/G parametrizes

(n+ 1) nonsingular points Pi on C modulo translations by G.

(2) Hom(A∗n, G) = An⊗G = {(g1, . . . , gn+1) |∑ gi = 0} parametrizes the

choice of an origin P0 ∈ C0 plus (n + 1) nonsingular points Pi ∈ C0

such that (n+ 1)P0 ∼
∑
Pi.

(3) Hom(E8, G) = E8 ⊗ G parametrizes embeddings C ⊂ P2 as a cubic

curve plus 8 points Pi ∈ C0, or equivalently embeddings C ⊂ P2 plus

9 points Pi ∈ C0 such that
∏9
i=1 Pi = 1 in the group law of C0. Thus,

P9 is the 9th base point of the pencil |C| of cubic curves on P2 through

P1, . . . , P8.

Proof. We have A∗n = Zn+1/diagZ and An = {(a1, . . . , an+1) ∈ Zn+1 |∑
ai = 0}, so (1) and (2) follow. Hence, Hom(A∗8, G) parametrizes em-

beddings C ⊂ P2 with 8 points and a choice of a flex, and E8 ⊗ G =

Hom(A∗8, G)/G[3] forgets the flex. �
Thus, the torus TA∗8 parametrizes 8 smooth points P1, . . . , P8 on a nodal

cubic curve C ⊂ P2 with a chosen flex, and the torus TE8
the same, but

forgetting the flex. We now take a concrete rational nodal cubic C ⊂ P2
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given by the equation g0 = −uvw + v3 + w3 with a rational parametrization

(u : v : w) = (t3 − 1 : t : −t2), so that the singular point of C is (1 : 0 : 0)

corresponding to t = 0 or ∞. Now consider a family over A8 of cubics

g1 =
∑

i,j≥0, i+j≤3

aiju
3−i−jviwj , a00 = 1, a11 = 0

Then any pencil of cubic curves, parametrized by x, with a smooth generic

fiber which has C at x = ∞ has a unique representation by a polynomial

g(x;u, v, w) = xg0 + g1. It is a simple exercise to put this pencil into the

Weierstrass form φ2 = y3 +A(x)y +B(x) using Nagell’s algorithm or simply

by using the [Sage17] function WeierstrassForm. The polynomials A(x), B(x)

have degrees 4 and 5 (not 6 since C is singular). The following is an easy

explicit computation:

Lemma 7.9. There is a unique change of coordinates of the form x 7→
x + d, y 7→ y + ax2 + bx + c which leaves the fiber C at x = ∞ in the pencil

intact and takes the polynomial f(x, y) = y3 +A(x)y +B(x) into the form of

the equation (5.8) for E8.

We will use this to build a family over (C∗)8 with the required properties.

We pick t1, . . . , t8 in C∗ arbitrarily and then also t9 so that
∏9
i=1 ti = 1. Using

the rational parametrization of the nodal cubic C, this gives 9 smooth points

P1, . . . , P9 ∈ C.

Lemma 7.10. The pencil g(x;u, v, w) passes through the points P1, . . . , P9

iff

a10 = σ8 a01 = σ1 a21 = −σ2 + σ5 − σ8 a12 = −σ1 + σ4 − σ7

a30 = −3 + σ6 a03 = −3 + σ3 a20 = −σ1 + σ7 a02 = σ2 − σ8,

where σi are the elementary symmetric polynomials in t1, . . . , t9.

Proof. We plug the rational parametrization (u : v : w) = (t3 − 1 : t :

−t2) into g1(u, v, w) to obtain a monic polynomial of degree 9 with constant

coefficient −1 which we set equal to
∏9
k=1(x−tk) =

∑9
n=0(−1)n+1σix

i. Then

we solve the resulting linear equations for aij . �

Proof of Thm. 7.7. Define the pencil g(x;u, v, w) as in Lemma 7.10, con-

vert into Weierstrass form φ2 = y3 + A(x)y + B(x), then apply Lemma 7.9

to obtain a polynomial f(x, y) in the form of equation (5.8). The coefficients

ci in the resulting expression for f(x, y) satisfy ci ∈ C[A∗8]S9 , so we obtain

a family parametrized by the torus T (A∗8) = Hom(A∗8,C∗). The final very

computationally intensive step, accomplished using [Sage17], is to rewrite it

in terms of the characters of E8.

We now prove that the discriminant Discr(f) of this family of polynomials

coincides with the discriminant Discr(E8). We have a trivial family X̃ 0 =
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P2 × TA∗8 → TA∗8 with 9 sections, call them s1, . . . , s9, corresponding to the

points Pi ∈ C0. Let X̃n, 1 ≤ n ≤ 9, be the family obtained by performing a

smooth blowup of X̃n−1 along the strict preimage of sn.

On each fiber the points P1, . . . , P8 ∈ P2 are in an almost general position

because they lie on an irreducible cubic (see [DPT80, p.39]). This means that

−KX 8 is relatively nef and semiample, and defines a contraction to a family

X 8 → T (A∗8) of del Pezzo surfaces with relatively ample −KX8 and with Du

Val singularities.

On the other hand, X̃ 9 is a family of Jacobian elliptic surfaces with a section

s9 corresponding to the last point P9. The linear system |Ns9|, N � 0 gives

a contraction X̃ 9 → X 9 to a family of surfaces with ADE singularities. Let ι̃9
be an elliptic involution w 7→ −w for this choice of a zero section. It descends

to an involution ι̃8 of X̃ 8 which in turn descends to an involution ι8 of X 8.

It is easy to see that the quotients are families of the surfaces X9/ι9 = F2

and Y 8 = X8/ι8 = F0
2 = P(1, 1, 2). The families of the polynomials f(x, y)

written above are just the equations of the branch curves. On each fiber, the

ramification curve passes through the singular point of the nodal cubic C.

Blowing up the image of this point on Y 8 finally gives the toric E8-surface Y

as in Fig. 3 corresponding to the Newton polytope of f(x, y).

The branch curve f = 0 is singular iff the double cover X8 is singular. This

happens precisely when the points P1, . . . , P8 are not in general position:

(1) some 3 out of 9 points Pi, Pj , Pk lie on a line ⇐⇒ the complementary

6 points lie on a conic ⇐⇒ titjtk = 1.

(2) some 2 out of 9 points Pi = Pj (i > j) coincide ⇐⇒ the complemen-

tary 7 points lie on a cubic which also has a node at Pj ⇐⇒ ti = tj .

These are precisely the root loci for the roots of E8 in terms of the lattice A∗8,

with ti = eei−p. For our explicit parametrization of the nodal cubic C this

can be seen from

det

∣∣∣∣∣∣
t3i − 1 ti −t2i
t3j − 1 tj −t2j
t3k − 1 tk −t2k

∣∣∣∣∣∣ = (titjtk − 1)(ti − tj)(ti − tk)(tj − tk).

This shows that Discr(f) is a product of the equations (eα−1) of the root loci,

and it is easy to see that they appear with multiplicity 1. Thus, Discr(f) =

±Discr(E8).

This completes the proof in the E8 case. The E7 and E6 cases are obtained

as degenerations of this construction. In the E7 we blow up 7 smooth points

of the cubic C and the node P8. Then there exists a unique point P9 which

is infinitely near to P8 such that all the cubics in the pencil |C − P1 − · · ·P8|
pass through P9. In other words, P9 is a point on the exceptional divisor E8
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of the blowup at P8 corresponding to a direction t9 6= 0,∞ at P8 for which

we can write an explicit equation. Blowing up at P9 gives an elliptic surface

X̃ 9 → P1 with a zero section and an elliptic involution. The preimage of C

on X̃ 9 is an I2 Kodaira fiber, instead of an I1 fiber in the E8 case. In the

same way as above, the discriminant locus is a union of root loci for the roots

of E7.

The E6 case is a further degeneration. We pick 6 smooth points on C plus

the node P7 plus an infinitely near point P8 → P7 corresponding to one of

the directions at the node. Then there exists a unique infinitely near point

P9 → P8 such that all the cubics in the pencil |C − P1 − · · ·P8| pass through

P9. Blowing up at P9 gives an elliptic surface X̃ 9 → P1 with a zero section

and an elliptic involution. The preimage of C on X̃ 9 is an I3 Kodaira fiber.

In the same way as above, the discriminant locus is a union of root loci for

the roots of E6.

For the uniqueness, write ci = χi+
∑
λ<$i

ci,λχ(λ). The weights λ < $i all

lie below $0, there are 23 of them, and the partial order on them is described

in Remark 7.12. Equating Discr(f) = Discr(Λ) gives a system of polynomial

equations in ci,λ which is upper triangular: There is a linear equation for the

highest coefficient ci,λ with no other coefficients present, so with a unique

solution. Then the equation for the next coefficient cj,λ′ is linear with a

unique solution once the higher coefficients are known, etc. The solutions are

obtained recursively, in a unique way at every step. �

7C. Compactifications of the canonical families. In this subsection

we prove the remaining portion of Theorem D.

Theorem 7.11. The canonical family extends to the compactifications

V cox
M of Theorems 6.18, 6.26, 6.28. The restriction of the compactified canon-

ical family to a boundary stratum is the canonical family for a smaller Dynkin

diagram.

Proof. For the compactification we use exactly the same formulas as in

Theorems 6.18, 6.26, 6.28, and the proofs go through unchanged. Indeed, the

only fact we used was that the leading monomial in each coefficient c is e$,

and that the other monomials are of the form ew for some weights of the form

w = $ − α −∑β nββ. These are automatically satisfied if we modify χ($)

only by adding characters of some lower weights λ < $.

For the fact that a canonical family restricts to canonical families on the

boundary strata, a sketch of a possible proof, which can be made precise, is

that the defining property of the canonical family is automatically satisfied

for the restrictions. Instead, we check the equations directly.
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For An the check is immediate: the coefficients χ̂i of equation (6.1) restrict

to χ̂i by Lemma 6.19, so (6.1) restricts to the Am family for a smaller Am
diagram.

For Dn there are no dominant weights below $′, $′′, and the dominant

weights below $i are $i+2, $i+4, etc., with the relations

(7.1) $i −$i+2 = α′ + α′′ + 2α0 + · · ·+ 2αi + αi+1.

By Lemma 6.19, the character χ(λ) = eλχ̂(λ) under the degeneration ai =

e−αi → 0 goes to:

(1) 0 if in the expression λ = $ −∑nαα one has nαi > 0, or to

(2) χ̂(p(λ)) if nαi = 0, where p($i) = 0 and p($j) = $j for j 6= i.

Thus, under the degenerations a′ = 0, resp. a′′ = 0 all the lower weights

disappear, and we are left with an equation for the ′An−1, resp. An−1 family.

Under the degeneration ai = 0, the limit surface has two components, and

on the left, resp. right, surface the equation becomes the Di+2, resp. An−i−3

family if i > 0. For i = 0 we get the equations of A1 and An−3.

The E8 case is the hardest to analyze. We computed the poset of dominant

weights below $0 in Table 6. Every line is a “cover”, a minimal step in the

partial order, and we write the difference as a positive combination of simple

roots. The difference in a cover is known to be equal to the highest root of

some connected Dynkin subdiagram, see e.g. [Ste98, Thm.2.6]. We give this

diagram in the last column. The corollary of that table is Table 7 showing the

weights that do survive under degenerations. All other lower weights under

these and all other degenerations vanish. From this table we immediately see

for example that when either of the coordinates a′′, a′1, a0, a1 is zero, then

all the lower weights vanish and we are left with the equations of the A or ′A
shapes.

In the degeneration a′2 = 0 the E8 equation of Theorem 7.7 reduces to

c(x) = (χ0 + χ4) + (χ1 − χ3 + 2)x+ (χ2 − 2χ4)x2 + (χ3 − 3)x3 + χ4x
4 + x5,

which is precisely the equation of the canonical D7 family from Example 7.6.

For the degeneration a4 = 0 one can check that the E8 equation reduces

to the canonical E7 equation of Theorem 7.7, and for a3 = 0 it reduces to the

E6 equation. The other cases are checked similarly. The E7 and E6 cases now

follow. �

Remark 7.12. As we see, the poset of the dominant weights below the

8 fundamental weights of E8 is very complicated. We make the following

interesting observation. Associate to the 8 nodes of the Dynkin diagram the

following points in Z3: pi = (i, 0, 0), p′j = (0, j, 0), p′′k = (0, 0, k), and choose

the special point p∗ = (1, 1, 1). Consider the projection ψ : E8 → Z ⊕ Z3 by

the rule ψ($) = (1, p − p∗). Then for a fundamental weight $, a dominant
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Table 6. Partial order on dominant weights of E8 below $0

higher lower α′′ α′2 α′1 α0 α1 α2 α3 α4

$0 $′2 +$2 1 1 2 1 D4

$′2 +$2

{ 2$′2 +$4 1 1 2 2 2 1 D6

$′′ +$3 1 1 1 1 1 A5

2$′2 +$4 $′1 +$4 1 A1

$′′ +$3

{ $′1 +$4 1 1 1 1 1 A5

2$3 2 1 2 3 2 1 E6

$′1 +$4

{ $2 +$4 1 1 2 2 1 D5

$′′ +$′2 1 1 1 1 1 1 A6

2$3 $2 +$4 1 A1

$2 +$4

{ $′2 + 2$4 1 1 2 2 2 1 D6

$1 1 1 1 A3

$′2 + 2$4

{ 3$4 2 2 3 4 3 2 1 E7

$′2 +$3 1 A1

3$4 $3 +$4 1 A1

$′′ +$′2 $1 1 1 1 1 A4

$1 $′2 +$3 1 1 2 2 1 D5

$′2 +$3

{ $′′ +$4 1 1 1 1 1 1 A6

2$′2 1 1 2 2 2 2 1 D7

$′′ +$4

{ $3 +$4 2 1 2 3 2 1 E6

$′1 1 1 1 1 1 1 A6

$3 +$4 $2 1 1 A2

2$′2 $′1 1 A1

$′1 $2 1 1 2 2 1 D5

$2 $′2 +$4 1 1 2 2 2 1 D6

$′2 +$4

{ 2$4 2 2 3 4 3 2 1 E7

$′′ 1 1 1 1 1 1 1 A7

2$4 $3 1 A1

$′′ $3 2 1 2 3 2 1 E6

$3 $′2 1 1 2 2 2 2 1 D7

$′2 $4 2 2 3 4 3 2 1 E7

$4 0 3 2 4 6 5 4 3 2 E8

weight λ satisfies λ < $ iff ψ($ − λ) is a non-negative combination of the 8

vectors ψ($i) and the vector (−1, 0, 0, 0).

The same procedure works for Dn, E6, E7. In the Dn case this becomes an

especially easy way to see the relation (7.1). Our two-dimensional projection
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Table 7. For E8, the dominant weights λ < $ in c which

survive degenerations

a′2 = 0 a2 = 0 a3 = 0 a4 = 0

c′′ $3 $3

c′2 $4

c′1 $2 $2 $2 2$4

$′2 +$4

c0 $′2 +$2 $′2 +$2 $′2 +$2 $′2 +$2 2$3

2$′2 +$4 $′′ +$3 2$′2 +$4 $2 +$4

2$3 $′′ +$3 $′2 + 2$4

$′1 +$4 3$4

c1 $′2 +$3 $′2 +$3 $′2 +$3 $3 +$4

2$′2 $′′ +$4

c2 $′2 +$4 $′2 +$4 2$4

c3 $′2

of section 5A is a further projection from Z3 to Z2 obtained by “completing

the square in the z variable”.

7D. Singularities of divisors in ADE pairs. By Theorem 7.2, the

singularities of B ∩ (Y \ C) in the canonical families occur on the fibers Yt
for t ∈ ∪α{eα = 1}, the union of root hypertori. Generically, these are

A1 singularities. On the intersections of several hypertori some worse sin-

gularities occur. Below we describe them explicitly. For each of the lat-

tices Λ = An, Dn, En the singularity over the point 1 ∈ TΛ∗ is that same

An, Dn, En. However, there are zero-dimensional strata of the hypertori ar-

rangement different from 1. Some other maximal rank singularities occur on

the fibers over those points.

Definition 7.13. Let Λ be an ADE lattice with a root system Φ and

Dynkin diagram ∆, and let G be some abelian group which we will write mul-

tiplicatively. Let t ∈ Hom(Λ, G) be a homomorphism. Define the sublattice

Λt = 〈α | t(α) = 1〉 ⊂ Λ generated by the roots α ∈ Φ ∩ ker(t).

It is well known that a sublattice of an ADE lattice generated by some of

the roots is a direct sum of root lattices corresponding to smaller ADE Dynkin

diagrams. All such root sublattices can be obtained by the Dynkin-Borel-de

Siebenthal (DBS) algorithm, see [Dyn52, Thms. 5.2, 5.3], as follows. Make

several of the steps (DBS1): replace a connected component of the Dynkin

diagram by an extended Dynkin diagram and then remove a node; and then
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several of the steps (DBS2): remove a node. Below, we determine which of

these lattices are realizable as Λt.

All root sublattices are listed in [Dyn52, Tables 9–11]. The answer is as

follows. Recall that the lattice An ⊂ Zn+1 is generated by the roots ei−ej . All

root sublattices of An are of the form A|I1|−1⊕· · ·⊕A|Is|−1, where I1t· · ·tIs =

{1, . . . , n+ 1} is a partition, |Ii| ≥ 1. Here, A|Ii|−1 = 0 if |Ii| = 1.

The lattice Dn ⊂ Zn is generated by the roots ei ± ej . All root sublattices

of Dn are of the form A|I1|−1 ⊕ · · · ⊕ A|Is|−1 ⊕ D|J1| ⊕ · · · ⊕ D|Jr|, where

I1t· · ·t IstJ1t· · ·tJr = {1, . . . , n} is a partition, |Ii| ≥ 1 and |Jj | ≥ 2. D2

and D3 are a special case. They are isomorphic to 2A1 and A3 respectively

as abstract lattices, but they are different as sublattices of Dn.

The sublattices of E6, E7, E8 are listed in [Dyn52, Table 11] but note the

typos: in the E8 table one of the two A7 +A1 is E7 +A1, and A6 +A2 should

be E6 +A2.

Definition 7.14. Let M ⊂ Λ be two ADE lattices. Let Tors(Λ/M) be the

torsion subgroup of Λ/M and im(Φ ∩MR) ⊂ Tors(Λ/M) be the image of the

set of roots α ∈ Φ∩MR. We define the closure im(Φ∩MR) to be the subset of

Tors(Λ/M) consisting of the elements x 6= 0 such that 0 6= nx ∈ im(Φ ∩MR)

for some n ∈ N; plus x = 0. Both im(Φ∩MR) and im(Φ∩MR) are finite sets,

and a priori neither of them has to be a group.

Lemma 7.15. Let M ⊂ Λ be two ADE lattices. Let G be an abelian group

containing Zr, where r = rk Λ−rkM . Then M = Λt for some t ∈ Hom(Λ, G)

iff there exists a homomorphism φ : Tors(Λ/M) → G such that for any 0 6=
x ∈ im(Φ ∩MR) one has φ(x) 6= 0.

Proof. Of course one must have M ⊂ ker(t), so the question is whether

there exists a homomorphism Λ/M → G which does not map any roots not

lying in M to zero. We have Λ/M = Zr⊕Tors(Λ/M). An embedding Zr → G

can always be adjusted by an element of GL(r,Z) so that the images of roots

not in Tors(Λ/M) do not map to zero. So the only condition is on im(Φ∩MR)

in Tors(Λ/M) or, equivalently, on its closure. �

Corollary 7.16. Let M ⊂ Λ be two ADE lattices and let k be an al-

gebraically closed field of characteristic zero. If the group Tors(Λ/M) is

cyclic then M = Λt for some t ∈ Hom(Λ,C∗). In the opposite direction,

if im(Φ ∩ MR) contains a non-cyclic subgroup then M 6= Λt for any t ∈
Hom(Λ,C∗).

Proof. This follows from the fact that any finite cyclic group can be em-

bedded into C∗, and there are no non-cyclic finite subgroups in C∗. �
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Theorem 7.17. Let Λ be an irreducible ADE lattice and M be an ADE

root sublattice. Assume that the field k is algebraically closed of character-

istic zero. Then M = Λt for some t ∈ Hom(Λ,C∗) iff any of the following

equivalent conditions holds:

(1) Tors(Λ/M) is cyclic.

(2) M is obtained from Λ by a single DBS1 step and then some DBS2

steps.

(3) M corresponds to a proper subdiagram of the extended Dynkin diagram

∆̃.

(4) M corresponds to a subdiagram ∆ of the following Dynkin diagrams:

An: An; Dn: Dn or DaDb ⊂ D̃n with a+ b = n, a, b ≥ 2.

E6: E6, A5A1, 3A2; E7: E7, D6A1, A7, A5A2, 2A3A1;

E8: E8, E7A1, E6A2, D8, D5A3, A8, A7A1, 2A4, A5A2A1.

(5) M is not one of the following forbidden sublattices:

Dn: a sublattice with ≥ 3 D-blocks; E7: D4 3A1, 7A1, 6A1;

E8: 4A2, 2D4, D62A1, D44A1, 2A32A1, 8A1,D43A1,7A1,A34A1,6A1.

Proof. We first prove the equivalence of the conditions (1-5). For one direc-

tion, the identity
∑
α∈∆̃mαα = 0 implies that if the Dynkin diagram ∆(M)

is obtained from ∆̃ by removing one node (i.e. by a single DBS1 step) then

the cotorsion group is cyclic of the order equal to the multiplicity mα of the

removed node in the highest root of ∆. Any sublattice of these lattices ob-

tained by DBS2 steps also has cyclic cotorsion. The lists in (4) are simply the

lattices obtained by one DBS1 step. To complete the equivalence of (1-5) for

En we use Dynkin’s lists of sublattices together with [Per90, Table 1] which

gives the torsion groups, and check the finitely many cases. The Dn case is

easy.

Now let M be a sublattice as in (1). Then M = Λt for some t ∈ Hom(Λ,C∗)
by Cor. 7.16. Vice versa, let M be one of the sublattices with a non-cyclic

Tors(Λ/M), which are listed in (5). If Λ = Dn and M has r ≥ 3 D-blocks then

Tors(Λ/M) = Zr−1
2 and we easily calculate im(Φ∩MR) to be {0, ei, ei+ej | 1 ≤

i, j ≤ r− 1}. This set contains a non-cyclic subgroup Z2
2 = {0, e1, e2, e1 + e2},

so M 6= Λt by Cor. 7.16.

For each sublattice of E7 and E8 listed in (5) we explicitly compute im(Φ∩
MR). We have (Λ ∩MR)/M ⊂ M∗/M , so we find the images of the roots

α ∈ Φ ∩MR in M∗/M . The result is as follows. For 8A1 the set im(Φ ∩MR)

has 15 elements and contains Z3
2; for 2A3 2A1 it has 7 elements and its closure

is Z4 ⊕ Z2; for 4A2 it has 8 elements and its closure is Z2
3. In all the other

cases, one has im(Φ ∩ MR) = Tors(Λ/M). We conclude that M 6= Λt by

Cor. 7.16. �
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Theorem 7.18. Consider a canonical family of ADE pairs of Theorems 7.3,

7.5, 7.7. Then for a point t ∈ T , the singularities of the curve Bt ∩ (Yt \ Ct)
and of the double cover Xt \Dt near Rt are Du Val of the type corresponding

to the lattice Λt. In particular, a curve is singular iff t lies in a union of root

hypertori {eα = 1}, and for t = 1 there is a unique singularity of the same

Du Val type as the root lattice.

Proof. The An case is obvious: the curve −y2/4 + c(x), c(x) =
∏

(x + ti)

has singularities Am1−1, . . . , Ams−1, each occurring when some mk of the ti’s

coincide, i.e. when several of the monomials eti−tj vanish at the same time.

Let Discry(f) =
∏n
i=1(x+ti+t

−1
i ) as in the proof of Thm. 7.5. It is easy to

see that for every root x 6= ±2 of Discry of multiplicity m, the curve f = 0 has

an Am−1-singularity, and if x = ±2 is a root of Discry of multiplicity m then f

has a Dm-singularity. This includes D3 = A3, D2 = 2A1, and D1 = smooth.

On the other hand, the root tori are of the form {tit±1
j = 1}. The irreducible

components of Λt correspond to the disjoint subsets I ⊂ {1, . . . , n} of indices

for which ti = t±1
j for i, j ∈ I. If ti 6= ±1, i.e. ti + t−1

i 6= ±2, then the

component is of the A|I|−1-type; otherwise it is of the D|I|-type.

In the En cases the singularities are Du Val by construction in the proof of

7.7. Using notation as in the proof, let us fix a linear function ϕ on E8 ⊂ A∗8
such that ϕ(p) > ϕ(e1) > · · · > ϕ(e8), and let the positive roots α be those

with ϕ(α) > 0. Then for any subroot system of E8 the simple roots are

exactly the roots that are realizable by irreducible (−2)-curves on X̃8: ei− ej
for i > j (preimages of the exceptional divisors Ei of blowups at Pi), `− ei −
ej − ek (preimages of lines passing through 3 points Pi, Pj , Pk), 2`−∑6

k=1 eik
(preimages of conics through 6 points), and 3` − 2ej −

∑7
k=1 eik (preimages

of nodal cubics through 8 points). So for every t ∈ Hom(E8,C∗), the simple

roots in the lattice Λt are realized by (−2)-curves on X̃8 which contract to

a configuration of singularities on X8 with the same Dynkin diagram as Λt.

The E7 and E6 cases are done similarly. �

Remark 7.19. By the proof of Theorem 7.7, the surfaces in the E6, E7, E8

families correspond to rational elliptic fibrations with an I3, I2, I1 fiber respec-

tively. The singularity type of the double cover Xt \Dt is obtained from the

Kodaira type of the elliptic fibration by dropping one I3, I2, I1 fiber respec-

tively (it gives a singularity of Xt lying in the boundary Dt; of type A2, A1,

or none resp.) and converting the other Kodaira fibers into the ADE singu-

larities.

As a check, we note that the list of maximal sublattices in Theorem 7.17(4)

is equivalent to the list of the rational extremal non-isotrivial elliptic fibra-

tions in [MP86, Thm. 4.1], and that the full list of sublattices in Theorem
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7.17 is consistent with the full list of Kodaira fibers of rational elliptic fibra-

tions in [Per90]. Persson’s list contains 6 surfaces with an Im fiber for which

the corresponding sublattice of E8 has non-cyclic cotorsion: I∗2 2I2 (D6 2A1),

I∗0 3I2 (D4 3A1), 2I4 2I2 (2A3 2A1), I4 4I2 (A3 4A1), 4I3 (4A2), 6I2 (6A1). But

D6A1, D4 2A1, 2A3A1, A3 3A1 and 5A1 are sublattices of E7 and 3A2 is a

sublattice of E6, all with cyclic cotorsion.

8. Applications and connections with other works

8A. Toric compact moduli of rational elliptic surfaces. Let Mell

be the moduli space of smooth rational elliptic relatively minimal surfaces

S → P1 with a section E. Let Mell(I1) be the moduli space of such surfaces

(S,E, F ) together with a fixed I1 Kodaira fiber F (i.e. a rational nodal curve).

This is a 12 : 1 cover of a dense open subset of Mell since a generic rational

elliptic surface has 12 I1 fibers.

Theorem 8.1. There exists a moduli compactification of Mell(I1) by stable

slc pairs whose normalization is the quotient V semi
Λ /WΛ of the projective toric

variety V semi
Λ for the generalized Coxeter fan by the Weyl group WΛ, where Λ

is the root lattice E8.

Proof. Let j : S → S be the elliptic involution with respect to the section

E and EtR be the fixed locus of j. Contracting the (−2)-curves in the fibers

which are disjoint from the section E and then E itself gives a pair (X,D+εR)

which is an ADE double cover of shape E8. Vice versa, any pair (X,D+εR) of

E8 shape is a del Pezzo surface of degree 1 with Du Val singularities. Blowing

up the unique base point of | − KX | and resolving the singularities gives a

rational elliptic fibration S → P1 and the strict preimage of D is an I1 fiber

of this fibration. This theorem is now the E8 case of Theorem 6.38. �
Similarly, the E7 compactified family gives a moduli compactificationM ell(I2)

of the moduli space Mell(I2) of rational elliptic surfaces with an I2 Kodaira

fiber; the E6 family gives M ell(I3); the D−5 family gives M ell(I4); and the ′A−4
family gives M ell(I5).

8B. Moduli of Looijenga pairs after Gross-Hacking-Keel. A Looi-

jenga pair is a smooth rational surface (X̃, D̃) such that KX̃ + D̃ ∼ 0 and

D̃ is a cycle of rational curves. In [GHK15], Gross-Hacking-Keel construct

moduli of Looijenga pairs of a fixed type, given by the configuration of the

rational curves D̃. The result is as follows. First, one defines the lattice

∆ ⊂ Pic X̃ as the orthogonal to the irreducible components of D̃, and the

torus T∆ = Hom(∆,C∗). One glues several copies of this moduli torus along

dense open subsets into a nonseparated scheme U and divides it by a group
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Adm of admissible monodromies, including reflections in the (−2)-curves ap-

pearing on some deformations of (X̃, D̃). The non-separatedness is expected

since X̃ in this setup are smooth surfaces without a polarization. The sepa-

rated quotient of [U/Adm] is [T∆/Adm].

For an ADE double cover (X,D + εR), the minimal resolution of singu-

larities (X̃, D̃) is a Looijenga pair. In Theorems 5.9, 5.11, 5.12 we proved

that the moduli space of ADE pairs and of their double covers is a torus

TΛ′ = Hom(Λ′,C∗) modulo a certain Weyl group WΛ oW0. The lattices Λ,

Λ′ and the Weyl groups WΛ, W0 were introduced in Section 5. We now relate

them to the lattices naturally associated to Looijenga pairs with a nonsym-

plectic involution.

Definition 8.2. Let (X̃, D̃) be a Looijenga pair with an involution. Let

∆ = D̃⊥ be the sublattice of Pic X̃ which is orthogonal to the curves in the

boundary. Assume that there is an involution ι : X̃ → X̃ with ι(D̃) = D̃.

We define ∆+ and ∆− as the (±1)-eigensublattices of the induced involution

ι∗ : ∆ → ∆. Denote by ∆
(2)
− the set of (−2)-vectors in ∆−, and by W

(2)
− the

group generated by reflections in them.

Theorem 8.3. Let (Y,C + 1+ε
2 B) be an ADE pair and (X,D+ εR) be its

double cover, with the minimal resolution (X̃, D̃). Then one has Λ = ∆− and

WΛ = W
(2)
− . Further, Λ′ ⊂ ∆/∆+, with equality if and only if the shape has

no doubly primed sides. For a doubly primed shape S′′ (resp. ′′S), ∆/∆+ is

the same as for the shape S′ (resp. ′S); it thus contains Λ′ as a sublattice of

index 2N , where N is the number of sides on which the shape has a double

prime.

Proof. We prove the statement in representative D cases, with the other

cases done by similar computations.

(D2n) The easiest model for a generic surface X = X̃ of this shape is as a

blowup of P1×P1 with a section s and a fiber f at 2n points lying on a curve

in |2s+f |. Using ei for the exceptional divisors in PicX, the boundary curves

are D1 ∼ 2s + f −∑2n
i=1 ei, and D2 ∼ f . Then ∆ is generated by the roots

ei− ei+1, 1 ≤ i ≤ 2n− 1 and f − e1− e2 forming a D2n Dynkin diagram. The

involution acts by f 7→ f , s 7→ s + nf −∑2n
i=1 ei, ei 7→ f − ei. Thus, it acts

as (−1) on ∆ and ∆− is the root lattice Λ of type D2n. In this case ∆+ = 0

and ∆/∆+ = ∆− = Λ = Λ′.
(D′2n) The surface X is obtained from the one for D2n by a blowup at

one of the two points in R ∩D2. Denoting by g the exceptional divisor, one

has D1 ∼ 2s + f −∑2n
i=1 ei, and D2 ∼ f − g. The lattice ∆ is generated

by the 2n roots above and an additional root β = s − e1 − g. This forms

a Dynkin diagram obtained by attaching an additional node β to one of the

short legs of D2n, α′ or α′′. Without loss of generality, let us say βα′ = 1. The
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involution ι acts on the vectors s, f, ei the same way as above, and ι∗g = g.

Thus, ∆+ is spanned by the vector t = β + ι∗β and ∆− is the same D2n root

lattice as before. We have an orthogonal projection p : ∆→ 1
2∆− identifying

∆/∆+ with a sublattice of 1
2∆− generated by ∆− and the image p(β). For

a root α ∈ ∆− one has p(β)α = βα, so βα′ = 1 and βr = 0 for the other

roots α. Thus, p(β) = $′, the fundamental weight $′ for the root α′, and

∆/∆+ = Λ +$′ is our Λ′.
( ′D2n) The surface X is obtained from the one for D2n by a blowup at one

of the two points in R ∩ D1. Denoting by g the exceptional divisor again,

one has D1 ∼ 2s+ f −∑2n
i=1 ei − g, and D2 ∼ f . The lattice ∆ is generated

by the 2n roots above and an additional root β = e2n − g. This forms a

Dynkin diagram obtained by attaching an additional node β to the long leg

of D2n, i.e. to α2n−3 in our notation. The (−1)-eigenspace ∆− is again the

D2n root lattice generated by the first 2n roots. The space ∆+ is generated

by t = β + ι∗β = f − 2g. The orthogonal projection p identifies ∆/∆+ with

∆− + p(α). And since one has βα2n−3 = 1 and β is orthogonal to the other

2n−1 roots, p(β) = $2n−3. So one has ∆/∆+ = Λ+$2n−3 = Λ′, as claimed.

( ′D′2n) Similarly, in ∆ one has two extra roots β1 = s − e1 − g1 and β2 =

e2n − g2 whose images in 1
2∆− are $′ or $′′ depending on the parity of n,

and $′2n−3, so ∆/∆+ = Λ′ again.

When priming a surface of shape S twice on the same side (say on the

right), there are two exceptional divisors g1, g2. Then ∆(S′′) = ∆(S′) ⊕
Z(g1 − g2), ∆+(S′′) = ∆+(S′) ⊕ Z(g1 − g2), ∆−(S′′) = ∆−(S′). Therefore,

∆/∆+(S′′) = ∆/∆+(S′). This applies to D′′2n, ′′D2n and all the other doubly

primed shapes. �
Next, we define an action of the Weyl group W0 of the lattice Λ0 = C⊥∩B⊥

introduced in Def. 3.31.

Definition 8.4. Let π : X → Y be an double cover of a ADE pair with

a branch divisor B. Let π̃ : X̃ → Ỹ be a double cover of its resolution of

singularities. Let e ∈ Λ
(2)
0 be a cycle, so e ∈ C⊥ ∩ B⊥ and e2 = −2. Then

π∗e = e1 + e2 with ι∗e1 = e2, e2
1 = e2

2 = −2 and e1e2 = 0.

We define v+ = π∗(e) = e1 + e2 ∈ ∆+ and v− = e1 − e2 ∈ ∆−. The

composition of two reflections we1 ◦we2 = we2 ◦we1 acts on ∆− as a reflection

wv− in the (−4)-vector v−, and on ∆+ as a reflection wv+
in the (−4)-vector

v+.

Lemma 8.5. Given e ∈ Λ0, we1 ◦ we2 is well defined up to a conjugation

by W
(2)
− .

Proof. Suppose we have another decomposition v+ = e1+e2 = e′1+e′2. One

has e1 = 1
2 (v+ + v−) and e′1 = 1

2 (v+ + v′−). Then e1e
′
1 = −1 + 1

4v−v
′
−. Since

∆− ⊂ R⊥ and R2 > 0, ∆− is negative definite. Thus, |v−v′−| < 4, and we
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conclude that e1e
′
1 = −1. The elements we1 ◦we2 and we′1 ◦we′2 are conjugate

by the reflection we1−e′1 = we2−e′2 . Finally, e1−e′1 ∈ ∆− and (e1−e′1)2 = −2,

so we1−e′1 ∈W
(2)
− . �

Definition 8.6. We define the Weyl group W
(2,4)
− as the group of reflec-

tions of ∆ generated by W
(2)
− and the elements we1 ◦ we2 for e ∈ Λ0. By the

above, it preserves both ∆− and ∆+, with W
(2)
− acting trivially on ∆+. Thus,

we have the induced actions of W
(2,4)
− on ∆− and of W

(2,4)
− /W

(2)
− on ∆+.

Theorem 8.7. One has W
(2,4)
− /W

(2)
− = W0. The subgroup W00 from

Definition 5.14 is the subgroup of W0 which acts trivially on ∆−.

Proof. We compute the action of W0 in the representative D cases using

the same notation as in the proof of Theorem 8.3. The lattice ∆+∩R⊥ can be

identified with π∗(Λ0) and the (−4)-vectors v+ in ∆+ ∩R⊥ with the vectors

π∗(e) for e ∈ Λ
(2)
0 .

(D2n) Λ0 = 0 and ∆+ = 0; there is nothing to check.

(D′2n) One has t2 = 2n − 8. This equals −4 only for n = 2 and then

D′4 = ′D4.

( ′D2n) One has β · ι∗β = 0. So for the generator t = β + ι∗β = f − 2g of

∆+ one has t2 = −4. Indeed, t = v+ = π∗e for the generator e of Λ0. Then

v− = β − ι∗β = 2e2n − f . Reflection wv− in this vector fixes all roots of the

D2n diagram except for wv−(αn−3) = α := e2n−1 +e2n−f . Together with the

other 2n roots, α forms the D̃2n diagram in which αn−3, α are two short legs.

Thus, wv− acts as an outer automorphism of Λ(D2n) swapping two short legs.

This is the same action for W0 = S2 which we computed in subsection 5F.

( ′′D2n) One has ∆+ = 〈f − 2g1, g2 − g1〉. The only vectors v+ of square

−4 in ∆+ are f − 2g1 and f − 2g2, which are the pullbacks of the two vectors

in Λ
(2)
0 . For both of them we get the same vector v− = 2e2n − f . Thus,

w
(1)
e1 ◦ w(1)

e2 and w
(2)
e1 ◦ w(2)

e2 for these two vectors act in the same way on ∆−
but differently on ∆+. We conclude that they generate S2 × S2 and their

difference acts trivially on ∆−. This is the same description of W0 = S2 × S2

and W00 = S2 as in 5F.

( ′D′4) π∗Λ0 is generated by v1
+ = β1 + ι∗β1 and v2

+ = β2 + ι∗β2, β1 =

s − e1 − g1 and β2 = e4 − g2. Then v1
− = −f − e1 + e2 + e3 + e4 and

v2
− = −f + 2e4. Denote by −α the highest root, so that together with the

other 4 roots it forms the D̃4 diagram. Then wv1
−

swaps α′ and α, and wv2
−

swaps α1 and α. Thus, W0 acts as the group S3 of outer automorphisms of

Λ(D4), the same as in 5F. �
We now describe, without proof, how our moduli stack of ADE pairs

(equivalently, up to the µ2-cover, the stack of ADE double covers with involu-

tion), which by Theorem 5.12 equals [TΛ′ : WΛoW0], is related to the moduli
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of Looijenga pairs. In the moduli torus T∆ of Looijenga pairs the subtorus

T∆/∆+
corresponds to the pairs admitting a nonsymplectic involution. The

moduli stack is the quotient of it by the group of admissible monodromies of

T∆ leaving TΛ′ invariant. A part of this group is obvious: reflections W
(2)
−

in the vectors in ∆
(2)
− . Also, for each side which has a double prime there is

a root g1 − g2 which gives a quotient by µ2 that forgets the ordering of the

two primed points. This accounts for the fact that Λ′ is a sublattice of ∆/∆+

for shapes with doubly primed sides. Less obviously, for each e ∈ Λ
(2)
0 , with

π∗(e) = e1 + e2, while the reflections we1 and we2 by themselves do not fix

∆−, their composition we1 ◦ we2 does.

One thus takes a quotient of TΛ′ by W
(2)
− = WΛ followed by a quotient by

W
(2,4)
− /W

(2)
− = W0. The subgroup W00 ⊂ W

(2,4)
− /W

(2)
− acts trivially on the

coarse moduli space TΛ′ but nontrivially on the stack, giving extra automor-

phisms of the pairs.

8C. Involutions in the Cremona group. Classically, the involutions

in the Cremona group Cr(P2), the group of birational automorphisms of P2,

are of three types: De Jonquières, Geiser, and Bertini. For a nice modern

treatment that uses equivariant MMP, see [BB00]. For a (K + D)-trivial

polarized involution pair (X,D, ι), if X is rational then ι is an involution in

Cr(P2).

Theorem 8.8. Let (X,D, ι) be a (K +D)-trivial polarized involution pair

with rational surface X and a smooth ramification curve R. Then

(1) If (X,D, ι) is of shape D̃, D, or A (pure or primed) then ι is De

Jonquières.

(2) If it is of shape Ẽ7, E7, or E6 (pure or primed) then ι is Geiser.

(3) If it is of shape Ẽ8 or E8 (pure or primed) then ι is Bertini.

Proof. By [BB00, Prop. 2.7], the type of the involution is uniquely deter-

mined by the normalization R̃ of the ramification curve R: for De Jonquières

R̃ is hyperelliptic, for Geiser it is non-hyperelliptic of genus 3, and for Bertini

it is non-hyperelliptic of genus 4. In the D̃-D-A cases the branch curve B ' R
is a two-section of a ruling, so it is hyperelliptic. In the Ẽ7-E7-E6 cases R is a

quartic curve in P2, so a non-hyperelliptic curve of genus 3, and in the Ẽ8-E8

cases it is a section of O(1) on the quadratic cone F0
2, so a non-hyperelliptic

curve of genus 4. �

Remark 8.9. When R has nodes, the involution may easily be of a differ-

ent type. When it has ≥ 2 nodes, the involution is always De Jonquières.

We can give an alternative proof for the classification of the double covers

(X,D)→ (Y,C) of log canonical non-klt surfaces using [BB00] in some cases:
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Theorem 8.10. Let (X,D, ι) be a (K+D)-trivial polarized involution pair

with rational X. Suppose that X is smooth outside of the boundary D, and in

particular that the ramification curve R is smooth. Then the quotient (Y,C)

of this pair is an ADE or ÃD̃Ẽ surface defined in Section 3.

Sketch of the proof. Let X̃ be the minimal resolution of X, it comes with

an induced involution ι̃. [BB00, Thm. 1.4] gives six possibilities for the pair

(X̃, ι̃) when it is minimal, i.e. there does not exist one or two (−1)-curves that

can be equivariantly contracted to another smooth surface with an involution.

In our case, X̃ is obtained from such a minimal surface by a sequence of single

or double blowups which satisfy two conditions: they have to be involution-

invariant, and there are no (−2)-curves disjoint from B.

It follows that X̃ is obtained by blowups at the points B ∩ R, either one

involution-invariant point or two points exchanged by the involution. We

analyze them directly. The different cases of [BB00, Thm. 1.4] then lead to

the following:

(i) impossible, i.e. does not lead to a (K+D)-trivial polarized involution

pair with ample R.

(ii) (ii)sm is impossible, and (ii)g gives the D̃-D-A shapes.

(iii) A−0 and Ã−0 .

(iv) Ã∗1, A1.

(v) Ẽ7, −E7, −E−6 and the primed shapes.

(vi) Ẽ−8 , −E−8 and the primed shapes.

�

One could try to extend the results of this section to classify families of log

del Pezzo pairs, in which the surface Y may acquire singularities away from

the boundary. This would give an alternative proof of Theorem A. For this,

we would first need to know that the branch divisor B can be smoothed. This

is known, see [Nak07, Cor.3.20]. Secondly, we would also need to know that

the singular points of the surface Y away from the boundary can be smoothed.

For surfaces without the boundary, this is [HP10, Prop. 3.1]. For the pairs

(Y,C) with boundary this does not seem to be easy to prove directly. This

follows a posteriori from the classification of all log del Pezzo surfaces with

boundary given in Sections 3 and 4.
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6 Decorated Dynkin diagrams for shapes ′′A′3, ′′D+
5 , Ẽ+

8
′ 20

7 Toric ′A shapes: ′A−2 = −A′2 = −D−2 , ′A3, ′A−4 20

8 Toric D′ and ′A′ shapes: D′8, ′A′5, ′A′7 23

9 Some special toric surfaces in shapes ′D−7 , ′D′4 23

10 Singularities (n1, n2, . . . , nk; 22) and (22;n1, n2, . . . , nk; 22) 23

11 Effect of eliminating simple subschemes 30



ADE SURFACES AND THEIR MODULI 75

12 A−2 and its degenerations: A−0
−A−1 , A1A

−
0 , and A−0

−A0A
−
0 44

13 D4 and its degenerations A−0
′A3, A1A1, A′3

−A0, A3 47

E-mail address: valery@uga.edu

Department of Mathematics, University of Georgia, Athens GA 30602, USA

E-mail address: a.m.thompson@lboro.ac.uk

Department of Mathematical Sciences, Loughborough University, Loughbor-

ough, Leicestershire, LE11 3TU, UK


	1. Introduction
	2. Log del Pezzo index 2 pairs and their double covers
	3. Definitions of ADE, A"0365AD"0365DE"0365E surfaces, pairs, and double covers
	3A. Toric pure shapes
	3B. Nontoric A"0365A shapes
	3C. Primed shapes
	3D. Primed shapes which are toric
	3E. Singularities of ADE and A"0365AD"0365DE"0365E surfaces
	3F. Recovering a precursor of pure shape

	4. Classification of nonklt log del Pezzo surfaces of index 2
	4A.  The case KM+LM is not nef 
	4B.  KM+LM is nef and g2 
	4C.  KM+LM is nef and g=1 

	5. Moduli of ADE pairs
	5A. Two-dimensional projections of ADE lattices
	5B. Moduli of ADE pairs of pure shapes
	5C. Moduli of ADE pairs of toric primed shapes
	5D. Moduli of ADE pairs of all primed shapes
	5E. Definitions of the naive ADE families
	5F. Action of the extra Weyl group W0

	6. Compactifications of moduli of ADE pairs
	6A. Stable pairs in general and stable ADE pairs
	6B. Compactifications of the naive families for the A shapes
	6C. Compactifications of the naive families for the A, D, .65pt-E shapes
	6D. Compactifications of the naive families for all primed shapes
	6E. A generalized Coxeter fan
	6F. Description of the compactified moduli space of ADE pairs

	7. Canonical families and their compactifications
	7A. Two notions of the discriminant
	7B. Canonical families
	7C. Compactifications of the canonical families
	7D. Singularities of divisors in ADE pairs

	8. Applications and connections with other works
	8A. Toric compact moduli of rational elliptic surfaces
	8B. Moduli of Looijenga pairs after Gross-Hacking-Keel
	8C. Involutions in the Cremona group

	References
	List of Tables
	List of Figures

