MULTIDIMENSIONAL SCHRODINGER OPERATORS WHOSE
SPECTRUM FEATURES A HALF-LINE AND A CANTOR SET
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ABsTrRACT. We construct multidimensional Schrédinger operators with a
spectrum that has no gaps at high energies and that is nowhere dense at low
energies. This gives the first example for which this widely expected topolog-
ical structure of the spectrum in the class of uniformly recurrent Schrédinger
operators, namely the coexistence of a half-line and a Cantor-type structure,
can be confirmed. Our construction uses Schrodinger operators with separa-
ble potentials that decompose into one-dimensional potentials generated by
the Fibonacci sequence and relies on the study of such operators via the trace
map and the Fricke-Vogt invariant. To show that the spectrum contains a
half-line, we prove an abstract Bethe-Sommerfeld criterion for sums of Cantor
sets which may be of independent interest.

1. INTRODUCTION

The spectral analysis of Schrodinger operators
Hy = —A+V in L*(RY)

plays a central role in quantum mechanics. The most fundamental issue is the study
of the spectrum of Hy,

o(Hy) ={FE : (Hy — E)~! does not exist as a bounded operator}.

The simplest case, V = 0, can be readily understood via the Fourier trans-
form and one finds o(Hy) = [0,00). The classical Weyl theorem then shows that
Oess(Hy) = [0,00) as long as V' is a relatively compact perturbation of Hy = —A.
A sufficient condition for that is, e.g., V € LP(RY) + LX(R?) (ie. for every
e > 0, we can write V = Vi . + Vo with Vj . € LP(R?) and IVaelloo < €) with
p > max{2,d/2} if d # 4 and p > 2 if d = 4; compare [48, Problem XIII.41].
In particular, o(Hy ) contains a half line if V' is (locally sufficiently regular and)
arbitrarily small near infinity.

On the other hand, the spectrum may have gaps at high energies when V' is not
arbitrarily small near infinity. For an explicit example, one may consider the case
d =1 and V(x) = cosz; see [48, Example 1 in Section XIII.16]. More generally, a
generic periodic potential V' will give rise in one space dimension to a Schrédinger
operator whose spectrum does not contain a half line [49]. However, this is a strictly
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one-dimensional phenomenon. If d > 2 and V is periodic (i.e., the periodicity
vectors of V form a lattice), then o(Hy) does contain a half line. This statement
is known as the Bethe-Sommerfeld conjecture, which is in fact a theorem due to
work of several authors; see [42, 50, 51, 52, 55] and references therein. In recent
years, there has also been interest in analogs of the Bethe-Sommerfeld conjecture
for discrete Schrédinger operators on periodic lattices [18, 20, 24, 30] and quantum
graphs [19].

It is natural to take this further and attempt to establish the Bethe-Sommerfeld
property (i.e., the presence of a half line in the spectrum) for more general potentials
V. On the positive side, there has been recent work establishing this result for
certain classes of almost periodic potentials in dimension two [26, 27]. However,
there is also a negative result: it was shown in [9] that there are almost periodic
potentials V' in any dimension for which o(Hy ) is a generalized Cantor set, that is,
a perfect set with empty interior. This result provides the first example of an almost
periodic Schrédinger operator in dimension d > 2 for which the spectrum does not
contain a half line, and it provides the first example of a Schrédinger operator in
dimension d > 2 with any potential for which the spectrum is a generalized Cantor
set.

One should nevertheless expect that for “typical” almost periodic Schrédinger
operators in dimension d > 2, the spectrum contains a half line. On the other
hand, the structure of the spectrum at low to medium energies is expected to be
quite different. While there are absolutely no results in this direction, there is an
extensive literature on almost periodic Schriodinger operators in one dimension and
it is by now well understood that those operators tend to have Cantor spectrum;
compare, for example, [1, 10, 17, 38]. It is not unreasonable to expect that the
spectra of “typical” almost periodic Schrodinger operators in dimension d > 2 do
exhibit a Cantor structure at low and/or medium energies, in addition to the half
line at high energies.

More generally one may ask whether there are any ergodic Schrédinger operators
in dimension d > 2 for which such a coexistence phenomenon, a Cantor structure
and a half line in separate energy regimes, can be established. In fact, we were
asked this precise question by Leonid Parnovski and the purpose of this paper is to
provide an affirmative answer. Thus, our main result is the construction of the first
examples of ergodic potentials in R? exhibiting such a coexistence phenomenon.

Our examples will not be almost periodic in the classical (Bohr/Bochner) sense,
but they belong to a class of uniformly recurrent potentials, which is defined as
follows:

Definition 1.1. Let d > 1. A function V : R — R is called uniformly recurrent if
for every r > 0, there exists R > 0 such that for every xo € R? and every x; € RY,
there ezists o € R? with 0 < |x1 — 22| < R such that V(z — x) = V(z — x2) for
every x € R with |x| < r. The set of bounded uniformly recurrent V : RY — R is
denoted by UR 4.

Theorem 1.2. For every d > 2, there are potentials V. € URy such that the
spectrum of the associated Schrédinger operator in L?(R?) has a Cantor structure
at low energies and possesses no gaps at high energies. More precisely, there are
Ey < Ey such that o(Hy )N (—o0, Ey)] is perfect, nonempty, and nowhere dense and
o(Hy)N[Ey,0) = [Eq,0).
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Remark 1.3. (a) Uniform recurrence is related in spirit to classical almost period-
icity. Both try to capture the fact that the sets of translates for which one observes
suitable repetitions are relatively dense. The notions differ in the definition of a
suitable repetition. Bohr almost periodicity requires global repetition up to a small
L error, while uniform recurrence requires exact repetition in a neighborhood of
a given size. In particular, neither notion implies the other.

(b) Uniform recurrence is a standard notion in discrete geometry, and especially in
the study of aperiodically ordered point sets, which in turn are of interest in the
mathematical study of quasicrystals; see [2] and references therein.

(c) The potentials V' for which we prove these statements are completely explicit.
They arise from a product construction based on the Fibonacci sequence, which
may be expressed in terms of a discontinuous sampling function defined over an
irrational rotation as follows:
Wy = X[1-6,1)(nf mod 1), 0= \/52 1.

(d) It would of course be of interest to exhibit almost periodic V : R — R, d > 2,
for which the spectrum of the associated Schrédinger operator has both a Cantor
component and a half line. We have been unable to establish the existence of such
potentials. The obstacles which appear to make this task difficult are discussed in
Section 6; see Question 4 and the discussion following it.

As already indicated above, our level of understanding is vastly different in the
cases d = 1 and d > 2. Far more is known in the one-dimensional case, and in order
to take advantage of that we will consider separable potentials V : R¢ — R, that
is, potentials of the form

(1.1) V(zy,...,xq) = Vi(zr) + - + Va(za)

with V; : R - R, 1 < j < d. Thus, in addition to the operator Hy in L?(R?) of
main interest, we may also consider the operators Hy, in L?(R),1<j<d. Itis
well known that the spectra are related via the standard Minkowski sum of sets as
follows:

(1.2) o(Hy) = o(Hv,)+---+0(Hy,) ={E1+---+Eq: E; € o(Hy,), 1 <j <d}.

See, for example, [47, Sections I1.4 and VIII.10] and [47, Theorem II.10].

This suggests the strategy we will follow in the proof of Theorem 1.2. Choose
one-dimensional ergodic potentials V; such that the spectra o(Hy,) are generalized
Cantor sets. Then investigate the sum on the right-hand side of (1.2) and prove
that there are FEy, F; such that it is Cantor below Ey and a half line above Ej.
It is well known that the study of sums of Cantor sets is difficult and can lead
to a variety of outcomes. Such sums can indeed be Cantor sets or intervals, and
certain mechanisms are known that will produce either outcome. The challenge
will then be to choose the potentials V; in such a way that the spectra o(Hy,) have
a structure that will allow us to apply both of these mechanisms simultaneously.

Once we have explained which features of Cantor sets we will need, we may
explore these features in spectra of specific one-dimensional Schrodinger operators.
Our one-dimensional potentials will be generated by the Fibonacci sequence. This
is not a coincidence. This is currently (essentially) the only example for which the
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desired features can be established. In particular, no bona fide almost periodic po-
tential in one dimension is currently known for which similar results can be proved.
Thus, in Subsection 3.1 we will discuss one-dimensional potentials generated by
the Fibonacci substitution and recall some important concepts needed in the spec-
tral analysis of the associated Schrédinger operators, namely the trace map, the
Fricke-Vogt invariant, and the curve of initial conditions.

The remainder of the paper is organized as follows. In Section 2, we formulate
and prove an abstract Bethe-Sommerfeld criterion for sums of extended Cantor
sets. We single out this result, since it may be of independent interest outside
our main application. In Section 3 we review some background about potentials
generated by the Fibonacci substitution. In Section 4, we verify the conditions of
the abstract Bethe-Sommerfeld criterion for the Fibonacci model and hence confirm
the half-line portion of Theorem 1.2. In Section 5, we study the low-energy region,
showing that the spectrum can be made to be a Cantor set in suitable paramter
regions. Finally, in Section 6 we conclude with some questions raised by the present
work that we regard as challenging and interesting.

Remark 1.4. (a) For notational simplicity, we give the proof of Theorem 1.2 in
the case d = 2. The proof in the case d > 2 is completely analogous. In fact,
no changes are necessary in the choice of the underlying 1D potential to get the
half-line portion of the spectrum, and only a minor change is necessary to get the
Cantor portion of the spectrum (namely, one needs to replace the number 1/2 in
(5.2) by 1/4d).

(b) It is interesting to compare the structure of the spectrum of Schrédinger op-
erators given by Theorem 1.2 with the structure of Lagrange and Markov spectra,
the sets that appear naturally in the theory of Diophantine approximation; see [32]
and references therein.

Acknowledgment. We are grateful to Leonid Parnovski for raising the question
of whether examples with spectra exhibiting the topological structure discussed in
this paper can be found and for his interest in this work.

2. ABSTRACT BETHE-SOMMERFELD CRITERION

Let us begin by recalling some terminology and results that will be useful. Let
C C R be a Cantor set (i.e., C is bounded, perfect, and nowhere dense) and denote
by I its convex hull. Any connected component of I\C is called a gap of C. A
presentation of C' is given by an ordering U = {U, },>1 of the gaps of C. If u € C
is a boundary point of a gap U of C, we denote by K the connected component of
IN\NU1UUzU...UU,) (with n chosen so that U,, = U) that contains u and write
K|

T(C,u,u) = m

The thickness 7(C) of C is given by
7(C) = supinf 7(C,U, u),
u u

The following consequence of the Newhouse Gap Lemma [39, 40] is stated as [12,
Lemma 6.2] and proved there:
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Lemma 2.1. Suppose C, K C R are Cantor sets with 7(C) - 7(K) > 1. Assume
also that the size of the largest gap of C is not greater than the diameter of K, and
the size of the largest gap of K is not greater than the diameter of C'. Then,

C + K = [min C + min K, max C' 4+ max K].

Remark 2.2. A particular consequence of Lemma 2.1 is the following: if C' C R
is a Cantor set with 7(C) > 1, then

C+C=[2minC,2maxC]|.

Lemma 2.3 (Abstract Bethe-Sommerfeld Conditions). Suppose K C R is a closed
set that has the following properties:

(1) K contains Cantor sets K1, Ko, ... with disjoint convex hulls Iy, I, ..., so
that 1,41 lies to the right of I, for every n € N.
(2) For some ¢ >0, we have 7(K,) > 1+¢ for alln € N.
(3) For some A > a >0, we have 2A > |I,,| > A and dist(L,,, I,4+1) < a for all
n € N.
Let K = f(K), where f : R — R is given by f(z) = 22. Then K + K contains a
half-line.

Remark 2.4. We only need the case f(z) = 22 for the present work. The proof
also applies to functions f(z) = ™, m > 0 with minor changes; it is not trivial
to determine the optimal class of functions for which the conclusion holds true,
and this would take us too far from the central goal of the paper, so we do not
take up that question. We would consider progress on this question independently
interesting.

Proof of Lemma 2.3. Denote K, = f(K,). Throughout the argument, we assume
n is large enough that K, C [0,00). Let us show that for all sufficiently large n € N,
we have 7(K,) > 1+ 5. Indeed, for any two intervals B = [u,v], U = [v,w] from
I,, such that

|B| Vo g
L R c
Ul w-—wv— ’

we have

€
>14 -
+2,

for v sufficiently large (i.e. n sufficiently large).

A similar estimate holds in the case of intervals B = [u,v], U = [w, u] (i-e., in the
language of the Newhouse Gap Lemma, when the bridge is to the right of the gap).
Therefore, for all sufficiently large n, T(IN(n) > 1+ §, and thus the sum I~(n + I~(n is
an interval by Remark 2.2.
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_ Next, let us show that for all sufficiently large n, each of the Cantor sets K, and
K,,+1 has diameter larger than the largest gap of the other. In that case Lemma 2.1
will imply that K, + K, 11 is an interval. Indeed, suppose that I,, = [z,y] and
I,+1 = [2,t]. By our assumptions, we have

(2.1) A<y—x<24, z—-y<a A<t—z<2A

Since we already know that 7(K,41) > 1, the largest gap of K, is not greater
than £ (t*—2?), and the diameter of K, is equal to y? —2?. Using (2.1) three times,
we have

R

=y —2)(y+z)

> Az +y)

> A2y —24)

> A(2(z — a) — 24)
=2Az — (24a + 2A?).

Similarly, using (2.1) twice more yields

1, o 1
§(t z)—3(t 2)(t+ z)
1
< S2A(t+2)
g;A(2z+2A)
4 4
—ZAr4 242
34773

Therefore, for all sufficiently large values of n, the diameter of K, is greater than
the largest gap of I~(n+1. Similarly one can show that for all sufficiently large values
of n, the diameter of IN(nH is greater than the largest gap of K,.

We therefore know that the sets J,, := I?n + IN(n and J/, := I?n + f{n+1 are
intervals for large n. Let us show that they cover a half line. It is enough to check
that J,, is not disjoint from J/,, and J/, is not disjoint from J,, 1.

As before, denote I, = [x,y], I,+1 = [2,t]. Tt follows from our discussion above
that J,, = [22%,2¢?%], Jny1 = [222,2t%], and J! = [2% + 2%, y? + t?]. To show that
Jy, is not disjoint from J! we need to check that 2y? > 22 + 22. Using (2.1) twice
in each term, we have

27 — (@? +2°) = (y— )y +2) + (y — 2)(y + 2)
>Aly+z)—a(y + 2)
> A2y — 2A) —a(2y + a)
= 2y(A —a) — 24% — d?
>0

if n is sufficiently large.
To show that J/ is not disjoint from J,,11 we need to check that y? + 2 > 222,
We have

P2 —222= -2+ (2 -2
=(t—2)(t+2)+@y—2)(y+2).
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Using t — z = |I,11] > A and y < z < t to estimate the first term and z —y < a
(twice) to estimate the second term, we arrive at

y? 12— 222 > 24y — a(2y + a)
>2(A —a)y — a?
>0

if n is sufficiently large.
It follows that for ng large enough, the set

U (auan),

n>ngo

which is contained in K + IN{, is a half line. O

3. BACKGROUND

3.1. Trace Map and Fricke—Vogt Invariant. Let us recall the dynamical setup
that is canonically associated with any one-dimensional Schrédinger operator whose
potential is generated by the Fibonacci substitution. We refer the reader to [6, 12]
for more details and background.

The trace map is given by

T:R® = R3 T(x,y,2) = 22y — z,,y).

Note that T is invertible with T~ (z,y, 2) = (v, 2, 2yz — x).
The Fricke-Vogt invariant

G(z,y,2) =ax> +y*> + 2% — 2zyz — 1
obeys
(3.1) GoT =G,
and hence T preserves the family of cubic surfaces

Sr = {(x,y,z) eR?: G(z,y,2) :I}.

The surface Sy is called the Cayley cubic.

It is natural to consider the restriction 77 of the trace map T to the invariant
surface S;. That is, Ty : St — Sy, Tt = T|s,. Denote by Q; the set of points in Sy
whose full two-sided orbit under 77 is bounded.

Let us recall that an invariant closed set A of a diffeomorphism f : M — M
is hyperbolic if there exists a splitting of the tangent space T, M = E¥ & E¥ at
every point « € A such that this splitting is invariant under D f, the differential D f
exponentially contracts vectors from the stable subspaces { E2}, and the differential
of the inverse, Df !, exponentially contracts vectors from the unstable subspaces
{E¥}. A hyperbolic set A of a diffeomorphism f : M — M is locally mazimal if
there exists a neighborhood U of A such that

A=) ).
neEZ
It was shown in [4, 5, 11] that for every I > 0, the set Q; is a locally maximal
hyperbolic set of 77 : S; — Sy, which is homeomorphic to a Cantor set.
For the discussion of the high-energy regime later in this paper, special attention
needs to be paid to small non-negative values of I, which may then be viewed as
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small perturbations of the case I = 0. For this reason, let us briefly discuss the
latter special case.

Denote by S the part of the Cayley cubic Sy inside the cube {|z] < 1,|y| <
1,|z| < 1}. The surface S is homeomorphic to S?, invariant, smooth everywhere
except at the four points P, = (1,1,1), P, = (-1,-1,1), P = (1,—1,—1), and
Py = (—1,1,—1), where S has conic singularities, and the trace map T restricted
to S is a factor of the hyperbolic automorphism of T? = R?/Z? given by

A0, p) = (0 + ¢,0) (mod 1).
The semiconjugacy is given by the map

F:(0,p)— (cos2m(0 + @), cos 270, cos 2mp).

The map A is hyperbolic, and is given by the matrix A = (1 0

! 1), which has

eigenvalues
1+vo 4 1-V5

5 an —p =
The Markov partition for the map A : T? — T? shown in Figure 1 has already
appeared in [5, 12]; for more details on Markov partitions for two-dimensional
hyperbolic maps see [41, Appendix 2|). Its image under the map F : T2 — Sis a
Markov partition for the pseudo-Anosov map Ty : S — S.

So far we have discussed the dynamical setup which is tied to the trace map.
Since all “second-order” one-dimensional operators (more precisely, operators for
which there exists an SL(2,R) transfer matrix formalism) generated by the Fi-
bonacci substitution lead to the same trace map, this dynamical setup is relevant
to all of them. The specific choice of the operator in question, however, will affect
the associated curve of initial conditions, which needs to be studied relative to the
fixed dynamical setup. Let us discuss the operator and its associated curve of initial
conditions relevant to this paper.

3.2. Schrédinger Operators Associated with the Fibonacci Subshift. Let
us introduce the second-order operators that we will study. See also [8, 21]. First,
we recall the notion of concatenation of real-valued functions defined on intervals.
Given £, € Ry o (0,00) and f,, : [0,4,) — R for each n € Z, define the concate-
nation of the sequence {f,}nez as follows. Put

S nz

(3.2) th = {0 n=0
_Z;:ln gj n< -1,

denote Jp, = [tn,tny1), J =, J and define f : J — R by

(3.3) f(x) = fo(z —t,), foreachx e J,.

In the present work, we will have ) 0, = > ¢, = 00 so that J = R. Using
a box to denote the position of the origin, we denote the concatenation by

(3.4) F=( ezl [l il 2] o)

Let A be a finite set, called the alphabet. Equip A with the discrete topology and
endow A% with the corresponding product topology. The left shift

[Tw)(n) < win+1), weA? nez,
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(0,1) (1,1)
1 1
5
3 6 4
5
2 2
5
4 6 3
5
1 1
(0,0) (1,0)

F1GURE 1. The Markov partition for the map A.

defines a homeomorphism from AZ to itself. A subset Q C AZ is called T-invariant
if 771(Q) = Q. Any compact T-invariant subset of AZ is called a subshift.

We can use the concatenation construction above to associate potentials (and
hence Schrédinger operators) to elements of subshifts as follows. For each « € A,
we pick £, > 0 and a real-valued function f, € L?[0,4,). Then, for any w € AZ,
we define the action of the continuum Schrédinger operator H,, in L*(R) by

d2

3.5 H, = ——

+Vw'7

where the potential V, is given by

(36) Vo, = Vw,{fu} déf ( fw72 | fw—l ‘ | fw1 | fwz ) :

These potentials belong to L2 (R) and hence each H,, defines a self-adjoint

loc,unif
operator on a dense subspace L?(R) in a canonical fashion.
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In the present manuscript, the alphabet contains two symbols, A def {a,b}. The
Fibonacci substitution is the map

S(a) = ab, S(b) =a.

This map extends by concatenation to A*, the free monoid over A (i.e. the set of
finite words over A), as well as to AY, the collection of (one-sided) infinite words
over A. There exists a unique element

u = abaababa... e AY

with the property that v = S(u). It is straightforward to verify that for n € N,
S™(a) is a prefix of S"*1(a). Thus, one obtains u as the limit (in the product
topology on AN) of the sequence of finite words {S™(a)},en. With this setup, the
Fibonacci subshift is defined to be the collection of two-sided infinite words with
the same local factor structure as u, that is,

o {w € AZ : every finite subword of w is also a subword of u}.

Given /,,0, € Ry and real-valued functions f, € L?[0,4,), fo € L?[0,4), we
consider the family of continuum Schrodinger operators { H,, },cq defined by (3.5)
and (3.6). Since (2, 7T) is a minimal dynamical system, one can verify that there is
a uniform closed set ¥ = X(fa, fb) C R with the property that

(3.7) o(H,) =X for every w € ).

Of course, one can choose f, and f, in such a way that every V, is a periodic
potential (notice that as soon as V., is periodic for a single wy € €2, then every
V., is periodic by minimality). The main result of [8] is that this is the only pos-
sible obstruction to Cantor spectrum. Thus, we adopt the following assumption
throughout the paper:

Assumption 3.1. The potential pieces f, and f, are chosen so that V,, is aperiodic
for one w € Q (hence for every w € Q by minimality).

Theorem 3.2 (Damanik-Fillman—Gorodetski [8]). If f, and f, satisfy Assump-
tion 3.1, then X(fa, fv) is a Cantor set of zero Lebesgue measure.

Remark 3.3. In [8], the authors also assumed a condition on {f, : & € A} that
they called irreducibility. This condition is defined so that the potentials satisfy the
simple finite decomposition property (SFDP) from [29]. However, since our alphabet
only has two letters, SFDP follows from aperiodicity and [29, Proposition 3.5].

In the sequel, it will be convenient to introduce an additional symbol: “ab”, and
then to define £, = ¢, + ¢, and

fanl) = {fa(m) =r<b

folz —404y) €y <z <ALy,
Given o € A & AU {ab}, consider the solutions of the differential equation
—u"(z) + fa(x)u(z) = Eu(x) for E € R. Denote the solution obeying u(0) = 0,
u'(0) = 1 (resp., u(0) = 1, v/(0) = 0) by u p(-, E) (resp., uan(:, E)). Then, we
set
_ Uoz,N(gavE) Uoz,D(gouE)
MieB) = (08 )
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and
(3.8) 2 A (E) = %tr (M(b, E)),
(39) ro(B) = 5tx (M(a, ),
(3.10) 21(E) = %tr (M(ab, E)) .

It is straightforward to check that M (ab,-) = M(b,-)M(a,-). The map v : E —
(21(E),zo(F),z_1(E)) will be called the curve of initial conditions. Note that by
(3.1), all the points T™(x1(E), xo(E), x_1(F)) lie on the surface Sy(g), where (with
some abuse of notation) we set

I(E) = I(v(E)).

It was shown in [8] that I(E) > 0 for every E € X.

For special choices of the local potential pieces, it is possible to compute the
Fricke-Vogt invariant I(FE) explicitly. For example, as in [8] let us consider the
case b = b, = 1, fa = A~ x[0,1) and fo = 0 - X[o,1), Where A > 0 and let us recall
the formulas obtained there. Clearly, the resulting potentials are aperiodic. One
readily computes the traces as follows:

z_1(E) = cos VE,
20(E) = cosVE — A,

1 E E—-X\)\ . .
z1(F) = cos V E cos E—)\—2<\/E_/\+\/ = )Sln EsinvVE — ),

and therefore
1
= ziE(E Y sin? VEsin? VE — \.

These expressions all define entire functions of £ € C. For example, for £ < 0, one
has x_1(E) = cosh \/|E].

Let us now state our main 1D results which we will leverage to prove Theorem 1.2.
Let £a = fp = 1 and fo = 0- xpo,1) and fp = A - x[o,1) be as above, and write
Y= E(.favfb)'

Theorem 3.4. For any A € R, X5 + X contains a half-line. More precisely, there
exists F1 = F1(\) such that ¥y 4+ 3y 2 [Fy,00).

Theorem 3.5. There exists \g such that, for any X > )Xo, there is FEy such that
(=00, Eo) N (Xx + X)) is a nonempty Cantor set of zero Lebesgue measure.

(3.11) I(E)

Proof of Theorem 1.2. Note first that it is well known that each w € 2 is uniformly
recurrent (where the definition of uniform recurrence for maps w : Z — R is anal-
ogous to the one given in Definition 1.1 for maps V' : R — R; namely, for every
length m € N, there is a window size M € N such that each word of length M
appearing in w contains every word of length m that appears in w).

From this and the way the potentials V,, are constructed, it is then easily seen
that each V,, is uniformly recurrent in the sense of Definition 1.1. The resulting 2-
dimensional potential arising via (1.1) with V; = V5 = V,, then inherits the uniform
recurrence property from V,,. (Recall that we focus on the case d = 2 in this proof
and leave the details of the extension to the case d > 3 to the reader.)
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The statements about the spectrum are immediate from Theorem 3.4, Theo-
rem 3.5, and Equation (1.2). O

4. THE HiGH-ENERGY REGIME

Our goal in this section is to prove Theorem 3.4, which states that in the high-
energy regime, the spectrum of the separable 2D Schrodinger operators we consider
contains no gaps. In this proof the existing (extensive) work on the Fibonacci
Hamiltonian will be helpful, but not sufficient. We will actually have to delve
into the technical details of the theory that has been developed and establish new
results. For this reason, this section is somewhat demanding and while we attempt
to provide a presentation that is as self-contained as possible, it may be necessary to
consult some of the earlier papers (e.g., [8, 11, 12, 15, 22, 56]) for further background
and motivation.

The curve of initial conditions for the degenerate case in which the poten-
tial vanishes identically (i.e., for the free Laplacian) contains the curve II =
{(cos(2t), cost,cost)}, t > 0. This curve corresponds to the line segment in Figure 1
that connects the point (0,0) with the point (0.5,0.5). In particular, this curve is
transversal to both the stable and unstable foliations of the trace map Ty on Sy.
The curve of initial conditions I'(E) accumulates to the curve II as E becomes
large, if one sets t = v/E. We would like to consider only the parts of I'(E) that are
bounded away from suitably small neighborhoods of the singularities, and to then
show that on each connected piece of the curve, the set of points that have bounded
positive semi-orbits (i.e., those that correspond to energies in the spectrum) form
a Cantor set of large thickness. In order to formalize this construction we need to
discuss the dynamics of the trace map T and to introduce some notation.

First consider the dynamics of T in a neighborhood of the singularity P; =
(1,1,1). Due to the symmetries of the trace map this will also provide information
on the dynamics near the other singularities. Take 7o > 0 small and let O, (P;)
be an ro-neighborhood of the point P, = (1,1,1) in R3. Let us consider the set
Pery(T) of periodic points of T of period 2.

By a direct calculation one can show the following:

Lemma 4.1. We have

Pery(T) = {(amy,z) 1w € (—00,3)U(3,00), y= %, z = :E} .
T —

Notice that in a neighborhood of P;, the intersection J = Pers(T) N Oy, (P1) is a
smooth curve that is a normally hyperbolic with respect to T (see, e.g., Appendix 1
in [41] for the formal definition of normal hyperbolicity). Therefore, the local center-
stable manifold W, (I) and the local center-unstable manifold W% (1) defined by

loc loc

SI)={p € Oy (P1) : T"(p) € Oy, (Py) for all n € N},

C(I) = {p € Ory(P1) : T™"(p) € Ory(Py) for all n € N}
are smooth two-dimensional surfaces. Also, the local strong stable manifold
W (P1) and the local strong unstable manifold W (P;) of the fixed point P,
defined by
Wige(P1) = {p € Wig.(I) : T"(p) — P as n — oo},
Wis(Py) ={peWgi(I) : T "(p) = Py asn — oo},

are smooth curves.
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The Markov partition for the pseudo-Anosov map 7' : S — S can be extended
to a Markov partition for the map T : S; — S;. Namely, there are four singular
points P = (1,1,1), P, =(—-1,-1,1), Ps = (1,-1,—1), and P, = (—1,1,—1) of S.
The point P, is a fixed point of T, and the points P, P, P, form a periodic orbit
of period 3. For small I > 0, on the surface S; near P; there is a hyperbolic orbit of
the map Tt = T'|g, of period 2, and near the orbit { P», P3, P,} there is a hyperbolic
periodic orbit of period 6. Pieces of stable and unstable manifolds of these 8 periodic
points form a Markov partition for 77 : S; — Sy. For I > 0, the elements of this
Markov partition are disjoint. Let us denote these six rectangles (the elements of
the Markov partition) by R} R% ..., RS. Let us also denote R; = U?:l RY and
R =y« R;. Finally, let us denote R* = J,; R}, i =1,2,...,6.

Denote by Q7 the set of pointsin {I > 0} C R? with bounded positive semiorbits.

The set of fixed points of T2 in a neighborhood of P; of size 7¢ > 0 is a smooth
curve Fix(T?,O,,(Py)) = Pera(T) N O,,(P1); see Lemma 4.1 above. Each of the
fixed points has one of the eigenvalues equal to 1, one greater than 1, and one
smaller than 1 in absolute value. Therefore the curve Fix(7?, O,,(P1)) is a nor-
mally hyperbolic manifold, and its stable set W*(Fix(T?, O,,(P;))) is a smooth two
dimensional surface; see [25]. The strong stable manifolds form a C'-foliation of
W3 (Fix(T?,0,,(P1))); see [46, Theorem B|. It is convenient to consider T since
in this case each of the eight periodic points that were born from the singularities
becomes a fixed point. Due to the symmetries of the trace map, the dynamics of
T% is the same in a neighborhood of each of the singularities P;, Py, Ps, and P;.

In order to specify how to choose the pieces of the curve I'(¢), let us consider
an image T°™(IT). This is a curve that connects P; with P3, and each connected
component of the intersection of this curve with one of the elements of the Markov
partition is a curve that connects one stable boundary with another. Let us take
the curve obtained from 7 (II) by cutting the first and the last pieces with respect
to this splitting. If m is large, the preimage of this curve is II with small pieces
near the singularities removed; let us denote it by II. The curve II is parameterized
by t € 2mn+ «a,(2n+ 1)m — 5] (or by t € [(2n+ 1)7 + 3, 27n — a]) for some small
a, > 0. In the curve I'(¢) one can find a sequence of pieces such that the gaps
between them are small, and the 7°™-images of these pieces connect the points of
the boundaries of the same R as T (IT). Denote those pieces by T'y,.

Proposition 4.2. Let {I',} be a sequence of curves in R® parameterized by t €
27 + ap, (2n 4+ 1)7m = By] = Jn, an — @, B — B, such that

(1) T, converges to 11 in the C? topology;

(2) I(T,(t)) >0 for allt € J,;

(3) for some uniform C > 0, we have ‘dli’ < CI(T,(t));

(4) the images Tk(I‘n) intersect exactly the same sets R' (and in the same
order) as T*(TI) for all k > 0.

Then the set K,, = {t € J,, : T',,(t) € QT } is a Cantor set for all large values of n,
and 7(K,) — 00 as n — 00.

The proof of Proposition 4.2 goes along similar lines as the proof of [12, The-
orem 1.2], which asserts that the spectrum of the discrete Fibonacci Hamiltonian
is a Cantor set of large thickness in the small coupling regime. The situation in
Proposition 4.2 is more delicate since the curve of initial conditions (that is the
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meaning of T',,(t)) does not belong to the same level surface Sy as in the discrete
case. Nevertheless, the condition (3) from Proposition 4.2 ensures that the value of
the Fricke-Vogt invariant I does not change too fast along the curve I',,(¢), and that
in turn allows one to modify the main steps of the proof of [12, Theorem 1.2] in order
to derive Proposition 4.2. We carry out the details of the proof of Proposition 4.2
in Subsections 4.1, 4.2, 4.3, and 4.4.

4.1. Choice of a Coordinate System in a Neighborhood of a Singular
Point. Due to the smoothness of the invariant manifolds of the curve of periodic
points of period two described above, there exists a smooth change of coordinates
® : 0,,(P1) — R3 such that ®(P;) = (0,0,0) and
®(7J) is a part of the line {z =0,z = 0};

W (7)) is a part of the plane {z = 0};

b ( loc(

o O(WEL(T)) is a part of the plane {x = 0};

o O(WS (Py)) is a part of the line {y =0,z = 0};
. a(Wi(

O(WEY(Py)) is a part of the line {x =0,y = 0}.

loc

Denote f = ® o T o 1. Then,

&0 oo
A=Df(0,0,0)=D(®oTod (0,0,00=( 0 -1 0],
0 0 ¢
where ¢ is the largest eigenvalue of the differential DT'(P;) : Tp,R? — Tp R3,
2 2 -1
3 )
DT(P)=11 0 0|, &= +2\[=u2.

01 0

Let us denote &; = ®(S7). Then, away from (0, 0,0), the family {&S;} is a smooth
family of surfaces, & is diffeomorphic to a cone, contains the lines {y = 0,z = 0}
and {z = 0,y = 0}, and at each non-zero point on these lines, it has a quadratic
tangency with a horizontal or vertical plane.

Due to the symmetries of the trace map, similar changes of coordinates exist in a
neighborhood of each of the other singularities. Denote O,, = O,,(P;) UO,,(P2) U
OTO (P3) U OTO (P4)

The next statement shows that, roughly speaking, if a point stays in a neigh-
borhood where normalizing coordinates are defined for N iterates, then it must be
£ N_close to the center-stable manifold of the curve of fixed points.

Proposition 4.3 (Proposition 3.4 from [12]). Given Cy > 0,Cy > 0,£ > 1, there
exist 6p = (50(01,02,§), Ny = No(cl,CQ,f,éo) €N, and C** > C* > 0 such that
for any 6 € (0,00), the following holds.
Let f :R3 — R3 be a C?-diffeomorphism such that
(@) [ fllcz < Cu;
(ii) the planes {z = 0} and {x = 0} are invariant under iterates of f;
(iii) every point of the line {z = 0,2 = 0} is a fized point of f;
(iv) at a point Q € {z =0,z = 0} we have

571

0 0
Df@={(0 1 0];
0 0 ¢
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(v) IDf(p) — Al < & for every p € R3, where

&1 00
A=Df@ =0 1 0
0 0 ¢

Introduce the following cone fields in R3:

(4.1) K, = {ve TPR3, V=Vyy + V.1 [vi] > Cov/|2p||Vayl}s
(4.2) K" ={veT,R® v=v,+vy:|vy| <001 vy.]},
(4.3) K, = {ve TPRB, V=V 4 vy, o Vg > Con /x| vy},
(4.4) K ={veT,R’ v=v,+vyy:|v] <0.01E vy}

Suppose that for a finite orbit pg,p1,ps3,...,pN, we have

(pO)x 2 ]-7 (pl)z < ]-v (pN)z Z ]-7 (prl)z < ]-»

and there are curves vy and yn such that vy connects po with W*5(Q) and is tangent
to both cone fields K* and K, and yn connects py with W"(Q) and is tangent
to both cone fields K° and K.

Then

C N <|(po)-| <CTEN, and
Cr N <lpn)o] < CETN.

From the proof of Proposition 4.3 (i.e., of [12, Proposition 3.4]) one can extract
the following statement:

Lemma 4.4. In the setting of Proposition 4.3, denote by = dist(px, Q). There
exists a constant C' > 0 (independent of k or N ) such that the following holds:
If k < N/2, then b, < C'(¢ —6)7F.
If k> N/2, then by, < C'(& — &)~ N+k,

Other statements from [12] we will need are the following:

Proposition 4.5 (Proposition 3.15 from [12]). Given C7 > 0,Cs > 0, > 1, there
exist 6g = 50(01,02,)\), No € N, Ny = N0(01,027)\75(]) € N, and 5 > 0 such that
for any & € (0,dp), the following holds.

Under the conditions of and with the notation from Proposition 4.3, suppose that
v eT,R* veKY. Then |DfN(v) > CeN2y).

Let us denote v, = Df*(v),k=0,1,..., N, and Dy, = |(vi).|, dx = |(Vi)ayl-

Lemma 4.6 (Lemma 3.16 from [12]). There exists k* such that di, > Dy for all
k <k*, and dy < Dy, for all k > k*.

Lemma 4.7 (Lemma 3.17 from [12]). There is a constant Cy independent of N
such that

€5 < CyeN/2,
Lemma 4.8. There exists Cg > 0 such that for all k < k* we have

Ci' < |(vi)yl < Cs.
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Proof of Lemma 4.8. From the proof of Lemma 4.6 (i.e., [12, Lemma 3.16]) one
can immediately extract that |(vg),| < dp < Cg for some constant Cg > 0 for all
k < k*. At the same time, since ||f||cz < Cq, and

&1 0 0
A=Df@=|0 1 0],
0 0 ¢

we have
[(Vis1)yl 2 [(Vi)y| = min (6, Cor) Vel = (1 = C*bg)|(Vi)yl,

where C* is a constant independent of £k < k* and N. Hence, taking into account
Lemma 4.4, we have

k

|(Vi)yl = [H(l - C*bk)] |(vo)y| > Cg!

i=1

for some constant Cg > 0. U

Proposition 4.9 (Proposition 3.18 from [12]). Given C; > 0,Cs > 0,C3 > 0,& >
1, there exist g = 50(01,02,03,5), Ny = N0(01,02,03,/\,50) eN, and C >0
such that for any 6 € (0,00) and any A > 0, the following holds.

Under the conditions of and with the notation from Proposition 4.3, suppose
that the curve vy has a curvature bounded by Cs. Suppose also that for the points
P = (Tp,Yp, 2p) and q¢ = (X4, Yy, 24), the following holds:

(1) p,q €705

(2) For some N > Ny both fN(p) and f(q) have z-coordinates larger than 1,

and both fN=1(p) and fN~1(q) have z-coordinates not greater than 1;

(3) dist(f™(p), [V () = A.

Denote pr, = f*(p), at = f*(q), k =0,...,N. Let v € T,R® and w € T,R? be
vectors tangent to o and denote vy = Df*(v) and wy = Df¥(w), k =0,...,N.
Let ay, be the angle between vy, and wy,.

Then,

N N

(4.5) Zak < CA and Zdist(pk7qk) < CA.
k=0 k=0

We will need to modify Proposition 4.9.

Definition 4.10. For any points p, ¢ and any nonzero vectors v,, v,, define

L(vp,vy)
4.6 =P 4
( ) S(pa%v;qu) diSt(p7 C])
Definition 4.11. For any C? smooth curve v, define
(4.7) 3(v) = maxF(p, ¢, vy, vg),

where v, and v, are unit vectors tangent to - at the points p and ¢, and the
maximum is taken over all pairs of distinct points p,q € 7.

Remark 4.12. Notice that §(v) is the maximum of the curvature of the curve ~
over all its points.

Here is the formal statement that we need:
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Proposition 4.13 (Modified version of Proposition 4.9). Given C; > 0,Cy >
0,£ > 1, there exist 5o = 60(C1,C2, &), No = No(C1,C3,&,00) € N, and C > 0 such
that for any 0 € (0,0¢) and any A > 0, the following holds.

Under the conditions of and with the notation from Proposition 4.3, suppose that
for the points p = (zp, yp, 2p) and q = (z4,Yq, 2q), the following holds:

(1) p,q €5

(2) for some N > Ny, both fN(p) and f~(q) have z-coordinates larger than 1,
and both fN=1(p) and fN~1(q) have z-coordinates not greater than 1;

(3) dist(fV(p), fV(q)) = A.

Denote pr = f*(p), ar = f*(q), k=0,...,N. Let v € T,R? and w € T,R3 be
vectors tangent to vy and denote vi = Df*(v) and wy = Df*(w), k=0,...,N.
Let ay, be the angle between vy and wy,.

Denote v, = f*(v0), and set §, = F(w), k=0,...,N.

Then,
N
(4.8) > dist(pr, qx) < CA,  and
k=0
(4.9) Sy <NV +C.

Moreover, for any Cs > 0 there exists C > 0 such that if $o < Cs, then
N
(4.10) > ap < CA.
k=0

Proof of Proposition 4.13. The inequalities (4.8) and (4.10) follow from Proposition
4.9, one just needs to observe that in the proof of Proposition 4.9 (i.e., of [12,
Proposition 3.18]) the estimates on fo:o dist(p, ¢x) do not use any bound on the
curvature of vy. Hence we only need to prove (4.9).

Notice that it is enough to prove Proposition 4.13 in the case when the points
p and ¢ are arbitrarily close to each other. This follows from the fact that in
Definition 4.11 one can take the maximum over those pairs of points that are
sufficiently close, compare with Remark 4.12.

Denote by I' the piece of the curve vy between the points py and g, and set
Iy = f&(T), k=0,1,2,...,N. Denote 3 = |Tx|. Due to the remark above we can
assume that pg < 1, and that for any vector tangent to I', the value of k* is the
same.

We will need to use the following elementary estimates, whose proofs we leave
to the reader.

Lemma 4.14. Given ag >0, 7 > 1, 6 > 0, suppose that
g1 <Tap+9, k=0,1,...

Then oy, < 7F (ao + ﬁ)

Lemma 4.15. Given ag >0, 0 <t <1, A > 0, suppose that
apy1 <tap+ A, k=0,1,...

Then ap < thag + %.
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Recall that v; and wy, are the vectors tangent to I'y at pr, = f*(po) and q =
f*(q0), and a, = Z(vi, wi).
We know that for k < k*, one has
g1 < (E+0)ag + Crup < (E+ )ay + C1Cs o,

since Lemma 4.8 is applicable in this case.
We also know that for some m € N independent of NV, and for all & > k* + m,
we have
st < (€ + 8w+ Crpw < (€1 + 8o + Crpy, and i1 > (€ — 26) .
Therefore, Lemma 4.14 gives
. C1Csio
. < 5)k — .
ap- < (E+9) (a0+§+§1
We also have
A im < CT'ags +mCT" .
Therefore, due to Lemma 4.15 we have

ay < (€1 20)N2 (Clage + mCOT o) + — N

1—-&1-26
Combining these inequalities, we get

an
S(pquNavNawN) =—<

KN
(€7 +20)M2(€ +6)F (€71 +20)N2
t - | P A t,
cons e $(po, q0, Vo, Wo) + cons €2V + const,
and (4.9) follows. O

4.2. Distortion Property: Estimate of the Gap Sizes. Let us consider I';,. Its
image T°™(T',,) intersects R in a finite number of closed curves. The gaps between
these curves correspond to the gaps in the parameter space J,, that we will call the
gaps of order one. Denote

M, = min I(T M = max (T, (1)).
n = minI(Ta(t), My = maxI(Tn(t))

The assumption (1) from Proposition 4.2 implies that M, , M;} — 0 as n — oo, and
assumption (3) implies that for some uniform constant C; > 1 that is independent

of n, the size of any gap of order one is between Cflx/ M, and Civ/ M.

Those gaps in J,, that are formed by the intersection of 76+(*~1)(T,) with the
complement of R and do not have order less than k will be called gaps of order
k. It is clear that every gap in I',, N1 QT has some finite order. Therefore we have
ordered all the gaps.

Consider some gap lg C J, of order k. A bridge that corresponds to this gap
is a connected component of the complement of the union of all gaps of order < k
next to the gap. There are two bridges that correspond to the chosen gap, take one
of them, and denote it by [g. Now let us consider £5 = I';;' o T +(k=1(T, (I5))
and £5 =T, ' o T +(E=1(T, (Ip)). By the definition of the order k of the gap we
know that
(4.11) O/ M, < :EG: < cn/i7

B

for suitable constants C3 and Cy4 independent of n.
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Proposition 4.16 (Analog of Proposition 3.11 from [12]). There is a constant
K > 1 independent of the choice of the gap and of n such that

i llel _ L6l lg|

lts] = [€8] = [B]

After some preparatory work in Subsection 4.3, we will prove Proposition 4.16
in Subsection 4.4. In the meantime, let us observe that the distortion property
elucidated in Proposition 4.16 suffices to establish Proposition 4.2.

Proof of Proposition 4.2. The statement follows from Proposition 4.16, inequality
(4.11), and the fact that M, , M,;" — 0 as n — occ. O

4.3. Preliminary Estimates. Let us denote by U, the bounded connected com-
ponent of (Uog[gu SI) \O,,. Let us denote by 7; the orthogonal projection of
SrNU, to S\O,.,. Notice that F~1(S\O,.,) is a torus without small neighborhoods
of the preimages of the singularities. We can define

Fio 1 Uy = T? x [0,1]

by
Fio(7) = (Fil(ﬂl(x)(x))vl(x))a
and
T : Fig ) (U,) = T? x [0,v]
by

T 1) = (F tom oTon;' o F(Z),I).
In this case T is C%-close to A x id : T2 x [0, ] — T2 x [0, ] if v is small, and
T=H'oToH,
where H(z,I) = W;(lz) o F(x), that is, T and T are smoothly conjugate. Set
(4.12) C = max(|H|lc2, [ H Mlcz, 1@ ez |9 o2 [|H 0 @iz, [ (H 0 @)~ c2).

Informally speaking, the constant C gives an upper bound on the distortion induced
by any change of coordinates that we may want to consider.

Define a cone field in T? x [0, v] using stable-unstable directions of the map A
as x and y coordinates:

Koy, ny = {0 = (vz,vy,01) | |vy| > 100[vg ], |vr| < Col}.

Due to assumption (3) in Proposition 4.2 and the fact that the curve II is transversal
to the stable foliation on S, one can choose Cy > 0 and kg € N in such a way that
T* o H-Y(T,,) is tangent to K" for all k > k.

Lemma 4.17 (Analog of Lemma 3.20 from [12]). For v > 0 small enough, there
ezists n € (0,1) such that for any p,q € Flo,)(U,) and unit vectors v, € K",
vy € KJ", we have

Z(DTy(vp), DTy(vq)) < n(vp, V) + 2| T c2dist(p, q).
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Proof of Lemma 4.17. If v is small, then T is C?-close to the map A X id. In
particular, for any point p € Fjg (U, ) and any vectors vi,ve € KJ*,
Z(DT,(v1), DT,(v2)) < nZ(vi,v2),
where 7 € (0,1) can be chosen uniformly for all p € Fyg,,(U,). Therefore we have
Z(DTVP<VP)7 DTq(Vq)) < A(DTP(VP)’ DT, (vq)) + £(DTp(vq), DTy(vy))

< nL(vp,vq) + 2[| DT, (vq) — DT (vl

< L(Vp, vq) + 2||T | c2dist(p, q),
as claimed. (Il

Lemma 4.18 (Analog of Lemma 3.22 from [12]). For p,q € Fjo,(U.), p # q, and
vectors v, € K, vy € K", consider the function $(p,q,vp,vq). Suppose that p
and q belong to a curve that is tangent to the cone field K*. Then

F(T(p), T(a), DT, (vp), DTy(vy)) < 03 (P, Vi, vg) + 2| Tllc=.

4||T|\cz

In particular, if F(p, ¢, Vp,vq) > , then

3T (), T(q), DTy (v,), DTy(vg)) < 151

Proof of Lemma 4.18. We have

S(pv%vpavq)

Z(Dfp(vp), DTq(Vq))
dist(T'(p), T(q))

_ 1V vy) + 2| T ezdisi(p.q)

- dist(p, q)

= 0(p, 4, Vps V) + 2| T| 2.

S(Tv(p)7 T(Q)v Dfp(vp)a qu(vq)) =

4HTH02

If we also have §(p, q, vp,vq) > , then

~ 1—7
N8P, 4, Vp, vg) +2||T[c2 < nS(p, q,vp, vy) + 7%(29, 4 Vp,Vq)

_1+n

5 (P q,vp,vg).

Denote ¥ = ® o H. From (4.12) we have:

Lemma 4.19 (Analog of Lemma 3.5 from [12]). Let C > 0 be given by (4.12).
There is v > 0 such that the following holds. Suppose that a,b € Fyg ,)(U,), va €
T,T?, v, € T,T2. Then the following inequalities hold :

dist(H(a), H(b)) < Cdist(a, b),
dist(a,b) < Cdist(H (a), H(b)),
Z(DH(v4), DH(vy)) < C(£(Va, V) + dist(a, b)),
£(varvi) < C(LDH(v,), DH(vy)) + dist(H (a), H(b))).
Moreover, if U(a) and ¥(b) are defined, then
dist(¥(a), U(b)) < C dist(a, b),
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dist(a, b) < C dist(¥(a), U(b)),
2(DW(v,), DU(vy)) < C(£(vasvy) + dist(a, b)),
£(vayvs) < CLDY(va), DU(vy)) + dist (¥ (a), W(3))).
From Lemma 4.19 and the definition of § we get the following:

Lemma 4.20 (Analog of Lemma 3.23 from [12]). Fiz a small v > 0. Suppose
that a,b € Fyo,)(Uy) are such that ¥(a) and ¥(b) are defined, and v, € T,T?,
vy, € T, T2. Then,

F(a,b,va,v) < C2(F(U(a), ¥(b), DU (v,), DU(vy)) + 1)

and
F(¥(a), ¥ (b), DU(v,), D¥(vy)) < C*(F(a,b,va,vs) + 1).

Now we are ready to choose a uniform upper bound on the curvatures of all
the images of all the curves I',, that are outside of small neighborhoods of the
singularities. Namely, recall that the constant C' was given by (4.9), C was defined
by (4.12), and define

~ 40(|T
Mgz := max (202(1 +O), 1|||CZ> .
-n

Choose Ny € N large enough to make sure that

1
40?
Then for all large n and for any small piece 7 of the curve T',,, all the iterates of
the curve « that are in U, will have curvature not greater than Mj. Indeed, after
some finite number of initial iterates k, the curve H~!(T*(y)) is tangent to the
cone field K, will have curvature bounded by Mz, and due to Lemma 4.18 that
curvature will remain bounded by Mz until we need to change the coordinates by
applying the map . We will do that only if the image of «y is going to spend more
than Ny iterates in a neighborhood of the singularity. After N > N iterates in a
neighborhood of the singularity, due to (4.9) the curvature will be bounded by
Mz+1

4C?

é——N/4 <

N CP (M5 + 1))+ C < +C,

and after application of the change of coordinates ¥ ~! we get a curve with curvature
bounded by

1 ~
1Mz +1)+ C?C < M.

Let us now notice that the partial hyperbolicity of the map T together with (4.8)
implies the following statement (the proof is similar to the proof of [12, Lemma 3.24],
so we do not repeat it here):

Lemma 4.21 (Analog of Lemma 3.24 from [12]). There is Ry > 0 such that the
following holds for all sufficiently large n. Suppose that v is a non-zero vector
tangent to T',, at some point p € T',,. Let N € N be such that T™ (p) belongs to the
bounded component of SI\OTI, where I = I(p). Then,

ZHDTZ )l < Ra|| DTN (V).
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Lemma 4.21 implies the following statement.

Lemma 4.22. There are constants Ry > 0 and k1 > 0 such that for all large n
and any N € N, the following holds. Suppose that v C T™([',,)\O,., is a connected
curve of length not greater than ky. Let the points p,q € T',, be such that T (p) €
and TN (q) € v. Then,

N
> dist(T%(p), T*(q)) < Ru.
=0

Finally, since we established a uniform bound on the curvature of all the images
of the curves I';, outside of small neighborhoods of singularities, we can use Lemma
4.22 together with (4.10) to get the key technical statement that we need to establish
the distortion property (i.e., Proposition 4.16):

Lemma 4.23 (Analog of Lemma 3.19 from [12]). There are constants R > 0, and
k > 0 such that for any large n and N € N, the following holds. Suppose that
v C TN(T,)\Oy, is a connected curve of length not greater than k. Let the points
p,q € Ty, be such that TN (p) € v and TN (q) € v, and v, and v, be unit vectors
tangent to v at points p and q. Then

N

> (4(DT(vy), DT (v,)) + dist(T%(p), T'(q))) < R.
=0

4.4. Proof of the Distortion Property.

Proof of Proposition 4.16. Notice that we need to prove that

‘log(lﬁelllE;)’
pvElite]

is bounded by some constant independent of the choice of the index n (as soon as
n is large enough) and the gap in I',,. There are points pg € g and pp € [ such
that if v is a unit vector tangent to the curve l5 at pg, and vp is a unit vector
tangent to the curve [p at pp, then

tog (ZllBI | _ [0, (2720l

1£5]/l6] [T +2(1p)][lc]
n—+2

o il

|DT™+2(vp)|
n+1 ) ]
= > (10g| DT pri(ye) (T (pa))| = 10g DT pri(y ) (T ())])
=0
n+1 ) .
<Y |l0g | DT | pritve) (T ()| = 10g | DT| pricy ) (T (p))
i=0
n+1 , )
<Y DT pri(ve) (T 06))| = DT prity ) (T (08)] -
=0

We estimate each of the terms in this sum using the following simple statement
applied to the trace map 7"
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Lemma 4.24 (Lemma 3.26 from [12]). Suppose f : R™ — R" is a smooth map,
a,b € R", and v, € T,R", v, € T,R™ are unit vectors. Then,

D flv, (@)l = [Dflv, O < I fllc2(£(va, vi) + |a = b]).
Now Proposition 4.16 follows from Lemma 4.23. (]
4.5. Verifying the Assumptions of Propositions 4.2. Here, we show how to
verify the assumptions of Proposition 4.2 in the models under consideration.

Proof of Theorem 3.4. Denote the curve of initial conditions by

D(t) = (ua(t), uo(t), ur(8) = (21(8), 20(2), 21 ().

We then choose J,, = [2mn+ o, (2n+ 1)1 — §,,] as above and denote by I'), =T/, .
We proceed by verifying that conditions (1)—(4) of Proposition 4.2 hold true.

Property (1). Write v_1(t) = vo(t) = cos(t) and v1(t) = cos(2¢). Then, put
u;j J,,- First, by [45, Theorem 1.3],

n = WjlJ,,Vjn = Vj

)

i = Vjmlloo S71,

showing that u;, — v;, — 0 uniformly. In fact, the estimates from [45] hold for
(k) _, (k)
—vi ) =

complex t as well. In particular, since all functions in sight are analytic, U=V

0 uniformly for each k (in particular for & = 1,2) by Cauchy estimates.
Property (2). This is immediate from the choice of J,, and (3.11).

Property (3). Note that

2t cot V2 — A 2t
V2 =\ V2 — )

By our choice of J,,, this is uniformly bounded for large n.

d
2 108 I(Tn(t)) = 2cott — 2t71 +

Property (4). This follows immediately from the discussion preceding Proposi-
tion 4.2.

Consequently, the result follows from Proposition 4.2 and Lemma 2.3. O

Remark 4.25. In the proof of Theorem 3.4 we made crucial use of the explicit
expressions for the traces and the invariant in the case of constant f,, f,. It would
of course be of interest to verify the assumptions of Proposition 4.2 for more general
choices of f,, f,. For example, one could in this way produce continuous or even
smooth potentials. Alas, such an extension will not at all be straightforward. A
modified version of property (1) and property (4) can be established in the general
case, in fact by the exact same argument, and we expect that property (2) can
be established under weaker assumptions as well. However, our proof of property
(3) relies on the explicit formula we have for the invariant in the locally constant
case, and checking property (3) in a more general case seems to be a challenging
technical task.
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5. THE Low-ENERGY REGIME

Our goal in this section is to prove Theorem 3.5, which states that in the low-
energy regime, the spectrum of the separable 2D Schrodinger operators we consider
is a Cantor set. In this proof the existing work on the Fibonacci Hamiltonian will
again be helpful, and indeed almost sufficient. As a consequence this section will
be less demanding than Section 4.

Our goal is to show that by fixing a suitable compact energy interval [0, Ey],
Ey > 0, and taking suitable building blocks, we can ensure that

(5.1) [0,Eo/2] N2 # 0

and
> 1

(5.2) [0, Eo]NE = U Ay, where Ay is compact, with dimf; Ay < 7
k=0

It is then not hard to verify that

(5.3) 0,E)N(Z+%)#0

and

(5.4) Leb([0, Ep) N (X + X)) =0.

Since we know that ¥ is a Cantor set, it then follows that [0, Ep] N (X + X) is
compact and nowhere dense. It could happen that Fy is the edge of a gap of ¥ 4 X
and hence is an isolated point of [0, Ey] N (X 4 ). However, since ¥ itself has no
isolated points, this is the only possible isolated point of [0, Eg] N (X + X), and it
is easy to avoid this by perturbing Ey. We will also ensure that (—oco0,0) N3 = (),
which gives (—o0,0) N (X + 2) = (. Thus, we will have accomplished our goal in
the low-energy region.

Since the primary aim of this paper is to find examples that exhibit certain
spectral phenomena, we choose our building blocks in such a way that the proofs
of (5.1) and (5.2) are as simple as possible. We expect that the same properties
can be shown in greater generality, but only after overcoming significant technical
obstacles. To keep the length of the paper in check, we will not pursue this in detail
here, but merely point out some of these obstacles in Remark 5.5 below.

One of our building blocks will simply be the zero potential on some finite inter-
val. This allows us to use test functions that are supported in this interval in order
to produce low energies in the spectrum, and in particular verify (5.1) if Ey and
the interval length are compatible. Ensuring this is easy: as soon as one of them is
fixed, the other one can be determined accordingly.

The choice of the second building block determines the difficulty of proving
(5.2). One needs to choose it so that the invariant restricted to [0, Fy] N X is large.
Recall that if the second building block consists of a constant potential, then the
invariant can be computed explicitly. Moreover, in this particular case [8] had
already proved the desired statement, provided the constant value is sufficiently
large. We will recall this derivation below. If, on the other hand, the second
building block does not consist of a constant potential, then the invariant can in
general not be determined explicitly, and the arguments used in [8] to show that it
is large on [0, Ey] N X (which rely on the explicit formula) cannot be mimicked. In
fact, it is not even clear in general how to proceed; see again Remark 5.5 for further
comments on the difficulties in establishing (5.2) in the general case.
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Let us begin with (5.1).

Lemma 5.1. Suppose {, > 0 and f, € L*(0,(,) is the zero element. Set
24
=%

Then (5.1) holds for any choice of £y, > 0 and any non-negative f, € L%(0,40p).

(5.5) Ey :

Proof. Let Ey be given by (5.5) and suppose that £, > 0 and f, € L?[0,4) is
non-negative. Fix any w € Q. By (3.7), we have o(H,) = X. Thus, our goal is to
show that

(5.6) [0, By /2] N o (H.,) # 0.

We consider the case where wg = a; the other case is handled similarly (by consid-
ering the interval [, fp + £,) instead of the interval [0, 4,)).
Since wy = a, V,, vanishes on [0, £,). Moreover, the function

¥ 2e3y)
pla)=42-2 ze(b,0)
0 otherwise

belongs to the form domain of H,,. We have

¢
a 4 4
<(pan >:/ |(P/(I)‘2dﬂf:€a—2:—
0 o2 0
and )
I 73 41’2 8 g 3 £
2= 24 :2/ de= 2> () 2t
el / e =2 [ B g B (L) 0
Thus,
lo Hop) 12
lell? e’

and by the min-max principle (in the form version), it follows that o(H,) N
(—00,42] # 0. On the other hand, since H, > 0, we also know that o(H,,) N

(—00,0) = 0. Together with (5.5) this implies (5.6). O

Let us now turn our attention to (5.2). As was mentioned above, we do not strive
for maximal generality, but rather consider a case where the desired statement can
be proved without the need to overcome serious technical difficulties.

The key input is supplied by the following statements, which appear as [8, The-
orem 6.5] and [8, Corollary 6.7]. The first applies to arbitrary continuum Fibonacci
potentials, whereas the second is particular to the case of constant potential pieces.
Let us note that the restatement we give for [8, Corollary 6.7] is not a verbatim
repetition from [8]. We added an explicit statement of (5.7) (which is proved in [8])
since this is exactly what we shall need later.

Theorem 5.2 ([8], Theorem 6.5). There is a continuous map D : [0,00) — (0,1]
with the following properties:
(i) dimiy®(E, ¥) = D(I(E)) for every E € .
(ii) We have D(0) =1 and 1 — D(I) =<1 as I [0 .
(iii) We have
lim D(I) -logI = 2log(1 +V/2)

I—o00



26 D. DAMANIK, J. FILLMAN, AND A. GORODETSKI

(iv) D is real-analytic in (0, 00).

Corollary 5.3 ([8], Corollary 6.7). Letf, =, = 1, fa = 0-X(0,1), and fo = A-X(0,1)-
For any compact S C R, we have

(5.7) lim min I(F) = co.
A—oo E€XNS

In particular
lim dimg(XNS)=0.
A—00

Lemma 5.4. Let {; ={, =1, fo =0-X(0,1), and fo = X X(0,1)- Then, (5.2) holds
for A > 0 sufficiently large.

Proof. Thereis I /5 € (0,00) such that the representation (5.2) of the set [0, Eo]NX
as a countable union of compact sets of small box-counting dimension is available
as soon as

5.8 inf  I(E)> Is.

(58) EexN(0,Eo] (E) 1/2

Indeed, analyticity arguments based on [3] imply that the points of tangency

between the curve of initial conditions and the center-stable manifolds of the non-
wandering set of the trace map must be isolated, hence there are only finitely many
those points in ¥ N[0, Ep), if any. If there are no points of tangency, than at every
point of X N[0, Ey] one has

dimg 1o (Z; E) = dimp joc (35 E).

This can be established using the same arguments that were used in the study of
the spectrum of the 1D Fibonacci quantum Ising Model in [56]. Concretely, the
proof of [56, Theorem 2.1] does not use the specific features of the model, and
works for the upper box counting dimension as well, as soon as the curve of initial
conditions is transversal to the center-stable manifolds of the non-wandering set of
the Fibonacci trace map. In view of (5.7), the condition (5.8) can be satisfied by
choosing A sufficiently large. By taking I/, sufficiently large, parts (i) and (iii) of
Theorem 5.2 guarantee that we can bound dimg,loc(E; E) from above in the desired
fashion.

In the case when there are points of tangency, denote by Ag the finite set of
energies in X N [0, Ey] corresponding to points of tangency, and denote by Ay the
set (N[0, Eo])\Uy (Ao), where Uy (Ap) is the g-neighborhood of Ag. Then by
construction, for each k& > 1, at the points parameterized by energies from Ay,
the curve of initial conditions and the center-stable manifolds are transversal, and
hence the arguments above imply that dimg; Ay < % for large A uniformly in k.
This proves (5.2). O

With the preparatory work out of the way, we are now in a position to complete
the proof of Theorem 3.5.

Proof of Theorem 3.5. By Lemmas 5.1 and 5.4, we have (5.1) and (5.2), which in
turn imply (5.3) and (5.4). Since H, > 0, it follows that (—oo, Eo] N (X + X) is
closed, bounded, nonempty, and has empty interior. Since X has no isolated points,
(—o0, Ep] N (X 4 %) also has no isolated points, modulo a small wiggle of Ey. O
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Remark 5.5. Notice that we referred the reader to the proof of [8, Corollary 6.7]
for the argument establishing (5.8) in the locally constant case for sufficiently large
coupling. Upon inspection of that argument, the reader will notice that any attempt
at an extension to a more general setting will face difficulties of various kinds. First
of all, the case of locally constant building blocks is such that solutions, and hence
transfer matrix traces, and hence the invariant can be computed explicitly. The
explicit formulae obtained in this way are used in crucial ways in the proof of [8,
Corollary 6.7]. Beyond the case of locally constant building blocks, one does in
general not have explicit formulae for these quantities. But even if one attempted
a generalization of the argument that is based on the qualitative features of these
formulae, one would run into difficulties. On a technical level, the problem is related
to the study of high barriers in quantum mechanics; see, for example, [28, 33, 53, 54]
for previous works on this problem. While the existing papers have investigated
the reduction in tunneling upon raising a barrier, as well as resulting localization
statements in the presence of a suitable sequence of high barriers, these results
appear to be insufficient to produce the precise property we need from a single high
barrier in order to derive a statement like (5.8).

6. DISCUSSION, QUESTIONS, AND OUTLOOK

We conclude with several questions that we view as natural follow-ups to this
work, which nevertheless do not follow from our methods and require additional
inspiration.

Question 1. Do the results of this paper hold for general f, and f, satisfying
Assumption 3.1? Namely, given £, > 0 and f, € L?(0,4,), a € {a,b}, is it true
that ¥ 4+ X contains a half-line? Writing ) = X(Afs, Afp), is it true that Xy
exhibits Cantor structure at low energies for large A7

Some of the difficulties one faces when attempting to answer Question 1 were
discussed above in Remarks 4.25 and 5.5.

A Cantorval is defined to be a nonempty set S C R which is compact, has dense
interior, and uncountably many connected components, none of which is isolated.
It is known that C' + C'is a Cantorval for “typical” dynamically defined Cantor sets
C [35].

Question 2. Is it the case that for some choice of f, and f;, there is an interval
J C R such that JN (X + X) is a Cantorval?

Clearly, the study of the structure of the sum of two Cantor sets is crucial to
what we do in this paper. It is also important in several other areas and it is
therefore a question that has received a lot of attention. There are well-known
ways to establish that the sum is a Cantor set (e.g., by bounding the upper box
dimension from above, as done in Section 5) or an interval (e.g., by bounding the
thickness from below, as done in Sections 2 and 4). While it is known that the sum
of two Cantor sets can be a Cantorval [35, 36], the known ways of establishing that
(mostly based on [37]) do not seem to be applicable in our setting, where we have
far too little control over the relevant properties of the 1D spectra and in which
way they depend on the parameters of the model. Thus, an answer to Question 2
appears to be currently completely out of reach.
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The Fibonacci sequence can be viewed as a coding of an irrational rotation by
0= @ via:
~Ja mhmodle[l-0,1)
tn = b otherwise.

However, one can naturally replace 6 by any irrational number. The resulting
sequence wu is then called a Sturmian sequence.

Question 3. What changes if we consider potentials generated by general Sturmian
sequences?

In the case when the potentials are generated by a Sturmian sequence, it is
still known that X is a zero-measure (extended) Cantor set [8]. Moreover, for
typical 6, there is no hyperbolic dynamical setup analogous to the one used here
for 0 = %(\/5 —1). Since this setup is absolutely crucial to our approach here, there
is a serious obstacle to overcome in generalizing any of our results in this direction
for typical 6. That being said, in the event that 0 is a quadratic irrationality, there
is a similar (albeit more complicated) formalism [23, 34], so it seems reasonable to
expect that many of the techniques of this paper could be applicable in that case
as well.

Moreover, it is likely that the results do not in fact hold in full generality for
arbitrary frequencies. For instance, in the discrete setting, it is known that the
dimension of the spectrum is one for all values of the coupling constant when
the frequency is very Liouville [31]. This suggests that for Liouville 8, we might
not expect to see Cantor structure at the bottom of the spectrum, even for large
coupling.

Question 4. Can one construct V : R* — R which are almost-periodic and for
which the conclusion of Theorem 1.2 holds true?

As mentioned earlier, there is prior work on almost periodic potentials in two
dimensions for which the spectrum contains a half line [26, 27]. Is it also possible
to prove the Cantor structure of the spectrum at small energies? For non-separable
potentials, we are lacking the tools, and for separable potentials, one would need
to find 1D almost periodic potentials for which the spectrum is very thin at small
energies; compare the passage from (5.2) to (5.4). In the quasi-periodic case (stud-
ied in [27]), no such 1D example is known, and indeed based on the known tools, it
is entirely unclear how to produce one. In the limit-periodic case (studied in [26]),
there is a dichotomy, which is a function of the existing methods. If the potentials
are such that the existence of a half line in the spectrum of the 2D model can be
proved, the rate of approximation by periodic potentials is so fast that at small
energies, the 1D model has spectrum that is too thick for any known technique to
establish the Cantor structure of the sum set. If on the other hand, the rate of ap-
proximation is such that the 1D spectrum is sufficiently thin at small energies such
that the 2D spectrum has a Cantor structure there, then the spectrum is very thin
at all energies and the 2D spectrum is nowhere dense throughout. This mechanism
underlies the work [9].

The dichotomy above, showing that one cannot have both desirable properties at
the same time, is related to the known phenomenon that for discrete 1D Schrodinger
operators with limit-periodic potentials, the spectral type and the qualitative fea-
tures of the spectrum are the same for all positive values of the coupling constant



SPECTRA OF MULTIDIMENSIONAL SCHRODINGER OPERATORS 29

in all examples in which one is able to prove statements for more than one value of
the coupling constant (cf. [7]). This translates to the rough energy-independence of
the spectral features discussed above for continuum 1D Schrédinger operators with
limit-periodic potentials.

While we focused on the topological structure of the spectrum in the present
paper, the following question is naturally of interest as well:

Question 5. What can be said about the type of the spectral measures and the
density of states measure, both for the specific operators studied in this paper and
more generally for multi-dimensional Schrodinger operators with almost periodic
or uniformly recurrent potential.

The papers [26, 27] mentioned before also address the spectral type in the high-
energy region and prove that it is purely absolutely continuous under their assump-
tions. Those papers are unable to say anything about the spectral type in the low
or medium-energy regime. On the other hand, the operators studied in [9] have
purely singular continuous spectrum: the absence of eigenvalues follows from the
Gordon lemma, applied to the underlying 1D operators, and the preservation of that
fact when forming separable potentials from these 1D pieces; while the absence of
absolutely continuous spectrum is immediate from the fact that the spectrum has
zero Lebesgue measure. For the operators studied in the present paper, the sin-
gular continuous nature of the spectral measure and the density of states measure
in the low-energy region follows again from the same arguments, namely Gordon
lemma and zero-measure spectrum.! We are unable to determine the spectral type
of these operators in the large-energy region. Based on analogy with the work [14]
on the weakly-coupled discrete case, we would expect that at least the density of
states measure is purely absolutely continuous there, but more work will be nec-
essary to prove this. Notice that for similar models, the presence of an absolutely
continuous component in the density of states measure in the large-energy region
was established in [22]. It is also worth mentioning that the relation between the
structure of the spectrum as a set and properties of the density of states measure
can be quite non-trivial. For example, in the case of the discrete square Fibonacci
Hamiltonian there are regimes with positive measure spectrum but singular density
of states measures, see [13]. Similar mechanisms could be present in the continuum
case as well. Whether the spectral measures are purely absolutely continuous in the
high-energy region for the operators studied here is currently wide open; proving
this seems to be well beyond current methods.

Finally we want to mention that, while they do not determine the type of the
measures in question, Parnovski and Shterenberg study them in the high-energy
regime for quite general multi-dimensional almost-periodic Schrédinger operators
in the papers [43, 44], where they obtain complete asymptotic expansions for both
the integrated density of states and the spectral function.
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