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Biodiversity can affect the properties of groups of organisms, such as
ecosystem function and the persistence of colonizing populations. Genomic
data offer a newly available window to diversity, complementary to other
measures like taxonomic or phenotypic diversity. We tested whether native
genetic diversity in field experimental stands of Arabidopsis thaliana affected
their aboveground biomass and fecundity in their colonized range. We con-
structed some stands of genotypes that we a priori predicted would differ in
performance or show overyielding.We found no relationship between genetic
diversity and stand total biomass. However, increasing stand genetic diversity
increased fecundity in high-resource conditions. Polyculture (multiple geno-
type) stands consistently yielded less biomass than expected based on the
yields of component genotypes in monoculture. This under-yielding was
strongest in stands with late-flowering and high biomass genotypes, poten-
tially due to interference competition by these genotypes. Using a new
implementation of association mapping, we identified genetic loci whose
diversity was associated with stand-level yield, revealing a major flowering
time locus associated with under-yielding of polycultures. Our field
experiment supports community ecology studies that find a range of
diversity-function relationships. Nevertheless, our results suggest diversity
in colonizing propagule pools can enhance population fitness. Furthermore,
interference competition among genotypes differing in flowering time might
limit the advantages of polyculture.
1. Introduction
The characteristics of groups of organisms can affect their persistence and col-
lective functions. The emergent properties of groups of organisms are major
topics across biology [1–3]. The mechanisms underlying the benefits of diver-
sity for group-level performance can be divided into at least two categories
[4]. First, greater diversity can reduce the negative effects associated with
high-density populations or communities. This can occur via diversity in
resource use that reduces competition, diversity in susceptibility to enemies
that reduces ‘apparent’ competition, or facilitation among diverse individuals.
Second, diversity can increase group-level performance via a sampling effect:
greater diversity increases the chance that high-performing individuals will
be present. Diversity can also reduce group-level performance. This can occur
when more diverse groups tend to have lower performing individuals (e.g.
when diversity is driven by immigration of maladapted individuals) [5,6] or
when diversity results in interference competition among different types [7].
While diversity effects on ecosystem functions (EF) can act at both population
and community levels, they have been mostly studied in communities [8,9].
However, intraspecific diversity can have major impacts on EF, potentially
surpassing interspecific effects when a few species dominate biomass [10].
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Community ecologists have often hypothesized that
diversity increases ecosystem functions [11,12] while invasion
biologists have hypothesized that diversity increases the
growth of colonizing populations [13–15]. These fields have
been largely independent and disjunct, but they share much
in common (see also related topics in kin and group selection
[16]). Both address hypotheses based on the same underlying
biological processes: (i) sampling effects, whereby greater
diversity increases the chance a group will contain high-
functioning/performing individuals, (ii) insurance effects
(a type of sampling effect), whereby greater diversity increases
the chance that a group will contain an individual that is high
functioning under a newenvironment, or (iii) complementarity
effects, whereby diversity relieves negative density effects.
Invasion biology has long investigated how the number of
individuals in a founding group affects colonization success
[17,18]. Evidence suggests that increased genetic diversity,
rather than increased numbers of individuals per se, causes
improved establishment [13], growth rate [13–15], biomass
production [2,19,20], and persistence of colonizing popu-
lations, and decreases vulnerability to environmental change
[21]. The effects on group-level performance and EF are likely
to be conditional on the environment. For example, facilitation
may dominate in harsh environments, strengthening positive
diversity effects [22,23], or novel environments might be
more limited by diversity due to a rarity of high-functioning
individuals. Empirical studies of genetic diversity in invasions
have found it favourable under some conditions but not others
[2,24] and theoretical predictions also conflict [20,25].

Diversity effects on the performance of a group of organ-
isms arise fundamentally due to the effects of phenotypic
diversity [26]. However, the phenotypes that affect group-
level performance are very often unknown. Instead, genetic,
taxonomic, or phylogenetic diversity can be useful proxies.
Past studies of intraspecific diversity and EF have used either
genotypes of unknown relatedness [19,20,27], or have used a
small number of genetic markers having unclear connections
to functional variation [2,28,29]. By contrast, large numbers
of markers across the genome allow precise estimation of gen-
etic similarity between individuals, and it is now feasible to
measurewhole-genome diversity inmany non-model systems.
Furthermore, genetic diversity effects may be most strongly
associated with the specific loci that underly complex pheno-
types associated with resource economics. Genetic variation
in complex traits corresponding to life history and resource
use likely involves changes in many loci [30,31], and simple
genome-wide additive models can often predict variation in
such traits [32–34]. Additionally, genetic mapping may be
used to identify specific genes and mutations controlling
phenotypes whose diversity affects EF [23,35].

Here, we investigate how intraspecific diversity influ-
ences productivity and fecundity for the model plant
Arabidopsis thaliana across environments in a field experiment
outside its native range. Arabidopsis is useful for our ques-
tions: it is a model for ecological genomics [36], diverse
germplasm with resequenced genomes is available [37], and
it exhibits variation in resource strategies and life history
[38,39] suggesting that diversity may impact EF. Our study
builds upon previous work in Arabidopsis [19,23,35] by
using ecologically realistic and relevant field experimental
conditions, including a low-resource soil treatment, and by
studying stands with up to 20 genotypes. Because Arabidop-
sis is largely selfing and we studied a single generation, we
set aside the effects of diversity on population performance
due to sexual reproduction, such as heterosis.

Experimental studies of biodiversity effects typically use
randomly assembled groups of genotypes or species, despite
existing prior knowledge of potential drivers of compositional
and diversity effects on EF. Here, in addition to randomly
assembled groups representing a range of genotypic diversity,
we use knowledge of our system to develop a priori selected
groups of genotypes that we predict will exhibit particularly
strong differences in EF, groups benefitting from potential
niche complementarity, and groups of genotypes adapted to
the experimental environment.
2. Methods
(a) Plant material
We studied 60 diverse Arabidopsis genotypes from across the
native Eurasian range of Arabidopsis, mainly from the Mediter-
ranean, central Asia, the UK, and central Europe (electronic
supplementary material, figure S1). All genotypes are representa-
tives of natural inbred lines that had their genomes resequenced
[37]. We selected these genotypes based on diversity and seed
availability from a common seed production environment used
in previous experiments (electronic supplementary material,
Methods S1).

(b) Field experiment
To assess the impact of different levels of genetic diversity in
experimentally assembled non-native populations of Arabidop-
sis, we measured performance of Arabidopsis stands in a field
common garden at a site (40.8106° N, 77.8472° W) in the non-
native range near other established non-native populations
(within approximately 10 km) but with none at this site (within
approximately 1 km). Thus, our experimental stands were
likely not influenced by density-associated processes driven by
wild individuals nearby. To assess the environmental context
dependency of diversity effects, we replicated all stand genotype
compositions in two treatments (described below). Each of the 60
genotypes were grown in monoculture in three replicate stands
for each of the two treatments, for a total of 360 monoculture
stands (electronic supplementary material, figure S2).

We began by constructing polycultures using a priori hypo-
theses for factors likely to affect productivity. We used five
different criteria to generate these ‘prediction stands’: (i) genomic
diversity among accessions, (ii) climate similarity of collection
location to our field site, combined with genomic diversity,
(iii) early-flowering genotypes, (iv) late-flowering genotypes,
and (v) climate similarity of collection location to our study
site, combined with flowering time diversity (see details in
electronic supplementary material, Methods S1). Two stand com-
positions were chosen for each of the five prediction scenarios at
each diversity level (2, 10, 20), for a total of 10 prediction stand
compositions for each diversity level. Each of the prediction
stands was planted into both of the two treatments, for a total
of 60 prediction stands.

After genotypes were assigned to prediction stands, we also
generated random polycultures. Each of these polycultures was
planted into both treatments with 10 replicates of diversity
level each, for a total of 60 randomly assigned polyculture
stands (electronic supplementary material, Methods S1).

Seeds were initially sown into 20 positions within manure
pots, with each position thinned to a single plant, targeting a
20-plant stand (regardless of diversity level). High-resource
pots were filled with potting mix and low-resource pots with a
high proportion of sand. Stands were germinated in growth
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chambers and transplanted into the field site on 24 May, 2018
(electronic supplementary material, Methods S1).

We measured specific leaf area (SLA) on a representative,
healthy leaf from a single plant in each monoculture stand, and
flowering date on all stands. We harvested each individual
plant once it reached maturity. We recorded the total silique
(fruit) number and the length of one representative middle
silique. All remaining plants were harvested on 18–20 July, as
summer heat stress set in and reproduction largely ceased.
We measured aboveground dry biomass on all plants. Canopy
area was similarly measured for each stand just prior to the
first harvested plant using Easy Leaf Area and a red 4 cm2

square reference [40].

(c) Measures of stand composition and diversity
To estimate the genomic diversity of stands, we used published
single nucleotide polymorphisms (SNPs) from resequencing
data [37]. We calculated the genetic distance matrix using the R
package SNPRelate [41] and then calculated the mean genetic
distance among plants sown in a stand (including zero distance
for individuals of the same genotype). We also estimated pheno-
typic variation, based on our new SLA data and published
flowering time data [37]. We took breeding values of log(SLA)
measured on plants in our monocultures and calculated mean
for individual plants in all stands. Flowering time composition
was estimated using individuals’ breeding value for the average
flowering time across 10°C and 16°C in published growth
chamber experiments [37].

(d) Statistical analyses
To gain a general insight into variation in phenotypes and
performance, we estimated trait plastic responses to treatment,
broad-sense heritability, and genomic signature of performance
in monocultures. To test for treatment effects on trait plasticity in
monocultures, we implemented linear mixed models using the R
package ‘VCA’ [42] and included genotype and block as random
effects and soil treatments and plot x–y coordinate as fixed effects.
Plastic trait responses were characterizedwith this soil fixed effect.
We estimated broad-sense heritability of stand-level traits and
performance for monocultures using linear models in R where
genotypeswere fixed effects, takingR2 of these as broad-sense her-
itability. We tested for a genomic signature in fecundity and
aboveground biomass using genomic prediction models, where
traits are a function of genotype-specific random effects that are
correlated according to genome-wide similarity, using the R pack-
age ‘rrBLUP’ [43]. We used 10-fold cross validation to estimate the
ability of genome-wide similarity to predict performance.

To address our primary research questions, we tested
whether multiple measures of diversity affected stand-level per-
formance (fecundity, aboveground biomass, and leaf canopy
area). In our analyses, we controlled for variation among
stands in the number of plants surviving transplant or germinat-
ing late, with a minimum of 11 plants required for inclusion in
analysis. We used two different counts of plants surviving trans-
plant, 29 May and 12 June, and took the maximum, but we found
results were similar when using the count on either date.

We used linear regression models to test diversity effects on
stand performance while accounting for additional sources of
error. The covariates were each tested in models including an
interaction with the resource-limitation treatment

yi ¼ b0 þ b1xi þ btrttrti þ b2xitrti þ 1i,

where yi is the performance measure (biomass or fecundity) of
stand i and trti is a dummy variable for resource treatment and
xi is a covariate of stand i’s composition or diversity. Covariates
x tested in separate models included diversity treatment level
(1, 2, 10, or 20 genotypes), genomic similarity (mean genetic
distance among plants in a stand), a stand-level average of
mean flowering time for each genotype, a measure of the
stand-mean climate distance from the field site, or stand-mean
SLA breeding value. We similarly tested for stand diversity
and composition effects on fecundity (mean estimated total sili-
que (fruit) length per fruiting plant in stand).

We calculated the difference between the observed polycul-
ture biomass yields and that expected based on yields of
monocultures and their proportional representation in the poly-
culture. This difference is a commonly studied metric in
community diversity-ecosystem function studies [4], and we
refer to this quantity as the deviation from monoculture expec-
tation (DME, referred to as the ‘net diversity effect’ by [4]). We
tested how the measures of diversity and composition described
above were related to DME, using linear models with a parallel
structure to those used for aboveground biomass and fecundity
(described above).

To determine whether our prediction stands were successful
at explaining variation in fecundity and biomass production, we
compared stand types using ANOVA. Different prediction cri-
teria were coded as a factor level as were randomly assembled
stands. Two-way ANOVA showed no significant treatment-
stand type interaction, thus we focused on stand type effects in
a two-way ANOVA without interactions. We compared each
pair of stand types with post-hoc Tukey’s tests with false discov-
ery rate (FDR) control. Because only two stands predicted to be
later flowering produced fruit, we removed this plot type from
our analysis of fecundity in prediction plots.

To map loci across the genome where allele frequency and
variance were related to stand biomass and DME, we used an
approach akin to genome-wide association mapping. We tested
how both stand-level per plant biomass and DME (as response
variables) were associated with stand covariates of allele fre-
quency and variance (the latter a measure of diversity for a
biallelic locus), for each SNP. For a biallelic SNP, variance = pq
where p and q are the respective frequencies of the two alleles.
We used SNPs from published whole-genome resequencing
[37]. We excluded SNPs segregating at less than 0.05 minor
allele frequency in our panel of 60 genotypes and across stands
in the same analysis, leading to a total of approximately 1.9 M
SNPs. For each combination of resource treatment and perform-
ance measure, we tested for association with SNP allele
frequency or variance. Because background variation across the
genome can contribute to phenotypic variation, we calculated
genome-wide similarity among stands in either allele frequency
or variance at all SNPs [44]. We used a linear mixed model
that included a random effect that was correlated among
stands according to the genome-wide similarity matrix, using
the EMMA software [44]. We also focused these association
scans on SNPs within 3 kb of 26 a priori candidate genes for flow-
ering time [45], based on the hypothesis that genes controlling
this trait might influence stand biomass and DME.
3. Results
(a) Plastic changes in traits and performance,

heritability in monoculture
Comparing phenotypes for monoculture stands, SLA did not
change significantly across soil treatments, nor did flowering
dates (linear mixed-effects models with genotype random
effects, electronic supplementary material, table S1). However,
both average plant fecundity and biomass per plant in mono-
cultures were significantly greater in the high-resource
treatment (electronic supplementarymaterial, table S1, figure 1).
Date of floweringwas highly heritable (approx. 0.8 broad-sense,
depending onmetric and treatment), while log(SLA), fecundity
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and biomass had moderate heritability (approx. 0.4–0.5
depending on trait and treatment, electronic supplementary
material, table S2).

(b) Genomic signature of performance variation
There was a strong effect of genome-wide similarity among
genotypes on biomass production in monoculture in the
low-resource treatment. Genomic predictions (out-of-sample)
were correlated with actual breeding values for per plant
biomass in monoculture in low-resource (r = 0.36) but not
high-resource (r =−0.32) treatments. For example, in the low-
resource treatment, a group of closely related ecotypes from
the Caucasus region produced among the most biomass,
while related genotypes from central Europe or Spain had
low productivity. We found a similar pattern for per plant
fecundity inmonocultures (genomic predictions: high resource
r =−0.01, low resource r = 0.32).

(c) How did composition and diversity of stands impact
stand fecundity and biomass production?

Among all stands (including monocultures and polycultures),
the low-resource soil treatment significantly reduced stand
fecundity, canopy coverage, and biomass production, as
tested in separate linear models of each response variable
(figure 2, electronic supplementary material, tables S3–S5).
We found that a greater number of genotypes in a stand signifi-
cantly increased the per plant fecundity in the high-resource
treatment (electronic supplementary material, table S3) but
not the low-resource treatment, while other measures of com-
position and diversity were unrelated with fecundity. We
found that higher average breeding values for flowering time
were associated with significantly greater stand biomass in
both treatments, while lower breeding values for SLA were
associatedwith greater stand biomass only in the high-resource
treatment (electronic supplementary material, table S4). None
of the several diversity measures (i.e. the other covariates) we
tested was significantly associated with biomass production.

We also tested if ‘prediction stands’ had distinct stand-
level fecundity or biomass from randomly assembled stands
(electronic supplementary material, figure S5). We did not
find a significant effect of stand type in a two-way ANOVA
for either plot level fecundity or biomass.
(d) How did polyculture productivity deviate from
monoculture expectation?

We found that in both treatments, the yield of polyculture
stands was not closely correlated with the expectation based
on the yield of their component genotypes in monoculture
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(high resource, r = 0.051, p = 0.7138; low resource, r = 0.007,
p = 0.9585). Specifically, polycultures tended to yield less than
expected based on the yield of their component genotypes in
monoculture. The DME was significantly less than zero in
the high-resource stands (median =−61.01 mg, Wilcoxon test
p= 0.0025) and in the low-resource stands (median =−57.13 mg,
Wilcoxon test p= 0.0158). These results were unchanged (both
p< 0.02) when we generated randomly assembled polycultures
to match the number of plants surviving transplant using
genotype-specific transplant survival in monoculture.

To evaluate potential causes of negative DME, we tested
correlations between DME and explanatory factors. One poten-
tial cause of negative DMEwas competitive inhibition of many
smaller plants by late-flowering plants whose rosettes grew to
overtop the earlier flowering smaller plants. We found that in
the high-resource treatment, there was more negative DME in
stands with greater average breeding values for flowering
time (mean flowering time; linear model, flowering time in
high-resource slope =−0.0064 g/day, p = 0.0167, in low-
resource slope =−0.0012 g/day, p = 0.6532) or stands having
plants with greater flowering time (90th percentile of flowering
time; high-resource slope =−0.0051 g/day, p = 0.0170, in
low-resource slope =−0.0006 g/day, p = 0.7883, electronic
supplementary material, table S6, figure 3). We also found
(perhaps unsurprisingly) that biomass in monoculture of com-
ponent genotypes was negatively associated with DME in
polyculture: stands with greater median or 90th percentile of
genotypes’ biomass in monoculture showed significantly
bigger reductions in polyculture yield in both high- and
low-resource treatments (electronic supplementary material,
table S6). We tested whether DME might be due to genomic
similarity, number of genotypes, or climate of origin of geno-
types. We found no strong effects on DME of mean kinship,
total tree diversity, number of genotypes, mean SLA, or mean
distance to the climate of origin along the first five PCs
(electronic supplementary material, table S6).

We also tested if ‘prediction stands’ had distinct DME. We
found that there were significant differences in DME among
prediction stand criteria (two-way ANOVA with treatment
and stand prediction criteria, including randomly assembled
stands: treatment p = 0.8675, prediction p = 0.0433, only
including prediction stands: treatment p = 0.8258, prediction
p = 0.0328, figure 3). Consistent with the regression of DME
on flowering time on all plots, the differences among our pre-
diction plots were largely driven by differences between the
predicted early (positive DME) and late-flowering (negative



var(allele frequency) associations with DME in high resource

6

5

4

3

2–l
og

10
 (p

)

1

–0.4

0

0 0.09

stand var(allele frequency)

D
M

E 
(g

)

0.16

0.4

0.8

0
5

(Mb) chr. 1 chr. 2 chr. 3 chr. 4 chr. 5

10 2015 5 10 2015 5 10 1525 5 10 2015 2530 5 10 15

top SNP for DME in high resource
chr. 2, 9584630 bp

(a)

(b)

Figure 4. Associations between DME in the high-resource treatment with var(allele frequency) across the genome (a) and at the top associated SNP (b). (a) Linear
mixed model genome-wide association with 1.9 M SNPs allele frequency variance (var = pq) versus deviation from monoculture expectation (DME) in high-resource
environments. SNPs significant with FDR < 0.1 are shown in red. The top SNP is highlighted with a large red dot in (a) and is featured in (b) (this was also the top
SNP for allele frequency associations with DME). Boxplot (b) shows variance in allele frequency within polycultures (x-axis) at this SNP (chromosome 2, 9584630 bp)
associated with DME of biomass ( panel B y-axis) in the high-resource environment. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20202041

6

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 Ju

ne
 2

02
1 
DME) stands (Tukey HSD comparison of means, including
randomly assembled stands, only significant difference
after multiple comparisons correction is: early-flowering -
late-flowering predicted stands DME = 0.27 g, FDR adjusted
p = 0.0292).

(e) What genetic loci contribute to diversity effects?
We testedwhether per plant biomass orDME in each treatment
were associated with allele frequency or diversity at particular
SNPs across the genome.We found that overall, therewere few
loci with dramatically stronger (outlier) associations with bio-
mass and DME, but rather patterns suggest that the genetic
basis of variation in biomass and DMEwere polygenic. Never-
theless, we found that, in concordance with the association of
late-flowering genotypes with under-yielding polycultures,
the top SNP (chr. 2, 9584630 bp, TAIR10, genome-wide signifi-
cant at FDR = 0.1, nominal p = 8.1 × 10−7) associatedwith DME
in the high-resource treatment (both allele frequency and var-
iance association scans) was closest to SHORT VEGETATIVE
PHASE (SVP, also known as AGL-22, AT2G22540). SVP is a
MADS-box transcription factor, one of the top loci associated
with natural variation in Arabidopsis flowering time in [37]
(figure 4). Indeed, the minor allele of this SNP that we
identified here as having more positive yields in polycultures
compared to expected was also associated with earlier
flowering at 16°C among the 60 genotypes we used from [37]
(t-test, t =−2.6687, p = 0.0279). As the frequency of this early-
flowering minor allele increased and the stand variance
at this locus increased, DME also became more positive
(figure 4). We found the 26 flowering time candidate genes
had a number of SNPs with nominally significant associations
with biomass and DME in both treatments. Notably, SPL4
(AT1G53160), HEN2 (AT2G06990), ULP1B (AT4G00690), and
ATH1 (AT4G32980) were significantly associated with DME
in low-resource stands (SNP frequency and variance associ-
ations, with candidate SNP-wide FDR < 0.05, electronic
supplementary material, table S7).
4. Discussion
Diversity can affect the group-level properties of organisms,
including ecosystem functions like carbon cycling and
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population trajectories. Diversity effects have often been
studied via observation of uncontrolled systems that vary in
species or genetic diversity [29,46]. In particular, species
and higher levels of diversity have been demonstrated to
have a range of effects on ecosystem function via multiple
mechanisms [8,47]. We built on this research to test how
intraspecific variation in genomic and trait composition and
diversity affect the performance of an established non-
native species in the field. We found that the diversity of
genotypes did not increase biomass production; instead poly-
cultures showed lower biomass production than expected,
suggesting interference competition. This low polyculture
yield was associated with stands containing late-flowering
genotypes that had high productivity in monoculture. We
identified genetic variation in a known flowering time locus
associated with these effects. We also found a weak but sig-
nificant increase in fecundity with the number of genotypes
in a treatment, for unclear reasons.

(a) Diversity effects on average individual fecundity
Because of logistical and (in the case of invasive species)
bioethical constraints, many studies of the effect of diversity
on population performance focus on the impact on biomass
production and may not assess fecundity directly (see
[2,19,20]). While none of the diversity metrics we tested had
an effect on biomass production, we did find a small but sig-
nificant effect of genotype number on stand-level fecundity in
the high-resource environment (figure 2c). The mechanism
underlying this effect is unclear, given the lack of an effect
on biomass. This may be due to sampling effects, specifically
where greater diversity increases the chance a group will con-
tain early flowering and more fecund genotypes. Alternately,
interference competition may trigger earlier reproduction in
small (especially early flowering) genotypes to a greater
degree than large (especially late flowering) genotypes,
leading to positive diversity-fecundity associations.

(b) Diversity effects on stand-level biomass
We found no evidence that increased genetic diversity led to
greater stand-level aboveground biomass production of Ara-
bidopsis in the field, highlighting the complexity of stand-
level properties in even this model plant. Our findings may
be explained by a lack of such genetic diversity effects in Ara-
bidopsis populations in general, or by technical/logistical
constraints that made us miss such effects. First, diversity
effects might not have been observed if positive effects of
diversity (complementarity of resource use or pathogen sus-
ceptibility) were opposed by negative effects (interference
competition) [7] or if diversity effects did not exist. Our find-
ing of reduced polyculture yield compared to expectation
from monoculture (DME) suggests interference competition
as one potential explanation. Second, diversity effects might
have been overlooked if they occurred along dimensions
that were not measured, such as seed survival or nutrient
use [26]. Diversity effects might also have been overlooked
if they occur across environmental gradients unobserved in
our single year, two resource level, study [48,49].

By contrast, we found consistent under-yielding of polycul-
tures of genotypes compared to the expectations from their
biomass in monoculture and relative representation in the
polycultures (deviation from monoculture expectation, DME,
also known as ‘diversity effects’) [4,7]. Generally, negative
DMEs are thought to arise from interference competition [7].
This process could play out in our experiment as follows:
when grown with genotypes having different trait values,
individuals exhibit reduced performance compared to in
monoculture with genetically identical individuals, and
apparently without much benefit to the performance of the
higher performing genotypes. For example, [50] found that
Pseudomonas flourescens genotypic diversity led to reduced eco-
system function (host plant protection) due to antagonistic
interference (mutual poisoning) among Pseudomonas geno-
types. Similar patterns have been reported in plants, where
individuals have higher performance among similar geno-
types and reduced performance among different genotypes
[24,27]. For example, [24] found a reduced variance in biomass
among individuals and higher individual fecundity of Plantago
lanceolata when grown among related individuals, which he
interpreted as being due to reduced interference competition
in high relatedness stands (though the term ‘interference com-
petition’was not used). This might occur if higher performing
genotypes reduce access to resources of lower performing
genotypes to a greater degree than those high-performing gen-
otypes benefit by being surrounded by fewer of their own type.
Alternatively, higher performing genotypes in monoculture
might be more limited by lower performing genotypes, with
little benefit to lower performing genotypes. We found that
polyculture plots containing later flowering and larger biomass
(in monoculture) genotypes were those that had the strongest
negative DME, possibly due to shading of different and
early-flowering smaller neighbours. This suggests that late-
flowering genotypes may have beenmore likely to be involved
in interference competition when resources were abundant,
perhaps because these larger individual plants limited their
competitors from resource capture (e.g. by shading) more
than they benefited, reducing the overall total biomass [24].
Evidence suggests that size asymmetries leading to shading
[51] as well as allelopathy against competitors or other trophic
levels [52] can also lead to such interference competition. Other
authors have sometimes interpreted these patterns as evidence
of kin selection [53,54]. The interference competition expla-
nation for negative DME seems more likely than plants’
ability to first recognize kin per se and then reduce interference
with related neighbours [54].

We demonstrated how genomic data on individuals in
experimental stands can be used to identify genetic loci
potentially affecting group-level performance, although we
did not identify effects of whole-genome diversity on stand
performance. Recent studies using Arabidopsis grown in
pots, combined with linkage [23] or association mapping
[35] have demonstrated complementary genomic approaches
using a smaller number of genotypes and individuals per
stand (two genotypes and three-four individuals/pot). Con-
trolled experiments like these and our present study,
combined with group-level performance and genetic data,
could be applied to nearly any system. It is not clear whether
such approaches could detect genetic loci operating in natural
uncontrolled systems, where uncontrolled environmental
variation plays an important but often unmeasured role in
driving spatial variation in group-level performance. Here,
we implemented a study of the association of stand-level per-
formance with both allele frequency and variance in stands.
However, note that to distinguish between effects of variance
(diversity per se) versus frequency (composition) at a biallelic
SNP, a given SNP would need to span a wide range of allele
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frequencies among stands. This condition is not likely met for
most SNPs given they have low minor allele frequency, thus
allele frequency and variance show a large degree of covaria-
tion, limiting our ability to distinguish the effects of diversity
versus allelic composition at most loci.

(c) Previous studies on Arabidopsis
Previous studies in the laboratory have shown some evidence
that certain combinations of Arabidopsis genotypes may
result in higher stand-level performance. In greenhouse popu-
lations of Arabidopsis, both additive and non-additive benefits
of up to eight genotypes per stand (from a pool of 23) were
found to increase emergence, biomass, flowering duration,
and fecundity [19,23] used an Arabidopsis biparental mapping
population to identify a single locus causing over-yielding
when grown in diversity in pots. Additionally, [35] used pot
experiments on pairs of genotypes in a greenhouse, combined
with association mapping on an individual genotype’s associ-
ation with over- versus under-yielding. Our study was
conducted in the field where plants were subject to a wide
range of potential stressors. It is noteworthy that [55] found
that natural stands in Germany with a single genotype
tended to have fewer individuals than stands with multiple
genotypes, suggesting potential positive diversity effects in
nature.

(d) A priori prediction of stand-level performance
Ecology has been criticized for not being a predictive science.
Here we tested our knowledge of the system with a priori sets
of stands predicted to have divergent performance. We found
that our predictions were most closely associated with stand-
level yield driven by flowering time differences among
genotypes. Going forward, if we were to construct a pro-
ductive Arabidopsis stand with high fecundity individuals
at our site, we would choose a set of multiple distinct geno-
types, that are late flowering, and with low SLA (but note
some late-flowering genotypes did not flower here, and this
strategy may only work in certain environments).
It is no accident thatwe chose flowering time as the one trait
to include in our prediction criteria. Flowering time has well-
documented links to amajor axis of life history and physiologi-
cal variation [39,56] and so is intensely studied for agronomic
interest. The use of phenotyped and genotyped individuals
in such experiments are a way forward for predictive
approaches to group performance and diversity.
5. Conclusion
Biodiversity can affect the properties of groups of organisms
and may be important to understanding the performance and
persistence of both natural and introduced populations and
communities. Here, we did not identify strong effects of genetic
diversity per se on the performance of stands of non-native Ara-
bidopsis populations but we found a pattern of higher biomass
yield when the genetic composition was shifted to late-flower-
ing stands. We also identified that in polyculture, the presence
of later-flowering genotypes led to lower than expected yield,
possibly due to interference competition. Our research here
on stand-level effects on performance in the field for the
model plant Arabidopsis suggest away forward to understand-
ing the importance of such effects in nature.

Data accessibility. The datasets supporting this article have been
uploaded as part of the electronic supplementary material, in
addition to published data from [37].

Authors’ contributions. All authors designed and executed the exper-
iment. K.G.T. and J.R.L. led the data analysis and writing of the
manuscript. All authors contributed to writing the manuscript.

Competing interests. We declare we have no competing interests.

Funding. This work was supported by a Pennsylvania State University
Eberly Postdoctoral Fellowship and NSF Idaho EPSCoR Program
award OIA-1757324 to K.G.T.

Acknowledgements. Connor Campana, Timothy Gilpatrick, Sarah Lucas,
and Ken Hull assisted with fieldwork. Victoria DeLeo, Emily Bellis,
Lua Lopez, and Jonathan Kizer assisted with planting. Paras Patel
and Crosley Williams assisted with sorting seeds and planting.
Leland Burghard assisted with plant care. Megan Vahsen provided
useful discussions on experimental design. We lastly thank the
cattle that trampled only a small part of our experiment.
References
1. Denison RF. 2012 Darwinian agriculture: How
understanding evolution can improve agriculture.
Princeton, NJ: Princeton University Press.

2. Hughes AR, Stachowicz JJ. 2004 Genetic diversity
enhances the resistance of a seagrass ecosystem to
disturbance. Proc. Natl Acad. Sci. USA 101,
8998–9002. (doi:10.1073/pnas.0402642101)

3. Loreau M. 2010 From populations to ecosystems:
theoretical foundations for a new ecological
synthesis. Princeton, NJ: Princeton University Press.
See http://books.google.com/books?id=
qIxM7eNj9sUC.

4. Loreau M, Hector A. 2001 Partitioning selection and
complementarity in biodiversity experiments. Nature
412, 72–76. (doi:10.1038/35083573)

5. Lasky JR. 2019 Eco-evolutionary community
turnover following environmental change.
Evol. Appl. 12, 1434–1448. (doi:10.1111/
eva.12776)
6. Mouquet N, Loreau M. 2003 Community patterns in
source-sink metacommunities. Am. Nat. 162,
544–557. (doi:10.1086/378857)

7. Loreau M. 1998 Separating sampling and other
effects in biodiversity experiments. Oikos 82,
600–602. (doi:10.2307/3546381)

8. Cadotte MW. 2013 Experimental evidence that
evolutionarily diverse assemblages result in higher
productivity. Proc. Natl Acad. Sci. USA 110,
8996–9000. (doi:10.1073/pnas.1301685110)

9. Srivastava DS, Cadotte MW, MacDonald AAM,
Marushia RG, Mirotchnick N. 2012 Phylogenetic
diversity and the functioning of ecosystems. Ecol.
Lett. 15, 637–648. (doi:10.1111/j.1461-0248.2012.
01795.x)

10. Reynolds LK, Chan KM, Huynh E, Williams SL,
Stachowicz JJ. 2018 Plant genotype identity and
diversity interact with mesograzer species diversity
to influence detrital consumption in eelgrass
meadows. Oikos 127, 327–336. (doi:10.1111/oik.
04471)

11. Loreau M. 1998 Biodiversity and ecosystem
functioning: a mechanistic model. Proc. Natl
Acad. Sci. USA 95, 5632–5636. (doi:10.1073/pnas.
95.10.5632)

12. Naeem S, Li S. 1997 Biodiversity enhances
ecosystem reliability. Nature 390, 507–509. (doi:10.
1038/37348)

13. Szűcs M, Vahsen ML, Melbourne BA, Hoover C,
Weiss-Lehman C, Hufbauer RA. 2017 Rapid adaptive
evolution in novel environments acts as an architect
of population range expansion. Proc. Natl Acad. Sci.
USA 114, 13 501–13 506. (doi:10.1073/pnas.
1712934114)

14. Hufbauer RA, Rutschmann A, Serrate B, de Conchard
HV, Facon B. 2013 Role of propagule pressure in
colonization success: disentangling the relative
importance of demographic, genetic and habitat

http://dx.doi.org/10.1073/pnas.0402642101
http://books.google.com/books?id=qIxM7eNj9sUC
http://books.google.com/books?id=qIxM7eNj9sUC
http://books.google.com/books?id=qIxM7eNj9sUC
http://dx.doi.org/10.1038/35083573
http://dx.doi.org/10.1111/eva.12776
http://dx.doi.org/10.1111/eva.12776
http://dx.doi.org/10.1086/378857
http://dx.doi.org/10.2307/3546381
http://dx.doi.org/10.1073/pnas.1301685110
http://dx.doi.org/10.1111/j.1461-0248.2012.01795.x
http://dx.doi.org/10.1111/j.1461-0248.2012.01795.x
http://dx.doi.org/10.1111/oik.04471
http://dx.doi.org/10.1111/oik.04471
http://dx.doi.org/10.1073/pnas.95.10.5632
http://dx.doi.org/10.1073/pnas.95.10.5632
http://dx.doi.org/10.1038/37348
http://dx.doi.org/10.1038/37348
http://dx.doi.org/10.1073/pnas.1712934114
http://dx.doi.org/10.1073/pnas.1712934114


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20202041

9

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 Ju

ne
 2

02
1 
effects. J. Evol. Biol. 26, 1691–1699. (doi:10.1111/
jeb.12167)

15. Szűcs M, Melbourne BA, Tuff T, Hufbauer RA. 2014
The roles of demography and genetics in the early
stages of colonization. Proc. R. Soc. B 281,
20141073. (doi:10.1098/rspb.2014.1073)

16. Okasha S. 2006 Evolution and the levels of selection.
Oxford, UK: Clarendon Press.

17. Simberloff D. 2009 The role of propagule pressure in
biological invasions. Annu. Rev. Ecol. Evol. Syst. 40,
81–152. (doi:10.1146/annurev.ecolsys.110308.
120304)

18. Vahsen ML, Shea K, Hovis CL, Teller BJ, Hufbauer RA.
2018 Prior adaptation, diversity, and introduction
frequency mediate the positive relationship between
propagule pressure and the initial success of founding
populations. Biol. Invasions 20, 2451–2459. (doi:10.
1007/s10530-018-1713-4)

19. Crawford KM, Whitney KD. 2010 Population genetic
diversity influences colonization success. Mol. Ecol.
19, 1253–1263. (doi:10.1111/j.1365-294X.2010.
04550.x)

20. Drummond EBM, Vellend M. 2012 Genotypic
diversity effects on the performance of taraxacum
officinale populations increase with time and
environmental favorability. PLoS ONE 7, e0030314.
(doi:10.1371/journal.pone.0030314)

21. Forsman A, Wennersten L. 2016 Inter-individual
variation promotes ecological success of populations
and species: evidence from experimental and
comparative studies. Ecography 39, 630–648.
(doi:10.1111/ecog.01357)

22. Bertness MD, Callaway R. 1994 Positive interactions
in communities. Trends Ecol. Evol. 9, 191–193.
(doi:10.1016/0169-5347(94)90088-4)

23. Wuest SE, Niklaus PA. 2018 A plant biodiversity
effect resolved to a single chromosomal region. Nat.
Ecol. Evol. 2, 1933–1939. (doi:10.1038/s41559-018-
0708-y)

24. Tonsor SJ. 1989 Relatedness and intraspecific
competition in plantago lanceolata. Am. Nat. 134,
897–906. (doi:10.1086/285020)

25. Hedge LH, Leung B, O’Connor WA, Johnston EL.
2014 The interacting effects of diversity and
propagule pressure on early colonization and
population size. J. Anim. Ecol. 83, 168–175. (doi:10.
1111/1365-2656.12125)

26. Flynn DFB, Mirotchnick N, Jain M, Palmer MI,
Naeem S. 2011 Functional and phylogenetic
diversity as predictors of biodiversity–ecosystem-
function relationships. Ecology 92, 1573–1581.
(doi:10.1890/10-1245.1)

27. Simonsen AK, Chow T, Stinchcombe JR. 2014
Reduced plant competition among kin can be
explained by Jensen’s inequality. Ecol. Evol. 4,
4454–4466. (doi:10.1002/ece3.1312)

28. Fischer DG et al. 2017 Tree genetics strongly affect
forest productivity, but intraspecific diversity–
productivity relationships do not. Funct. Ecol. 31,
520–529. (doi:10.1111/1365-2435.12733)
29. Madritch MD, Kingdon CC, Singh A, Mock KE,
Lindroth RL, Townsend PA. 2014 Imaging
spectroscopy links aspen genotype with below-
ground processes at landscape scales. Phil.
Trans. R. Soc. B 369, 20130194. (doi:10.1098/rstb.
2013.0194)

30. Lasky JR et al. 2015 Genome-environment
associations in sorghum landraces predict adaptive
traits. Sci. Adv. 1, e1400218. (doi:10.1126/sciadv.
1400218)

31. Reynolds M, Tuberosa R. 2008 Translational research
impacting on crop productivity in drought-prone
environments. Curr. Opin. Plant Biol. 11, 171–179.
(doi:10.1016/j.pbi.2008.02.005)

32. Gienapp P, Fior S, Guillaume F, Lasky JR, Sork VL,
Csilléry K. 2017 Genomic quantitative genetics to
study evolution in the wild. Trends Ecol. Evol. 32,
897–908. (doi:10.1016/j.tree.2017.09.004)

33. VanRaden PM, Van Tassell CP, Wiggans GR,
Sonstegard TS, Schnabel RD, Taylor JF, Schenkel FS.
2009 Invited Review: Reliability of genomic
predictions for North American Holstein bulls.
J. Dairy Sci. 92, 16–24. (doi:10.3168/jds.2008-1514)

34. Jannink J-L, Lorenz AJ, Iwata H. 2010 Genomic
selection in plant breeding: from theory to practice.
Brief. Funct. Genomics 9, 166–177. (doi:10.1093/
bfgp/elq001)

35. Wuest SE, Pires ND, Luo S, Vasseur F, Messier J,
Grossniklaus U, Niklaus PA. 2019 Increasing plant
group productivity through latent genetic variation for
cooperation. bioRxiv, 641449. (doi:10.1101/641449)

36. Mitchell-Olds T, Schmitt J. 2006 Genetic
mechanisms and evolutionary significance of natural
variation in Arabidopsis. Nature 441, 947–952.
(doi:10.1038/nature04878)

37. Alonso-Blanco C et al. 2016 1,135 Genomes reveal
the global pattern of polymorphism in arabidopsis
thaliana. Cell 166, 481–491. (doi:10.1016/j.cell.
2016.05.063)

38. Vasseur F, Sartori K, Baron E, Fort F, Kazakou E,
Segrestin J, Garnier E, Vile D, Violle C. 2018 Climate
as a driver of adaptive variations in ecological
strategies in Arabidopsis thaliana. Ann. Bot. 122,
935–945. (doi:10.1093/aob/mcy165)

39. Lovell JT et al. 2013 Pleiotropy of FRIGIDA enhances
the potential for multivariate adaptation.
Proc. R. Soc. B 280, 20131043. (doi:10.1098/rspb.
2013.1043)

40. Easlon HM, Bloom AJ. 2014 Easy leaf area:
automated digital image analysis for rapid and
accurate measurement of leaf area1. Appl. Plant Sci.
2, 1400033. (doi:10.3732/apps.1400033)

41. Zheng X, Levine D, Shen J, Gogarten SM, Laurie C,
Weir BS. 2012 A high-performance computing
toolset for relatedness and principal component
analysis of SNP data. Bioinforma Oxf. Engl. 28.
(doi:10.1093/bioinformatics/bts606)

42. Schuetzenmeister A, Dufey F. 2018 VCA: Variance
Component Analysis. See https://CRAN.R-project.org/
package=VCA.
43. Endelman JB. 2011 Ridge regression and other
kernels for genomic selection with R package
rrBLUP. Plant Gen. 4, 250–255. (doi:10.3835/
plantgenome2011.08.0024)

44. Kang HM, Zaitlen NA, Wade CM, Kirby A,
Heckerman D, Daly MJ, Eskin E. 2008 Efficient
control of population structure in model organism
association mapping. Genetics 178, 1709–1723.
(doi:10.1534/genetics.107.080101)

45. Atwell S et al. 2010 Genome-wide association study of
107 phenotypes in Arabidopsis thaliana inbred lines.
Nature 465, 627–631. (doi:10.1038/nature08800)

46. Zhang Y, Chen HYH, Reich PB. 2012 Forest
productivity increases with evenness, species
richness and trait variation: a global meta-analysis.
J. Ecol. 100, 742–749. (doi:10.1111/j.1365-2745.
2011.01944.x)

47. Hooper DU et al. 2012 A global synthesis reveals
biodiversity loss as a major driver of ecosystem
change. Nature 486, 105–108. (doi:10.1038/
nature11118)

48. Isbell F et al. 2015 Biodiversity increases the
resistance of ecosystem productivity to climate
extremes. Nature 526, 574–577. (doi:10.1038/
nature15374)

49. Lasky JR, Uriarte M, Boukili VK, Erickson DL, John
Kress W, Chazdon RL. 2014 The relationship
between tree biodiversity and biomass dynamics
changes with tropical forest succession. Ecol. Lett.
17, 1158–1167. (doi:10.1111/ele.12322)

50. Becker J, Eisenhauer N, Scheu S, Jousset A. 2012
Increasing antagonistic interactions cause bacterial
communities to collapse at high diversity. Ecol.
Lett. 15, 468–474. (doi:10.1111/j.1461-0248.2012.
01759.x)

51. Weiner J, Thomas SC. 1986 Size variability and
competition in plant monocultures. Oikos 47,
211–222. (doi:10.2307/3566048)

52. Wardle DA, Nilsson M-C, Gallet C, Zackrisson O.
1998 An ecosystem-level perspective of allelopathy.
Biol. Rev. 73, 305–319. (doi:10.1017/
S0006323198005192)

53. Donohue K. 2003 The influence of neighbor
relatedness on multilevel selection in the Great
Lakes Sea Rocket. Am. Nat. 162, 77–92. (doi:10.
1086/375299)

54. Dudley SA, File AL. 2007 Kin recognition in an
annual plant. Biol. Lett. 3, 435–438. (doi:10.1098/
rsbl.2007.0232)

55. Bomblies K, Yant L, Laitinen RA, Kim S-T, Hollister
JD, Warthmann N, Fitz J, Weigel D. 2010 Local-scale
patterns of genetic variability, outcrossing, and
spatial structure in natural stands of Arabidopsis
thaliana. PLoS Genet. 6, e1000890. (doi:10.1371/
journal.pgen.1000890)

56. Mitchell-Olds T. 1996 Genetic constraints on life-
history evolution: quantitative-trait loci influencing
growth and flowering in Arabidopsis thaliana.
Evolution 50, 140–145. (doi:10.1111/j.1558-5646.
1996.tb04480.x)

http://dx.doi.org/10.1111/jeb.12167
http://dx.doi.org/10.1111/jeb.12167
http://dx.doi.org/10.1098/rspb.2014.1073
http://dx.doi.org/10.1146/annurev.ecolsys.110308.120304
http://dx.doi.org/10.1146/annurev.ecolsys.110308.120304
http://dx.doi.org/10.1007/s10530-018-1713-4
http://dx.doi.org/10.1007/s10530-018-1713-4
http://dx.doi.org/10.1111/j.1365-294X.2010.04550.x
http://dx.doi.org/10.1111/j.1365-294X.2010.04550.x
http://dx.doi.org/10.1371/journal.pone.0030314
http://dx.doi.org/10.1111/ecog.01357
http://dx.doi.org/10.1016/0169-5347(94)90088-4
http://dx.doi.org/10.1038/s41559-018-0708-y
http://dx.doi.org/10.1038/s41559-018-0708-y
http://dx.doi.org/10.1086/285020
http://dx.doi.org/10.1111/1365-2656.12125
http://dx.doi.org/10.1111/1365-2656.12125
http://dx.doi.org/10.1890/10-1245.1
http://dx.doi.org/10.1002/ece3.1312
http://dx.doi.org/10.1111/1365-2435.12733
http://dx.doi.org/10.1098/rstb.2013.0194
http://dx.doi.org/10.1098/rstb.2013.0194
http://dx.doi.org/10.1126/sciadv.1400218
http://dx.doi.org/10.1126/sciadv.1400218
http://dx.doi.org/10.1016/j.pbi.2008.02.005
http://dx.doi.org/10.1016/j.tree.2017.09.004
http://dx.doi.org/10.3168/jds.2008-1514
http://dx.doi.org/10.1093/bfgp/elq001
http://dx.doi.org/10.1093/bfgp/elq001
http://dx.doi.org/10.1038/nature04878
http://dx.doi.org/10.1016/j.cell.2016.05.063
http://dx.doi.org/10.1016/j.cell.2016.05.063
http://dx.doi.org/10.1093/aob/mcy165
http://dx.doi.org/10.1098/rspb.2013.1043
http://dx.doi.org/10.1098/rspb.2013.1043
http://dx.doi.org/10.3732/apps.1400033
http://dx.doi.org/10.1093/bioinformatics/bts606
https://CRAN.R-project.org/package=VCA
https://CRAN.R-project.org/package=VCA
https://CRAN.R-project.org/package=VCA
http://dx.doi.org/10.3835/plantgenome2011.08.0024
http://dx.doi.org/10.3835/plantgenome2011.08.0024
http://dx.doi.org/10.1534/genetics.107.080101
http://dx.doi.org/10.1038/nature08800
http://dx.doi.org/10.1111/j.1365-2745.2011.01944.x
http://dx.doi.org/10.1111/j.1365-2745.2011.01944.x
http://dx.doi.org/10.1038/nature11118
http://dx.doi.org/10.1038/nature11118
http://dx.doi.org/10.1038/nature15374
http://dx.doi.org/10.1038/nature15374
http://dx.doi.org/10.1111/ele.12322
http://dx.doi.org/10.1111/j.1461-0248.2012.01759.x
http://dx.doi.org/10.1111/j.1461-0248.2012.01759.x
http://dx.doi.org/10.2307/3566048
http://dx.doi.org/10.1017/S0006323198005192
http://dx.doi.org/10.1017/S0006323198005192
http://dx.doi.org/10.1086/375299
http://dx.doi.org/10.1086/375299
http://dx.doi.org/10.1098/rsbl.2007.0232
http://dx.doi.org/10.1098/rsbl.2007.0232
http://dx.doi.org/10.1371/journal.pgen.1000890
http://dx.doi.org/10.1371/journal.pgen.1000890
http://dx.doi.org/10.1111/j.1558-5646.1996.tb04480.x
http://dx.doi.org/10.1111/j.1558-5646.1996.tb04480.x

	Effects of genomic and functional diversity on stand-level productivity and performance of non-native Arabidopsis
	Introduction
	Methods
	Plant material
	Field experiment
	Measures of stand composition and diversity
	Statistical analyses

	Results
	Plastic changes in traits and performance, heritability in monoculture
	Genomic signature of performance variation
	How did composition and diversity of stands impact stand fecundity and biomass production?
	How did polyculture productivity deviate from monoculture expectation?
	What genetic loci contribute to diversity effects?

	Discussion
	Diversity effects on average individual fecundity
	Diversity effects on stand-level biomass
	Previous studies on Arabidopsis
	A priori prediction of stand-level performance

	Conclusion
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	Acknowledgements
	References


