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A B S T R A C T   

The quantity and nutritional quality of forage are key drivers for ungulate populations, including mule deer 
(Odocoileus hemionus) and Rocky Mountain elk (Cervus elaphus nelsoni), in the western U.S., but current vege
tation maps are too coarse spatially and temporally to effectively characterize fine-scale habitat. To address some 
of these gaps, we tested a novel approach using existing vegetation surveys, maps, and remotely sensed data to 
develop fine-scale forage species distribution models (SDMs) across Idaho, USA. We modelled 20 forage species 
that are suitable for mule deer and Rocky Mountain elk. Climatic, topographic, soil, vegetation, and disturbance 
variables were attributed to approximately 44.3 million habitat patches generated using multi-scale object-ori
ented image analysis. Lasso logistic regression was implemented to produce predictive SDMs. We evaluated if the 
inclusion of distal environmental variables (i.e., indirect effects) improved model performance beyond the in
clusion of proximal variables (i.e., direct physiological effect) only. Our results showed that all models provided 
higher predictive accuracy than chance, with an average AUC across the 20 forage species of 0.84 for distal and 
proximal variables and 0.81 for proximal variables only. This indicated that the addition of distal variables 
improved model performance. We validated the models using two independent datasets from two regions of 
Idaho. We found that predicted forage species occurrence was on average within 10% of observed occurrence at 
both sites. However, predicted occurrences had much less variability between habitat patches than the validation 
data, implying that the models did not fully capture fine-scale heterogeneity. We suggest that future efforts will 
benefit from additional fine resolution (i.e., less than 30 m) environmental predictor variables and greater ac
counting of environmental disturbances (i.e., wildfire, grazing) in the training data. Our approach was novel both 
in methodology and spatial scale (i.e., resolution and extent). Our models can inform ungulate nutrition by 
predicting the occurrence of forage species and aide habitat management strategies to improve nutritional 
quality.   

1. Introduction 

The nutritional quantity and quality of forage is an important pop
ulation driver of ungulates in the western U.S., including mule deer 
(Odocoileus hemionus; Hurley et al., 2017; Tollefson et al., 2011; Toll
efson et al., 2010), Rocky Mountain elk (Cervus elaphus nelson; Cook 
et al., 2016; Cook et al., 2004; White et al., 2010), bighorn sheep (Ovis 
canadensis; Enk et al., 2001), and moose (Alces alces; Monteith et al., 
2015; Schrempp et al., 2019). With habitat changes related to climate 
and declines in ungulate populations in the western U.S., the nutritional 

content and productivity of ungulate forage is becoming increasingly 
important to understand (Monteith et al., 2015; Schrempp et al., 2019; 
White et al., 2010). Recent research has suggested that managing sum
mer and winter ranges to increase forage productivity (e.g., quantity and 
quality) could increase recruitment in ungulate populations (Lukacs 
et al., 2018; Proffitt et al., 2016). Furthermore, higher productivity of 
forage has been shown to partially compensate for other environmental 
drivers, such as predation, harvest, and weather conditions (Lukacs 
et al., 2018; Melis et al., 2009; Monteith et al., 2015). 

Many ungulate species, including mule deer and Rocky Mountain 
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elk, are highly sought-after game species that are economically impor
tant to state wildlife agencies and local communities (Arnett and 
Southwick, 2015). Ensuring the long-term persistence of ungulate pop
ulations is a management priority for state wildlife agencies particularly 
when recent declines in populations have been observed (White et al., 
2010). Habitat management and restoration aimed at improving the 
nutritional quality and quantity of forage is a common population 
management tool used by state wildlife agencies (Cook et al., 2016; 
Schrempp et al., 2019). Additionally, the ability to quantify the het
erogeneity of forage across broad landscapes is useful for researchers 
demonstrating mechanistic links between forage nutrition and ungulate 
populations (Schrempp et al., 2019). 

Understanding ungulate nutrition can be informed by predicting the 
relative abundance, biomass, or nutritional quality of important forage 
species. However, a critical first step in determining the distribution of 
forage conditions across the landscape is predicting the occurrence of 
those forage species, thereby providing wildlife managers with the 
initial pieces of fine-scale information needed to improve habitats and in 
turn populations. National mapping efforts such as LANDFIRE (www.lan 
dfire.gov), the USGS Gap Analysis Project (http://gapanalysis.usgs. 
gov/), and the National Land Cover Database (www.mrlc.gov) have 
mapped vegetation across large spatial scales but lack information on 
individual forage species distributions. Additionally, the fine scale 
vegetation assessments needed to evaluate the distribution of forage 
species across a broad landscape are limited. Alternatively, species dis
tribution models (SDMs) can be used to make predictions of individual 
forage species occurrence at any scale of interest. SDMs may use a 
number of statistical approaches including generalized linear models, 
Bayesian hierarchies, maximum entropy models (MaxEnt), classification 
and regression trees, Random Forest, and logistic regression (e.g., Hegel 
et al., 2010; Merow et al., 2014). 

In SDMs, environmental variables can be described by their rela
tionship with the species being predicted. These variables can be 
considered either proximal, in that they exert direct physiological effects 
on forage species, or distal, which influence forage indirectly. For 
instance, mean minimum temperature and depth to soil restrictive layer, 
which have direct effects on cellular and root growth respectively, 
would be considered proximal environmental variables (Prentice et al., 
1992). Water uptake by forage species is directly affected by 30-year 
normal minimum precipitation, total annual precipitation, and avail
able water supply in the soil (Austin and Van Niel, 2011; Nippert and 
Knapp, 2007). These variables would also be considered proximal. Distal 
environmental variables, including elevation, slope and aspect, influ
ence plant processes indirectly and are often used as surrogates for 
proximal variables (Austin, 2002; Austin and Van Niel, 2011), but this 
can lead to inaccurate representations of species-environment relation
ships (Austin and Van Niel, 2011; Merow et al., 2014). A growing 
consensus in the ecological literature suggests the incorporation of 
variables based on their functional scale will yield more robust models, 
provide stronger predictions, and provide more reliable inferences of 
ecological relationships (McGarigal et al., 2016; Miller et al., 2015; Store 
and Jokimäki, 2003; Weaver et al., 2012). Whether the inclusion of 
distal variables improve the functional scale of SDMs beyond proximal 
variables alone is relatively unknown across broad landscapes. To 
effectively inform ungulate nutrition using fine-scale predicted distri
butions of forage, we used a novel combination of habitat patches 
derived from object-oriented segmentation of high-resolution (1 m) 
imagery and percent probability of select plant species occurrence based 
on logistic regression with the least absolute shrinkage and selection 
operator (lasso), which handles multi-collinearity and reduces model 
complexity without the need for advanced parameter tuning (Dormann 
et al., 2013; Hastie et al., 2017; Tibshirani, 1996). Our objectives were 
(1) to predict forage species occurrence across Idaho, USA at a fine-scale 
(i.e., habitat patches), and (2) to assess if the inclusion of distal variables 
improved model performance beyond proximal variables only. We 
focused on 20 forage species in Idaho, divided across four life forms 

(grass, forb, shrub, and tree), that are suitable forage for mule deer or 
Rocky Mountain elk. The combined range of mule deer and Rocky 
Mountain elk are spread across the state and both species are closely 
monitored and managed within Idaho. Even though we focused on these 
two ungulate species, our approach can be used to predict the distri
bution of forage species that are nutritionally important to other wildlife 
species (i.e., Schrempp et al., 2019). 

2. Methods 

2.1. Study area 

Idaho (216,440 km2) is ecologically diverse due to vast topograph
ical and climatic gradients, resulting in a range of habitat types 
including: dry canyon grasslands, xeric shrublands and steppe, dunes, 
deciduous forests and shrublands, non-native herbaceous lands, arable 
land, Palouse prairie, wetlands, riparian woodlands, dry and mesic 
coniferous forests, subalpine forests, and rocklands Idaho Department of 
Fish and Game (IDFG), 2017. East-west mountain ranges and the Salmon 
River naturally divide the state into two regions with different climactic, 
topographic, and biotic characteristics; northern Idaho (i.e., the 
Panhandle) and southern Idaho. 

2.2. Data 

Vegetation survey data were collected by the Bureau of Land Man
agement (BLM) and IDFG between 2012 and 2016 (Table A.1). Surveys 
consisted of 1,525 50 or 100 m transects sampled every 0.5 or 1 m using 
the line-point intercept method (Canfield, 1941; Herrick et al., 2005). 
This method limits observer subjectivity by dropping a pin at each point 
and recording all intersected forage species as well as interceptions with 
rock, litter, duff, bare ground, lichen, and moss. The data sources we 
used mitigated location bias through stratified sampling; however, the 
line-point intercept transects could be biased due to site accessibility and 
invisible factors such as soil condition (Canfield, 1941). Additionally, 
with each line-point on a transect, the observations are not spatially 
independent. Point thinning could be used to further decrease spatial 
dependence among the sampling points but would also result in data loss 
for modelling (Araújo and Guisan, 2006). With any method, including 
line-point intercept, rare species are likely to be missed (Vittoz and 
Guisan, 2007). Greater sample size can be used to overcome the problem 
of independent sampling and species rarity (Everson et al., 1990), 
therefore we chose to keep all line-point observations to prevent loss of 
precision in occurrence estimates for less common species. 

We initially identified all forage species that are suitable for either 
mule deer or Rocky Mountain elk as potential modelling candidates 
(Alldredge et al., 2002; Cook, 2002; Cox et al., 2009; Frisina et al., 2008; 
Hayden et al., 2008). From these, 20 forage species were selected based 
on the number of occurrences in the vegetation surveys, representing a 
variety of life forms (i.e., grass, shrub, forb, and tree). Occurrences for 
the 20 selected forage species ranged from 97 to 11,481, with grasses 
being the most abundant and trees the least (Table 1). The total number 
of sampled points was 84,971. Some forage species were difficult to 
distinguish within a genus (i.e., sedge (Carex spp.), lupine (Lupinus spp.), 
and willow (Salix spp.)), thus were grouped by genus for modelling 
purposes. We modelled forage species presence statewide because the 
combined range of mule deer and Rocky Mountain elk cover Idaho and 
because forage species occurrence was of interest to wildlife managers 
for informing habitat management to improve nutritional quantity and 
quality of other wildlife species. 

To model forage presence statewide, we first utilized multi-scale 
object-oriented image analysis, which identifies natural boundaries 
and patches in the landscape based on color and shape to create rela
tively homogenous polygons (i.e., habitat patches). This approach pro
vides better characterization of landscape patterns than a conventional 
per-pixel approach (Burnett and Blaschke, 2003; Lobo, 1997) and 
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provided us with a more meaningful fine-scale unit of analysis. Using 
eCognition Developer 9.2 (Trimble Inc., Westminster, CO), 1 m resolu
tion National Agriculture Imagery Program imagery (NAIP 2015; http:// 
www.insideidaho.org) was segmented into polygons based on blue, 
green, red, and near infrared (NIR) spectral values. NAIP from 2011 was 
substituted in a few instances where areas were obscured by snow or 
clouds. Following testing, a shape value of 0.1 and a compactness value 
of 0.3 were selected within eCognition, producing polygons defined 
more by color and smoothness rather than shape and compactness. This 
helped minimize variation in vegetation characteristics within polygons 
and capture variation between polygons. Approximately 44.3 million 
polygons were delineated across Idaho from our segmentation 
procedure. 

Next, we attributed the segmented polygons with 28 environmental 
variables using the ArcPy Python site package in ArcGIS 10.4 (ESRI, 
Redlands, CA) with climate, topography, soil, vegetation, and distur
bance using the mean for continuous variables and mode for indexed 
variables. We identified 12 environmental variables as proximal, which 
we believe have direct physiological effects on forage and 14 distal 
environmental variables, which have indirect effects on forage 
(Table A.2). For our modelling comparison, we generated separate 
model sets using only the 12 proximal variables and using all 28 distal 
and proximal (distal-proximal) variables. Climatic variables included 
30-year normal temperature (◦C) and precipitation (mm) values from 
PRISM climate data 1981–2010 (PRISM Climate Group, Oregon State 
University, http://prism.oregonstate.edu, created 2015), downscaled to 
a 250 m resolution using cubic convolution for precipitation and an 
empirical algorithm for temperature (Holden et al., 2011). Topographic 
variables included elevation (m), slope (deg), aspect (deg), topographic 
wetness index (determines hydrologic influence; Moore et al., 1993), 
slope position index (classifies hilltops, valley bottoms, exposed ridges, 
and flat plains), landscape curvature index (indicates if surface is convex 
or concave), and solar radiation index were generated from a 10 m 
digital elevation model (DEM; http://www.insideidaho.org). Aspect 
was transformed into index values to measure northness (i.e., cosine of 
aspect in radians) and eastness (i.e., sine of aspect in radians). The solar 

radiation index was calculated separately for each degree of latitude 
across Idaho using average radiation through the main growing season 
(15 May through 31 August 2015) using equations from Fu and Rich 
(2002) implemented in ArcGIS 10.4. 

Soil characteristic variables were generated by stitching together the 
Natural Resource Conservation Service’s (NRCS) Soil Survey Geographic 
(SSURGO) and State Soil Geographic (STATSGO) 1901–2015 surveys 
across Idaho. Variables included soil available water supply (cm), 
percent clay, percent sand, percent silt, percent organic matter, percent 
calcium carbonate, pH, cation-exchange capacity (mEq/100 g), and 
depth to restrictive layer (cm) (Natural Resource Conservation Service, 
http://websoilsurvey.nrcs.usda.gov/). Vegetation variables at 30 m 
resolution included percent canopy cover of trees from the 2011 Na
tional Land Cover Database (NLCD; Holmer et al., 2015) and percent 
canopy cover of shrubs (LANDFIRE 1.1.0, https://landfire.gov/). 
Disturbance variables included time since most recent wildfire (years) 
and wildfire frequency (years) between 1984 and 2014 derived from 30 
m Monitoring Trends in Burn Severity data (MTBS; Eidenshink et al., 
2007). The centroid latitude and longitude of each polygon were also 
included to examine locational influences. To limit focus on areas of 
natural vegetation we used 30 m USDA National Agricultural Statistics 
Service (NASS; www.nass.usda.gov) data to omit agricultural areas, 
barren land, and perennial snow and ice from the analysis and results. 
NLCD data was used to omit developed areas. 

2.3. Modelling 

SDMs are widely used for predicting species occurrence, but each 
method has strengths and weaknesses. MaxEnt has emerged in the 
ecological literature as one of the most popular approaches (Merow 
et al., 2013; Phillips et al., 2017). However, the use of MaxEnt requires a 
considerable number of decisions regarding appropriate data inputs and 
software settings (Merow et al., 2013). Standard logistic regression uses 
presence and absence data, which has been shown to be better suited for 
fine-scale datasets than presence-only approaches such as MaxEnt 
(Huang and Frimpong, 2015). However, standard logistic regression has 
also been shown to overfit models (Gastón and García-Viñas, 2011). In 
contrast, lasso logistic regression performs equally well or better than 
MaxEnt (Gastón and García-Viñas, 2011; Huang and Frimpong, 2015). 
Additionally, Huang and Frimpong (2015) demonstrated that lasso lo
gistic regression, which uses presence and absence data, was better 
suited for fine-scale datasets than presence-only approaches such as 
MaxEnt. 

We employed lasso logistic regression (Tibshirani, 1996) via the 
‘glmnet’ package in R (Friedman et al., 2010) to predict the probability 
of forage species presence within polygons. The lasso logistic regression 
applies a penalty term to the maximum likelihood function which forces 
variable coefficients to become zero if no improvement in model per
formance is observed (Hastie et al., 2017; Tibshirani, 1996). This 
effectively eliminates weak predictors from the model, providing a 
pragmatic approach for variable selection (Hastie et al., 2017; Tibshir
ani, 1996). 

Vegetation survey data was used to produce a ratio of presence/ 
absence for each selected forage species at each of the 3,150 unique 
polygons used for modelling. Presence counts were determined by the 
number of times a forage species was intercepted along transects at each 
polygon. Absence counts were calculated as the total number of transect 
points in a polygon minus the number of forage species interceptions. 
Separate models were generated for each of the 20 forage species using 
distal-proximal and proximal variables as explanatory inputs (i.e., two 
species models were created per forage species). We selected variable 
coefficients from the model where mean cross-validated error was 
minimized and used those coefficients to make predictions statewide. To 
visualize the predictions, the probability of occurrence for each forage 
species was predicted from the models within each polygon in Idaho. 
Polygons were then rasterized to a 30 m grid for the purpose of coarse- 

Table 1 
Forage species selected for distribution modelling and the number of times 
observed in the field data (out of 84,971 points). Scientific name, common name, 
and life form are included.  

Scientific name Common name Life 
form 

Number of 
points 

Pseudoroegneria spicata Bluebunch 
wheatgrass 

Grass 11,481 

Poa secunda Sandberg bluegrass Grass 7.067 
Festuca idahoensis Idaho fescue Grass 5.818 
Calamagrostis rubescens Pinegrass Grass 3.052 
Carex spp. Sedge spp. Grass 2.134 
Lupinus spp. Lupine spp. Forb 3.554 
Balsamorhiza sagittata Arrowleaf 

balsamroot 
Forb 1.323 

Achillea millefolium Common yarrow Forb 1.133 
Geranium viscosissimum Sticky purple 

geranium 
Forb 373 

Mahonia repens Creeping Oregon 
grape 

Shrub 1.103 

Artemisia tridentata ssp. 
vaseyana 

Mountain big 
sagebrush 

Shrub 6.571 

Purshia tridentata Antelope bitterbrush Shrub 3.317 
Symphoricarpos albus Common snowberry Shrub 2.746 
Amelanchier alnifolia Saskatoon 

serviceberry 
Shrub 721 

Physocarpus malvaceus Mallow ninebark Shrub 386 
Populus tremuloides Quaking aspen Tree 581 
Prunus virginiana Chokecherry Tree 594 
Pseudotsuga menziesii Douglas-fir Tree 413 
Salix spp. Willow spp. Tree 699 
Pinus contorta Lodgepole pine Tree 97  

T.R. McCarley et al.                                                                                                                                                                                                                            

http://www.insideidaho.org
http://www.insideidaho.org
http://prism.oregonstate.edu
http://www.insideidaho.org
http://websoilsurvey.nrcs.usda.gov/
https://landfire.gov/
http://www.nass.usda.gov


Ecological Informatics 60 (2020) 101170

4

scale visibility. 

2.4. Validation 

Model predictive accuracy was validated using k-fold cross valida
tion (k = 10) and the area under the curve (AUC) of the receiver- 
operating characteristic (ROC) curve (Hanley and McNeil, 1982). For 
each forage species model, we generated a cross validation curve, which 
included the number of variables that were selected by the lasso logistic 
regression and an average AUC at each penalty. Training data could not 
be obtained uniformly across the state, leading to geographic bias and 
uncertainty about the predictive power of the models in unsampled 
areas. This warranted additional validation to test how accurately the 
models were extrapolated statewide. 

Vegetation survey data for model validation were acquired from two 
independent areas. Validation-focused field sampling on nine target 
polygons was conducted in 2019 at the Taylor Ranch Wilderness 
Research Station (TWRS), located within the Frank Church River of No 
Return Wilderness in central Idaho and approximately 60 km from the 
nearest field sites used for model training. Vegetation survey data were 
also collected at Rinker Rock Creek Ranch (RRCR) Biological Research 
Station, southwest of Hailey, Idaho and approximately 20 km from the 
nearest training data. At TWRS, forage species were identified along 50 
m transects at every 0.5 m using line-point-intercept for nine segmented 
polygons. At RRCR pre-existing line-point intercept data were acquired 
from 2018 and 2019. For these data three 25 m transects were sampled 
every 0.5 m at each site location. Line-point intercept data were also 

collected in 2020 at polygons randomly stratified by elevation, latitude, 
and longitude to fill in gaps on RRCR from the 2018 and 2019 data. One 
or more 50 m line-point intercept transect was sampled at each target 
polygon, with point spacing of 0.5 m. The final RRCR dataset had 183 
polygons containing at least 100 sampled points each. 

Sampling density for the training data averaged 27 points per poly
gon, while average points per polygons of the validation datasets were 
439 at TWRS and 188 at RRCR. The greater number of observations in 
the validation datasets increased the likelihood of accurately charac
terizing each polygon and detecting rare forage species (Everson et al., 
1990). For both validation datasets, percent observed forage species 
occurrence was calculated from the number of forage species points 
divided by the total number of points in the polygon. This number was 
compared to percent probability of occurrence predicted from the 
model. We compared average observed and predicted occurrence for all 
20 forage species to assess how well the models extrapolated species 
occurrence to other parts of Idaho. 

3. Results 

Models using distal-proximal and proximal environmental variables 
were produced for the 20 forage species, applied to all habitat patches (i. 
e., polygons; Fig. 1), and mapped across the state (Figs. 2 and 3). Most 
predicted probabilities were under 10%, so the results were displayed in 
log scale. Many forage species were predicted to occur nearly statewide, 
particularly most grass and forb species. However, some forage species 
were predicted only for certain regions. Sticky purple geranium 

Fig. 1. Habitat patches (i.e., polygons) developed from NAIP imagery and attributed with percent probability occurrence of mountain big sagebrush using a model 
containing distal and proximal (distal-proximal) environmental variables. Statewide values are mapped using a natural log scale and aggregated to 30 m resolution. 
The inset example is from the Caribou-Targhee National Forest in eastern Idaho. 
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Fig. 2. Percent predicted occurrence (log-scale) for 20 forage species using both distal and proximal (distal-proximal) environmental variables. See Table 1 for forage 
species scientific names. 
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Fig. 3. Percent predicted occurrence (log-scale) for 20 forage species using proximal environmental variables. See Table 1 for forage species scientific names.  
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(Geranium viscosissimum), Douglas-fir (Pseudotsuga menziesii), and 
lodgepole pine (Pinus contorta) were predicted only in mountainous and 
mesic parts of Idaho. Meanwhile mountain big sagebrush (Artemisia 
tridentata ssp. vaseyana) and willow were predicted mainly in southern 
Idaho using distal-proximal variables, while antelope bitterbrush (Pur
shia tridentata) was predicted mainly in southern Idaho using proximal 
variables. 

3.1. Model accuracy and environmental variables 

All models provided higher predictive accuracy than chance, as 
demonstrated by the cross-validation curves (Figs. 4 and 5). The inclu
sion of distal variables broadly resulted in higher accuracy as measured 
by AUC. Models containing distal-proximal variables had AUC values 
that ranged from 0.68–0.97 with a mean value of 0.84, selecting be
tween 11 and 28 variables (Table A.3). Whereas models containing only 
proximal variables had AUC values ranging from 0.67–0.96 with a mean 

value of 0.81, selecting between 1 and 12 variables (Table A.4). 
Pinegrass (Calamagrostis rubescens), mallow ninebark (Physocarpus 

malvaceus), and lodgepole pine had models with the highest predictive 
accuracies (at or above AUC: 0.94) using both proximal and distal- 
proximal variables (Tables A.3 and A.4). The model for common 
yarrow (Achillea millefolium) had the lowest predictive accuracy for 
distal-proximal (AUC: 0.68) and proximal (AUC: 0.67) variables. 
Notably, even though the proximal model for saskatoon serviceberry 
(Amelanchier alnifolia) had a relatively high accuracy (AUC: 0.84), it 
selected only percent tree cover as a predictor. Also, the models for 
willow and chokecherry (Prunus virginiana) had less agreement in cross- 
validation as indicated by the wide confidence ribbons (Figs. 4 and 5). 

Tables of the model coefficients were produced to assess how the 
lasso logistic regression treated individual environmental variables 
(Tables A.3 and A.4). For models including the distal-proximal variables 
(Table A.3), the lasso logistic regression did not appear to preferentially 
select either proximal or distal variables. Percent organic matter and 

Fig. 4. Cross validation curves for all forage species distribution models containing both distal and proximal (distal-proximal) environmental variables with con
fidence interval ribbon shown in red. Vertical dashed lines indicate the penalty value (bottom x-axis) and number of environmental variables selected (top x-axis) for 
the highest predictive accuracy (left dashed line) and one standard error from the highest predictive accuracy (right dashed line). See Table 1 for forage species 
scientific names. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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percent tree cover, which we defined as proximal, were both selected 
across all forage species. Other commonly selected environmental var
iables (for ≥17 species models) were evenly divided between distal and 
proximal, including: slope, northness (i.e., cosine of aspect in radians), 
topographic wetness index, 30-year normal minimum precipitation, 30- 
year normal minimum temperature, soil percent calcium carbonate, 
shrub cover, and latitude. Elevation was the variable most penalized by 
the lasso process (for nine of the species models), indicating it was one of 
the least valuable predictor variables. 

For the models using proximal variables only (Table A.4), percent 
tree cover was selected for all forage species models, although most 
forage species models (≥17) also selected 30-year normal minimum 
precipitation and 30-year normal minimum temperature. Fire frequency 
and time since the last fire were penalized the most (at least half the 
species models) by the lasso process. 

3.2. Model validation 

3.2.1. TWRS 
The validation field survey at TWRS recorded between 0 and 473 

occurrences for the 20 forage species within the nine target polygons 
(Table 2). Bluebunch wheatgrass (Pseudoroegneria spicata) and common 
snowberry (Symphoricarpos albus) were the most abundant forage spe
cies observed, having average occurrences of 16.3% and 10.1% 
respectively. Sticky purple geranium, mountain big sagebrush, antelope 
bitterbrush, chokecherry, quaking aspen (Populus tremuloides), and 
lodgepole pine were not observed at all in the target polygons. Among 
forage species that were observed, average predicted occurrence was 
within 8.3% of observed using distal-proximal variables, and 7.8% of 
observed using only proximal variables. In both cases, common snow
berry was under-predicted and had the greatest difference between 
predicted and observed. 

Observed occurrences displayed much higher variance between 

Fig. 5. Cross validation curves for all forage species models containing proximal environmental variables with confidence interval ribbon shown in red. Vertical 
dashed lines indicate the penalty value (bottom x-axis) and number of environmental variables selected (top x-axis) for the highest predictive accuracy (left dashed 
line) and one standard error from the highest predictive accuracy (right dashed line). See Table 1 for forage species scientific names. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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habitat patches than the predicted occurrences for both distal-proximal 
and proximal models (Table 2). In most cases there was overlap between 
observed and predicted occurrence comparing the average occurrence 
plus or minus the standard deviation. Only the predictions for lupine and 

willow using proximal variables were outside the range (mean ± s.d.) of 
observed occurrences, but these forage species were also rarely 
observed. 

Table 2 
Statistics for all forage species in the Taylor Ranch Wilderness Research Station (TWRS) validation polygons (n = 9), including number of observed occurrences, mean 
percent observed occurrence plus/minus the standard deviation, and mean probability of occurrence plus/minus the standard deviation for the models containing 
distal and proximal environmental variables and proximal only. See Table 2 for forage species scientific names.  

Forage species Number of observed 
occurrences 

Observed occurrence 
(%) 

Probability of occurrence (%) (Distal- 
Proximal) 

Probability of occurrence (%) (Proximal- 
only) 

Grasses 
Bluebunch wheatgrass 473 16.3 ± 19.93 19.5 ± 11.91 17.8 ± 5.74 
Sandberg bluegrass 117 3.3 ± 4.47 3.4 ± 1.43 6.6 ± 2.59 
Sedge spp. 11 0.3 ± 0.57 1.1 ± 0.60 0.9 ± 0.31 
Idaho fescue 89 3.2 ± 5.57 1.9 ± 1.45 7.6 ± 4.00 
Pinegrass 168 2.9 ± 6.45 0.3 ± 0.22 1.3 ± 0.97  

Forbs 
Common yarrow 101 2.8 ± 2.84 0.7 ± 0.19 1.0 ± 0.33 
Lupine spp. 14 0.4 ± 0.88 0.7 ± 0.27 1.8 ± 0.36 
Arrowleaf balsamroot 57 2.2 ± 4.33 1.9 ± 1.55 1.1 ± 0.40 
Sticky purple 

geranium 
0  0.0 ± 0.02 0.0 ± 0.01  

Shrubs 
Mountain big 

sagebrush 
0  1.4 ± 1.19 1.7 ± 1.61 

Common snowberry 419 10.1 ± 10.54 1.8 ± 0.57 2.3 ± 0.55 
Creeping Oregon grape 181 4.8 ± 6.88 0.7 ± 0.36 0.8 ± 0.24 
Saskatoon serviceberry 15 0.3 ± 0.46 0.3 ± 0.13 0.8 ± 0.08 
Antelope bitterbrush 0  1.2 ± 1.30 2.4 ± 3.15 
Mallow ninebark 173 2.9 ± 8.70 0.3 ± 0.25 0.2 ± 0.14  

Trees 
Willow spp. 2 0.0 ± 0.11 0.1 ± 0.11 0.6 ± 0.46 
Chokecherry 0  0.9 ± 0.49 0.6 ± 0.03 
Douglas-fir 9 0.6 ± 1.68 0.2 ± 0.07 0.2 ± 0.15 
Quaking aspen 0  0.1 ± 0.10 0.2 ± 0.17 
Lodgepole pine 0  0.0 ± 0.003 0.0 ± 0.005  

Table 3 
Statistics for all forage species in the Rinker Rock Creek Ranch (RRCR) Biological Research Station validation polygons (n = 183), including number of observed 
occurrences, mean percent observed occurrence plus/minus the standard deviation, and mean probability of occurrence plus/minus the standard deviation for the 
models containing distal and proximal environmental variables and proximal only. See Table 2 for forage species scientific names.  

Forage species Number of observed 
occurrences 

Observed occurrence 
(%) 

Probability of occurrence (%) (Distal- 
Proximal) 

Probability of occurrence (%) (Proximal- 
only) 

Grasses 
Bluebunch wheatgrass 1741 5.2 ± 6.19 11.2 ± 4.35 9.2 ± 1.44 
Sandberg bluegrass 3673 11.2 ± 9.50 8.3 ± 3.50 11.5 ± 3.17 
Sedge spp. 910 2.5 ± 8.58 4.9 ± 4.07 5.0 ± 2.57 
Idaho fescue 877 2.7 ± 6.58 2.2 ± 2.20 1.6 ± 0.96 
Pinegrass 0  0.3 ± 0.35 0.3 ± 0.31  

Forbs 
Common yarrow 142 0.4 ± 1.04 0.7 ± 0.18 0.7 ± 0.16 
Lupine spp. 1020 3.1 ± 3.99 2.7 ± 1.42 2.2 ± 0.72 
Arrowleaf balsamroot 478 1.4 ± 2.54 0.6 ± 0.32 0.5 ± 0.23 
Sticky purple 

geranium 
30 0.1 ± 0.42 0.1 ± 0.03 0.0 ± 0.04  

Shrubs 
Mountain big 

sagebrush 
4614 13.7 ± 13.89 11.3 ± 4.32 7.9 ± 2.75 

Common snowberry 148 0.5 ± 3.07 1.0 ± 0.38 0.9 ± 0.19 
Creeping Oregon grape 23 0.1 ± 0.60 0.4 ± 0.22 0.9 ± 0.27 
Saskatoon serviceberry 3 0.0 ± 0.15 0.1 ± 0.08 0.7 ± 0.03 
Antelope bitterbrush 1105 3.1 ± 5.44 1.6 ± 1.25 13.2 ± 8.15 
Mallow ninebark 0  0.4 ± 0.22 0.1 ± 0.07  

Trees 
Willow spp. 1087 2.9 ± 12.38 0.2 ± 0.42 0.8 ± 0.76 
Chokecherry 228 0.7 ± 4.07 0.3 ± 0.12 0.5 ± 0.02 
Douglas-fir 0  0.1 ± 0.04 0.1 ± 0.06 
Quaking aspen 105 0.3 ± 2.41 0.3 ± 0.21 0.2 ± 0.18 
Lodgepole pine 0  0.0 ± 0.01 0.0 ± 0.01  
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3.2.2. RRCR 
The validation at RRCR recorded between 0 and 4,614 occurrences 

for the 20 forage species of interest (Table 3). The most common forage 
species and their average observed occurrence were mountain big 
sagebrush (13.7%), sandberg bluegrass (Poa secunda; 11.2%), blue
bunch wheatgrass (5.2%), antelope bitterbrush (3.1%), willow (2.9%), 
and lupine (3.1%). Pinegrass, mallow ninebark, Douglas-fir, and 
lodgepole pine were not observed at all in the RRCR sampling. The 
biggest difference between predicted and observed average occurrence 
was 5.9% for bluebunch wheatgrass, which was over-predicted using 
distal-proximal variables, and 10.0% for antelope bitterbrush, which 
was over-predicted using proximal variables. 

Like TWRS, the observed occurrences at RRCR displayed much 
higher variance between habitat patches than the predictions for either 
model. (Table 3). Only predictions for saskatoon serviceberry using the 
proximal model were outside the range (mean ± s.d.) of observed oc
currences, but this forage species was rarely observed. 

4. Discussion 

Using a novel approach that combines fine-scale habitat patches 
derived from object-oriented segmentation and lasso logistic regression, 
we predicted forage species occurrence across Idaho at a fine-scale (i.e., 
habitat patches) for 20 forage species suitable for mule deer and Rocky 
Mountain elk. We also assessed if the inclusion of distal variables 
improved model performance beyond proximal variables only. We 
observed that all models provided higher predictive accuracy than 
chance, with an average AUC of 0.84 for distal-proximal variables and 
an AUC of 0.81 for proximal variables. The inclusion of distal variables 
produced slightly higher overall AUC values, demonstrating the value of 
including environmental variables in SDMs that have indirect effects on 
forage. 

4.1. Model accuracy and environmental variables 

While predictive accuracies were only slightly higher for models 
using distal-proximal variables, in some cases they generated drastically 
different statewide patterns. We compared our predicted occurrence 
maps to the USDA NRCS plant guide (https://plants.sc.egov.usda.gov/), 
which provides coarse (county level) species distribution maps. Visual 
comparisons suggest the distal-proximal models better represented 
statewide distribution, although there were some exceptions. For 
example, neither mountain big sagebrush nor antelope bitterbrush are 
commonly found in northern Idaho (Patterson et al., 1985), which 
suggests that the distal-proximal model performed better for mountain 
big sagebrush in that region, while the proximal model performed better 
for antelope bitterbrush (Figs. 3 and 4). Additionally, the proximal 
model predicted willow occurrence throughout the state, while the 
distal-proximal model was limited to southern Idaho, in contrast with 
the findings of Schrempp et al. (2019). This suggests that variables 
beyond those with proximal effects are useful for SDMs on a species by 
species basis. In some cases, proximal variables alone may be suitable 
and have the advantage of containing fewer inputs (i.e., greater 
parsimony). 

In addition to demonstrating overall good predictive properties, our 
models revealed key species-environment relationships that can be 
supported by ecological theory. For example, pinegrass is predominately 
a forest species and exhibits increased growth in years with higher 
precipitation and/or cooler temperatures (Matthews, 2000; Parish et al., 
1996). Respectively, our model exhibited positive correlations with 
percent tree canopy cover and 30-year normal minimum precipitation, 
and negative correlations with percent shrub canopy cover and 30-year 
normal minimum temperature. Pinegrass also has high soil water usage 
during its rapid early-season growth and acts as an aggressor for soil 
moisture which may explain the positive correlation observed with soil 
available water supply (Matthews, 2000). Our model also had a negative 

correlation with depth to soil restrictive layer which may be explained 
by pinegrass’ sod-forming root system and occupancy of shallower sites 
(Agee, 1993; Matthews, 2000). Furthermore, our models indicated a 
strong positive effect from fire frequency, which is reasonable given that 
pinegrass is often present following high-severity wildfire events 
(Johnson, 1998; Matthews, 2000). Such inferences are needed to better 
examine forage distributions, quantity, and timing, and we were able to 
pick out similar results for all the forage species models. Therefore, our 
results should be useful in informing decisions related to habitat resto
ration aimed at improving nutritional conditions for ungulates, for 
example when prioritizing specific areas for restoration. Our models 
could help identify locations that maximize suitability for restoring 
multiple forage species, and if used in conjunction with disturbance 
severity information (e.g., wildfire severity, or livestock grazing man
agement), could inform how disturbance regimes might be harnessed to 
help manage ungulate habitat. 

There are some notable limitations with some of the environmental 
variables, although they were included because they represent an inte
gration of the best available data in remote sensing, landscape fire and 
succession modelling, and predictive landscape mapping available for 
the entire state. For example, only fires larger than 404 ha (1,000 ac) are 
included in MTBS for Idaho (Eidenshink et al., 2007). Additionally, 
MTBS generates wildfire layers using entire fire perimeters meaning 
unburned or low severity areas within perimeters are not accounted for 
separately and may result in commission errors (Sparks et al., 2015). The 
soil data we used varied in spatial resolution across the state. Areas with 
prime agricultural land were mapped at fine-scale, but many large 
remote areas of the state such as wilderness areas were attributed with a 
single value for each soil variable. This issue raises questions about the 
effectiveness of the models using currently available soil datasets in 
remote areas. A potential solution for future studies is use of the prob
abilistic remapping of SSURGO (POLARIS; Chaney et al., 2016), which 
models missing values such as those observed in remote areas of Idaho. 
Lastly, some variables were shown to be less important by the lasso 
selection process. For instance, elevation, a distal variable, was elimi
nated for 9 of 20 distal-proximal models, suggesting its impact might be 
captured by proximal variables. Fire frequency and time since last fire 
were not selected from at least half of the proximal models. Fire is 
known to be an important driver in vegetation occurrence (Agee, 1993), 
but the rarity with which it occurs compared to the area of Idaho gave us 
few reference points for the training data. 

Ideally, our analysis would have included all temporal stages of 
disturbance and succession. Adequately capturing each successional 
stage following an event like wildfire would benefit the models by 
providing reference observations for any given point in time. To better 
capture disturbance and successional state, two areas of improvement 
could be made to strengthen the models. First, additional training data 
that captures successional states for both wildfire and other disturbances 
not accounted for here (e.g., drought, insects and disease, grazing) 
would improve the range of reference conditions in the models. Second, 
we suggest other variables might be considered, such as: shrub cover at 
finer resolutions (i.e., less than 30 m), tree structural layers, seasonal 
effects of temperature and precipitation (e.g. growing season precipi
tation), influences of interactions with other plant species, and distur
bance severity, including wildfire or herbivory. 

4.2. Model validation 

Model validation was performed in two ways. Cross validation, 
which allows for validation of the model by holding back a portion of the 
training data during each iteration, was used to generate a more robust 
model. The resulting AUC values indicated that the models performed 
well across the training regions. However, because training data was 
unevenly distributed across the state, additional validations were con
ducted to assess the model’s predictive power in two areas. The vali
dation at TWRS was limited (i.e., only nine polygons were tested), but it 
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provided an opportunity for validation of some forage species not 
detected at RRCR. Furthermore, even with a limited sample, predictions 
for all forage species were on average within 8.3% of observed, sug
gesting functional accuracy at the landscape level. Commission errors 
were minimal for most forage species, meaning that forage species not 
observed were also modelled at nearly 0% probability (Table 2). 

The validation at RRCR provided a larger sample than TWRS. 
Average predictions at RRCR were within 10% for proximal models and 
within only 5.9% for distal-proximal models (Table 3). Commission 
errors were also small. This supports the results at TWRS showing that 
the models accurately represented average forage species occurrence 
across the landscape. However, for both validations the observed oc
currences were more variable than the predicted occurrences, suggest
ing the models were not able to capture the heterogeneity at the level of 
the habitat patches. This may have been due to the scale of the envi
ronmental variables, which was coarser than many of the segmented 
polygons and would have therefore not sufficiently differentiated adja
cent habitat patches. 

Our results are encouraging for wildlife managers making decisions 
regarding habitat management to address nutritional quantity and 
quality for ungulates across large areas, such as Idaho. The validation 
suggests that the average probability of occurrence for both models is 
within 10% of observed. However, at the scale of habitat patches, the 
models are underfit such that the observed occurrence of a forage spe
cies within a habitat patch might be quite different. At the extreme, we 
observed one polygon at RRCR with a distal-proximal model prediction 
for willow that was 77.4% lower than the observed value, and a prox
imal model prediction that was 76.8% lower. Such drastic under
predictions were outliers, but they show how errors for individual 
habitat patches can be significant. 

4.3. Modelling approach 

Our use of the lasso logistic regression to achieve model optimiza
tion, variable selection, and coefficient estimation for forage distribu
tion modelling has been implemented infrequently in ecological 
research (Gastón and García-Viñas, 2011; Huang and Frimpong, 2015; 
Schrempp et al., 2019). One of the greatest challenges in SDMs is 
selecting appropriate candidate variables (Araújo and Guisan, 2006; 
Elith and Leathwick, 2009), and the lasso process provides a reasonable 
solution. It restrains the effects of the coefficients to identify variables 
that contribute little to the explanation of the response and removes 
those variables from the model. Consequently, the lasso process treats 
issues with multi-collinearity and reduces model complexity (Dormann 
et al., 2013; Hastie et al., 2017; Tibshirani, 1996). This approach is 
useful in situations like ours, where the information about numerous 
environmental variables and their relative influence on multiple forage 
species is limited. 

Ideally, expert knowledge regarding the underlying mechanisms, 
interactions, and complex relationships between forage species and 
environmental variables, and between variables themselves should be 
incorporated in SDMs (Austin, 2002; Evans et al., 2011). This was sup
ported by our finding that simply using proximal or distal-proximal 
variables did not improve models for all forage species. However, 
determining known interactions requires better a priori knowledge 
about the forage species being modelled and more careful sampling 
design than what was available for our study (Wisz et al., 2013). Our 
approach was a necessary simplification of the ecological processes that 
limits where forage occurs to create models that can predict forage 
occurrence across broad scales. 

A non-parametric algorithmic approach like MaxEnt could have been 
used to explore non-intuitive relationships (Evans et al., 2011). How
ever, MaxEnt previously required complex refinements of software set
tings, while the process for fitting lasso logistic regression was simple 
and widely re-producible. Phillips and Dudik (2008) found with specific 
parameter tuning, MaxEnt was effective in modelling distributions of 

226 plant species from 6 regions, but this kind of detailed parameter 
tuning requires good statistical knowledge and their findings suggest 
more regularization may be needed if the number of environmental 
variables exceeds 11–13. The release of open-source MaxEnt software 
(Phillips et al., 2017) resolves the issues of model transparency and 
methods for regularization, which should broaden its appeal. Still, our 
expectations were to estimate the relative effects of environmental 
variables on forage species occurrence, and extrapolate this information 
to predict distributions statewide, which is not as straight forward with 
non-parametric methods (Phillips and Dudik, 2008; Whitley and Ball, 
2002). Additionally, others have shown that lasso logistic regression 
performs better than MaxEnt at finer resolutions (Huang and Frimpong, 
2015), which was a critical aspect of our study. There are other ap
proaches, such as nearest-neighbor imputation, which can capture the 
complex variance-covariance structure of unknown relationships (Hen
derson et al., 2014). Further research toward leveraging the relation
ships between plant species in SDMs is worthwhile but beyond the scope 
of our study. Additionally, the need for fine-resolution environmental 
variables will be an issue for any SDM and should be considered a pri
ority for future efforts. 

5. Conclusions 

Our novel approach demonstrates an effective method for estimating 
probabilities of forage species occurrence at fine spatial resolutions 
across broad landscapes to inform nutritional quantity and quality of 
ungulate habitat. Our models can be tailored by wildlife resource 
managers to assess the nutritional conditions of habitat for other indi
vidual herbivore species, including species of conservation interest such 
as greater sage-grouse, depending on forage preference and nutritional 
need. Furthermore, distal environmental variables, which exert indirect 
effects on forage, can help improve model accuracy beyond proximal 
(direct) variables alone. The validations at TWRS and RRCR indicate 
that model errors can be high for individual habitat patches, but average 
errors across larger areas are small. Additionally, we suggest that vari
ables such as shrub cover at finer resolutions (i.e., less than 30 m), tree 
structural layers, and more detailed disturbance history may improve 
future iterations of the models. Finally, our models can be a manage
ment tool to predict the presence of forage species across Idaho to inform 
habitat management and restoration that improves nutritional quality 
and quantity of ungulate habitat and in turn ensures the long-term 
persistence of ungulate populations. 
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