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Abstract: Private lands provide key habitat for imperiled species and are core components of function protec-
tected area networks; yet, their incorporation into national and regional conservation planning has been chal-
lenging. Identifying locations where private landowners are likely to participate in conservation initiatives can
help avoid conflict and clarify trade-offs between ecological benefits and sociopolitical costs. Empirical, spatially
explicit assessment of the factors associated with conservation on private land is an emerging tool for identifying
future conservation opportunities. However, most data on private land conservation are voluntarily reported and
incomplete, which complicates these assessments. We used a novel application of occupancy models to analyze
the occurrence of conservation easements on private land. We compared multiple formulations of occupancy
models with a logistic regression model to predict the locations of conservation easements based on a spatially
explicit social–ecological systems framework. We combined a simulation experiment with a case study of ease-
ment data in Idaho and Montana (United States) to illustrate the utility of the occupancy framework for modeling
conservation on private land. Occupancy models that explicitly accounted for variation in reporting produced
estimates of predictors that were substantially less biased than estimates produced by logistic regression under
all simulated conditions. Occupancy models produced estimates for the 6 predictors we evaluated in our case
study that were larger in magnitude, but less certain than those produced by logistic regression. These results
suggest that occupancy models result in qualitatively different inferences regarding the effects of predictors on
conservation easement occurrence than logistic regression and highlight the importance of integrating variable
and incomplete reporting of participation in empirical analysis of conservation initiatives. Failure to do so can
lead to emphasizing the wrong social, institutional, and environmental factors that enable conservation and un-
derestimating conservation opportunities in landscapes where social norms or institutional constraints inhibit
reporting.

Keywords: conservation easements, conservation planning, nonresponse bias, occupancy models, spatial au-
tocorrelation, spatial modeling

Resumen: La incorporación de las tierras privadas a la planeación de la conservación regional y nacional ha
sido un reto a pesar de su importancia como hábitat para especies en peligro y como componentes nucleares
de las redes funcionales de áreas protegidas. La identificación de las localidades en donde sea probable que los
propietarios privados participen en las iniciativas de conservación puede ayudar a evitar conflictos costosos y
a aclarar las compensaciones entre los beneficios ecológicos y los costos sociopolíticos. La evaluación empírica
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2 Improving Conservation Inferences

y espacialmente explícita de los factores asociados con la conservación en tierras privadas es una herramienta
emergente usada para la identificación de oportunidades de conservación en el futuro. Sin embargo, la mayoría
de los datos sobre la conservación en tierras privadas es reportada voluntariamente y está incompleta, lo cual
complica realizar estas evaluaciones. Usamos una aplicación novedosa de los modelos de ocupación para analizar
la presencia de la mitigación por conservación en tierras privadas. Comparamos diferentes formulaciones de los
modelos de ocupación con un modelo de regresión logística para predecir las localidades de la mitigación por con-
servación con base en un marco de trabajo de un sistema socioecológico espacialmente explícito. Combinamos
un experimento de simulación con un estudio de caso sobre datos de mitigación en Idaho y Montana (Estados
Unidos) para ilustrar la utilidad del marco de trabajo de ocupación para el modelado de la conservación en tierras
privadas. Los modelos de ocupación que consideraron explícitamente la variación en los reportes produjeron
estimados de los predictores que estuvieron sustancialmente menos sesgados que los estimados producidos por
la regresión logística bajo todas las condiciones simuladas. Los modelos de ocupación produjeron estimaciones
para seis predictores que evaluamos en nuestro estudio de caso, los cuales fueron mayores en magnitud pero
menos certeros que aquellos producidos por la regresión logística. Estos resultados sugieren que los modelos
de ocupación tienen como resultado inferencias cualitativamente diferentes a la regresión logística con respecto
a los efectos de los predictores sobre la presencia de mitigación por conservación y resaltan la importancia de
la integración de los reportes variables e incompletos sobre la participación dentro del análisis empírico de las
iniciativas de conservación. Si se falla en lo anterior se puede terminar enfatizando el factor social, institucional y
ambiental equivocado que permite la conservación, además de subestimar las oportunidades de conservación en
paisajes en donde las normas sociales o las restricciones institucionales inhiben el reporte de datos.

Palabras Clave: autocorrelación espacial, mitigación por conservación, modelado espacial, modelos de ocu-
pación, planeación de la conservación, sesgo por falta de respuestas

Introduction

Regional planning is an increasingly important compo-
nent of strategic conservation initiatives (Groves & Game
2016). Many regional initiatives seek to expand existing
protected area networks and manage threats to ecosys-
tem processes beyond the boundaries of parks and re-
serves (Guerrero et al. 2015). The need to develop
conservation strategies beyond protected area borders
makes privately owned lands a critical component of
large-scale conservation initiatives. Private lands provide
some of the last remaining habitat for numerous imper-
iled species (Eichenwald et al. 2020), often occur on lo-
cally rare ecosystems (Graves et al. 2019), and are crit-
ical for providing connectivity between protected areas
(Bargelt et al. 2020). Translating regional plans into lo-
cal action remains a challenge despite the recognition
of the importance of private lands (Pressey et al. 2013).
Engaging private landowners in efforts to expand the
functional footprint of protected areas can be a time-
consuming investment in relationship building (Fischer
& Bliss 2009; Yasué et al. 2019). Spatially explicit es-
timates of conservation opportunity can help identify
regions where investments in relationship building are
most likely to lead to new conservation (i.e., conserva-
tion opportunity) and translate large-scale plans to lo-
cal action for maintaining ecological structure, function,
and services (Guerrero et al. 2015; Guerrero & Wilson
2017). Data sets depicting social, institutional, and en-
vironmental conditions coupled with databases of pri-
vate land conservation can facilitate empirical estimation

of conservation opportunity across broad geographies
(Williamson et al. 2018).
Analyses of participation in conservation programs on

private lands (e.g., locations of conservation easements
or covenants, adoption of conservation practices, or reg-
ulatory mitigation) based on spatially explicit data sets
are increasingly common (e.g., Carter et al. 2015; Bald-
win & Leonard 2015; Mishra et al. 2018; Metcalf et al.
2019). Such analyses can provide valuable insight on
where future conservation may be possible; however,
many such analyses rely on data sets of voluntarily re-
ported information on conservation program participa-
tion that are incomplete (Rissman et al. 2017). Nonran-
dom variation in reporting can induce bias in efforts
to quantify the predictors of conservation occurrence
(Ferraro & Pattanayak 2006; Kühn 2006; Kormos & Gif-
ford 2014). For example, individual values related to pri-
vacy and property rights may affect the likelihood of re-
porting in ways that are distinct from their effects on
participation in the program itself (Olmsted 2011; Ar-
buckle 2013). Alternatively, some locations may not be as
available for conservation due to institutional attributes
(e.g., participation requirements, program priorities),
leading to difficulty separating unwilling landowners
from unavailable landscapes (Merenlender et al. 2004).
Such mistakes could be costly if they lead conservation
practitioners to devote limited time and resources to
working in the wrong locations or attempting to influ-
ence factors (e.g., through changes in policy or public
opinion) that have little effect on where conservation
occurs.
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We sought to improve the utility of empirical anal-
yses of conservation on private lands by adapting the
widely used occupancy-modeling framework (MacKen-
zie et al. 2002, 2017; Bailey et al. 2014) for use in situa-
tions where information on participation is incomplete.
We evaluated the utility of occupancy models for incom-
pletely reported conservation by comparing naive (i.e.,
not accounting for variation in availability or reporting)
logistic regression (NLR) with 4 formulations of occu-
pancy models. We assessed the ability of each model to
reduce 3 types of bias: nonreporting, heterogeneity in
availability, and spatial autocorrelation. We combined a
simulation study with an empirical example of conserva-
tion easements from Idaho and Montana (United States)
to compare bias in regression coefficients produced by
occupancy models with those produced by hierarchical
logistic regression; consider the impacts of those biases
on inferences regarding the predictors of conservation
action in Idaho and Montana; and determine the implica-
tions of those biases for identifying locations for future
conservation action.

Methods

We used conservation easements to motivate our evaluat
the robustness of different formulations of occupancy
models to violations of assumptions induced by volun-
tary reporting of private land conservation. Conservation
easements—agreements in which a landowner agrees to
limit land use in exchange for direct payments or re-
duced tax burdens (Cheever & McLaughlin 2014)—are
a useful example for 3 reasons. First, they are a com-
mon strategy for land protection in the United States,
Europe, and Australia (Cheever & McLaughlin 2014; Ka-
mal et al. 2015). Second, easement holders report the
locations of many easements in the United States in
the National Conservation Easement Database (https://
www.conservationeasement.us). Finally, reporting to
this database is voluntary and hence incomplete
(current estimates suggest the database is approxi-
mately 60% complete [https://www.conservationease
ment.us]).

Nested Subsamples and Occupancy Estimation

Incomplete geospatial data on conservation easements
can be considered analogous to imperfect detection of
wildlife in population monitoring and habitat modeling.
Occupancy models use repeated surveys to estimate the
probability that a site is truly occupied by a species
while accounting for imperfect detection (i.e., report-
ing [Hoeting et al. 2000; MacKenzie et al. 2002, 2017]).
Occupancy—the probability that an object of interest
(either a species or a conservation action) is present at
a sampling location—is modeled as the result of a state

process that describes where the object occurs and an
observation process that describes how the object is de-
tected at each sample location (MacKenzie et al. 2002;
Guillera-Arroita et al. 2014).
We adapted the single-season occupancy model of

MacKenzie et al. (2002) to the nested geographies of the
U.S. Census (Fig. 1). We relied on subsampling within
a spatial unit rather than temporally repeated visits to
obtain repeated surveys of the primary sample location
(i.e., space-for-time substitution [Kendall & White 2009;
Pavlacky et al. 2012; Crosby & Porter 2018]) (Appendix
S1). We considered a single U.S. Census tract (defined
as a relatively small subdivision of a county containing
1200–8000 people [Fig. 1]) the primary sample unit. In
each primary unit (i.e., census tract) there are 1, …, J
block groups (a fixed area smaller than a tract). These
block groups served as nested subunits analogous to
those used in broad-scale wildlife monitoring efforts.
The observed absence of an easement in the primary
sample unit (tract) may be because there are truly no
easements or social–ecological conditions in the tract
preclude an easement (i.e., absent or unoccupied);
landcover or institutional arrangements preclude an
easement regardless of social–ecological conditions (i.e.,
unavailable); or easements are present, but easement
holders have chosen not to report them (i.e., present, but
unreported). Repeated spatial subsamples (of the block
groups within tracts) helped distinguish between these
conditions (Fig. 1 & Appendix S1). Although we used
U.S. Census geographic units, nested geographies are
used in many population enumeration programs globally,
and our approach would be applicable in any situation
where a spatial unit can be divided into coherent spatial
subunits.

Simulation Study

We simulated the data-generating process depicted in
Fig. 1 for easements using U.S. Census tracts as the pri-
mary spatial unit and block groups as the spatial subunit.
We used these geographies to simulate the true occur-
rence state for the tract (zi) and observed data for the
block group (yi j) according to

yi j ∼
{
Bern(pi j ) zi = 1 and vi j = 1

0, zi = 0 or vi j = 0
, (1)

vi j ∼
{
Bern(αi j ) zi = 1

0, zi = 0
, (2)

zi ∼ Bern(ψi), (3)

where yi j is the observed occupancy state (i.e., reported
present or absent) of block group j in tract i; zi is the true
(but unobservable) occupancy state of tract i; pi j is the
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4 Improving Conservation Inferences

Figure 1. (a) Use of spatial subsampling to determine the probability of easement occurrence (arrows, direction of
data-generating process; X, condition where availability [aij] or reporting probability [pij] prevents observation [yij]
of an easement that is present). True easement occurrence (zi) in each spatial unit (here, U.S. Census tracts, [c]) is
only partially observable. Spatial subunits (here, U.S. Census block groups, orange-dashed lines in [c]) are treated
as repeated visits in the occupancy framework, wherein data observed (yij) are a function of the true occupancy
state for the tract (zi), the probability that some of the block groups are unavailable for easements (aij), and the
probability that an easement is reported by the easement holder (pij).

Table 1. Parameters used to model conservation easement occurrence under naive logistic regression (NLR), single-season occupancy model without a
conditional autoregressive term (OCC), single-season occupancy model with a conditional autoregressive (CAR) term on both occurrence and detection
(OCC-CAR1), single-season occupancy model with a CAR term for occurrence only (OCC-CAR2), and single-season occupancy model with a CAR term on
reporting only (OCC-CAR3).

Symbol Description

yi j Observed presence or absence of an easement for tracti and block groupj

vi j Binary indicator of whether block groupj in tracti is available for an easement
zi True (but unobserved) occupancy state for easements in tracti
pi j Probability of observing an easement in block groupj within tracti
αi j Probability that block groupj in tracti is available for an easement
ψi Probability of easement occurrence for tracti
γ0, β0 Average probability of occupancy or reporting, respectively, in the absence of predictor effects (i.e., the intercept)
γ, β Vector of regression coefficients for predictors of occupancy and reporting, respectively
x

′
i,w

′
i j Row vector of predictor values describing occurrence within tracti and reporting in block groupj , respectively

ηi, φi j Conditional autoregressive terms accounting for residual spatial autocorrelation in occurrence and reporting, respectively

probability that an easement is reported; vi j = 1 if block
group j is available for conservation (with probability αi j)
and 0 if not (because not all portions of a census tract

may be available for conservation); and ψi is the prob-
ability of conservation occupancy in tract i (Fig. 1; see
Table 1 for a summary of notation). We simulated values
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for ψi and pi j according to

logit(ψi) = γ0 + x′iγ + ηi (4)

logit(pij) = β0 + w′ijβ + φij (5)

where γ0 is the mean occupancy probability (across all
tracts); x′

i is a vector of spatially varying predictors that
describes the occurrence process selected to reflect the
hypotheses of interest; and γ is a vector of regression co-
efficients relating the predictors to occurrence. Similarly,
β0 is the mean reporting probability (across all block
groups); w′

ij is a vector of spatially varying predictors
describing the reporting process; and β is a vector of re-
gression coefficients relating the predictors to the prob-
ability of reporting (Table 1). We simulated spatial auto-
correlation in the occurrence and reporting process by
including conditional autoregressive (CAR), latent spatial
error terms, ηi and φi j :

η ∼ N (0,�tracts), (6)

�tracts = [
τ (Dtracts − ρψWtracts)

]−1
, (7)

and

φ ∼ N (0,�block groups), (8)

�block groups = [
τ (Dblock groups − ρpWblock groups)

]−1
, (9)

where τ is a spatially varying precision parameter; D is a
diagonal matrix depicting the number of neighbors for a
given location based on either tracts or block groups; W
is the neighbor matrix (based on tracts or block groups);
and ρ is the strength of spatial dependence in occur-
rence (ψ) or reporting (p) (Ver Hoef et al. 2018).
We used a Latin hypercube design (Gentle 2006) to

simulate values for each parameter. Ten replicates of
300 uniformly distributed samples (3000 total samples)
were generated across a gradient defined by average
occupancy probability (γ0, range: 0.2–0.8), reporting
probability (β0, range: 0.3–0.98), spatial dependence of
occupancy (ρψ , range: 0.5–0.999), spatial dependence
of reporting (ρp, range: 0.5–0.999), precision (τ , range:
0.1–1.0), and the probability that a block group is
available for an action (α, range: 0.2–0.8). We generated
random values for 3 predictors of occurrence (γ) and
2 predictors of reporting (β) because we assumed
many studies of this type investigate the strength and
relative importance of different predictors on conser-
vation occurrence. We simulated predictor data from
x ∼ N (0, [τ (D − ρW)]−1), where τ , the spatially varying
precision parameter, is 1; ρ, the strength of spatial
dependence, is 0.3, D is a diagonal matrix containing the
number of neighbors for a given location, and W is an

adjacency matrix. We defined adjacency by determining
the minimum distance (in meters) necessary to ensure
that all locations had at least 1 neighbor and considered
locations adjacent if they were within that distance
from each other. We generated values for the predictors
of detection, w, according to a similar structure, with
adjacency based on block groups rather than tracts.
Values for ψi and pi j were then calculated based on
Eqs. 4 and 5, respectively, and used to generate a series
of observed data values following Eqs. 1–3 (where α is
determined by a sample from the Latin hypercube).

Fitting Models

Characterizing the strength and importance of different
predictors is likely to be the focus of many studies of
partially reported conservation behaviors. We evaluated
the ability of an NLR, standard occupancy model (OCC),
occupancy model with spatial autocorrelation in both oc-
currence and reporting (OCC-CAR1), occupancy model
with spatial autocorrelation in occurrence (OCC-CAR2),
and an occupancy model with spatial autocorrelation in
reporting (OCC-CAR3) to estimate the true regression co-
efficient values for each simulated data set (Table 2). All
models were fit with Stan, a Bayesian modeling platform
that implements the No U-turn Hamiltonian Monte Carlo
Sampler in R (R Core Team 2020) via Rstan (Carpenter
et al. 2017; Stan Development Team 2020; adaptation pa-
rameter = 0.98, maximum tree depth = 16, chains = 4,
warm-up = 3200, iterations = 3700; all code available at
Williamson 2021). We calculated the relative bias for all
parameters as

RelBias = β̂ − β

|β| (10)

Idaho and Montana Case Study

We evaluated the potential for incomplete reporting to
produce substantially different inference by fitting the
same models (NLR, OCC, OCC-CAR1, OCC-CAR2, and
OCC-CAR3) (Table 2) to easements documented in the
NCED for Idaho and Montana by comparing the regres-
sion coefficients (γ ) (Table 1). Both states are home
to several flagship protected areas (e.g., Yellowstone
and Glacier National Parks, the Bob Marshall and Frank
Church/River of No Return Wilderness Areas) and pro-
vide habitat for some of the last remaining iconic Amer-
ican wildlife species (e.g., wolves [Canis lupus] and
grizzly bear [Ursus arctos]). Conservation easements
are an increasing component of the regional conserva-
tion portfolio aimed at reducing the threat of develop-
ment driven by ready access to amenities (Graves et al.
2019). Idaho and Montana also vary with respect to esti-
mates of completeness for both public (Idaho 63%, Mon-
tana 90%) and nonprofit (Idaho 54%, Montana 100%)
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6 Improving Conservation Inferences

Table 2. Model structures used in the comparison of naive (i.e., treating all absences as true absences) logistic regression and occupancy models with and
without conditional autoregressive (CAR) terms to account for spatial autocorrelation in the occurrence and reporting process.∗

Model Type Model Structure Text Reference

Naive hierarchical logistic regression
with a CAR component on
occurrence

yi ∼ Bern(pi),

logit(pi) = γ0 + x′
iγ + ηi

NLR

Occupancy model with a CAR
component on occurrence and
reporting

zi ∼ Bern(ψi),

logit(ψi) = γ0 + x′
iγ + ηi,

yi j ∼
{
Bern(pi j ) zi = 1
0, zi = 0

,

logit(pi j ) = β0 + w′
i jβ + φi j

OCC-CAR1

Occupancy model with a CAR
component on occurrence only

zi ∼ Bern(ψi),

logit(ψi) = γ0 + x′
iγ + ηi,

yi j ∼
{
Bern(pi j ) zi = 1
0, zi = 0

,

logit(pi j ) = β0 + w′
i jβ

OCC-CAR2

Occupancy model with a CAR
component on reporting only

zi ∼ Bern(ψi),

logit(ψi) = γ0 + x′
iγ,

yi j ∼
{
Bern(pi j ) zi = 1
0, zi = 0

,

logit(pi j ) = β0 + w′
i jβ + φi j

OCC-CAR3

Occupancy model without CAR

zi ∼ Bern(ψi),

logit(ψi) = γ0 + x′
iγ,

yi j ∼
{
Bern(pi j ) zi = 1
0, zi = 0

,

logit(pi j ) = β0 + w′
i jβ

OCC

∗See Methods for a complete description of notation and Appendix S1 for priors used in the models.

easement holders (https://www.conservationeasement.
us). The data set we analyzed contained spatial bound-
aries for 3101 conservation easements (725 in Idaho and
2376 in Montana) established from 1970 to 2017 with
easements ranging in size from <1 to >46,000 ha.
We followed the spatially explicit social ecological

systems (SpaSES) framework to model easement oc-
currence as a function of variables that describe the
social, institutional, and environmental context of a
location (Williamson et al. 2018). We included tract-level
estimates of median income and education level as
indicators of social support. These variables are often as-
sociated with a wide variety of environmental behaviors
(e.g., Diamantopoulos et al. 2003; Kroetz et al. 2014)
and serve as proxies for the proclivity of individuals to
engage in environmental behaviors (Stern 2000). We
characterized institutional complexity by including a
tract-level estimate of the diversity of land use as an
indicator of the number of institutional arrangements
(i.e., property rights) in a tract. Institutional diversity is

also a measure of walkability (i.e., the spatial proximity
of multiple types of land use) (Ewing & Cervero 2010).
Walkability contributes to sense of place, a factor often
associated with conservation in the western United
States (Halpenny 2010; Gosnell & Abrams 2011). We
estimated land-use diversity by extracting the values from
Theobald’s (2014) land-use data set within each tract and
calculating the entropy index (Ei) of land-use diversity
based on the live, work, play, and shop categories
therein. We characterized the environmental conditions
based on tract-level estimates of the maximum rarity-
weighted species richness (NatureServe 2013) to identify
biodiversity hotspots. We also included a tract-level
estimate of the variance of the wildness index of Aplet
et al. (2000) to characterize tracts that included a mix
of developed land juxtaposed with wildland. We also in-
cluded the log-transformed area of the tract to reflect the
hypothesis that larger tracts would coincide with larger
parcels that would be more desirable for conservation
easements. We did not directly assess parcel size because
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data for Idaho were not available. Finally, we included a
county-level varying intercept because the probability of
easement adoption may vary at higher organizational lev-
els than those considered here (e.g., counties may have
different incentives or priorities for securing easements).
These predictors comprise x

′
i in the occurrence portion

of the NLR, OCC, and OCC-CAR1-3 models (Table 2).
Easements generally involve an adjustment to the as-

sessed property value of the parcel and must be pro-
cessed by the county tax assessor before being reported
to national databases. We accounted for county-level
differences in reporting requirements, assessor’s office
staffing, or institutional capacity by including a varying
intercept in the reporting component (pij) of the occu-
pancy models (OCC-CAR1-3 and OCC) (Table 2). We in-
cluded the log-transformed area of the block group to ac-
count for variation in survey effort because we assumed
that size of the block group affected the likelihood that
an easement occurred and was reported. We also in-
cluded an estimate of the median percent impervious
surface, based on 2011 estimates of the percent impervi-
ous surface in the National Land Cover Database (Homer
et al. 2015), to account for differences in block group
availability (vi). Highly developed block groups are, by
definition, less likely to have land available for conserva-
tion easement.
Our primary objective was to compare regression co-

efficients produced by the different model structures
and evaluate the impact of those differences on subse-
quent inference. We did not attempt an exhaustive eval-
uation of potential predictors of conservation easements.
Rather, we selected a limited number and combination of
variables that are commonly used to understand people’s
environmental behavior and conservation actions.

Results

Simulation

Estimates of the average occupancy probability (i.e.,
the intercept) for the NLR (model descriptions in
Table 2) model were consistently and substantially lower
than the true value (median estimate of relative bias
= −4.04 on the log-odds scale). The magnitude of
this underestimate improved slightly at higher levels
of reporting but was substantial at low reporting
probabilities (Fig. 2). In contrast, estimates of the
average occurrence probability produced by all of the
occupancy models were accurate (i.e., low relative bias)
across the range of reporting probabilities evaluated. The
occupancy model with a CAR term on both occurrence
and reporting (OCC-CAR1) produced estimates of
the intercept that were more precise than the other
occupancy models evaluated here (Fig. 2). We observed
similar patterns in estimates for regression coefficients.

The NLR-based estimates were more biased (median
estimate of relative bias = 0.47) than those produced
by the occupancy models across the range of reporting
probabilities we considered (median estimate of relative
bias = 0.003, 0.003, 0.01, and 0.01 for OCC-CAR1-3 and
OCC, respectively) (Fig. 2). The NLR also overestimated
the magnitude of the regression coefficients across all
reporting probabilities evaluated (Fig. 2); however, the
direction of the bias varied with the sign of the true value
(Appendix S1). Occupancy models generally produced
unbiased estimates across all reporting probabilities
regardless of model type (Fig. 2).
Estimates of both the intercept and regression coeffi-

cients for NLR models were biased across all values of
availability. Results generally followed the same pattern
as those for reporting probability (Figs. 2 & 3). All oc-
cupancy models produced unbiased estimates of the in-
tercept and regression coefficients across all availability
probabilities. Occupancy models with the CAR compo-
nent on the occurrence and reporting process (OCC-
CAR1) and with a CAR component on the occurrence
process only (OCC-CAR2) produced more precise esti-
mates of the intercept (Fig. 2). There was no discernible
difference among the different occupancy models’ ability
to estimate regression coefficients. Variation in the prob-
ability that a location was available did lead to underesti-
mates of the average reporting probability and regression
coefficient estimates for the predictors of the probability
of reporting (Appendix S1).
Inclusion of the CAR term in the NLR model did not

reduce bias for estimates of the intercept or regression
coefficients even at high values of ρoccurrence (Figs. 2
and 3). Bias for occupancy models (OCC, OCC-CAR1-
3) was generally low across the range of spatial auto-
correlation we simulated. Explicitly accounting for spa-
tial autocorrelation with a CAR component increased the
variance of estimates for the intercept and regression co-
efficients relative to the occupancy model without the
CAR component, suggesting that the OCC model may
have overestimated precision when spatial autocorrela-
tion was present (Appendix S1).

Idaho and Montana Case Study

Regression coefficients differed substantially between
NLR and the occupancy models for the predictors in
the Idaho and Montana case study (Figs. 3 & 4). Poste-
rior distributions of the coefficient estimates were nar-
rower and closer to 0 for NLR compared with those
produced by the various occupancy models. In addi-
tion, NLR produced negative coefficient estimates for the
maximum value of rarity-weighted richness and variation
in wilderness character, whereas occupancy models in-
dicated a positive (though uncertain) association with
these predictors. The inclusion of CAR terms increased
the uncertainty of parameter estimates produced by the
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Figure 2. Relative bias of the posterior estimates of the (a) average occurrence probability (i.e., the intercept, γ0)
and (b) regression coefficients for predictors (γ ) related to occurrence in the naive logistic regression model and
the occupancy component of the occupancy models for each simulated data set (blue lines, relationship between
median values of relative bias and reporting probability, probability of availability, and strength of spatial
autocorrelation [ρoccurrence]; vertical line ranges, 50th [thickest portion], 75th, and 90th [thinnest portion] percentile
estimates of relative bias estimated by grouping all simulations into the nearest 0.1 of the simulated value).

occupancy models (OCC-CAR1-3); the largest increases
occurred in models with the CAR component on report-
ing probability (OCC-CAR1 and OCC-CAR3). Further, in-
clusion of the CAR component for detection probability
led to point estimates that differed substantially from the
other occupancy models for the effect of species rich-
ness and income.
Although our investigation of predictors was not

exhaustive, the models we evaluated indicated that
easements were positively associated with the size of
the tract and education level (Fig. 3). Occupancy models
also indicated a positive, but uncertain relation with
maximum value of rarity-weighted richness and land-use
diversity. Finally, occupancy models indicated a more
negative association with median income than those
produced by NLR (Fig. 3).
The marginal effects of 2 of the predictors (maxi-

mum value of rarity-weighted richness and education
level) further illustrated the differences in inference that
arose from the different model structures (Fig. 4). Oc-
cupancy models indicated that small increases in rarity-
weighted richness led to increases in the probability
of easement occurrence, whereas the NLR model indi-

cated that rarity-weighted richness had little effect. In
contrast, NLR estimates for the effect of education (i.e.,
percent with college degrees) indicated a slight increase
in occurrence probability, whereas occupancy estimates
of occurrence probability indicated a potential thresh-
old where slight changes in the percentage of college-
educated individuals produced steep increases in the
probability of easement occurrence. More importantly,
NLR produced lower and less variable estimates of the av-
erage occupancy probability (i.e., intercepts) than OCC-
CAR1 for all counties, resulting in different interpreta-
tions of the importance of each predictor and different
spatial outcomes for the overall probability of easement
occurrence (Fig. 4).

Discussion

Private lands contain some of the last remaining habi-
tat for imperiled species, provide linkages between ex-
isting protected areas, and provide important contribu-
tions to conservation at multiple scales (Graves et al.
2019; Eichenwald et al. 2020; Bargelt et al. 2020).
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Figure 3. Regression coefficient estimates for models of easement occurrence in Idaho and Montana (United
States) based on easement boundaries reported in the National Conservation Easement Database. Predictors
include median income (US$), percentage of the population with a college degree, diversity of land use (based on
Theobald 2014), maximum rarity-weighted richness (from NatureServe [2013]), variation (SD) of the wildness
index (described in Aplet et al. [2000]), and the log-transformed area within a tract (darkest dots, median;
horizontal line ranges, 50th [thickest portion], 75th, and 90th [thinnest portion] percentile estimates of the
posterior distribution). Estimates are presented for the logistic regression (NLR), single-season occupancy model
with a conditional autoregressive (CAR) term on both occurrence and detection, single-season occupancy model
with a CAR term on detection only, single-season occupancy model with a CAR term on occurrence only, and
single-season occupancy model without CAR terms.

Increased emphasis on strategic selection of private
lands to achieve conservation goals requires spatially ex-
plicit characterizations of conservation opportunity (i.e.,
the probability that conservation will occur) on private
lands. Although there has been an increasing interest
in exploring how social and ecological interactions af-
fect the spatial arrangement of conservation actions (e.g.,
Carter et al. 2015; Baldwin & Leonard 2015; Williamson
et al. 2018), a number of conceptual and methodologi-
cal hurdles exist to ensure that conservation practition-
ers do not waste limited resources on strategies based
on spurious models (Carter et al. 2020). We have high-
lighted the potential for incomplete spatial data to bias
empirical evaluations of previous conservation actions
that may lead conservation planners to incorrectly target
locations and interventions. We have also demonstrated a
method that may help improve estimates of conservation
opportunity on private land based on the widely applied
occupancy framework.
Our simulation results suggest 3 key points. First,

model structures that explicitly account for incomplete
reporting (i.e., occupancy models) resulted in substan-

tially less bias in both estimates for average occurrence
probability and regression coefficients for occurrence
than those produced by NLR. The consistent under-
estimation of the average occurrence probability by
NLR seems particularly problematic because conserva-
tion practitioners may be underestimating their chances
of success simply based on incomplete reporting. Fur-
ther, regression coefficients for occurrence and estimates
of occupancy probability were robust despite unmod-
eled heterogeneity in the reporting process (i.e., avail-
ability). This suggests that occupancy models can be
used to evaluate the predictors of easement occurrence
even when the characteristics that determine availability
(e.g., variation in priorities among different land trusts)
are not entirely known. Finally, social norms may affect
participation in conservation behaviors and incentives to
report those behaviors. For example, the finding that the
presence of a conservation easement increases the likeli-
hood of easements on neighboring parcels suggests that
social processes can induce spatial autocorrelation (Law-
ley & Yang 2015). The presence of norms violates occu-
pancy model assumptions by inducing autocorrelation in
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Figure 4. (a) Marginal effects of the maximum value of rarity-weighted richness and (b) percentage of residents
with a college degree on easement occurrence in Idaho and Montana (United States) (lines depict the effect of the
predictor on the county-level probability of adoption based on the median posterior estimate for each county-level
intercept and the median of the regression coefficient for the predictor while holding all other values at their
mean). Results are shown for the naive logistic regression (purple) and the occupancy model with conditional
autoregressive (CAR) components for both occurrence and reporting (blue). (c) Spatial implications of the
different model formulations (the warmer the color, the higher the predicted probability of easement occurrence
for the occupancy model with CAR components relative to the naive logistic regression).

both the occurrence and reporting process. Explicitly in-
corporating autoregressive terms into occupancy models
of conservation reduces the impact of violated assump-
tions. Given that social norms may be prevalent and dif-
ficult to model explicitly, we suggest that models of con-
servation occurrence should include characterization of
potentially unmodeled spatial dependence in both the
occurrence and detection process a priori.
The occupancy models we fitted did not distinguish

between the reporting process and the availability pro-
cess. Although this misspecification did not affect the
regression coefficients for the occupancy component of
the model (our primary interest), it did produce coef-
ficients for the reporting process that were biased low.
This suggests that these models may need further refine-
ment if the goal is to test hypotheses about the motiva-
tions for reporting. In addition, unmodeled differences
in availability represent violations of the closure assump-
tion of occupancy models that can bias estimates of occu-
pancy probability (Kendall et al. 2013; Otto et al. 2013).

Although prudent choice of covariates may reduce this
bias, additional research is necessary to identify strate-
gies for accommodating closure violations in occupancy
models that rely on the space-for-time substitution.
Our case study revealed 3 important implications of

model choice in studies of private land conservation.
First, the choice of model substantially affects interpre-
tation of effects. The explicit inclusion of variation in re-
porting probability in the occurrence estimates resulted
in stronger effects of particular variables (e.g., area, ed-
ucation level, and land-use diversity) than the estimates
produced by logistic regression. Second, differences in
point estimates produced by models including CAR com-
ponents for detection suggest that autocorrelation in the
reporting process may mask the effect of variables such
as income or species richness. This suggests that correla-
tions between income and easement adoption reported
elsewhere (e.g., Cho et al. 2005; Baldwin & Leonard
2015) may partially reflect the existence of social norms
for reporting that are tied to income. If so, this type of
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nonresponse bias may result in conservation strategies
that overemphasize locations where income levels are
high at the expense of areas high in species richness.
Our finding that easements tended to occur in lo-

cations of higher biodiversity contrasts with results
for counties on the west coast of the United States
(Williamson et al. 2018) and parcels in Appalachia
(Fouch et al. 2019). These differences may be a func-
tion of the different resolutions of the analyses (i.e., the
Modifiable Areal Unit Problem [Jelinski & Wu 1996]) or
may reflect the importance of accounting for variation
in the probability that a location is available for an ease-
ment prior to comparing easement locations with and
without easements. Finally, and most importantly for con-
servation practitioners, the fact that the models gener-
ated substantially different spatial predictions suggests
that conservation planners may be underestimating their
ability to secure conservation gains across large portions
of Idaho and Montana if their strategies are based on
analyses that fail to account for variation in reporting
probability.
Identifying locations where individuals may be more

likely to participate in conservation can help avoid costly
conflict and clarify trade-offs between ecological bene-
fits and sociopolitical costs. Additional work is necessary
to determine whether new conservation actions are bet-
ter predicted by models developed on past behaviors.
For models based on past actions, our results suggest
that occupancy models produce regression coefficients
that are substantially less biased than NLR (i.e., treating
all unreported locations as absences). Moreover, our ap-
proach appears robust to variation in the probability that
a location is available for an action despite the fact that
we did not explicitly model the availability process. Our
approach should facilitate a broader understanding of the
conditions that enable conservation to occur, produce
predictions that are statistically valid, and improve the
alignment of conservation priorities with conservation
action.
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