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ARTICLE INFO ABSTRACT

Keywords: Although the random forest algorithm has been widely applied to remotely sensed data to predict characteristics
Tree canopy height of forests, such as tree canopy height, the effect of spatial non-stationarity in the modeling process is oftentimes
LiDAR

neglected. Previous studies have proposed methods to address the spatial variance at local scales, but few have
explored the spatial autocorrelation pattern of residuals in modeling tree canopy height or investigated the
relationship between canopy height and model performance. By combining Light Detection and Ranging (LiDAR)
and Landsat datasets, we used spatially-weighted geographical random forest (GRF) and traditional random
forest (TRF) methods to predict tree canopy height in a mixed dry forest woodland in complex mountainous
terrain. Comparisons between TRF and GRF models show that the latter can lower predefined extreme residuals,
and thus make the model performance relatively stronger. Moreover, the relationship between model perfor-
mance and degree of variation of true canopy height can vary considerably within different height quantiles.
Both models are likely to present underestimates and overestimates when the corresponding tree canopy heights
are high (>95% quantile) and low (<median), respectively. This study provides a critical insight into the rela-
tionship between tree canopy height and predictive abilities of random forest models when taking account of
spatial non-stationarity. Conclusions indicate that a trade-off approach based on the actual need of project should
be taken when selecting an optimal model integrating both local and global effects in modeling attributes such as
canopy height from remotely sensed data.

Random forest
Spatial non-stationarity
Landsat

1. Introduction

Vegetation features have large impacts on the physical, chemical and
biological characteristics of aquatic ecosystems (Allan, 2004; Roth,
Westhoff, Huwald et al., 2010). Among the functional properties of
vegetation cover, tree canopy height controls heat exchange processes
by regulating wind speed, relative humidity, and both shortwave and
longwave radiation between the atmosphere and land surface (Hardy,
Melloh, Koenig et al., 2004; Klos,Link, 2018; Tao, Guo, Li et al., 2016),
and this can impact watershed-scale diurnal stream temperatures
depending on shading effects from the riparian tree canopy (DeWalle,
2010; Loicq, Moatar, Jullian et al., 2018; Roth et al., 2010). Therefore, a
high-quality and effective measurement of tree canopy height is essen-
tially important for not only forest management but also stream habitats
protection and restoration, such as large wood recruitment (Schuett-

Hames,Roorbach,Conrad, 2012).

Methods for collecting data on tree canopy features vary widely
depending on factors such as scale and extent of study, available re-
sources, and physical or logistical restrictions. For example, field mea-
surements provide direct and accurate quantification but are expensive
and often limited in spatial extent and challenging in certain regions
(Buckley,Isebrands,Sharik, 1999; McIntosh,Gray,Garman, 2012). In
such cases, remote sensing (RS) techniques can be adopted to provide
accurate, cost-effective and multi-spectral data at diverse spatial reso-
lutions. Airborne Light Detection and Ranging (LiDAR) technology has
been used to achieve 3D depiction of tree canopy cover, including both
horizontal measurements and vertical structural information (Hudak,
Lefsky, Cohen et al., 2002; Singh, Vogler, Shoemaker et al., 2012; Zald,
Ohmann, Roberts et al., 2014). While this 3D depiction may lead to a
good performance of forest cover assessment, LiDAR also has
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disadvantages including cost of collecting and processing data and
limited spatial and temporal coverage. As characteristics of forest can-
opies, such as height and density, are correlated with spectral indexes of
Landsat imagery (Huang, Yang, Wylie et al., 2001; Karlson, Ostwald,
Reese et al., 2015), an important application of LiDAR-derived datasets
is for the calibration and validation of models for Landsat datasets with
larger spatiotemporal extents to achieve mutual complementarity. One
potential method for calibrating and validating is through random forest
models.

Random forest, a decision tree-based ensemble learning method, has
been considered as an effective algorithm for both classification and
regression modeling analysis, even with non-parametric and non-linear
datasets (Belgiu,Dragut, 2016; Karlson et al., 2015). In addition to
providing high accuracy, random forest algorithms can handle complex
data with a variety of features. Therefore, numerous studies have
investigated the possibility of using LiDAR-derived data to train random
forest models to predict tree canopy height from satellite imagery fea-
tures and have achieved reasonable results. For instance, Staben,Lucieer
and Scarth (2018) predicted tree canopy height over different vegetation
communities to understand their transitions between 1987 and 2016 by
developing a random forest model with LiDAR-derived canopy height,
vegetation indices and spectral band ratios from Landsat images. Ota,
Ahmed, Franklin et al. (2014) integrated Landsat and LiDAR data to
model mean canopy height for a tropical forest in Cambodia. The
research demonstrated that predictive models can achieve the highest
accuracy when including forest disturbance and recovery metrics from
Landsat derived data in a novel random forest model. Ahmed et al.
(2015) demonstrated that random forest models for canopy structure
incorporating disturbance history information derived from LiDAR data
outperformed multiple regression models in terms of three different
forest classes, namely mature, young and their combination, with sub-
stantially lower statistical errors.

Although random forest algorithms have been widely recognized to
have good performance and applied in a range of domains, such as urban
planning and forest management, past attempts usually neglected
spatially non-stationary effect in distributions of sample data. Such
unweighted spatial modeling processes may make the result problematic
given the potential for spatially-varying relationships between depen-
dent and independent variables (i.e., non-stationarity). Previous
research showed that non-stationarity in remote sensing-derived data,
such as clustered distribution of land use/cover classification, may lead
to a less accurate predictive models (Wang,Stephenson,Qu, 2019). Thus,
training datasets may also be unable to properly reflect the relationship
between predictive and explanatory variables at a local scale due to
spatial heterogeneity. Moreover, the range of predicted values can be
restricted by the selected training dataset, and variance of feature values
may not be fully taken into consideration in the modeling process. This is
due to the partial coverage of study area and thus a possible unequal
distribution pattern of selected training data. Georganos, Grippa, Niang
Gadiaga et al. (2019) developed an improved and straightforward model
for address these challenges, namely Geographical Random Forest
(GRF), to predict population density in Dakar, Senegal in Africa. The
model uses Geographical Weighted Regression (GWR) as a reference and
generates a local random forest model in each observational location.
Then, the closest local model was used for its neighbors at validation and
prediction steps.

While spatial non-stationarity has been recognized as a potential
issue when applying random forest methods, an in-depth analysis of this
issue integrated with tree canopy height prediction is still lacking
(Sekuli¢, Kilibarda, Heuvelink et al., 2020; Staben et al., 2018). Spe-
cifically, assessments of the effect of non-stationarity on machine
learning modeling outcomes of remotely sensed data would benefit an
array of researchers interested in landscape level data where LiDAR is
not readily available. Our overall objective was to assess the role of
spatial non-stationarity in modeling tree canopy height from Landsat
data by using traditional random forest (TRF) and GRF models trained
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and validated with independent subsets of LiDAR data. Our specific
goals were: (1) to investigate whether the accuracy of predicted tree
canopy height could be improved or not by taking into account spatial
variance; (2) to detect spatial autocorrelation patterns of residuals in
modeling tree canopy height by using TRF and GRF separately and (3) to
discover whether the predictive ability of TRF and GRF models would be
associated with tree canopy height or not. We hypothesized that GRF
would improve model fit to some degree and that tradeoffs may exist
between modeling effort and accuracy when using the two approaches
in a mixed vegetation landscape.

2. Materials and methods
2.1. Study area

The Payette National Forest is one of the protected lands managed by
the United States federal government, and covers approximately 9300
km? in the western USA (Fig. 1). It is specifically located in the Hitt
Mountains of Payette National Forest in the state of Idaho, USA, and was
selected because the area contains a mix of open, low, and tall canopy
land covers in complex terrain. The distribution pattern of true canopy
height for testing dataset was plotted in quantile format (Fig. 2). Less
training data in high quantiles (95%: 19.53 m; 99%: 23.30 m) reinforced
our suspicion that predictive ability of a random forest model would be
impacted by the limited samples for training. The study area was in the
upper reaches of the Mann Creek watershed within the Columbia River
basin at altitudes of ca.1300 m to 1500 m. The landscape is composed of
interspersed forest, sagebrush communities, high mountain ridges and
deep canyons. Forested areas contain eight species of conifer trees,
including ponderosa pine and Douglas-fir (~1000 m - ~1800 m) and
whitebark pine (~2300 m) (Lund, 2004), with the forest mainly con-
taining coast Douglas-fir reaching at a maximum height of 55 m (Carder,
1995). Riparian areas are dominated by evergreen forest, shrub/scrub,
sagebrush, etc. Vegetation type and canopy height are of interest to
conservation and management of this watershed because of the effects of
riparian vegetation on stream water quality and temperature. Climate at
the site is “Warm-summer Mediterranean” climate type under Koppen
Climate Classification, with precipitation of ca. 1270 mm per year (Peel,
Finlayson,McMahon, 2007).

2.2. Data acquisition

2.2.1. LiDAR point cloud data

Airborne LiDAR technology has been widely used to retrieve three-
dimensional information from the features on the Earth’s surface by
emitting and recording laser pulses. The Canopy Height Model (CHM)
represents the height of objects above the ground that a LiDAR system
observes, reflecting the distance between the Earth surface and the top
of the trees in the present research (Khosravipour, Skidmore, Wang
et al., 2015). Feature positional information, including coordinates
(horizontal) and elevation (vertical), can be collectively stored in a point
of data wherever the LiDAR laser pulse hits. A large amount of these
individual points eventually forms a LiDAR point cloud dataset,
providing a detailed three-dimensional basis for generating and raster-
izing CHMs. In this study, the LiDAR point cloud data comprised of 4
(column) by 3 (row) image sets (Fig. 1) were obtained from the National
Geospatial Program developed by the U.S. Geological Survey (USGS) in
the American Society for Photogrammetry and Remote Sensing (ASPRS)
LAS format. Original downloaded dataset was a zipped LAZ file and can
be uncompressed through a laszip function embedded in the LAStools
software (Isenburg, 2012). The point cloud data were collected from
September 9th to October 14th, 2017. Traditional method of developing
a CHM is to do a raster subtraction between the Digital Surface Model
(DSM) representing top of the surface and Digital Terrain Model (DTM)
representing ground elevation (Pitkdanen et al., 2004). To remove the
possible empty pixels in this subtraction, a triangulation-based pit-free
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Fig. 1. Study area and spatial distribution of testing and training datasets.

algorithm of Khosravipour, Skidmore, Isenburg et al. (2014) was used to
generate the rasterized CHM through the lidR package in R (v.3.6.3).
Final resolution of the CHM derived from the point cloud data was 0.25
m by 0.25 m. We note that the outermost pixels for each point cloud
derived raster were eliminated in the process of creating the CHM due to
the edge effect of LiDAR data. We calculated the mean value of the
LiDAR CHM for each 30 m x 30 m pixel corresponding to each Landsat
pixel as a reference of true canopy height (Pascual et al., 2010). Since the
true canopy height is defined as LiDAR-derived canopy height, it is
worth mentioning that this reference cannot avoid some error associated
with the derivation process and determination of the ground surface

(Tinkham, Smith, Hoffman et al., 2012). Post-hoc, after modeling was
complete, we excluded vegetation, primarily sagebrush which occurs in
relatively homogenous stands in uplands, less than or equal to 1 m in
further analysis.

2.2.2. Landsat imagery

The Landsat 8 Operational Land Imager (OLI) level 2 product, which
has a spatial resolution of 30 m x 30 m, was obtained from the USGS
Earth Explorer website (https://earthexplorer.usgs.gov/). The Landsat 8
OLI level 2 product which has been atmospherically corrected provides
the land surface reflectance (LSF) data derived from the level 1 product
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Fig. 2. Quantile distribution of true canopy height as derived from LiDAR for training dataset.

(Masek et al., 2006). The acquisition date was October 6th, 2017 in
order to eliminate cloud effects and to be effectively synchronous with
the date of the LiDAR data acquisition.

The reflectance of a vegetated surface depends on the structural and
optical properties of the vegetation and underlying soil (Myneni et al.,
1995). However, the blue band is sensitive to the aerosol conditions in
the atmosphere (Flood, Danaher, Gill et al., 2013). Therefore, only
green, red, near-infrared (NIR), short-wave infrared 1 (SWIR1), and
short-wave infrared 2 (SWIR2) LSF bands in the acquired dataset were
used to calculate the vegetation indices and band ratios. To cover as
many spectral indices as possible for correlation and feature importance
tests for running random forest models, a total of 27 parameters,
including 5 LSF bands, 12 vegetation indices, and 10 band ratios
calculated from a combination of 5 LSF bands were used as input pre-
dictor variables (Table 1) to predict the canopy height from Landsat
data. Parameters (i.e., CVI, GDVI, Band Ratios and LSF bands) were then
normalized to a range of —1 to 1 to reduce data redundancy and stan-
dardize values across parameters.

2.3. Random forest

2.3.1. Traditional random forest

As an aggregated machine learning algorithm, random forest algo-
rithms are comprised of decision trees and Classification And Regression
Trees (CART) on a basis of bootstrap aggregation (“bagging” for short)
(Breiman, 2001). Compared with a single CART, random forest less
likely suffers from the overfitting problem as it eventually takes the
average of the predicted values across decision trees from the bootstrap
iterations. Generally speaking, there are four basic stages when running
the random forest model: (1) select n random samples from the given
dataset for training; (2) build a decision tree for each selected sample by
integrating features; (3) set up the optimal number of decision trees
based on time cost and computational ability; (4) take the average of the
predicted value from each tree. Before applying the algorithm, it is
crucial to make a right decision on the selection of the training and
validation datasets in order to proceed to the next step. Fig. 1 shows that
the pixels used for training and validation were randomly distributed
within the extent of our study area. Moreover, to reduce the underlying

Table 1
Vegetation indices, band ratios and land surface reflectance bands used in this
study.
Vegetation Index Formula
i i NIR — R
Normahzf?d Difference ed (Tucker, 1979)
Vegetation Index NIR + Red
(NDVI)
Green Soil Adjusted NIR — Green

Vegetation Index
(GSAVI)

Green Normalized
Vegetation Index
(GNDVI)

Chlorophyll Vegetation
Index (CVI)

Normalized Difference
Greenness Index
(NDGI)

Normalized Burn Ratio
SWIR2 (NBR)

Normalized Burn Ratio
SWIR1 (NDII)

Green Difference
Vegetation Index
(GDVD)

Modified Soil Adjusted
Vegetation Index
(MSAVI)

Difference Vegetation
Index (DVI)

Soil adjusted Vegetation
index (SAVI)

Modified Simple Ratio
(MSR)

Band Ratio

LSF bands

Sripada et al., 2006
(NIR 7 Green 1 05)7(1  0.5) Crpadacta )

NIR —
Wg:::(}%uschmzmn and Nagel, 1993)
NIR , Red

incini et al., 2
Groon Groen (Vincini et al., 2008)

Green — Red
———— (Bannari et al.,, 1995
Green - Red (Bannari et al., 5)

NIR — SWIR2
NIR + SWIR2
NIR — SWIR1
NIR + SWIR1
NIR —Green (Sripada et al., 2006)

(Ji et al., 2011)

(Ji et al., 2011)

(2*NIR +1 —/(2*NIR + 1)? - 8*(NIR — Red))/2 (Qi
et al., 1994)
NIR —Red (Tucker, 1979)

NIR — Red
(NIR + Green + 0.5)*(1 +0.5)

[(NIR/RED) — 1]/[(\/NIR/RED) + 1] (Chen, 1996)

Red/Green; SWIR1/NIR
NIR/Green; SWIR2/Green
NIR/Red; SWIR2/Red
SWIR1/Green; SWIR2/NIR
SWIR1/Red; SWIR2/SWIR1
Green; Red; NIR; SWIR1; SWIR2

(Huete, 1988)
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autocorrelation between these two datasets, pixels were also equally
dispersed over the space. Additionally, to cover as many of the height
samples as possible over different landscape units, we consequently
selected the same number of pixels for training and validation datasets,
resulting in a total of 8688 pixels for each. The TRF algorithm was
implemented using the open source Scikit-learn module in Python
(Pedregosa, Varoquaux, Gramfort et al., 2011).

Calibration of the model was divided into three main stages. First, as
we previously mentioned, 27 vegetation indices and band ratios were
applied in the present research following the study of Staben et al.
(2018). One difference, however, is that a feature selection technique
was employed to discover and omit those irrelevant predictor variables.
It has been widely recognized that removing highly correlated features
with less importance is able to reduce training time and overfitting is-
sues (Rogers,Gunn, 2005). Therefore, a correlation matrix and feature
importance tool provided by the Scikit-learn module were applied to
detect collinearity and importance score (i.e., Gini importance or Mean
Decrease Impurity) of variables, respectively (Louppe, Wehenkel, Sutera
et al., 2013). Second, the number of decision trees used in the random
forest algorithm (n_estimators) was optimized by assessing the rela-
tionship between generalization error and model complexity (Breiman,
2001; Nadeau,Bengio, 2000). Generally, a larger number of decision
trees provides better training, but previous studies also demonstrated
that predictive accuracy of the model will eventually converge when the
number of decision trees continues to be increased while still increasing
the computational time (Oshiro,Perez,Baranauskas, 2012; Pal, 2005). To
find an optimal number of decision trees, therefore, users usually adjust
the input value of a parameter (model complexity) to achieve the lowest
generalization error. Similarly, at the last step, this research also
investigated the best number of features at each split (max_features), the
maximum depth of each tree (max_depth), the minimum number of
samples to split each node (min_samples_split) and the minimum num-
ber of samples for a leaf node (min_samples_leaf) by obtaining and
comparing the score of 10-fold cross-validation through sklearn package
in Python (Ojala,Garriga, 2010). In addition, the automatic tuning
process of these hyperparameters is on the basis of grid-search method
over a parameter grid (Paper, 2020). After achieving the optimal model,
the calibration result was evaluated, and validation data were tested by
using the root mean squared error (RMSE, Equation (1)) and variance of
error (VE, Equation (2)).

. I
RMSE = nZ(p, x) @

VE = (e; — ) 2

i=1

In Equations (1) and (2), n represents the number of sample points, p;
and x; were the predicted and observed or true canopy height at point i,
respectively. e; denotes the difference between p; and x; at point i while e
is the average of errors for all sample points.

2.3.2. Geographical random forest

GRF is most appropriate when spatial heterogeneity is present in
covariates and model predictions are biased because the residuals are
spatially autocorrelated (Hengl, Nussbaum, Wright et al., 2018). Previ-
ous studies demonstrated that these issues can be addressed using local
models with simulations taking account of neighboring effects (Wang
etal., 2019). Therefore, this study applied an existing spatial model GRF
integrated with the geographically weighted regression (GWR) model
and random forest to detect spatial autocorrelation patterns of residuals
in modeling tree canopy height. The residual was calculated by Equation

3):
X; — p; = Residual 3

The core working mechanism of GRF is similar to that of the GWR,
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with respect to bandwidth and kernel selections (Fotheringham,Bruns-
don,Charlton, 2003). In bandwidth selection, an adjustable kernel, the
maximum radius at which a target point can reach, was used to fit in
various spatial density of data points. Compared with the fixed kernel
which uses a constant distance as the bandwidth, the bandwidth of the
so-called adaptive kernel in GRF is equivalent to the distance to the nth
nearest neighbor (Wang et al., 2019). Due to the unequal distribution of
vegetation over semi-arid mountainous watersheds, the adaptive kernel
is able to capture as much information as possible to account for the
aggregated tall vegetation on north-facing slopes along streams in the
present research. In the case of random forest algorithm, a specific local
model will be calculated for each training sample at location i. A n
number of neighboring points were taken into consideration when cal-
ibrating the corresponding GRF for the sample point. Thus, the major
difference between TRF (Equation (4)) and GRF (Equation (5)) is the
dimensionality over space.

pi =Pxi+-te )

Ditab) = BitapyXi T+ + €i(ap) %)

In Equations (4) and (5), p; represents the predicted canopy height at
location i, the other contribution of selected Landsat-derived features
besides f;x; is omitted in the middle, ¢; is the prediction error at the
corresponding site and (a, b) represents the coordinates at location i. In
the calibration of GRF, the two most important parameters regarding
number of decision trees and selected features, namely n_estimators and
max_features, follow the calibrated results of TRF applied to the same
dataset. At the validation stage, a new target of sample pixels only uses
the closest tuned GRF model to predict the corresponding mean canopy
height. The GRF algorithm has been developed in R by Kalogirou and
Georganos (2018) as the R package ‘SpatialML’ published as a version of
0.1.3 in 2019.

To avoid a highly biased and discrete prediction, the GRF is designed
to allow for partial weighting of the local model versus global model. For
example, an equal weighting fusion represents 50% weights from local
model and 50% weights from global model (hereafter, “50% LM”). In
this study, we examined the model fits of various weightings of TRF vs.
GRF by comparing configurations of eleven levels of local weighting
from 0% LM (TRF) to 100% LM at ten percent intervals. We evaluated
the fit among models using the three statistical measurements used for
TRF, along with Moran’s I, calculated to evaluate the degree of spatial
autocorrelation of residuals for each combination type (Moran, 1948).

3. Results
3.1. Parameter selection and model optimization

After feature selection and model optimization, Table 2 shows the
ranking of importance of all initial 27 features and decisions of whether
to retain or omit them. The extent of correlation between every two
features was reflected by the Pearson coefficient in the correlation ma-
trix with heatmap (Figure S1). In comparison, the screening process
follows a criterion that features with a coefficient score equal or>0.96
and lower ranking of importance were ruled out. We eventually retained
12 features as the inputs when building decision trees for the random
forest models. The Modified Simple Ratio (MSR), a function of Near
Infrared (NIR) and Red band, was demonstrated to be the most impor-
tant feature in the dataset, with an importance score of 0.1683. After
weighting the correlation and importance attributes in pairs, 4 band
ratios and 11 vegetation indexes were then excluded in the training
process of the random forest procedure (Table 2). For tuning the most
influential parameter, n_estimators, the initial value of this non-zero
parameter was set to 1, leading to the lowest cross validation score of
0.7022. Testing numbers fall into the range between 1 and 1951, with an
interval of 50. The variation of testing results tends to be stable when it
reaches to the last 9 values ranging, from 1551 to 1951 (Fig. 3A). The
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Table 2
Features retained and omitted for random forest to estimate canopy height for
Landsat data after training with LiDAR data.

Feature Importance Ror Feature Importance Ror
score (6] score (6]

MSR 0.1683 R NIR/Green 0.0092 o

MSAVI 0.1565 R SWIR2/ 0.0079 R
Red

SAVI 0.1552 o CVI 0.0075 R

NDVI 0.1483 o NDGI 0.0074 o

NIR/Red 0.1012 [0} Red/Green 0.0072 o

NDII 0.0556 o SWIR2/ 0.0070 R
Green

SWIR1/NIR 0.0297 R SWIR1/ 0.0070 R
Red

NBR 0.0259 o NIR 0.0059 R

SWIR2/NIR 0.0201 o SWIR2 0.0059 o

DVI 0.0122 R GDVI 0.0057 o

SWIR2/ 0.0120 R Red 0.0054 o

SWIR1
Green 0.0109 R SWIR1 0.0054 o
SWIR1/ 0.0106 R GSAVI 0.0025 o
Green
GNDVI 0.0093 (¢]

Note: R denotes retained feature and O denotes omitted feature.

cross-validation scores plateaued at values above ~ 1000. Fig. 3B shows
the results of a smaller scope of values ranging from 1480 to 1519, with
the highest cross validation score (0.84649) occurring when the number
of decision trees was 1500 (Fig. 3B). Based on the fixed n_estimators at
1500, the optimal values of max_depth (9), min_samples_leaf (13),
min_samples_split (2), and max_features (7) were then obtained indi-
vidually by tuning the model complexity to reach the highest cross
validation score of 0.85026.

3.2. Model validation and predictive performance

As a base model, we examined the ability of the TRF to predict
canopy height using Landsat data by comparing the predictions for 8688
points to an independent subset of the LiDAR data (Fig. 4). Linear
regression resulted in a slope and intercept of 0.9952 and 0.0446,
respectively, reflecting a near 1:1 relationship. Moreover, the high co-
efficient of determination value (R? = 0.8714) implies that the plotted
data were close to the fitted regression line, while a dispersive pattern
indicates that the predicted and true canopy height dataset of the TRF
model may have a slightly higher variance at higher height values.

TRF-GRF fusion models were generated after selecting a distance of
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56 neighboring points as the adaptive kernel when calibrating the local
models. Comparison of model fit among the fusion models revealed that
RMSE, VE, and R? obtained their minimum (2.0338), minimum
(4.1330) and maximum (0.8889) values at 50% LM level, respectively
(Table 3). The assessment of spatial statistics, namely Moran’s I and the
Z score, shows that there were some discrepancies in the spatial distri-
bution patterns of residuals between the model configurations, reflect-
ing that the explanatory ability due to spatial non-stationarity was quite
variable. Moreover, the extremely small P values further confirm that
these positive spatial autocorrelations (clustered patterns) were signif-
icant (Table 3). In spite of being significantly aggregated, the extent of
being spatially autocorrelated was apparently mitigated when the 100%
LM was applied.

We compared the spatial distribution patterns of residuals between
the TRF (0% LM) model and 100% LM model to visually evaluate the
mitigating influence of the GRF on spatial non-stationarity (Fig. 5). As a
whole, the degree of spatial autocorrelation becomes weaker when the
100% LM was employed (Table 3). Transitions can be more evident in
the Section A and the first two rows of Section B, where more trees have
grown along streams within the Mann Creek watershed. Notably,
although the transition shows that most clustering can be mitigated by
applying GRF, certain areas with extremely high or low residuals are
barely changed. For example, areas with extremely low and high re-
siduals were hardly mitigated even after applying the 100% LM. Visu-
ally, we note extreme residuals exist primarily in the areas with very
high and low canopy heights and were moderately mitigated by models
with high GRF weighting. To define the scope of extreme residuals, we
used quantile statistics to visualize their distributions and extract those
values in high quantiles. Fig. 6 depicts the quantile distribution of the
residual for the TRF model and 100% LM. Table 4 further shows more
details with respect to quantile statistics. The 95% and 99% quantiles
residuals from the TRF model were 3.83 m and 6.97 m for true canopy
height, respectively. It is worth mentioning that the middle bin of the
histogram was omitted in the figure due to the large quantity (>4000) of
0 values. In this case, residuals less than the 5% quantile and greater
than the 95% quantile were defined as the extremes in the present study.
Similarly, to set thresholds for defining low and high canopy heights,
quantiles of true canopy height were also detailed. As a result, the 1%,
5%, 95%, and 99% quantiles of true canopy height were 1.06 m, 1.38 m,
19.53 m and 23.30 m, respectively. Additionally, a five-number sum-
mary was used to provide more information regarding the distribution of
the observations. The minimum, 1st quantile, median, 3rd quantile and
maximum were 1 m, 3.72m, 7.78 m, 12.88 m and 29.51 m, respectively.
For convenience of further comparisons, those canopy heights lower
than the median (<7.78 m) and higher than the 95% quantile (>19.53
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Fig. 3. Test results of n_estimators (number of decision trees) in calibration for TRF model (x axis represents the number of decision trees used for testing; y axis
represents the cross-validation score). The initial testing value, n_estimators = 1, has been removed from Fig. 3A as its corresponding cross-validation score (0.7022)

is out of the listed range.
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correlation which was not evident in the parametric model (Cleveland
Tab.le _3 . . . . and Devlin, 1988). The loess regression curve shows little bias and
Statistical analysis of different configuration formats of local and global models. . . . .
almost no fluctuation over this parameter space. Interestingly, this
RMSE  VE R? Moran’sI ~ Zscore P value finding was opposite than what we found from the relationship between
100% LM 21481 46127 08759  0.0957 184671 <0.01 the high canop.y'values and‘predlctlv.e abilities of .the TRF model and
90% LM 21037  4.4236  0.8809  0.0972 18.7682  <0.01 100% LM. Specifically, the high-quantile canopy heights were almost all
80% LM 2.0696 42812  0.8848  0.1010 19.5004  <0.01 positive values, indicating that the models were very likely to under-
70% LM 2.0464 41852  0.8875  0.1072 20.6834  <0.01 estimate height when the true canopy was relatively tall (Figure S3).
60% LM 20344 41359 08888 01156 22.3085 <001 Moreover, the loess regression curve also implies that there was a pos-
50% LM 2.0338 41330  0.8889  0.1261 243368  <0.01 . > & . mp P
40% LM 2.0446 41767  0.8877  0.1384 267013 <0.01 itive correlation between residuals and high canopy values. In other
30% LM 2.0667  4.2670  0.8852  0.1519 29.3142  <0.01 words, the error of prediction of two models has a tendency of becoming
20% LM 2.0996  4.4038  0.8815  0.1663 32.0774  <0.01 larger at the places where the true canopy was higher. This conclusion
10% LM 21430 45872  0.8765  0.1809 34.8935  <0.01 applies to both the TRF model and 100% LM
TRFmodel 21961  4.8170  0.8714  0.1953 37.6746  <0.01

m) are hereafter defined as the “low canopy” and “high canopy”,
respectively.

3.3. Statistical analysis of TRF and GRF models

Our results show patterns about how canopy height impacts the
variation of residuals of the two different models (Fig. 7). Since a re-
sidual was equivalent to the difference between true value and its cor-
responding predicted value, a positive residual resulted from
underestimated canopy height from the model. For both models shown
in Fig. 7, although positive residuals span a larger extent than the
negative residuals over true canopy height, the number of negative
values (TRF: 5377, 100% LM: 5332) was much larger than that of the
positive (TRF: 3311, 100% LM: 3356), indicating that both the TRF
model and 100% LM tend to overestimate the LiDAR-derived values.
The expanded portions of Fig. 7, focusing only on low and high canopy
heights, shown in Figures S2 and S3 respectively, provide more details
regarding predictive abilities of the models. The corresponding statistics
for low canopy height data show that the number of negative residuals
(TRF: 4383, 100% LM: 4373) was greater than that of the positives (TRF:
1873, 100% LM: 1883), revealing that the models were inclined to
overestimate heights when the true canopy was low. A locally weighted
regression (loess) curve was also plotted to reveal the trends of the

Switching coordinate axes, we investigated the similarities and dis-
crepancies between the TRF model and 100% LM to understand how
residual quantiles were distributed relative to true canopy height. Fig. 8
clearly shows that this correlation pattern was mainly driven by the
combination of low canopy heights and small residuals. The clustered
points within the 5-95% percentiles indicate overall good predictive
performance for both the TRF model and 100% LM. The loess regression
curve on this plot show that the true canopy heights were either rela-
tively high or relatively low for residuals in opposing directions (i.e.,
positive and negative). In other words, most of extreme residuals occur
for conditions where canopy heights were either relatively high or low.
For the two different models, the slope of loess regression curve of the
5-95% quantile was much steeper than that of the 1-5% and 99-100%
quantiles. Hence, we can draw a conclusion that the relationship be-
tween residual and degree of variation of true canopy height was rela-
tively sensitive within the 5-95% percentile. Beyond these quantiles, a
small variation of residuals may lead to a small change in true canopy
height, especially in the positive residual variable space.

4. Discussion

To the best of our knowledge, this is an important study shedding
new light on how to investigate the relationship between tree canopy
height and predictive abilities of TRF and GRF models. To achieve the
goal, we built different random forest models in both global and local
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Fig. 5. Spatial distribution patterns of residuals for TRF model (0% LM) and 100% LM (A1, B1 and C1 are comprised of spatial distribution pattern of residual for TRF
model; A2, B2 and C2 are comprised of spatial distribution pattern for 100% LM. Black lines indicate streams in the study area.)
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Table 4
Statistical distribution of residuals for TRF model and 100% LM.

Quantile (%) TRF model (m) 100% LM (m)

1 —6.40 -5.74
5 —3.63 —3.58
95 3.83 3.76
99 6.97 7.03

dimensions. The key findings of our study are: (1) the spatial autocor-
relation can be mitigated in some degrees while the accuracy may not
necessarily be improved by taking into account spatial variance; (2) the
predictive abilities of TRF and GRF are closely associated with the tree
canopy height over the target area. There are at least four primary
findings from this work.

First, unlike most previous studies only focusing on one criterion for
evaluation, here we used two, namely prediction accuracy and spatial
predictive abilities, in order to select the optimal hybrid model for
estimating canopy height (Garcia et al., 2018; Ota et al., 2014). In this
study, the 100% LM can be recognized as the best model to estimate the
tree canopy height as our criterion primarily focuses on mitigation of
spatial effect. Although there are discrepancies existing among the sta-
tistical indicators regarding numerical accuracy, these subtle differences
can be negligible when only taking the spatial autocorrelation of re-
siduals into consideration. Thus, a trade-off approach based on actual
needs of a given project is highly desirable before making a selection on
TRF-GRF fusion models. This approach covers a balance between
maximizing model accuracy and minimizing spatial autocorrelation. In
this study, for instance, a 50% LM would be chosen if the difference in

International Journal of Applied Earth Observations and Geoinformation 101 (2021) 102353

Moran’s I is negligible and researchers are less concerned with the
mitigation of spatial clustering.

Second, models tend to produce under and overestimates when the
corresponding true tree canopy heights are very high and low, respec-
tively. The correlation between true canopy height and residuals also
exhibits an overall increasing trend for both of the models. At the highest
quantiles of canopy height, residuals of the TRF model and 100% LM
likewise tend to increase as well, revealing that model performance is
reduced at the most extreme height present in this dataset. In the
meantime, however, neither an apparent increasing nor decreasing
relationship is apparent for the lowest canopy heights, suggesting that
the performance is relatively unpredictable at the extreme low end of the
height distribution.

Third, the relationship between model performance and the degree
of variation of true canopy height can vary between different quantiles.
Based on our findings, the variation of true canopy height can possibly
change either very slowly (e.g., the 99-100% quantiles) or rapidly (e.g.,
the 5-95% quantiles) in a certain scope of residual. This evidence clearly
depicts how TRF and GRF models perform, in terms of its relationship
with canopy height, within different quantiles. A steep change of true
canopy height can probably be detected when models have relatively
low errors, while the stable variation is associated with its weak per-
formance, indicating that the elasticity of true canopy height to model
performance varies across quantiles. Moreover, comparisons between
the two models show a very similar overall trend of the loess regression
curve, implying that mitigating the effect of spatial non-stationarity
barely makes a difference in the degree of variation of tree canopy
height.
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Fig. 7. Correlation between residual and true canopy height based on height quantile (the black, blue and red solid lines represent the borders of median, 95%
quantile and 99% quantile of true canopy height, respectively. True canopy height minus predicted canopy height equals residual). (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this article.)
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Finally, large residuals occur at the most extreme ends of the tree
canopy heights when fitting TRF and GRF models. The GRF model is
capable of reducing high residuals and hence improving performance,
especially for those points falling within the 99% — 100% quantiles. This
conclusion is especially beneficial for data preparation and model
application. First, although not all of the high and low canopies lead to
extreme residuals, it is still highly recommended to balance the sample
size of various intervals of canopy heights within a study area. Second,
management implications of model errors could differ radically. For
instance, errors in the mid-canopy height might have minor effects on
estimated shading of riparian areas, but if the data were being used to
identify the habitats or potential shading from the highest trees, the
model would perform poorly.

5. Conclusions

There are still certain limitations to our data preparation and model
application. First, the algorithm uses the closest available GRF model to
predict tree canopy height at a new spatial location. A major change of
spatial distribution patterns in training and validation datasets may
produce a different result. An aggregated pattern of training or valida-
tion pixel can make it difficult to mitigate the extent of spatial auto-
correlation at new locations by using a misleading sub-model.
Therefore, spatial arrangement of sample data is an important corner-
stone in random forest model design. Second, this research is limited by
its mountainous landscapes. Slopes have been demonstrated to cause
error in LiDAR DEMs and hence carrying through to the derived CHM
(Tinkham et al., 2012). We suggest that more generalized findings of
taking account of spatial non-stationarity in random forest modeling are
expected to be obtained over the areas with various landforms and
vegetation characteristics.

Based on Landsat and LiDAR derived data, this study contributes to a
deeper understanding of approaches to model tree canopy heights at
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local and global scales by using the existing GRF algorithm to bring in
the concept of non-stationarity. The relationship between tree canopy
height and predictive ability of the models implies that it is appropriate
to assess model performance based on different quantiles. In our case,
the lowest and highest canopies result in overestimated and under-
estimated height predictions, respectively. Comparisons between TRF
and GRF models show that the latter can lower predefined extreme re-
siduals, and thus make the model performance relatively stronger.
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