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Abstract. We study how human brains activate to process input infor-
mation and execute necessary cognitive tasks. Understanding the process
is crucial in improving our diagnostic and treatment of different neuro-
logical disorders. Given functional MRI images recorded when human
subjects execute tasks with different levels of information uncertainty,
we need to identify the similarity and difference between brain activi-
ties at different regions of interest (ROIs), and thus gain insights into
the underlying mechanism. To achieve this goal, we propose a new ROI-
reweight 3D convolutional neural network (CNN). Our CNN not only
learns to classify the task-evoked fMRIs with a high accuracy, but also
locates crucial ROIs based on a reweight layer. Our findings reveal sev-
eral brain regions to be crucial in differentiating brain activity patterns
facing tasks of different uncertainty levels.
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1 Introduction

Cognitive control is a high-order information processing system in human brain
which selects appropriate information, inhibits inappropriate response, and co-
ordinates with actions under guidance of context-specific goals and intention [14,
5]. It is implemented by a set of brain regions called the cognitive control network
(CCN) (Figure 1(Left)) and also by its interactions with other domain-specific
networks (visual, auditory, somatosensory, motor) and the default mode network
(DMN) [17, 2, 20]. Characterizing how regions of CCN activate, collaborate, and
interact with other networks will improve the theoretical understanding of hu-
man brains. Furthermore, knowledge in cognitive control will empower us with
advanced diagnosis and treatment of various neurological disorders [6, 1, 4, 19].

In this paper, we investigate the uncertainty representation in cognitive con-
trol, i.e., how brains process different levels of uncertainty in cognitive tasks.
Early observations, summarized by the Hick-Hyman law [8, 10], state that the
brain reaction time grows linearly to the uncertainty level, measured in Shan-
non entropy [18]. In other words, human brains need to work more to execute
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Fig. 1. Left and Middle-Left: The cognitive control network (CCN, red) and the
default mode network (DMN, blue). Middle-Right: Experiment setting. Human sub-
jects are shown images of arrows and click keys accordingly. The arrows may have
one, two, or four possible directions, corresponding to uncertainty levels of zero, one,
and two bits measured in Shannon’s entropy [18]. More uncertainty is introduced by
additional colors and corresponding actions. In total there are six different tasks, with
various uncertainty levels. Right: An example of fMRI image mapped from volume to
surface.

uncertain tasks. Recently, it has been confirmed that the overall brain activa-
tion is linearly correlated to the uncertainty level [5, 22]. However, it remains
unknown how different regions coordinate and activate to process uncertainty in
tasks. To gain region-specific insights, we analyze task-evoked functional MRIs,
in particular, fMRI images collected while a human subject is executing choice
reaction time (CRT) tasks. These CRT tasks are the same but with different
uncertainty levels, corresponding to different numbers of possible choices. See
Figure 1(Middle-Right) and Section 3 for more details.

Many learning methods have been leveraged to analyze task-evoked fMRI im-
ages. Examples include analysis of variance (ANOVA) [21], general linear model
(GLM) [12], and support vector machine (SVM) [3]. Early studies focus on the
association of specific regions of interest and the stimuli, and thus miss the in-
formation carried by fine scale brain activity patterns. The multi-voxel pattern
analysis (MVPA) [7, 16] approach was the first to take the whole fMRI image
as a multivariable input, and use various classifiers to discover basis patterns
crucially related to different stimuli.

In this paper, we use a 3D convolutional neural network (CNN) to capture
fine scale activity patterns in the task-evoked fMRI. Recent years have witnessed
the success of CNN in computer vision and medical image analysis. In particular,
3D CNN has been used in action recognition [11], object recognition [13], etc.
In Neuroimage study, 3D CNN has been used to diagnose Alzheimer’s disease
(AD) and mild cognitive impairment (MCI) [9], to predict the survival time of
brain tumor patients [15], and to reconstruct functional connectivity networks
[23]. However, despite its success in achieving the prediction goal, CNN lacks the
crucial explainability, namely, the ability to explain the underlying rationale of a
prediction. In our problem setting, a standard 3D CNN does not help identify the
regions crucial for the differentiation of activity patterns from different cognitive
tasks. Unfortunately, this is indeed the primary goal of neuroscientists.

Our contributions. To deliver both prediction power and explainability, we
propose a new ROI-reweight CNN. Our method not only classifies fMRIs based
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Fig. 2. The architecture of the ROI-reweight 3D CNN model.

CRT tasks, but also learns weights of different ROIs in making the prediction.
The idea is to add a novel reweight layer to adjust the high-level representation,
i.e., the representation after all convolution and pooling layers. The weight of
each element in the high-level representation is determined by nearby ROIs.
The ROI reweight layer is detailed in Section 2.2. After training, the learned
weights of different ROIs measure how important their nearby patterns are in the
classification. To the best of our knowledge, our method is the first CNN-based
approach to achieve both classification power and explainability in functional
MRI study. Our method identifies several regions in both CCN and DMN, i.e.,
anterior insula (AI), thalamus (TH), posterior cingulate cortex (PCC), etc., as
keys to the differentiation of brain activities for different uncertainty levels.

2 Method

Our method classifies fMRI images into six different classes, corresponding to
six different uncertainty levels. Meanwhile, the method learns weights on ROIs,
measuring the significance of each ROI in the classifier. We consider 19 ROIs
that are considered significant in cognitive control. These ROIs constitute the
cognitive control network and the default mode network (Figure 1).

We propose a 3D CNN with a reweight layer before the fully connected layers.
The reweight layer adjusts the significance of different elements in the high-level
representation. But the reweighting tensor is parametrized by 19 weights, as-
sociated to 19 ROIs. During the training, these 19 weights are learned. After
training, these weights can be used to measure the significance of ROIs in classi-
fication. In Section 2.1, we explain the CNN architecture. Detailed explanation
of the reweight layer will be given in Section 2.2.
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2.1 3D CNN Architecture

Our network has three convolutional layers, two max-pooling layers, two fully
connected layers, and one reweight layer. See Fig. 2 for an overview of the archi-
tecture. The input is a single channel fMRI image of size 75× 95× 68. The first
two convolutional layers, C1(64@3× 3× 3) and C2(64@3× 3× 3), both have 64
channels and kernel size 3 × 3 × 3. The third one, C3(128@3 × 3 × 3), has 128
channels and kernel size 3 × 3 × 3. The convolution stride is fixed to 1 voxel.
The spatial padding of each convolutional layer input is set to 1, such that the
spatial size is preserved after convolution. Two max-pooling layers are applied
after the second and the third convolutional layers respectively. Max-pooling is
performed over a 2× 2× 2 voxel window, with stride 2.

The crucial contribution of our paper is a reweight layer following the last
max-pooling layer. This layer has the same input and output size; it reweights
all input values using a weight tensor controlled by 19 weight parameters, corre-
sponding to 19 brain ROIs. More details will be given in Section 2.2. The reweight
layer is followed by two fully connected layers, with 256 and 6 channels, respec-
tively. The final layer is the soft-max layer. All hidden layers use the rectified
linear unit (ReLU) for non-linearity. The model is trained on cross-entropy loss.

2.2 ROI-reweight Layer

The input, I, and output, O, of the reweight layer have the same size, i.e.,
19 × 23 × 17 × 128. The input, I, is the high-level representation produced by
the convolutional and max-pooling layers. We can view it as 128-channel signals
at 19× 23× 17 voxels. The reweight layer uses a 19× 23× 17 weight tensor, M̂ ,
to reweight the input. All channels of the (i, j, k)-th voxel of I are multiplied by

M̂(i, j, k). Formally, O(i, j, k, `) = I(i, j, k, `) · M̂(i, j, k), ∀` = 1, . . . , 128.

We parametrize entries of the weight tensor M̂ by weights associated to the
ROIs. For generality, we assume R many ROIs. Their weights constitute an R
dimensional vector, w = [w1, . . . , wR]T . 5 The relationship between the M̂(i, j, k)
and the ROI weight wr depends on how much the r-th ROI affects the (i, j, k)-
th entry in the high-level representation. To determine such relationship, we
first map the (i, j, k)-th entry back to the original image domain by reversing
the convolution and max-pooling operation. Each entry (i, j, k) corresponds to a
cube in the original image domain. The coordinates of cube center are denoted
by p(i,j,k) ∈ R3. Let qr be the center coordinates of the r-th ROI. We use 3D
radial basis function (RBF) kernel to define the relationship between the two.
Formally,

M̂(i, j, k) =
R∑

r=1

wr · exp

(
−‖p(i,j,k) − qr‖2

2σ2

)
=

R∑

r=1

wr ·Mr(i, j, k),

5 We use boldface font for vectors, but normal font for matrices and tensors.
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p(i,j,k)
q1

q2

M̂

M̂(i, j, k) = w1 · exp
(
− d21

2σ2

)
+ w2 · exp

(
− d22

2σ2

)

d1

d2

Fig. 3. An entry in M̂ is determined by weights of ROIs by mapping it to the original
image domain. d1 and d2 are the Euclidean distance between its center and the two
ROI centers, q1 and q2.

in which σ is tuned on validation set. In other words, the entry M̂(i, j, k) is the
RBF kernel representation of kernels centered at all ROIs and weighted by w.
See Figure 3 for an illustration.

Note that the entries of M̂ depend on the weight vector w linearly. Formally,
we have M̂ =

∑R
r=1 wrMr, in which Mr is a constant tensor of the same size as

M̂ . It is straightforward to see that if we vectorize the tensor M̂ , we have the
linear relationship M̂ = Mw, in which M = [M1, . . . ,MR] is a matrix with R
columns, each corresponds to one vectorized tensor Mr. It is easy to see that the
partial derivative of the loss, L, w.r.t. the weight vector w,

∂L
∂w

=
∂L
∂M̂

· ∂M̂
∂w

=
∂L
∂M̂

· MT

in which ∂M̂/∂w = MT is the Jacobian matrix. To train this layer, we just
need to update w accordingly at each iteration.

3 Experiments and Discussions

We apply our method to task-evoked fMRI images. These images were collected
when human subjects executed choice reaction time (CRT) tasks [22]. Each sub-
ject performed around 1100 trials. In each trial, the subjects were presented with
an arrow and were supposed to respond accordingly. Depending on the possible
directions and colors of the arrows, there are six different tasks with different
levels of uncertainty. See Figure 1 for more information. The data was prepro-
cessed using SPM 8. Each gradient-echo planar imaging (EPI) image volume was
realigned to the first volume, registered with structural MRI, normalized to the
Montreal Neurological Institute (MNI) ICBM152 space, resampled to a voxel
size of 2× 2× 2mm, and spatially smoothed. The dimension of each final fMRI
image is 79 × 95 × 68. In this study, we focus on 19 ROIs that are considered
the most important in cognitive control. These ROIs constitute the two brain
networks CCN and DMN (Figure 1).

We train and test our method and other baselines on data from five different
human subjects, and report the average accuracy. We randomly reserve 10% of
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Table 1. The classification results.

Classifier RF LG SVM 3D-CNN ROI-CNN

Accuracy(%) 34.18 79.68 83.53 87.42 89.04

Fig. 4. The learned weights of the 19 ROIs. Bars of 5 different colors correspond to 5
different human subjects. SMA/ACC: supplementary motor area extending to anterior
cingulate cortex. AI: anterior insular cortex. FEF: frontal eye find. IPS: area around
and along the intraparietal sulcus. TH: thalamus. vmPFC: ventral medial prefrontal
cortex. PCC: posterior cingulate cortex. MTG: middle temporal gyrus. ANG: angular
gyrus. L: ROI located in left hemisphere of the brain. R: ROI located in the right
hemisphere.

the trials for each subject as the validation set and 10% as the testing set. For
each subject individually, all classifiers are trained on the same training set. The
best models are selected based on the performances on the validation set.

Random forest (RF), logistic regression (LR), and support vector machine
(SVM) are used as baselines. To investigate the effect of the reweight layer,
we also apply a 3D CNN without reweight layer (3D-CNN), i.e., our proposed
network without the reweight layer, as an ablation. Among all methods, our
ROI-reweight CNN (ROI-CNN) achieves the best accuracy. To our surprise,
ROI-CNN even outperforms 3D-CNN. We believe the reason is that focusing on
the patterns near the 19 crucial ROIs improves the overall performance of the
neural network. All results are reported in Table. 1.

Our model learns weights on 19 ROIs. We show all learned weights of the
five subjects in Figure 4. We observe high weights on anterior insula (AI), tha-
lamus(TH), posterior cingulate cortex (PCC), etc. This is consistent with the
domain knowledge theory in cognitive control [5]. These weights can be used to
quantitatively analyze the roles of these ROIs in dealing with uncertain tasks.
In Figure 5, we visualize these ROIs in their spatial location, with ball radii
proportional to their weights.

We observe that the learned weights are highly consistent across different
human subjects even though we trained the models separately. Note that due
to cross-subject variation, our model trained on one subject usually overfits

6



4. CONCLUSIONS AND FUTURE WORK

Fig. 5. The 19 ROIs drawn in a brain template. The size of the balls is proportional
to the learned weight, which represents the importance of an ROI in the tasks.

and cannot perform well on other subjects (the average accuracy is 19.53%,
only slightly better than chance level). In other words, despite the fact that the
models overfit on individual subjects and cannot generalize to others, they all
learn very similar ROI weights. This shows that our model successfully locates
the key regions for uncertainty representation. But the activity patterns within
each ROI may vary over different human subjects.

4 Conclusions and Future Work

In this paper, we propose an ROI-reweight 3D convolutional neural network
framework to classify the CRT task-evoked fMRI data, and locate key ROIs.
Our framework achieves 89.04% average accuracy in the experiments, and out-
performs the existing state-of-the-art linear classifiers and the traditional 3D
CNN. In the meantime, it also provides quantitative assessment of the signifi-
cance of the key ROIs in the brain for uncertainty representation, which could
benefit cognitive control study. In the future, we plan to extend our framework
to be more robust to cross-subject variation.
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