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The quantity and nutritional quality of forage are key drivers for ungulate populations, including mule deer
(Odocoileus hemionus) and Rocky Mountain elk (Cervus elaphus nelsoni), in the western U.S., but current vege-
tation maps are too coarse spatially and temporally to effectively characterize fine-scale habitat. To address some
of these gaps, we tested a novel approach using existing vegetation surveys, maps, and remotely sensed data to
develop fine-scale forage species distribution models (SDMs) across Idaho, USA. We modelled 20 forage species
that are suitable for mule deer and Rocky Mountain elk. Climatic, topographic, soil, vegetation, and disturbance
variables were attributed to approximately 44.3 million habitat patches generated using multi-scale object-ori-
ented image analysis. Lasso logistic regression was implemented to produce predictive SDMs. We evaluated if the
inclusion of distal environmental variables (i.e., indirect effects) improved model performance beyond the in-
clusion of proximal variables (i.e., direct physiological effect) only. Our results showed that all models provided
higher predictive accuracy than chance, with an average AUC across the 20 forage species of 0.84 for distal and
proximal variables and 0.81 for proximal variables only. This indicated that the addition of distal variables
improved model performance. We validated the models using two independent datasets from two regions of
Idaho. We found that predicted forage species occurrence was on average within 10% of observed occurrence at
both sites. However, predicted occurrences had much less variability between habitat patches than the validation
data, implying that the models did not fully capture fine-scale heterogeneity. We suggest that future efforts will
benefit from additional fine resolution (i.e., less than 30 m) environmental predictor variables and greater ac-
counting of environmental disturbances (i.e., wildfire, grazing) in the training data. Our approach was novel both
in methodology and spatial scale (i.e., resolution and extent). Our models can inform ungulate nutrition by
predicting the occurrence of forage species and aide habitat management strategies to improve nutritional
quality.

1. Introduction

The nutritional quantity and quality of forage is an important pop-
ulation driver of ungulates in the western U.S., including mule deer
(Odocoileus hemionus; Hurley et al., 2017; Tollefson et al., 2011; Toll-
efson et al., 2010), Rocky Mountain elk (Cervus elaphus nelson; Cook
et al., 2016; Cook et al., 2004; White et al., 2010), bighorn sheep (Ovis
canadensis; Enk et al., 2001), and moose (Alces alces; Monteith et al.,
2015; Schrempp et al., 2019). With habitat changes related to climate
and declines in ungulate populations in the western U.S., the nutritional
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content and productivity of ungulate forage is becoming increasingly
important to understand (Monteith et al., 2015; Schrempp et al., 2019;
White et al., 2010). Recent research has suggested that managing sum-
mer and winter ranges to increase forage productivity (e.g., quantity and
quality) could increase recruitment in ungulate populations (Lukacs
et al., 2018; Proffitt et al., 2016). Furthermore, higher productivity of
forage has been shown to partially compensate for other environmental
drivers, such as predation, harvest, and weather conditions (Lukacs
et al., 2018; Melis et al., 2009; Monteith et al., 2015).

Many ungulate species, including mule deer and Rocky Mountain
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elk, are highly sought-after game species that are economically impor-
tant to state wildlife agencies and local communities (Arnett and
Southwick, 2015). Ensuring the long-term persistence of ungulate pop-
ulations is a management priority for state wildlife agencies particularly
when recent declines in populations have been observed (White et al.,
2010). Habitat management and restoration aimed at improving the
nutritional quality and quantity of forage is a common population
management tool used by state wildlife agencies (Cook et al., 2016;
Schrempp et al., 2019). Additionally, the ability to quantify the het-
erogeneity of forage across broad landscapes is useful for researchers
demonstrating mechanistic links between forage nutrition and ungulate
populations (Schrempp et al., 2019).

Understanding ungulate nutrition can be informed by predicting the
relative abundance, biomass, or nutritional quality of important forage
species. However, a critical first step in determining the distribution of
forage conditions across the landscape is predicting the occurrence of
those forage species, thereby providing wildlife managers with the
initial pieces of fine-scale information needed to improve habitats and in
turn populations. National mapping efforts such as LANDFIRE (www.lan
dfire.gov), the USGS Gap Analysis Project (http://gapanalysis.usgs.
gov/), and the National Land Cover Database (www.mrlc.gov) have
mapped vegetation across large spatial scales but lack information on
individual forage species distributions. Additionally, the fine scale
vegetation assessments needed to evaluate the distribution of forage
species across a broad landscape are limited. Alternatively, species dis-
tribution models (SDMs) can be used to make predictions of individual
forage species occurrence at any scale of interest. SDMs may use a
number of statistical approaches including generalized linear models,
Bayesian hierarchies, maximum entropy models (MaxEnt), classification
and regression trees, Random Forest, and logistic regression (e.g., Hegel
et al., 2010; Merow et al., 2014).

In SDMs, environmental variables can be described by their rela-
tionship with the species being predicted. These variables can be
considered either proximal, in that they exert direct physiological effects
on forage species, or distal, which influence forage indirectly. For
instance, mean minimum temperature and depth to soil restrictive layer,
which have direct effects on cellular and root growth respectively,
would be considered proximal environmental variables (Prentice et al.,
1992). Water uptake by forage species is directly affected by 30-year
normal minimum precipitation, total annual precipitation, and avail-
able water supply in the soil (Austin and Van Niel, 2011; Nippert and
Knapp, 2007). These variables would also be considered proximal. Distal
environmental variables, including elevation, slope and aspect, influ-
ence plant processes indirectly and are often used as surrogates for
proximal variables (Austin, 2002; Austin and Van Niel, 2011), but this
can lead to inaccurate representations of species-environment relation-
ships (Austin and Van Niel, 2011; Merow et al., 2014). A growing
consensus in the ecological literature suggests the incorporation of
variables based on their functional scale will yield more robust models,
provide stronger predictions, and provide more reliable inferences of
ecological relationships (McGarigal et al., 2016; Miller et al., 2015; Store
and Jokimaki, 2003; Weaver et al., 2012). Whether the inclusion of
distal variables improve the functional scale of SDMs beyond proximal
variables alone is relatively unknown across broad landscapes. To
effectively inform ungulate nutrition using fine-scale predicted distri-
butions of forage, we used a novel combination of habitat patches
derived from object-oriented segmentation of high-resolution (1 m)
imagery and percent probability of select plant species occurrence based
on logistic regression with the least absolute shrinkage and selection
operator (lasso), which handles multi-collinearity and reduces model
complexity without the need for advanced parameter tuning (Dormann
et al., 2013; Hastie et al., 2017; Tibshirani, 1996). Our objectives were
(1) to predict forage species occurrence across Idaho, USA at a fine-scale
(i.e., habitat patches), and (2) to assess if the inclusion of distal variables
improved model performance beyond proximal variables only. We
focused on 20 forage species in Idaho, divided across four life forms
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(grass, forb, shrub, and tree), that are suitable forage for mule deer or
Rocky Mountain elk. The combined range of mule deer and Rocky
Mountain elk are spread across the state and both species are closely
monitored and managed within Idaho. Even though we focused on these
two ungulate species, our approach can be used to predict the distri-
bution of forage species that are nutritionally important to other wildlife
species (i.e., Schrempp et al., 2019).

2. Methods
2.1. Study area

Idaho (216,440 km?) is ecologically diverse due to vast topograph-
ical and climatic gradients, resulting in a range of habitat types
including: dry canyon grasslands, xeric shrublands and steppe, dunes,
deciduous forests and shrublands, non-native herbaceous lands, arable
land, Palouse prairie, wetlands, riparian woodlands, dry and mesic
coniferous forests, subalpine forests, and rocklands Idaho Department of
Fish and Game (IDFG), 2017. East-west mountain ranges and the Salmon
River naturally divide the state into two regions with different climactic,
topographic, and biotic characteristics; northern Idaho (i.e., the
Panhandle) and southern Idaho.

2.2. Data

Vegetation survey data were collected by the Bureau of Land Man-
agement (BLM) and IDFG between 2012 and 2016 (Table A.1). Surveys
consisted of 1,525 50 or 100 m transects sampled every 0.5 or 1 m using
the line-point intercept method (Canfield, 1941; Herrick et al., 2005).
This method limits observer subjectivity by dropping a pin at each point
and recording all intersected forage species as well as interceptions with
rock, litter, duff, bare ground, lichen, and moss. The data sources we
used mitigated location bias through stratified sampling; however, the
line-point intercept transects could be biased due to site accessibility and
invisible factors such as soil condition (Canfield, 1941). Additionally,
with each line-point on a transect, the observations are not spatially
independent. Point thinning could be used to further decrease spatial
dependence among the sampling points but would also result in data loss
for modelling (Aratjo and Guisan, 2006). With any method, including
line-point intercept, rare species are likely to be missed (Vittoz and
Guisan, 2007). Greater sample size can be used to overcome the problem
of independent sampling and species rarity (Everson et al., 1990),
therefore we chose to keep all line-point observations to prevent loss of
precision in occurrence estimates for less common species.

We initially identified all forage species that are suitable for either
mule deer or Rocky Mountain elk as potential modelling candidates
(Alldredge et al., 2002; Cook, 2002; Cox et al., 2009; Frisina et al., 2008;
Hayden et al., 2008). From these, 20 forage species were selected based
on the number of occurrences in the vegetation surveys, representing a
variety of life forms (i.e., grass, shrub, forb, and tree). Occurrences for
the 20 selected forage species ranged from 97 to 11,481, with grasses
being the most abundant and trees the least (Table 1). The total number
of sampled points was 84,971. Some forage species were difficult to
distinguish within a genus (i.e., sedge (Carex spp.), lupine (Lupinus spp.),
and willow (Salix spp.)), thus were grouped by genus for modelling
purposes. We modelled forage species presence statewide because the
combined range of mule deer and Rocky Mountain elk cover Idaho and
because forage species occurrence was of interest to wildlife managers
for informing habitat management to improve nutritional quantity and
quality of other wildlife species.

To model forage presence statewide, we first utilized multi-scale
object-oriented image analysis, which identifies natural boundaries
and patches in the landscape based on color and shape to create rela-
tively homogenous polygons (i.e., habitat patches). This approach pro-
vides better characterization of landscape patterns than a conventional
per-pixel approach (Burnett and Blaschke, 2003; Lobo, 1997) and
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Table 1

Forage species selected for distribution modelling and the number of times
observed in the field data (out of 84,971 points). Scientific name, common name,
and life form are included.

Scientific name Common name Life Number of
form points

Pseudoroegneria spicata Bluebunch Grass 11,481
wheatgrass

Poa secunda Sandberg bluegrass Grass 7.067

Festuca idahoensis Idaho fescue Grass 5.818

Calamagrostis rubescens Pinegrass Grass 3.052

Carex spp. Sedge spp. Grass 2.134

Lupinus spp. Lupine spp. Forb 3.554

Balsamorhiza sagittata Arrowleaf Forb 1.323
balsamroot

Achillea millefolium Common yarrow Forb 1.133

Geranium viscosissimum Sticky purple Forb 373
geranium

Mahonia repens Creeping Oregon Shrub 1.103
grape

Artemisia tridentata ssp. Mountain big Shrub 6.571

vaseyana sagebrush

Purshia tridentata Antelope bitterbrush Shrub 3.317

Symphoricarpos albus Common snowberry Shrub 2.746

Amelanchier alnifolia Saskatoon Shrub 721
serviceberry

Physocarpus malvaceus Mallow ninebark Shrub 386

Populus tremuloides Quaking aspen Tree 581

Prunus virginiana Chokecherry Tree 594

Pseudotsuga menziesii Douglas-fir Tree 413

Salix spp. Willow spp. Tree 699

Pinus contorta Lodgepole pine Tree 97

provided us with a more meaningful fine-scale unit of analysis. Using
eCognition Developer 9.2 (Trimble Inc., Westminster, CO), 1 m resolu-
tion National Agriculture Imagery Program imagery (NAIP 2015; http://
www.insideidaho.org) was segmented into polygons based on blue,
green, red, and near infrared (NIR) spectral values. NAIP from 2011 was
substituted in a few instances where areas were obscured by snow or
clouds. Following testing, a shape value of 0.1 and a compactness value
of 0.3 were selected within eCognition, producing polygons defined
more by color and smoothness rather than shape and compactness. This
helped minimize variation in vegetation characteristics within polygons
and capture variation between polygons. Approximately 44.3 million
polygons were delineated across Idaho from our segmentation
procedure.

Next, we attributed the segmented polygons with 28 environmental
variables using the ArcPy Python site package in ArcGIS 10.4 (ESRI,
Redlands, CA) with climate, topography, soil, vegetation, and distur-
bance using the mean for continuous variables and mode for indexed
variables. We identified 12 environmental variables as proximal, which
we believe have direct physiological effects on forage and 14 distal
environmental variables, which have indirect effects on forage
(Table A.2). For our modelling comparison, we generated separate
model sets using only the 12 proximal variables and using all 28 distal
and proximal (distal-proximal) variables. Climatic variables included
30-year normal temperature (°C) and precipitation (mm) values from
PRISM climate data 1981-2010 (PRISM Climate Group, Oregon State
University, http://prism.oregonstate.edu, created 2015), downscaled to
a 250 m resolution using cubic convolution for precipitation and an
empirical algorithm for temperature (Holden et al., 2011). Topographic
variables included elevation (m), slope (deg), aspect (deg), topographic
wetness index (determines hydrologic influence; Moore et al., 1993),
slope position index (classifies hilltops, valley bottoms, exposed ridges,
and flat plains), landscape curvature index (indicates if surface is convex
or concave), and solar radiation index were generated from a 10 m
digital elevation model (DEM; http://www.insideidaho.org). Aspect
was transformed into index values to measure northness (i.e., cosine of
aspect in radians) and eastness (i.e., sine of aspect in radians). The solar

Ecological Informatics 60 (2020) 101170

radiation index was calculated separately for each degree of latitude
across Idaho using average radiation through the main growing season
(15 May through 31 August 2015) using equations from Fu and Rich
(2002) implemented in ArcGIS 10.4.

Soil characteristic variables were generated by stitching together the
Natural Resource Conservation Service’s (NRCS) Soil Survey Geographic
(SSURGO) and State Soil Geographic (STATSGO) 1901-2015 surveys
across Idaho. Variables included soil available water supply (cm),
percent clay, percent sand, percent silt, percent organic matter, percent
calcium carbonate, pH, cation-exchange capacity (mEq/100 g), and
depth to restrictive layer (cm) (Natural Resource Conservation Service,
http://websoilsurvey.nres.usda.gov/). Vegetation variables at 30 m
resolution included percent canopy cover of trees from the 2011 Na-
tional Land Cover Database (NLCD; Holmer et al., 2015) and percent
canopy cover of shrubs (LANDFIRE 1.1.0, https://landfire.gov/).
Disturbance variables included time since most recent wildfire (years)
and wildfire frequency (years) between 1984 and 2014 derived from 30
m Monitoring Trends in Burn Severity data (MTBS; Eidenshink et al.,
2007). The centroid latitude and longitude of each polygon were also
included to examine locational influences. To limit focus on areas of
natural vegetation we used 30 m USDA National Agricultural Statistics
Service (NASS; www.nass.usda.gov) data to omit agricultural areas,
barren land, and perennial snow and ice from the analysis and results.
NLCD data was used to omit developed areas.

2.3. Modelling

SDMs are widely used for predicting species occurrence, but each
method has strengths and weaknesses. MaxEnt has emerged in the
ecological literature as one of the most popular approaches (Merow
etal., 2013; Phillips et al., 2017). However, the use of MaxEnt requires a
considerable number of decisions regarding appropriate data inputs and
software settings (Merow et al., 2013). Standard logistic regression uses
presence and absence data, which has been shown to be better suited for
fine-scale datasets than presence-only approaches such as MaxEnt
(Huang and Frimpong, 2015). However, standard logistic regression has
also been shown to overfit models (Gaston and Garcia-Vinas, 2011). In
contrast, lasso logistic regression performs equally well or better than
MaxEnt (Gaston and Garcia-Vinas, 2011; Huang and Frimpong, 2015).
Additionally, Huang and Frimpong (2015) demonstrated that lasso lo-
gistic regression, which uses presence and absence data, was better
suited for fine-scale datasets than presence-only approaches such as
MaxEnt.

We employed lasso logistic regression (Tibshirani, 1996) via the
‘glmnet’ package in R (Friedman et al., 2010) to predict the probability
of forage species presence within polygons. The lasso logistic regression
applies a penalty term to the maximum likelihood function which forces
variable coefficients to become zero if no improvement in model per-
formance is observed (Hastie et al., 2017; Tibshirani, 1996). This
effectively eliminates weak predictors from the model, providing a
pragmatic approach for variable selection (Hastie et al., 2017; Tibshir-
ani, 1996).

Vegetation survey data was used to produce a ratio of presence/
absence for each selected forage species at each of the 3,150 unique
polygons used for modelling. Presence counts were determined by the
number of times a forage species was intercepted along transects at each
polygon. Absence counts were calculated as the total number of transect
points in a polygon minus the number of forage species interceptions.
Separate models were generated for each of the 20 forage species using
distal-proximal and proximal variables as explanatory inputs (i.e., two
species models were created per forage species). We selected variable
coefficients from the model where mean cross-validated error was
minimized and used those coefficients to make predictions statewide. To
visualize the predictions, the probability of occurrence for each forage
species was predicted from the models within each polygon in Idaho.
Polygons were then rasterized to a 30 m grid for the purpose of coarse-
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scale visibility.

2.4. Validation

Model predictive accuracy was validated using k-fold cross valida-
tion (k = 10) and the area under the curve (AUC) of the receiver-
operating characteristic (ROC) curve (Hanley and McNeil, 1982). For
each forage species model, we generated a cross validation curve, which
included the number of variables that were selected by the lasso logistic
regression and an average AUC at each penalty. Training data could not
be obtained uniformly across the state, leading to geographic bias and
uncertainty about the predictive power of the models in unsampled
areas. This warranted additional validation to test how accurately the
models were extrapolated statewide.

Vegetation survey data for model validation were acquired from two
independent areas. Validation-focused field sampling on nine target
polygons was conducted in 2019 at the Taylor Ranch Wilderness
Research Station (TWRS), located within the Frank Church River of No
Return Wilderness in central Idaho and approximately 60 km from the
nearest field sites used for model training. Vegetation survey data were
also collected at Rinker Rock Creek Ranch (RRCR) Biological Research
Station, southwest of Hailey, Idaho and approximately 20 km from the
nearest training data. At TWRS, forage species were identified along 50
m transects at every 0.5 m using line-point-intercept for nine segmented
polygons. At RRCR pre-existing line-point intercept data were acquired
from 2018 and 2019. For these data three 25 m transects were sampled
every 0.5 m at each site location. Line-point intercept data were also
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100%
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collected in 2020 at polygons randomly stratified by elevation, latitude,
and longitude to fill in gaps on RRCR from the 2018 and 2019 data. One
or more 50 m line-point intercept transect was sampled at each target
polygon, with point spacing of 0.5 m. The final RRCR dataset had 183
polygons containing at least 100 sampled points each.

Sampling density for the training data averaged 27 points per poly-
gon, while average points per polygons of the validation datasets were
439 at TWRS and 188 at RRCR. The greater number of observations in
the validation datasets increased the likelihood of accurately charac-
terizing each polygon and detecting rare forage species (Everson et al.,
1990). For both validation datasets, percent observed forage species
occurrence was calculated from the number of forage species points
divided by the total number of points in the polygon. This number was
compared to percent probability of occurrence predicted from the
model. We compared average observed and predicted occurrence for all
20 forage species to assess how well the models extrapolated species
occurrence to other parts of Idaho.

3. Results

Models using distal-proximal and proximal environmental variables
were produced for the 20 forage species, applied to all habitat patches (i.
e., polygons; Fig. 1), and mapped across the state (Figs. 2 and 3). Most
predicted probabilities were under 10%, so the results were displayed in
log scale. Many forage species were predicted to occur nearly statewide,
particularly most grass and forb species. However, some forage species
were predicted only for certain regions. Sticky purple geranium

2015 NAIP imagery
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Fig. 1. Habitat patches (i.e., polygons) developed from NAIP imagery and attributed with percent probability occurrence of mountain big sagebrush using a model
containing distal and proximal (distal-proximal) environmental variables. Statewide values are mapped using a natural log scale and aggregated to 30 m resolution.

The inset example is from the Caribou-Targhee National Forest in eastern Idaho.
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Idaho fescue

Bluebunch wheatgrass Sandberg bluegrass Sedge spp.

Pinegrass i : Arrowleaf balsamroot

Mallow ninebark
(5 7

Douglas-fir Quaking aspen Lodgepole pine
%

R E 5 3 S ] 8 e b
Percent probability _

of occurrence 100.0

Fig. 2. Percent predicted occurrence (log-scale) for 20 forage species using both distal and proximal (distal-proximal) environmental variables. See Table 1 for forage
species scientific names.
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ldho fescue

Sedge spp.

Saskatoon serviceberry

Chokecherry i Quaking aspen
f [ "W,

Percent probability _

of occurrence 10.0 100.0

Fig. 3. Percent predicted occurrence (log-scale) for 20 forage species using proximal environmental variables. See Table 1 for forage species scientific names.
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(Geranium viscosissimum), Douglas-fir (Pseudotsuga mengziesii), and
lodgepole pine (Pinus contorta) were predicted only in mountainous and
mesic parts of Idaho. Meanwhile mountain big sagebrush (Artemisia
tridentata ssp. vaseyana) and willow were predicted mainly in southern
Idaho using distal-proximal variables, while antelope bitterbrush (Pur-
shia tridentata) was predicted mainly in southern Idaho using proximal
variables.

3.1. Model accuracy and environmental variables

All models provided higher predictive accuracy than chance, as
demonstrated by the cross-validation curves (Figs. 4 and 5). The inclu-
sion of distal variables broadly resulted in higher accuracy as measured
by AUC. Models containing distal-proximal variables had AUC values
that ranged from 0.68-0.97 with a mean value of 0.84, selecting be-
tween 11 and 28 variables (Table A.3). Whereas models containing only
proximal variables had AUC values ranging from 0.67-0.96 with a mean
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value of 0.81, selecting between 1 and 12 variables (Table A.4).
Pinegrass (Calamagrostis rubescens), mallow ninebark (Physocarpus
malvaceus), and lodgepole pine had models with the highest predictive
accuracies (at or above AUC: 0.94) using both proximal and distal-
proximal variables (Tables A.3 and A.4). The model for common
yarrow (Achillea millefolium) had the lowest predictive accuracy for
distal-proximal (AUC: 0.68) and proximal (AUC: 0.67) variables.
Notably, even though the proximal model for saskatoon serviceberry
(Amelanchier alnifolia) had a relatively high accuracy (AUC: 0.84), it
selected only percent tree cover as a predictor. Also, the models for
willow and chokecherry (Prunus virginiana) had less agreement in cross-
validation as indicated by the wide confidence ribbons (Figs. 4 and 5).
Tables of the model coefficients were produced to assess how the
lasso logistic regression treated individual environmental variables
(Tables A.3 and A.4). For models including the distal-proximal variables
(Table A.3), the lasso logistic regression did not appear to preferentially
select either proximal or distal variables. Percent organic matter and
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Bluebunch wheatgrass Sandberg bluegrass Sedge spp. Idaho fescue
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Fig. 4. Cross validation curves for all forage species distribution models containing both distal and proximal (distal-proximal) environmental variables with con-
fidence interval ribbon shown in red. Vertical dashed lines indicate the penalty value (bottom x-axis) and number of environmental variables selected (top x-axis) for
the highest predictive accuracy (left dashed line) and one standard error from the highest predictive accuracy (right dashed line). See Table 1 for forage species
scientific names. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Cross validation curves for all forage species models containing proximal environmental variables with confidence interval ribbon shown in red. Vertical
dashed lines indicate the penalty value (bottom x-axis) and number of environmental variables selected (top x-axis) for the highest predictive accuracy (left dashed
line) and one standard error from the highest predictive accuracy (right dashed line). See Table 1 for forage species scientific names. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

percent tree cover, which we defined as proximal, were both selected
across all forage species. Other commonly selected environmental var-
iables (for >17 species models) were evenly divided between distal and
proximal, including: slope, northness (i.e., cosine of aspect in radians),
topographic wetness index, 30-year normal minimum precipitation, 30-
year normal minimum temperature, soil percent calcium carbonate,
shrub cover, and latitude. Elevation was the variable most penalized by
the lasso process (for nine of the species models), indicating it was one of
the least valuable predictor variables.

For the models using proximal variables only (Table A.4), percent
tree cover was selected for all forage species models, although most
forage species models (>17) also selected 30-year normal minimum
precipitation and 30-year normal minimum temperature. Fire frequency
and time since the last fire were penalized the most (at least half the
species models) by the lasso process.

3.2. Model validation

3.2.1. TWRS

The validation field survey at TWRS recorded between O and 473
occurrences for the 20 forage species within the nine target polygons
(Table 2). Bluebunch wheatgrass (Pseudoroegneria spicata) and common
snowberry (Symphoricarpos albus) were the most abundant forage spe-
cies observed, having average occurrences of 16.3% and 10.1%
respectively. Sticky purple geranium, mountain big sagebrush, antelope
bitterbrush, chokecherry, quaking aspen (Populus tremuloides), and
lodgepole pine were not observed at all in the target polygons. Among
forage species that were observed, average predicted occurrence was
within 8.3% of observed using distal-proximal variables, and 7.8% of
observed using only proximal variables. In both cases, common snow-
berry was under-predicted and had the greatest difference between
predicted and observed.

Observed occurrences displayed much higher variance between
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Statistics for all forage species in the Taylor Ranch Wilderness Research Station (TWRS) validation polygons (n = 9), including number of observed occurrences, mean
percent observed occurrence plus/minus the standard deviation, and mean probability of occurrence plus/minus the standard deviation for the models containing
distal and proximal environmental variables and proximal only. See Table 2 for forage species scientific names.

Forage species

Number of observed
occurrences

Observed occurrence
(%)

Probability of occurrence (%) (Distal-
Proximal)

Probability of occurrence (%) (Proximal-
only)

Grasses

Bluebunch wheatgrass
Sandberg bluegrass
Sedge spp.

Idaho fescue
Pinegrass

Forbs

Common yarrow

Lupine spp.

Arrowleaf balsamroot

Sticky purple
geranium

Shrubs

Mountain big
sagebrush

Common snowberry

Creeping Oregon grape

Saskatoon serviceberry

Antelope bitterbrush

Mallow ninebark

Trees

Willow spp.
Chokecherry
Douglas-fir
Quaking aspen
Lodgepole pine

473
117
11
89
168

101
14
57
0

419
181
15

173

oo vonN

16.3 £19.93
3.3 +£4.47
0.3 £+ 0.57
3.2 £5.57
2.9 +6.45

2.8 +2.84
0.4 £+ 0.88
2.2 +4.33

10.1 £ 10.54
4.8 +£6.88
0.3 £+ 0.46

2.9 +£8.70

0.0 £0.11

0.6 +£1.68

19.5 £11.91
3.4 +£1.43
1.1 £0.60
1.9+ 145
0.3 £0.22

0.7 £ 0.19
0.7 + 0.27
1.9+ 155
0.0 £+ 0.02

1.4+ 1.19

1.8 £0.57
0.7 +£ 0.36
0.3+ 0.13
1.2 +£1.30
0.3 +£0.25

0.1 +£0.11
0.9 £+ 0.49
0.2 + 0.07
0.1 £+ 0.10
0.0 £+ 0.003

17.8 £5.74
6.6 £+ 2.59
0.9 £+ 0.31
7.6 £+ 4.00
1.3+ 0.97

1.0 £0.33
1.8 £0.36
1.1 £0.40
0.0 £ 0.01

1.7 £ 1.61

2.3 £ 0.55
0.8 +£0.24
0.8 + 0.08
2.4 £+ 3.15
0.2 £0.14

0.6 + 0.46
0.6 + 0.03
0.2 £0.15
0.2 +0.17
0.0 + 0.005

habitat patches than the predicted occurrences for both distal-proximal
and proximal models (Table 2). In most cases there was overlap between
observed and predicted occurrence comparing the average occurrence
plus or minus the standard deviation. Only the predictions for lupine and

Table 3

willow using proximal variables were outside the range (mean =+ s.d.) of
observed occurrences, but these forage species were also rarely

observed.

Statistics for all forage species in the Rinker Rock Creek Ranch (RRCR) Biological Research Station validation polygons (n = 183), including number of observed
occurrences, mean percent observed occurrence plus/minus the standard deviation, and mean probability of occurrence plus/minus the standard deviation for the
models containing distal and proximal environmental variables and proximal only. See Table 2 for forage species scientific names.

Forage species

Number of observed
occurrences

Observed occurrence
(%)

Probability of occurrence (%) (Distal-
Proximal)

Probability of occurrence (%) (Proximal-
only)

Grasses

Bluebunch wheatgrass
Sandberg bluegrass
Sedge spp.

Idaho fescue
Pinegrass

Forbs

Common yarrow

Lupine spp.

Arrowleaf balsamroot

Sticky purple
geranium

Shrubs

Mountain big
sagebrush

Common snowberry

Creeping Oregon grape

Saskatoon serviceberry

Antelope bitterbrush

Mallow ninebark

Trees

Willow spp.
Chokecherry
Douglas-fir
Quaking aspen
Lodgepole pine

1741
3673
910
877
0

142
1020
478
30

4614

148
23

1105

1087
228

105

5.2+6.19
11.2 £ 9.50
2.5+ 8.58
2.7 £6.58

0.4 +1.04
3.1 £3.99
1.4 £2.54
0.1 +0.42

13.7 £13.89

0.5 £+ 3.07
0.1 £+ 0.60
0.0 £ 0.15
3.1 £5.44

2.9+ 12.38
0.7 + 4.07

0.3 +2.41

11.2 £ 4.35
8.3 & 3.50
4.9 £+ 4.07
2.2 +£2.20
0.3 +0.35

0.7 +£0.18
2.7 +1.42
0.6 + 0.32
0.1 +0.03

11.3 £ 4.32

1.0 £0.38
0.4 +£0.22
0.1 £0.08
1.6 £1.25
0.4 +£0.22

0.2 £+ 0.42
0.3 £ 0.12
0.1 £+ 0.04
0.3 +£0.21
0.0 +0.01

9.2 +1.44
11.5 £ 3.17
5.0 £ 2.57
1.6 + 0.96
0.3 £ 0.31

0.7 £ 0.16
2.2+ 0.72
0.5+ 0.23
0.0 £ 0.04

7.9 £2.75

0.9 £0.19
0.9 £0.27
0.7 + 0.03
13.2+8.15
0.1 +£0.07

0.8 +£0.76
0.5 + 0.02
0.1 + 0.06
0.2+0.18
0.0 +£0.01
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3.2.2. RRCR

The validation at RRCR recorded between 0 and 4,614 occurrences
for the 20 forage species of interest (Table 3). The most common forage
species and their average observed occurrence were mountain big
sagebrush (13.7%), sandberg bluegrass (Poa secunda; 11.2%), blue-
bunch wheatgrass (5.2%), antelope bitterbrush (3.1%), willow (2.9%),
and lupine (3.1%). Pinegrass, mallow ninebark, Douglas-fir, and
lodgepole pine were not observed at all in the RRCR sampling. The
biggest difference between predicted and observed average occurrence
was 5.9% for bluebunch wheatgrass, which was over-predicted using
distal-proximal variables, and 10.0% for antelope bitterbrush, which
was over-predicted using proximal variables.

Like TWRS, the observed occurrences at RRCR displayed much
higher variance between habitat patches than the predictions for either
model. (Table 3). Only predictions for saskatoon serviceberry using the
proximal model were outside the range (mean =+ s.d.) of observed oc-
currences, but this forage species was rarely observed.

4. Discussion

Using a novel approach that combines fine-scale habitat patches
derived from object-oriented segmentation and lasso logistic regression,
we predicted forage species occurrence across Idaho at a fine-scale (i.e.,
habitat patches) for 20 forage species suitable for mule deer and Rocky
Mountain elk. We also assessed if the inclusion of distal variables
improved model performance beyond proximal variables only. We
observed that all models provided higher predictive accuracy than
chance, with an average AUC of 0.84 for distal-proximal variables and
an AUC of 0.81 for proximal variables. The inclusion of distal variables
produced slightly higher overall AUC values, demonstrating the value of
including environmental variables in SDMs that have indirect effects on
forage.

4.1. Model accuracy and environmental variables

While predictive accuracies were only slightly higher for models
using distal-proximal variables, in some cases they generated drastically
different statewide patterns. We compared our predicted occurrence
maps to the USDA NRCS plant guide (https://plants.sc.egov.usda.gov/),
which provides coarse (county level) species distribution maps. Visual
comparisons suggest the distal-proximal models better represented
statewide distribution, although there were some exceptions. For
example, neither mountain big sagebrush nor antelope bitterbrush are
commonly found in northern Idaho (Patterson et al., 1985), which
suggests that the distal-proximal model performed better for mountain
big sagebrush in that region, while the proximal model performed better
for antelope bitterbrush (Figs. 3 and 4). Additionally, the proximal
model predicted willow occurrence throughout the state, while the
distal-proximal model was limited to southern Idaho, in contrast with
the findings of Schrempp et al. (2019). This suggests that variables
beyond those with proximal effects are useful for SDMs on a species by
species basis. In some cases, proximal variables alone may be suitable
and have the advantage of containing fewer inputs (i.e., greater
parsimony).

In addition to demonstrating overall good predictive properties, our
models revealed key species-environment relationships that can be
supported by ecological theory. For example, pinegrass is predominately
a forest species and exhibits increased growth in years with higher
precipitation and/or cooler temperatures (Matthews, 2000; Parish et al.,
1996). Respectively, our model exhibited positive correlations with
percent tree canopy cover and 30-year normal minimum precipitation,
and negative correlations with percent shrub canopy cover and 30-year
normal minimum temperature. Pinegrass also has high soil water usage
during its rapid early-season growth and acts as an aggressor for soil
moisture which may explain the positive correlation observed with soil
available water supply (Matthews, 2000). Our model also had a negative
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correlation with depth to soil restrictive layer which may be explained
by pinegrass’ sod-forming root system and occupancy of shallower sites
(Agee, 1993; Matthews, 2000). Furthermore, our models indicated a
strong positive effect from fire frequency, which is reasonable given that
pinegrass is often present following high-severity wildfire events
(Johnson, 1998; Matthews, 2000). Such inferences are needed to better
examine forage distributions, quantity, and timing, and we were able to
pick out similar results for all the forage species models. Therefore, our
results should be useful in informing decisions related to habitat resto-
ration aimed at improving nutritional conditions for ungulates, for
example when prioritizing specific areas for restoration. Our models
could help identify locations that maximize suitability for restoring
multiple forage species, and if used in conjunction with disturbance
severity information (e.g., wildfire severity, or livestock grazing man-
agement), could inform how disturbance regimes might be harnessed to
help manage ungulate habitat.

There are some notable limitations with some of the environmental
variables, although they were included because they represent an inte-
gration of the best available data in remote sensing, landscape fire and
succession modelling, and predictive landscape mapping available for
the entire state. For example, only fires larger than 404 ha (1,000 ac) are
included in MTBS for Idaho (Eidenshink et al., 2007). Additionally,
MTBS generates wildfire layers using entire fire perimeters meaning
unburned or low severity areas within perimeters are not accounted for
separately and may result in commission errors (Sparks et al., 2015). The
soil data we used varied in spatial resolution across the state. Areas with
prime agricultural land were mapped at fine-scale, but many large
remote areas of the state such as wilderness areas were attributed with a
single value for each soil variable. This issue raises questions about the
effectiveness of the models using currently available soil datasets in
remote areas. A potential solution for future studies is use of the prob-
abilistic remapping of SSURGO (POLARIS; Chaney et al., 2016), which
models missing values such as those observed in remote areas of Idaho.
Lastly, some variables were shown to be less important by the lasso
selection process. For instance, elevation, a distal variable, was elimi-
nated for 9 of 20 distal-proximal models, suggesting its impact might be
captured by proximal variables. Fire frequency and time since last fire
were not selected from at least half of the proximal models. Fire is
known to be an important driver in vegetation occurrence (Agee, 1993),
but the rarity with which it occurs compared to the area of Idaho gave us
few reference points for the training data.

Ideally, our analysis would have included all temporal stages of
disturbance and succession. Adequately capturing each successional
stage following an event like wildfire would benefit the models by
providing reference observations for any given point in time. To better
capture disturbance and successional state, two areas of improvement
could be made to strengthen the models. First, additional training data
that captures successional states for both wildfire and other disturbances
not accounted for here (e.g., drought, insects and disease, grazing)
would improve the range of reference conditions in the models. Second,
we suggest other variables might be considered, such as: shrub cover at
finer resolutions (i.e., less than 30 m), tree structural layers, seasonal
effects of temperature and precipitation (e.g. growing season precipi-
tation), influences of interactions with other plant species, and distur-
bance severity, including wildfire or herbivory.

4.2. Model validation

Model validation was performed in two ways. Cross validation,
which allows for validation of the model by holding back a portion of the
training data during each iteration, was used to generate a more robust
model. The resulting AUC values indicated that the models performed
well across the training regions. However, because training data was
unevenly distributed across the state, additional validations were con-
ducted to assess the model’s predictive power in two areas. The vali-
dation at TWRS was limited (i.e., only nine polygons were tested), but it
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provided an opportunity for validation of some forage species not
detected at RRCR. Furthermore, even with a limited sample, predictions
for all forage species were on average within 8.3% of observed, sug-
gesting functional accuracy at the landscape level. Commission errors
were minimal for most forage species, meaning that forage species not
observed were also modelled at nearly 0% probability (Table 2).

The validation at RRCR provided a larger sample than TWRS.
Average predictions at RRCR were within 10% for proximal models and
within only 5.9% for distal-proximal models (Table 3). Commission
errors were also small. This supports the results at TWRS showing that
the models accurately represented average forage species occurrence
across the landscape. However, for both validations the observed oc-
currences were more variable than the predicted occurrences, suggest-
ing the models were not able to capture the heterogeneity at the level of
the habitat patches. This may have been due to the scale of the envi-
ronmental variables, which was coarser than many of the segmented
polygons and would have therefore not sufficiently differentiated adja-
cent habitat patches.

Our results are encouraging for wildlife managers making decisions
regarding habitat management to address nutritional quantity and
quality for ungulates across large areas, such as Idaho. The validation
suggests that the average probability of occurrence for both models is
within 10% of observed. However, at the scale of habitat patches, the
models are underfit such that the observed occurrence of a forage spe-
cies within a habitat patch might be quite different. At the extreme, we
observed one polygon at RRCR with a distal-proximal model prediction
for willow that was 77.4% lower than the observed value, and a prox-
imal model prediction that was 76.8% lower. Such drastic under-
predictions were outliers, but they show how errors for individual
habitat patches can be significant.

4.3. Modelling approach

Our use of the lasso logistic regression to achieve model optimiza-
tion, variable selection, and coefficient estimation for forage distribu-
tion modelling has been implemented infrequently in ecological
research (Gaston and Garcia-Vinas, 2011; Huang and Frimpong, 2015;
Schrempp et al., 2019). One of the greatest challenges in SDMs is
selecting appropriate candidate variables (Aratijo and Guisan, 2006;
Elith and Leathwick, 2009), and the lasso process provides a reasonable
solution. It restrains the effects of the coefficients to identify variables
that contribute little to the explanation of the response and removes
those variables from the model. Consequently, the lasso process treats
issues with multi-collinearity and reduces model complexity (Dormann
et al., 2013; Hastie et al., 2017; Tibshirani, 1996). This approach is
useful in situations like ours, where the information about numerous
environmental variables and their relative influence on multiple forage
species is limited.

Ideally, expert knowledge regarding the underlying mechanisms,
interactions, and complex relationships between forage species and
environmental variables, and between variables themselves should be
incorporated in SDMs (Austin, 2002; Evans et al., 2011). This was sup-
ported by our finding that simply using proximal or distal-proximal
variables did not improve models for all forage species. However,
determining known interactions requires better a priori knowledge
about the forage species being modelled and more careful sampling
design than what was available for our study (Wisz et al., 2013). Our
approach was a necessary simplification of the ecological processes that
limits where forage occurs to create models that can predict forage
occurrence across broad scales.

A non-parametric algorithmic approach like MaxEnt could have been
used to explore non-intuitive relationships (Evans et al., 2011). How-
ever, MaxEnt previously required complex refinements of software set-
tings, while the process for fitting lasso logistic regression was simple
and widely re-producible. Phillips and Dudik (2008) found with specific
parameter tuning, MaxEnt was effective in modelling distributions of
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226 plant species from 6 regions, but this kind of detailed parameter
tuning requires good statistical knowledge and their findings suggest
more regularization may be needed if the number of environmental
variables exceeds 11-13. The release of open-source MaxEnt software
(Phillips et al., 2017) resolves the issues of model transparency and
methods for regularization, which should broaden its appeal. Still, our
expectations were to estimate the relative effects of environmental
variables on forage species occurrence, and extrapolate this information
to predict distributions statewide, which is not as straight forward with
non-parametric methods (Phillips and Dudik, 2008; Whitley and Ball,
2002). Additionally, others have shown that lasso logistic regression
performs better than MaxEnt at finer resolutions (Huang and Frimpong,
2015), which was a critical aspect of our study. There are other ap-
proaches, such as nearest-neighbor imputation, which can capture the
complex variance-covariance structure of unknown relationships (Hen-
derson et al., 2014). Further research toward leveraging the relation-
ships between plant species in SDMs is worthwhile but beyond the scope
of our study. Additionally, the need for fine-resolution environmental
variables will be an issue for any SDM and should be considered a pri-
ority for future efforts.

5. Conclusions

Our novel approach demonstrates an effective method for estimating
probabilities of forage species occurrence at fine spatial resolutions
across broad landscapes to inform nutritional quantity and quality of
ungulate habitat. Our models can be tailored by wildlife resource
managers to assess the nutritional conditions of habitat for other indi-
vidual herbivore species, including species of conservation interest such
as greater sage-grouse, depending on forage preference and nutritional
need. Furthermore, distal environmental variables, which exert indirect
effects on forage, can help improve model accuracy beyond proximal
(direct) variables alone. The validations at TWRS and RRCR indicate
that model errors can be high for individual habitat patches, but average
errors across larger areas are small. Additionally, we suggest that vari-
ables such as shrub cover at finer resolutions (i.e., less than 30 m), tree
structural layers, and more detailed disturbance history may improve
future iterations of the models. Finally, our models can be a manage-
ment tool to predict the presence of forage species across Idaho to inform
habitat management and restoration that improves nutritional quality
and quantity of ungulate habitat and in turn ensures the long-term
persistence of ungulate populations.
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