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A B S T R A C T   

Although the random forest algorithm has been widely applied to remotely sensed data to predict characteristics 
of forests, such as tree canopy height, the effect of spatial non-stationarity in the modeling process is oftentimes 
neglected. Previous studies have proposed methods to address the spatial variance at local scales, but few have 
explored the spatial autocorrelation pattern of residuals in modeling tree canopy height or investigated the 
relationship between canopy height and model performance. By combining Light Detection and Ranging (LiDAR) 
and Landsat datasets, we used spatially-weighted geographical random forest (GRF) and traditional random 
forest (TRF) methods to predict tree canopy height in a mixed dry forest woodland in complex mountainous 
terrain. Comparisons between TRF and GRF models show that the latter can lower predefined extreme residuals, 
and thus make the model performance relatively stronger. Moreover, the relationship between model perfor
mance and degree of variation of true canopy height can vary considerably within different height quantiles. 
Both models are likely to present underestimates and overestimates when the corresponding tree canopy heights 
are high (>95% quantile) and low (<median), respectively. This study provides a critical insight into the rela
tionship between tree canopy height and predictive abilities of random forest models when taking account of 
spatial non-stationarity. Conclusions indicate that a trade-off approach based on the actual need of project should 
be taken when selecting an optimal model integrating both local and global effects in modeling attributes such as 
canopy height from remotely sensed data.   

1. Introduction 

Vegetation features have large impacts on the physical, chemical and 
biological characteristics of aquatic ecosystems (Allan, 2004; Roth, 
Westhoff, Huwald et al., 2010). Among the functional properties of 
vegetation cover, tree canopy height controls heat exchange processes 
by regulating wind speed, relative humidity, and both shortwave and 
longwave radiation between the atmosphere and land surface (Hardy, 
Melloh, Koenig et al., 2004; Klos,Link, 2018; Tao, Guo, Li et al., 2016), 
and this can impact watershed-scale diurnal stream temperatures 
depending on shading effects from the riparian tree canopy (DeWalle, 
2010; Loicq, Moatar, Jullian et al., 2018; Roth et al., 2010). Therefore, a 
high-quality and effective measurement of tree canopy height is essen
tially important for not only forest management but also stream habitats 
protection and restoration, such as large wood recruitment (Schuett- 

Hames,Roorbach,Conrad, 2012). 
Methods for collecting data on tree canopy features vary widely 

depending on factors such as scale and extent of study, available re
sources, and physical or logistical restrictions. For example, field mea
surements provide direct and accurate quantification but are expensive 
and often limited in spatial extent and challenging in certain regions 
(Buckley,Isebrands,Sharik, 1999; McIntosh,Gray,Garman, 2012). In 
such cases, remote sensing (RS) techniques can be adopted to provide 
accurate, cost-effective and multi-spectral data at diverse spatial reso
lutions. Airborne Light Detection and Ranging (LiDAR) technology has 
been used to achieve 3D depiction of tree canopy cover, including both 
horizontal measurements and vertical structural information (Hudak, 
Lefsky, Cohen et al., 2002; Singh, Vogler, Shoemaker et al., 2012; Zald, 
Ohmann, Roberts et al., 2014). While this 3D depiction may lead to a 
good performance of forest cover assessment, LiDAR also has 
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disadvantages including cost of collecting and processing data and 
limited spatial and temporal coverage. As characteristics of forest can
opies, such as height and density, are correlated with spectral indexes of 
Landsat imagery (Huang, Yang, Wylie et al., 2001; Karlson, Ostwald, 
Reese et al., 2015), an important application of LiDAR-derived datasets 
is for the calibration and validation of models for Landsat datasets with 
larger spatiotemporal extents to achieve mutual complementarity. One 
potential method for calibrating and validating is through random forest 
models. 

Random forest, a decision tree-based ensemble learning method, has 
been considered as an effective algorithm for both classification and 
regression modeling analysis, even with non-parametric and non-linear 
datasets (Belgiu,Drăguţ, 2016; Karlson et al., 2015). In addition to 
providing high accuracy, random forest algorithms can handle complex 
data with a variety of features. Therefore, numerous studies have 
investigated the possibility of using LiDAR-derived data to train random 
forest models to predict tree canopy height from satellite imagery fea
tures and have achieved reasonable results. For instance, Staben,Lucieer 
and Scarth (2018) predicted tree canopy height over different vegetation 
communities to understand their transitions between 1987 and 2016 by 
developing a random forest model with LiDAR-derived canopy height, 
vegetation indices and spectral band ratios from Landsat images. Ota, 
Ahmed, Franklin et al. (2014) integrated Landsat and LiDAR data to 
model mean canopy height for a tropical forest in Cambodia. The 
research demonstrated that predictive models can achieve the highest 
accuracy when including forest disturbance and recovery metrics from 
Landsat derived data in a novel random forest model. Ahmed et al. 
(2015) demonstrated that random forest models for canopy structure 
incorporating disturbance history information derived from LiDAR data 
outperformed multiple regression models in terms of three different 
forest classes, namely mature, young and their combination, with sub
stantially lower statistical errors. 

Although random forest algorithms have been widely recognized to 
have good performance and applied in a range of domains, such as urban 
planning and forest management, past attempts usually neglected 
spatially non-stationary effect in distributions of sample data. Such 
unweighted spatial modeling processes may make the result problematic 
given the potential for spatially-varying relationships between depen
dent and independent variables (i.e., non-stationarity). Previous 
research showed that non-stationarity in remote sensing-derived data, 
such as clustered distribution of land use/cover classification, may lead 
to a less accurate predictive models (Wang,Stephenson,Qu, 2019). Thus, 
training datasets may also be unable to properly reflect the relationship 
between predictive and explanatory variables at a local scale due to 
spatial heterogeneity. Moreover, the range of predicted values can be 
restricted by the selected training dataset, and variance of feature values 
may not be fully taken into consideration in the modeling process. This is 
due to the partial coverage of study area and thus a possible unequal 
distribution pattern of selected training data. Georganos, Grippa, Niang 
Gadiaga et al. (2019) developed an improved and straightforward model 
for address these challenges, namely Geographical Random Forest 
(GRF), to predict population density in Dakar, Senegal in Africa. The 
model uses Geographical Weighted Regression (GWR) as a reference and 
generates a local random forest model in each observational location. 
Then, the closest local model was used for its neighbors at validation and 
prediction steps. 

While spatial non-stationarity has been recognized as a potential 
issue when applying random forest methods, an in-depth analysis of this 
issue integrated with tree canopy height prediction is still lacking 
(Sekulić, Kilibarda, Heuvelink et al., 2020; Staben et al., 2018). Spe
cifically, assessments of the effect of non-stationarity on machine 
learning modeling outcomes of remotely sensed data would benefit an 
array of researchers interested in landscape level data where LiDAR is 
not readily available. Our overall objective was to assess the role of 
spatial non-stationarity in modeling tree canopy height from Landsat 
data by using traditional random forest (TRF) and GRF models trained 

and validated with independent subsets of LiDAR data. Our specific 
goals were: (1) to investigate whether the accuracy of predicted tree 
canopy height could be improved or not by taking into account spatial 
variance; (2) to detect spatial autocorrelation patterns of residuals in 
modeling tree canopy height by using TRF and GRF separately and (3) to 
discover whether the predictive ability of TRF and GRF models would be 
associated with tree canopy height or not. We hypothesized that GRF 
would improve model fit to some degree and that tradeoffs may exist 
between modeling effort and accuracy when using the two approaches 
in a mixed vegetation landscape. 

2. Materials and methods 

2.1. Study area 

The Payette National Forest is one of the protected lands managed by 
the United States federal government, and covers approximately 9300 
km2 in the western USA (Fig. 1). It is specifically located in the Hitt 
Mountains of Payette National Forest in the state of Idaho, USA, and was 
selected because the area contains a mix of open, low, and tall canopy 
land covers in complex terrain. The distribution pattern of true canopy 
height for testing dataset was plotted in quantile format (Fig. 2). Less 
training data in high quantiles (95%: 19.53 m; 99%: 23.30 m) reinforced 
our suspicion that predictive ability of a random forest model would be 
impacted by the limited samples for training. The study area was in the 
upper reaches of the Mann Creek watershed within the Columbia River 
basin at altitudes of ca.1300 m to 1500 m. The landscape is composed of 
interspersed forest, sagebrush communities, high mountain ridges and 
deep canyons. Forested areas contain eight species of conifer trees, 
including ponderosa pine and Douglas-fir (~1000 m - ~1800 m) and 
whitebark pine (~2300 m) (Lund, 2004), with the forest mainly con
taining coast Douglas-fir reaching at a maximum height of 55 m (Carder, 
1995). Riparian areas are dominated by evergreen forest, shrub/scrub, 
sagebrush, etc. Vegetation type and canopy height are of interest to 
conservation and management of this watershed because of the effects of 
riparian vegetation on stream water quality and temperature. Climate at 
the site is “Warm-summer Mediterranean” climate type under Köppen 
Climate Classification, with precipitation of ca. 1270 mm per year (Peel, 
Finlayson,McMahon, 2007). 

2.2. Data acquisition 

2.2.1. LiDAR point cloud data 
Airborne LiDAR technology has been widely used to retrieve three- 

dimensional information from the features on the Earth’s surface by 
emitting and recording laser pulses. The Canopy Height Model (CHM) 
represents the height of objects above the ground that a LiDAR system 
observes, reflecting the distance between the Earth surface and the top 
of the trees in the present research (Khosravipour, Skidmore, Wang 
et al., 2015). Feature positional information, including coordinates 
(horizontal) and elevation (vertical), can be collectively stored in a point 
of data wherever the LiDAR laser pulse hits. A large amount of these 
individual points eventually forms a LiDAR point cloud dataset, 
providing a detailed three-dimensional basis for generating and raster
izing CHMs. In this study, the LiDAR point cloud data comprised of 4 
(column) by 3 (row) image sets (Fig. 1) were obtained from the National 
Geospatial Program developed by the U.S. Geological Survey (USGS) in 
the American Society for Photogrammetry and Remote Sensing (ASPRS) 
LAS format. Original downloaded dataset was a zipped LAZ file and can 
be uncompressed through a laszip function embedded in the LAStools 
software (Isenburg, 2012). The point cloud data were collected from 
September 9th to October 14th, 2017. Traditional method of developing 
a CHM is to do a raster subtraction between the Digital Surface Model 
(DSM) representing top of the surface and Digital Terrain Model (DTM) 
representing ground elevation (Pitkänen et al., 2004). To remove the 
possible empty pixels in this subtraction, a triangulation-based pit-free 
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algorithm of Khosravipour, Skidmore, Isenburg et al. (2014) was used to 
generate the rasterized CHM through the lidR package in R (v.3.6.3). 
Final resolution of the CHM derived from the point cloud data was 0.25 
m by 0.25 m. We note that the outermost pixels for each point cloud 
derived raster were eliminated in the process of creating the CHM due to 
the edge effect of LiDAR data. We calculated the mean value of the 
LiDAR CHM for each 30 m × 30 m pixel corresponding to each Landsat 
pixel as a reference of true canopy height (Pascual et al., 2010). Since the 
true canopy height is defined as LiDAR-derived canopy height, it is 
worth mentioning that this reference cannot avoid some error associated 
with the derivation process and determination of the ground surface 

(Tinkham, Smith, Hoffman et al., 2012). Post-hoc, after modeling was 
complete, we excluded vegetation, primarily sagebrush which occurs in 
relatively homogenous stands in uplands, less than or equal to 1 m in 
further analysis. 

2.2.2. Landsat imagery 
The Landsat 8 Operational Land Imager (OLI) level 2 product, which 

has a spatial resolution of 30 m × 30 m, was obtained from the USGS 
Earth Explorer website (https://earthexplorer.usgs.gov/). The Landsat 8 
OLI level 2 product which has been atmospherically corrected provides 
the land surface reflectance (LSF) data derived from the level 1 product 

Fig. 1. Study area and spatial distribution of testing and training datasets.  
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(Masek et al., 2006). The acquisition date was October 6th, 2017 in 
order to eliminate cloud effects and to be effectively synchronous with 
the date of the LiDAR data acquisition. 

The reflectance of a vegetated surface depends on the structural and 
optical properties of the vegetation and underlying soil (Myneni et al., 
1995). However, the blue band is sensitive to the aerosol conditions in 
the atmosphere (Flood, Danaher, Gill et al., 2013). Therefore, only 
green, red, near-infrared (NIR), short-wave infrared 1 (SWIR1), and 
short-wave infrared 2 (SWIR2) LSF bands in the acquired dataset were 
used to calculate the vegetation indices and band ratios. To cover as 
many spectral indices as possible for correlation and feature importance 
tests for running random forest models, a total of 27 parameters, 
including 5 LSF bands, 12 vegetation indices, and 10 band ratios 
calculated from a combination of 5 LSF bands were used as input pre
dictor variables (Table 1) to predict the canopy height from Landsat 
data. Parameters (i.e., CVI, GDVI, Band Ratios and LSF bands) were then 
normalized to a range of −1 to 1 to reduce data redundancy and stan
dardize values across parameters. 

2.3. Random forest 

2.3.1. Traditional random forest 
As an aggregated machine learning algorithm, random forest algo

rithms are comprised of decision trees and Classification And Regression 
Trees (CART) on a basis of bootstrap aggregation (“bagging” for short) 
(Breiman, 2001). Compared with a single CART, random forest less 
likely suffers from the overfitting problem as it eventually takes the 
average of the predicted values across decision trees from the bootstrap 
iterations. Generally speaking, there are four basic stages when running 
the random forest model: (1) select n random samples from the given 
dataset for training; (2) build a decision tree for each selected sample by 
integrating features; (3) set up the optimal number of decision trees 
based on time cost and computational ability; (4) take the average of the 
predicted value from each tree. Before applying the algorithm, it is 
crucial to make a right decision on the selection of the training and 
validation datasets in order to proceed to the next step. Fig. 1 shows that 
the pixels used for training and validation were randomly distributed 
within the extent of our study area. Moreover, to reduce the underlying 

Fig. 2. Quantile distribution of true canopy height as derived from LiDAR for training dataset.  

Table 1 
Vegetation indices, band ratios and land surface reflectance bands used in this 
study.  

Vegetation Index Formula 

Normalized Difference 
Vegetation Index 
(NDVI) 

NIR − Red
NIR + Red 

(Tucker, 1979)  

Green Soil Adjusted 
Vegetation Index 
(GSAVI) 

NIR − Green
(NIR + Green + 0.5)*(1 + 0.5)

(Sripada et al., 2006)  

Green Normalized 
Vegetation Index 
(GNDVI) 

NIR − Green
NIR + Green

(Buschmann and Nagel, 1993)  

Chlorophyll Vegetation 
Index (CVI) 

NIR
Green

*
Red

Green 
(Vincini et al., 2008)  

Normalized Difference 
Greenness Index 
(NDGI) 

Green − Red
Green + Red 

(Bannari et al., 1995)  

Normalized Burn Ratio 
SWIR2 (NBR) 

NIR − SWIR2
NIR + SWIR2 

(Ji et al., 2011)  

Normalized Burn Ratio 
SWIR1 (NDII) 

NIR − SWIR1
NIR + SWIR1 

(Ji et al., 2011)  

Green Difference 
Vegetation Index 
(GDVI) 

NIR −Green (Sripada et al., 2006)  

Modified Soil Adjusted 
Vegetation Index 
(MSAVI) 

(2*NIR +1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2*NIR + 1)
2

− 8*(NIR − Red)

√

)/2 (Qi 
et al., 1994)  

Difference Vegetation 
Index (DVI) 

NIR −Red (Tucker, 1979)  

Soil adjusted Vegetation 
index (SAVI) 

NIR − Red
(NIR + Green + 0.5)*(1 + 0.5)

(Huete, 1988)  

Modified Simple Ratio 
(MSR) 

[(NIR/RED) − 1]/[
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

NIR/RED
√ )

+ 1] (Chen, 1996)  

Band Ratio Red/Green; SWIR1/NIR  
NIR/Green; SWIR2/Green  
NIR/Red; SWIR2/Red  
SWIR1/Green; SWIR2/NIR  
SWIR1/Red; SWIR2/SWIR1 

LSF bands Green; Red; NIR; SWIR1; SWIR2  
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autocorrelation between these two datasets, pixels were also equally 
dispersed over the space. Additionally, to cover as many of the height 
samples as possible over different landscape units, we consequently 
selected the same number of pixels for training and validation datasets, 
resulting in a total of 8688 pixels for each. The TRF algorithm was 
implemented using the open source Scikit-learn module in Python 
(Pedregosa, Varoquaux, Gramfort et al., 2011). 

Calibration of the model was divided into three main stages. First, as 
we previously mentioned, 27 vegetation indices and band ratios were 
applied in the present research following the study of Staben et al. 
(2018). One difference, however, is that a feature selection technique 
was employed to discover and omit those irrelevant predictor variables. 
It has been widely recognized that removing highly correlated features 
with less importance is able to reduce training time and overfitting is
sues (Rogers,Gunn, 2005). Therefore, a correlation matrix and feature 
importance tool provided by the Scikit-learn module were applied to 
detect collinearity and importance score (i.e., Gini importance or Mean 
Decrease Impurity) of variables, respectively (Louppe, Wehenkel, Sutera 
et al., 2013). Second, the number of decision trees used in the random 
forest algorithm (n_estimators) was optimized by assessing the rela
tionship between generalization error and model complexity (Breiman, 
2001; Nadeau,Bengio, 2000). Generally, a larger number of decision 
trees provides better training, but previous studies also demonstrated 
that predictive accuracy of the model will eventually converge when the 
number of decision trees continues to be increased while still increasing 
the computational time (Oshiro,Perez,Baranauskas, 2012; Pal, 2005). To 
find an optimal number of decision trees, therefore, users usually adjust 
the input value of a parameter (model complexity) to achieve the lowest 
generalization error. Similarly, at the last step, this research also 
investigated the best number of features at each split (max_features), the 
maximum depth of each tree (max_depth), the minimum number of 
samples to split each node (min_samples_split) and the minimum num
ber of samples for a leaf node (min_samples_leaf) by obtaining and 
comparing the score of 10-fold cross-validation through sklearn package 
in Python (Ojala,Garriga, 2010). In addition, the automatic tuning 
process of these hyperparameters is on the basis of grid-search method 
over a parameter grid (Paper, 2020). After achieving the optimal model, 
the calibration result was evaluated, and validation data were tested by 
using the root mean squared error (RMSE, Equation (1)) and variance of 
error (VE, Equation (2)). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑
(pi − xi)

2

√

(1)  

VE =
1

n − 1
∑n

i=1
(ei − e)

2 (2) 

In Equations (1) and (2), n represents the number of sample points, pi 

and xi were the predicted and observed or true canopy height at point i, 
respectively. ei denotes the difference between pi and xi at point i while e 
is the average of errors for all sample points. 

2.3.2. Geographical random forest 
GRF is most appropriate when spatial heterogeneity is present in 

covariates and model predictions are biased because the residuals are 
spatially autocorrelated (Hengl, Nussbaum, Wright et al., 2018). Previ
ous studies demonstrated that these issues can be addressed using local 
models with simulations taking account of neighboring effects (Wang 
et al., 2019). Therefore, this study applied an existing spatial model GRF 
integrated with the geographically weighted regression (GWR) model 
and random forest to detect spatial autocorrelation patterns of residuals 
in modeling tree canopy height. The residual was calculated by Equation 
(3): 

xi − pi = Residual (3) 

The core working mechanism of GRF is similar to that of the GWR, 

with respect to bandwidth and kernel selections (Fotheringham,Bruns
don,Charlton, 2003). In bandwidth selection, an adjustable kernel, the 
maximum radius at which a target point can reach, was used to fit in 
various spatial density of data points. Compared with the fixed kernel 
which uses a constant distance as the bandwidth, the bandwidth of the 
so-called adaptive kernel in GRF is equivalent to the distance to the nth 

nearest neighbor (Wang et al., 2019). Due to the unequal distribution of 
vegetation over semi-arid mountainous watersheds, the adaptive kernel 
is able to capture as much information as possible to account for the 
aggregated tall vegetation on north-facing slopes along streams in the 
present research. In the case of random forest algorithm, a specific local 
model will be calculated for each training sample at location i. A n 
number of neighboring points were taken into consideration when cal
ibrating the corresponding GRF for the sample point. Thus, the major 
difference between TRF (Equation (4)) and GRF (Equation (5)) is the 
dimensionality over space. 

pi = βixi + ⋯ + ei (4)  

pi(a,b) = βi(a,b)xi + ⋯ + ei(a,b) (5) 

In Equations (4) and (5), pi represents the predicted canopy height at 
location i, the other contribution of selected Landsat-derived features 
besides βixi is omitted in the middle, ei is the prediction error at the 
corresponding site and (a, b) represents the coordinates at location i. In 
the calibration of GRF, the two most important parameters regarding 
number of decision trees and selected features, namely n_estimators and 
max_features, follow the calibrated results of TRF applied to the same 
dataset. At the validation stage, a new target of sample pixels only uses 
the closest tuned GRF model to predict the corresponding mean canopy 
height. The GRF algorithm has been developed in R by Kalogirou and 
Georganos (2018) as the R package ‘SpatialML’ published as a version of 
0.1.3 in 2019. 

To avoid a highly biased and discrete prediction, the GRF is designed 
to allow for partial weighting of the local model versus global model. For 
example, an equal weighting fusion represents 50% weights from local 
model and 50% weights from global model (hereafter, “50% LM”). In 
this study, we examined the model fits of various weightings of TRF vs. 
GRF by comparing configurations of eleven levels of local weighting 
from 0% LM (TRF) to 100% LM at ten percent intervals. We evaluated 
the fit among models using the three statistical measurements used for 
TRF, along with Moran’s I, calculated to evaluate the degree of spatial 
autocorrelation of residuals for each combination type (Moran, 1948). 

3. Results 

3.1. Parameter selection and model optimization 

After feature selection and model optimization, Table 2 shows the 
ranking of importance of all initial 27 features and decisions of whether 
to retain or omit them. The extent of correlation between every two 
features was reflected by the Pearson coefficient in the correlation ma
trix with heatmap (Figure S1). In comparison, the screening process 
follows a criterion that features with a coefficient score equal or>0.96 
and lower ranking of importance were ruled out. We eventually retained 
12 features as the inputs when building decision trees for the random 
forest models. The Modified Simple Ratio (MSR), a function of Near 
Infrared (NIR) and Red band, was demonstrated to be the most impor
tant feature in the dataset, with an importance score of 0.1683. After 
weighting the correlation and importance attributes in pairs, 4 band 
ratios and 11 vegetation indexes were then excluded in the training 
process of the random forest procedure (Table 2). For tuning the most 
influential parameter, n_estimators, the initial value of this non-zero 
parameter was set to 1, leading to the lowest cross validation score of 
0.7022. Testing numbers fall into the range between 1 and 1951, with an 
interval of 50. The variation of testing results tends to be stable when it 
reaches to the last 9 values ranging, from 1551 to 1951 (Fig. 3A). The 
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cross-validation scores plateaued at values above ~ 1000. Fig. 3B shows 
the results of a smaller scope of values ranging from 1480 to 1519, with 
the highest cross validation score (0.84649) occurring when the number 
of decision trees was 1500 (Fig. 3B). Based on the fixed n_estimators at 
1500, the optimal values of max_depth (9), min_samples_leaf (13), 
min_samples_split (2), and max_features (7) were then obtained indi
vidually by tuning the model complexity to reach the highest cross 
validation score of 0.85026. 

3.2. Model validation and predictive performance 

As a base model, we examined the ability of the TRF to predict 
canopy height using Landsat data by comparing the predictions for 8688 
points to an independent subset of the LiDAR data (Fig. 4). Linear 
regression resulted in a slope and intercept of 0.9952 and 0.0446, 
respectively, reflecting a near 1:1 relationship. Moreover, the high co
efficient of determination value (R2 = 0.8714) implies that the plotted 
data were close to the fitted regression line, while a dispersive pattern 
indicates that the predicted and true canopy height dataset of the TRF 
model may have a slightly higher variance at higher height values. 

TRF-GRF fusion models were generated after selecting a distance of 

56 neighboring points as the adaptive kernel when calibrating the local 
models. Comparison of model fit among the fusion models revealed that 
RMSE, VE, and R2 obtained their minimum (2.0338), minimum 
(4.1330) and maximum (0.8889) values at 50% LM level, respectively 
(Table 3). The assessment of spatial statistics, namely Moran’s I and the 
Z score, shows that there were some discrepancies in the spatial distri
bution patterns of residuals between the model configurations, reflect
ing that the explanatory ability due to spatial non-stationarity was quite 
variable. Moreover, the extremely small P values further confirm that 
these positive spatial autocorrelations (clustered patterns) were signif
icant (Table 3). In spite of being significantly aggregated, the extent of 
being spatially autocorrelated was apparently mitigated when the 100% 
LM was applied. 

We compared the spatial distribution patterns of residuals between 
the TRF (0% LM) model and 100% LM model to visually evaluate the 
mitigating influence of the GRF on spatial non-stationarity (Fig. 5). As a 
whole, the degree of spatial autocorrelation becomes weaker when the 
100% LM was employed (Table 3). Transitions can be more evident in 
the Section A and the first two rows of Section B, where more trees have 
grown along streams within the Mann Creek watershed. Notably, 
although the transition shows that most clustering can be mitigated by 
applying GRF, certain areas with extremely high or low residuals are 
barely changed. For example, areas with extremely low and high re
siduals were hardly mitigated even after applying the 100% LM. Visu
ally, we note extreme residuals exist primarily in the areas with very 
high and low canopy heights and were moderately mitigated by models 
with high GRF weighting. To define the scope of extreme residuals, we 
used quantile statistics to visualize their distributions and extract those 
values in high quantiles. Fig. 6 depicts the quantile distribution of the 
residual for the TRF model and 100% LM. Table 4 further shows more 
details with respect to quantile statistics. The 95% and 99% quantiles 
residuals from the TRF model were 3.83 m and 6.97 m for true canopy 
height, respectively. It is worth mentioning that the middle bin of the 
histogram was omitted in the figure due to the large quantity (>4000) of 
0 values. In this case, residuals less than the 5% quantile and greater 
than the 95% quantile were defined as the extremes in the present study. 
Similarly, to set thresholds for defining low and high canopy heights, 
quantiles of true canopy height were also detailed. As a result, the 1%, 
5%, 95%, and 99% quantiles of true canopy height were 1.06 m, 1.38 m, 
19.53 m and 23.30 m, respectively. Additionally, a five-number sum
mary was used to provide more information regarding the distribution of 
the observations. The minimum, 1st quantile, median, 3rd quantile and 
maximum were 1 m, 3.72 m, 7.78 m, 12.88 m and 29.51 m, respectively. 
For convenience of further comparisons, those canopy heights lower 
than the median (<7.78 m) and higher than the 95% quantile (>19.53 

Table 2 
Features retained and omitted for random forest to estimate canopy height for 
Landsat data after training with LiDAR data.  

Feature Importance 
score 

R or 
O 

Feature Importance 
score 

R or 
O 

MSR 0.1683 R NIR/Green 0.0092 O 
MSAVI 0.1565 R SWIR2/ 

Red 
0.0079 R 

SAVI 0.1552 O CVI 0.0075 R 
NDVI 0.1483 O NDGI 0.0074 O 
NIR/Red 0.1012 O Red/Green 0.0072 O 
NDII 0.0556 O SWIR2/ 

Green 
0.0070 R 

SWIR1/NIR 0.0297 R SWIR1/ 
Red 

0.0070 R 

NBR 0.0259 O NIR 0.0059 R 
SWIR2/NIR 0.0201 O SWIR2 0.0059 O 
DVI 0.0122 R GDVI 0.0057 O 
SWIR2/ 

SWIR1 
0.0120 R Red 0.0054 O 

Green 0.0109 R SWIR1 0.0054 O 
SWIR1/ 

Green 
0.0106 R GSAVI 0.0025 O 

GNDVI 0.0093 O    

Note: R denotes retained feature and O denotes omitted feature. 

Fig. 3. Test results of n_estimators (number of decision trees) in calibration for TRF model (x axis represents the number of decision trees used for testing; y axis 
represents the cross-validation score). The initial testing value, n_estimators = 1, has been removed from Fig. 3A as its corresponding cross-validation score (0.7022) 
is out of the listed range. 
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m) are hereafter defined as the “low canopy” and “high canopy”, 
respectively. 

3.3. Statistical analysis of TRF and GRF models 

Our results show patterns about how canopy height impacts the 
variation of residuals of the two different models (Fig. 7). Since a re
sidual was equivalent to the difference between true value and its cor
responding predicted value, a positive residual resulted from 
underestimated canopy height from the model. For both models shown 
in Fig. 7, although positive residuals span a larger extent than the 
negative residuals over true canopy height, the number of negative 
values (TRF: 5377, 100% LM: 5332) was much larger than that of the 
positive (TRF: 3311, 100% LM: 3356), indicating that both the TRF 
model and 100% LM tend to overestimate the LiDAR-derived values. 
The expanded portions of Fig. 7, focusing only on low and high canopy 
heights, shown in Figures S2 and S3 respectively, provide more details 
regarding predictive abilities of the models. The corresponding statistics 
for low canopy height data show that the number of negative residuals 
(TRF: 4383, 100% LM: 4373) was greater than that of the positives (TRF: 
1873, 100% LM: 1883), revealing that the models were inclined to 
overestimate heights when the true canopy was low. A locally weighted 
regression (loess) curve was also plotted to reveal the trends of the 

correlation which was not evident in the parametric model (Cleveland 
and Devlin, 1988). The loess regression curve shows little bias and 
almost no fluctuation over this parameter space. Interestingly, this 
finding was opposite than what we found from the relationship between 
the high canopy values and predictive abilities of the TRF model and 
100% LM. Specifically, the high-quantile canopy heights were almost all 
positive values, indicating that the models were very likely to under
estimate height when the true canopy was relatively tall (Figure S3). 
Moreover, the loess regression curve also implies that there was a pos
itive correlation between residuals and high canopy values. In other 
words, the error of prediction of two models has a tendency of becoming 
larger at the places where the true canopy was higher. This conclusion 
applies to both the TRF model and 100% LM. 

Switching coordinate axes, we investigated the similarities and dis
crepancies between the TRF model and 100% LM to understand how 
residual quantiles were distributed relative to true canopy height. Fig. 8 
clearly shows that this correlation pattern was mainly driven by the 
combination of low canopy heights and small residuals. The clustered 
points within the 5–95% percentiles indicate overall good predictive 
performance for both the TRF model and 100% LM. The loess regression 
curve on this plot show that the true canopy heights were either rela
tively high or relatively low for residuals in opposing directions (i.e., 
positive and negative). In other words, most of extreme residuals occur 
for conditions where canopy heights were either relatively high or low. 
For the two different models, the slope of loess regression curve of the 
5–95% quantile was much steeper than that of the 1–5% and 99–100% 
quantiles. Hence, we can draw a conclusion that the relationship be
tween residual and degree of variation of true canopy height was rela
tively sensitive within the 5–95% percentile. Beyond these quantiles, a 
small variation of residuals may lead to a small change in true canopy 
height, especially in the positive residual variable space. 

4. Discussion 

To the best of our knowledge, this is an important study shedding 
new light on how to investigate the relationship between tree canopy 
height and predictive abilities of TRF and GRF models. To achieve the 
goal, we built different random forest models in both global and local 

Fig. 4. Validation results of TRF model.  

Table 3 
Statistical analysis of different configuration formats of local and global models.   

RMSE VE R2  Moran’s I Z score P value 

100% LM 2.1481 4.6127 0.8759 0.0957 18.4671 <0.01 
90% LM 2.1037 4.4236 0.8809 0.0972 18.7682 <0.01 
80% LM 2.0696 4.2812 0.8848 0.1010 19.5004 <0.01 
70% LM 2.0464 4.1852 0.8875 0.1072 20.6834 <0.01 
60% LM 2.0344 4.1359 0.8888 0.1156 22.3085 <0.01 
50% LM 2.0338 4.1330 0.8889 0.1261 24.3368 <0.01 
40% LM 2.0446 4.1767 0.8877 0.1384 26.7013 <0.01 
30% LM 2.0667 4.2670 0.8852 0.1519 29.3142 <0.01 
20% LM 2.0996 4.4038 0.8815 0.1663 32.0774 <0.01 
10% LM 2.1430 4.5872 0.8765 0.1809 34.8935 <0.01 
TRF model 2.1961 4.8170 0.8714 0.1953 37.6746 <0.01  
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Fig. 5. Spatial distribution patterns of residuals for TRF model (0% LM) and 100% LM (A1, B1 and C1 are comprised of spatial distribution pattern of residual for TRF 
model; A2, B2 and C2 are comprised of spatial distribution pattern for 100% LM. Black lines indicate streams in the study area.) 

Fig. 6. Quantile distribution of residual for TRF model and 100% LM (Note: Residual 0 has been removed from the figure to better visualize quantiles).  
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dimensions. The key findings of our study are: (1) the spatial autocor
relation can be mitigated in some degrees while the accuracy may not 
necessarily be improved by taking into account spatial variance; (2) the 
predictive abilities of TRF and GRF are closely associated with the tree 
canopy height over the target area. There are at least four primary 
findings from this work. 

First, unlike most previous studies only focusing on one criterion for 
evaluation, here we used two, namely prediction accuracy and spatial 
predictive abilities, in order to select the optimal hybrid model for 
estimating canopy height (García et al., 2018; Ota et al., 2014). In this 
study, the 100% LM can be recognized as the best model to estimate the 
tree canopy height as our criterion primarily focuses on mitigation of 
spatial effect. Although there are discrepancies existing among the sta
tistical indicators regarding numerical accuracy, these subtle differences 
can be negligible when only taking the spatial autocorrelation of re
siduals into consideration. Thus, a trade-off approach based on actual 
needs of a given project is highly desirable before making a selection on 
TRF-GRF fusion models. This approach covers a balance between 
maximizing model accuracy and minimizing spatial autocorrelation. In 
this study, for instance, a 50% LM would be chosen if the difference in 

Moran’s I is negligible and researchers are less concerned with the 
mitigation of spatial clustering. 

Second, models tend to produce under and overestimates when the 
corresponding true tree canopy heights are very high and low, respec
tively. The correlation between true canopy height and residuals also 
exhibits an overall increasing trend for both of the models. At the highest 
quantiles of canopy height, residuals of the TRF model and 100% LM 
likewise tend to increase as well, revealing that model performance is 
reduced at the most extreme height present in this dataset. In the 
meantime, however, neither an apparent increasing nor decreasing 
relationship is apparent for the lowest canopy heights, suggesting that 
the performance is relatively unpredictable at the extreme low end of the 
height distribution. 

Third, the relationship between model performance and the degree 
of variation of true canopy height can vary between different quantiles. 
Based on our findings, the variation of true canopy height can possibly 
change either very slowly (e.g., the 99–100% quantiles) or rapidly (e.g., 
the 5–95% quantiles) in a certain scope of residual. This evidence clearly 
depicts how TRF and GRF models perform, in terms of its relationship 
with canopy height, within different quantiles. A steep change of true 
canopy height can probably be detected when models have relatively 
low errors, while the stable variation is associated with its weak per
formance, indicating that the elasticity of true canopy height to model 
performance varies across quantiles. Moreover, comparisons between 
the two models show a very similar overall trend of the loess regression 
curve, implying that mitigating the effect of spatial non-stationarity 
barely makes a difference in the degree of variation of tree canopy 
height. 

Table 4 
Statistical distribution of residuals for TRF model and 100% LM.  

Quantile (%) TRF model (m) 100% LM (m) 

1 −6.40 −5.74 
5 −3.63 −3.58 
95 3.83 3.76 
99 6.97 7.03  

Fig. 7. Correlation between residual and true canopy height based on height quantile (the black, blue and red solid lines represent the borders of median, 95% 
quantile and 99% quantile of true canopy height, respectively. True canopy height minus predicted canopy height equals residual). (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the web version of this article.) 
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Finally, large residuals occur at the most extreme ends of the tree 
canopy heights when fitting TRF and GRF models. The GRF model is 
capable of reducing high residuals and hence improving performance, 
especially for those points falling within the 99% − 100% quantiles. This 
conclusion is especially beneficial for data preparation and model 
application. First, although not all of the high and low canopies lead to 
extreme residuals, it is still highly recommended to balance the sample 
size of various intervals of canopy heights within a study area. Second, 
management implications of model errors could differ radically. For 
instance, errors in the mid-canopy height might have minor effects on 
estimated shading of riparian areas, but if the data were being used to 
identify the habitats or potential shading from the highest trees, the 
model would perform poorly. 

5. Conclusions 

There are still certain limitations to our data preparation and model 
application. First, the algorithm uses the closest available GRF model to 
predict tree canopy height at a new spatial location. A major change of 
spatial distribution patterns in training and validation datasets may 
produce a different result. An aggregated pattern of training or valida
tion pixel can make it difficult to mitigate the extent of spatial auto
correlation at new locations by using a misleading sub-model. 
Therefore, spatial arrangement of sample data is an important corner
stone in random forest model design. Second, this research is limited by 
its mountainous landscapes. Slopes have been demonstrated to cause 
error in LiDAR DEMs and hence carrying through to the derived CHM 
(Tinkham et al., 2012). We suggest that more generalized findings of 
taking account of spatial non-stationarity in random forest modeling are 
expected to be obtained over the areas with various landforms and 
vegetation characteristics. 

Based on Landsat and LiDAR derived data, this study contributes to a 
deeper understanding of approaches to model tree canopy heights at 

local and global scales by using the existing GRF algorithm to bring in 
the concept of non-stationarity. The relationship between tree canopy 
height and predictive ability of the models implies that it is appropriate 
to assess model performance based on different quantiles. In our case, 
the lowest and highest canopies result in overestimated and under
estimated height predictions, respectively. Comparisons between TRF 
and GRF models show that the latter can lower predefined extreme re
siduals, and thus make the model performance relatively stronger. 
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Fig. 8. Correlation between residual and true canopy height based on residual quantile (Solid lines from left to right represent the borders of 1%, 5%, 95% and 99% 
quantiles of residual. True canopy height minus predicted canopy height equals residual). 
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