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Abstract. We consider a family of dense Gδ subsets of [0, 1], defined

as intersections of unions of small uniformly distributed intervals, and

study their capacity. Changing the speed at which the lengths of gen-

erating intervals decrease, we observe a sharp phase transition from full

to zero capacity. Such a Gδ set can be considered as a toy model for the

set of exceptional energies in the parametric version of the Furstenberg

theorem on random matrix products.

Our re-distribution construction can be considered as a generalization

of a method applied by Ursell in his construction of a counter-example to

a conjecture by Nevanlinna. Also, we propose a simple Cauchy-Schwartz

inequality-based proof of related theorems by Lindeberg and by Erdös

and Gillis.

Contents

1. Introduction 2
1.1. The setting 2
1.2. Statement of results 4
1.3. Plan of the paper 6
2. Subexponential decay 6
3. Phase transition 19
4. Zero capacity: Lindeberg and Erdös-Gillis theorems 22
5. Non-continuity of capacity on bounded interval 24
References 27

Date: February 25, 2020.

2010 Mathematics Subject Classification. Primary: 31A15, 31C15. Secondary: 28A12.
Key words and phrases. Logarithmic capacity, phase transition, parametric Fursten-

berg theorem.
The first author was partially supported by the project ANR Gromeov (ANR-19-CE40-

0007), as well as by the Laboratory of Dynamical Systems and Applications NRU HSE,

of the Ministry of science and higher education of the RF grant ag. No 075-15-2019-1931.

The second author was supported by NSF grants DMS-1855541 and DMS-1700143.

1

ar
X

iv
:1

91
0.

07
65

3v
2 

 [
m

at
h.

D
S]

  2
1 

Fe
b 

20
20



2 V. KLEPTSYN, F. QUINTINO

1. Introduction

1.1. The setting. Given a compactly supported measure µ on C, one de-
fines its (Coulomb) energy as a double integral:

I(µ) :=

∫∫
− log |z − w| dµ(z)dµ(w). (1.1)

The logarithmic capacity of a bounded subset X ⊂ C is then defined by
minimizing this energy:

Definition. Let P(X) be the space of probability measures, supported on
a (bounded) set X ⊂ C. The logarithmic capacity of this set is

Cap(X) := exp(− inf{I(µ) | µ ∈ P(X)}).

Physicists think of µ as being a charge distribution on C and I(µ) its total
energy (see [9, pg. 56]). There are many tools to measure how thin a set is
such as the Lebesgue measure or the Hausdorff dimension. Capacity gauges
how far a set is from being a polar set.

Namely, a polar set is traditionally defined (see, for example, [5]) as a
set, on which some subharmonic function u takes value −∞. And it is
alternatively defined ([9, pg. 56]) as being of zero capacity, that is, being a
subset E ⊂ C such that I(µ) =∞ for every non-trivial Borel measure with
compact support contained in E.

In most of the literature ([9], [10, Appendix A]) this definition is applied
to compact subsets of C. However, it is also studied quite extensively for
general Borel sets, and this is also the setting in which we will be working
in the present paper. Our main focus will be the study of “uniform” Gδ-sets
on the interval [0, 1]. That is, given a (sufficiently fast) decreasing sequence
rn → 0, for every n we consider a union of n equally spaced intervals of
length rn:

Vn :=
n−1⋃
j=0

Jj,n, (1.2)

where Jj,n is an open interval of length rn centered at cj,n = j+(1/2)
n :

Jj,n := (cj,n −
rn
2
, cj,n +

rn
2

), cj,n =
2j + 1

2n
, j = 0, 1, . . . , n− 1. (1.3)

See Fig. 1.
Then we define the uniform Gδ-set S, corresponding to the sequence rn,

by

S :=

∞⋂
m=1

∞⋃
n=m

Vn; (1.4)

it is immediate to see that S is indeed a Gδ-subset of [0, 1].
Our goal is now to study the properties of the set S. Once rn goes to 0

faster than any power of n, this set is of zero Hausdorff dimension. However,
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Figure 1. Sets Vn

this does not imply anything for its capacity — and one can consider the
logarithmic capacity as a “finer” instrument to describe its properties.

Such an example is interesting for us for two reasons. First, considering
different decrease speed for the lengths rn, we observe a sharp phase transi-
tion: while for a fast decrease this set is of zero capacity, for a slower one it
turns out to be of full capacity (that is, equal to the capacity of [0, 1] itself).
Second, such a situation, a Gδ-set generated by exponentially small inter-
vals, can be considered as a model case for the set of exceptional energies in
the parametric version of the Furstenberg theorem.

In the paper [4, Section 1.2], the authors have considered the parametric
version of a Furstenberg theorem, describing the behaviour to the study of
a product

Tn,ω,a = Aωn(a) . . . Aω1(a)

of random i.i.d. matrices A·(a) ∈ SL(2,R), depending on a parameter a,
taking values in some interval J ⊂ R.

Under some assumptions, including the individual Furstenberg theorem
for every parameter value, it was shown in [4, Theorem 1.5], that though
almost surely for Lebesgue-almost all a ∈ J one has

lim
n→∞

1

n
log ‖Tn,ω,a‖ = λF (a) > 0,

for the parameters from some random exceptional subset of parameters
Se(ω) this equality is violated. Moreover, for the parameters belonging to
some (smaller) Gδ-set S0(ω) one gets

lim
n→∞

1

n
log ‖Tn,ω,a‖ = 0.

The set Se(ω) (and thus S0(ω)) in [4] were shown to have zero Hausdorff
dimension. However, the question of their capacity is still open.

Due to their nature, these sets are very similar to those considered in this
paper: they are obtained as countable intersection of unions of exponentially
small intervals, that are placed in a (more or less) equidistributed way. Our
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theorem thus can be seen as a strong indication for that the exceptional sets
of parameters for random matrix products are also of full capacity.

1.2. Statement of results. Recall that the sets Vn in (1.2) are unions of n
intervals of length rn. At the moment, we require only rn <

1
n so that the

intervals are pairwise disjoint; we will discuss possible speeds of decrease for
the sequence rn later.

Our first result is an easier version of Theorem 1.2. It is given to demon-
strate the technique and part of the proof will be used latter on.

Theorem 1.1 (Subexponential uniform Gδ). If the sequence rn decreases
subexponentially, then the corresponding uniform Gδ set S, defined by (1.4),
has full capacity. That is, if | log rn| = o(n), then

Cap(S) = Cap([0, 1]).

Remark. As the reader will see, in the proof of this theorem we will not use
the fact that all the possible denominators n are used in the construction of
the set S. Thus, the same conclusion holds for the set S′ :=

⋂∞
m=1

⋃∞
j=m Vnj ,

provided that on the subsequence nj one has | log rnj | = o(nj).

Theorem 1.1 is already interesting because it shows that there exists a
uniform Gδ set of full capacity. However, its assumption fails at the de-
creasing speed that takes place for the random matrices setting, that is
exponential. We thus modify it to a more powerful, though more techni-
cally complicated, version. This upgraded version is stronger and observe
the “phase transition”.

Theorem 1.2 (Phase transition). For rn = e−n
α

,

(1) if α > 2, then Cap(S) = 0,
(2) if α < 2, then Cap(S) = Cap([0, 1]).

A good question is what happens when α = 2? We expect that S will
still have full capacity, but to establish that, one would have to adjust the
averaged re-distribution procedure (see Proposition 3.2), probably making
the proof even more technical.

It is interesting to note that part (1) of Theorem 1.2 is a partial case
of a more general statement, going back to Erdös and Gillis [3] and to
Lindeberg [6]. Namely, assume that one is given a continuous [concave]
increasing function h, defined and positive in some right neighborhood of 0;
they refer to such a function as a measuring function. One can then consider
the h-volume of a set E ⊂ R, defined as

mh(E) := lim
ε→0+

inf
{(xj ,rj)j∈N}∈I(E,ε)

∑
j

h(rj),
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where the infimum is taken over the set I(E, ε) of covers of E by balls of
diameters less than ε:

I(E, ε) =

(xj , rj)j∈N |
⋃
j

Urj (xj) ⊃ E, ∀j rj < ε

 .

In particular, the choice h(r) = rα corresponds to the α-Hausdorff measure
of the set E. They were considering a particular choice of h0(r) := 1

| log r| ,

and their theorem links the h0-volume (the logarithmic measure) to the
capacity:

Theorem 1.3 (P. Erdös, J. Gillis, [3, p. 187], generalizing Lindeberg [6,
p. 27]). If for a set E one has mh0(E) < +∞, then Cap(E) = 0.

This result generalizes the previous one by Lindeberg [6, p. 27], where zero
capacity was established under the assumption of a zero logarithmic mea-
sure. An alternate proof of Theorem 1.3 was later provided by L. Carleson
in [1, Theorem 2].

A particular case of this theorem is obtained by considering a set of the
form

S̃ =
⋂
m

⋃
k≥m

Ik,

where Ik are intervals of length r′k. Such a construction includes any uniform
Gδ set S by enumerating all the intervals Ji,n and then adding them one by
one instead of by groups of Vn.

It is immediate to notice that if the series
∑

n
1

| log r′n|
=
∑

n h0(r
′
n) con-

verges, the mh0-volume of the set S̃ vanishes, thus implying the following
corollary (from which the second part of Theorem 1.2 immediately follows):

Corollary 1.4. If the series
∑

n
1

| log r′n|
converges, then the set S̃ is of zero

capacity.

In the same paper [3], the following conjecture, going back to Nevanlinna’s
paper [8], was mentioned:

Conjecture ([8]; see also [3, (C), p. 186]). If for the function h the integral∫ •
0
h(t)
t dt diverges and for a closed set E the h-volume mh(E) is finite, then

Cap(E) = 0.

In 1937, H.D. Ursell disproved this conjecture, showing that it is false for
all functions h except those, for which the conjecture is implied by Theo-
rem 1.3 above.

The same construction that we use for the proof of Theorem 1.1 (that
can be seen as an extension of Ursell’s approach) allows to show that for
non-closed sets E this conjecture fails even stronger:
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Theorem 1.5. Let h be a measuring function, such that 1
| log r| 6= O(h(r))

as r → 0+. Then there exists a Gδ-dense subset S ⊂ [0, 1] with mh(S) = 0
and full capacity Cap(S) = Cap([0, 1]).

The following remark is quite natural, but requires a formal proof, so we
put it as a proposition.

Proposition 1.6. If X is a subset of interval J such that Cap(X) =
Cap(J), then given any subinterval J ′ ⊂ J , one has Cap(X∩J ′) = Cap(J ′).

Corollary 1.7. In the same setting as Theorem 1.1 or Theorem 1.2 for
α < 2, given any interval J ⊂ [0, 1], we have

Cap(J ∩ S) = Cap(J).

1.3. Plan of the paper. We start with introducing the re-distribution
technique and prove Theorem 1.1 in Section 2; we then apply the same
technique to show Theorem 1.5. We also prove Proposition 1.6 in the same
section (thus ensuring that “full capacity” in inherited by restrictions on the
subintervals).

Due to a faster decrease of the intervals, we have to modify the proof of
Theorem 1.1, adapting it to the second part of Theorem 1.2; it is done in
Section 3.

Though the statement of Corollary 1.4 is a particular case of Theorem 1.3
of Lindeberg and Erdös and Gillis, we note that it can be easily obtained as
a corollary of the Cauchy-Schwartz inequality. Namely, with help of it one
can obtain an upper bound for the capacity of a union of intervals; under
the assumption of Theorem 1.4 this bound converges to zero as m → ∞.
Moreover, the same argument allows to get another proof of this theorem,
that is, at the best of our knowledge, not yet known. We thus present this
(short) proof in Section 4, thus completing the proof of Theorem 1.2.

In the proof of Theorem 1.1, there is a tempting shortcut that cannot
be taken. If the capacity was continuous for a descending family of open
subsets of [0, 1], the arguments of the proof would be much simpler. As we
found no examples in the literature demonstrating such non-continuity for
open subsets of [0, 1], we present such an example in Section 5.

2. Subexponential decay

In this section, we will demonstrate the technique needed to prove Theo-
rem 1.2 in a simpler setting by proving Theorem 1.1.

Both proofs are based on the idea of re-distribution. That is, given a
measure µ that is supported on an interval or on a finite union of intervals,
and given a smaller union of intervals Y ⊂ X, we can try finding a new
measure µ′, supported on Y , close to µ and with the energy I(µ′) close
to I(µ). Then Theorem 1.1 will be proven by iterating such a re-distribution
on a “finer” and “finer” Vn’s.
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The natural way to do so is to “move” the charge, given by the measure µ,
to the closest interval of Y , re-distributing it uniformly on each of these
intervals; see Fig. 2.

0 1J0,n J1,n Jn−1,n

Figure 2. The idea of a re-distribution

However, for “good” (absolutely continuous with continuous density) mea-
sures µ and for the set Y = Vn that is composed of equally spaced intervals
of the same lengths, this operation can be approximated by a simpler one,
the one of taking the conditional measure. As it is easier to work with, we
will proceed with it.

Definition. Given a finite measure µ on set [0, 1] and measurable set Y
with positive measure, we define the re-distribution of µ on Y to be the
conditional measure

R(µ|Y ) =
1

µ(Y )
µ|Y .

Now, let µ be an absolutely continuous measure on [0, 1] with continuous
density. Let us see how its re-distribution on some Vn changes its energy.
The energy of a measure is given by a double integral (1.1), and the energy
of the re-distribution R(µ|Vn) can be naturally decomposed into two parts:

0 1J0,n J1,n Jn−1,n

Figure 3. Self-interaction (dark squares) and outer-
interaction (light ones) parts of the energy integral for the
re-distributed measure R(µ|Vn).
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for the variables x and y belonging to the same interval Ji,n and to two
different ones; see Fig. 3.

It turns out (and this is a statement of Lemma 2.6 below) that the second
part tends to the initial energy I(µ). Meanwhile, the first (“self-interaction”)
part behaves as

| log rn|
n

·
(∫

f2 dx+ o(1)

)
;

see Lemma 2.5 below. Adding this together, one will get the following
proposition.

Proposition 2.1. Let µ = f(x) dx, where f ∈ C([0, 1]), and µn := R(f |Vn).
Then

I(µn) = I(µ) + o(1) +

(∫ 1

0
f2(x) + o(1)

)
| log rn|
n

. (2.1)

We postpone its proof until the end of the section, and we will now use
it to prove Theorem 1.1. First, note that under the assumptions of this
theorem we can omit the self-interaction term:

Corollary 2.2. If | log rn| = o(n), then I(µn)→ I(µ) as n→∞.

Using it, we immediately get a first full-capacity statement.

Corollary 2.3. If | log rn| = o(n), then we have

Cap

( ∞⋃
n=m

Vn

)
= Cap([0, 1]) for every m ∈ N.

Proof. Consider the measure µ[0,1] = f[0,1](x)dx, where

f[0,1](x) =
1

π
√
x(1− x)

.

It is known that this measure minimizes the energy for probability measures
supported on [0, 1]:

I(µ[0,1]) = inf{I(µ) | µ ∈ P([0, 1])},

and hence that Cap([0, 1]) = e−I(µ[0,1]).
Formally, we cannot apply Corollary 2.2 to this measure, as its density

function is not continuous at the endpoints of [0, 1]. To avoid this problem,
note that there exists a family of probability measures µδ = fδ(x) dx on [0, 1]
with fδ ∈ C([0, 1]), such that I(µδ)→ I(µ[0,1]) as δ → 0.

Indeed, consider a family of cut-off densities

f̂δ(x) =


x
δ · f[0,1](δ), x ∈ [0, δ),

f[0,1](x), x ∈ [δ, 1− δ],
1−x
δ · f[0,1](1− δ), x ∈ (1− δ, 1],
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the corresponding (non-probability) measures µ̂δ := f̂δ(x) dx on [0, 1], and
let

Zδ := µ̂δ([0, 1]) =

∫ 1

0
fδ(x)dx

be the corresponding normalization constants. Then (for instance, by dom-
inated convergence theorem) we have

I(µ̂δ)→ I(µ[0,1]), Zδ → 1

as δ → 0 (here we apply definition (1.1) to non-probability measures µ̂δ).
Hence, for the family of probability measures µδ := 1

Zδ
µ̂δ we also have

I(µδ) =
1

Z2
δ

I(µ̂δ)→ I(µ[0,1]), δ → 0.

Now, let m ∈ N be fixed. For any ε > 0 the above arguments imply
that there exists δ > 0 such that I(µδ) < I(µ[0,1]) + ε/2. Fix such δ > 0

and consider the family of re-distributed measures µδn := R(µδ|Vn). As the
measure µδ has a continuous density, due to Corollary 2.2 we have

I(µδn)→ I(µδ), n→∞.

In particular, there exists n ≥ m such that

I(µδn) ≤ I(µδ) + ε/2 ≤ I(µ[0,1]) + ε.

As ε > 0 was arbitrary, we thus get that

inf{I(µ) | µ ∈ P(
∞⋃
n=m

Vn)} ≤ I(µ[0,1]),

and hence the desired

Cap

( ∞⋃
n=m

Vn

)
= Cap([0, 1]) for every m ∈ N.

�

It is known that capacity is continuous with respect to any increasing
sequence of Borel sets of C and decreasing sequence of compact subsets
of C. Our sequence of sets (

⋃∞
n=m Vn)m∈N is decreasing, but is not closed.

This is where it would be tempting to conclude by continuity. If the
capacity was continuous for a decreasing family of open subsets of [0, 1],
Corollary 2.3 would immediately imply Theorem 1.1.

For decreasing families of (open) subsets of C, it is known that such con-
tinuity does not take place; however, all the examples that we found in
the literature were essentially two-dimensional. This naturally motivates a
question of whether it holds for the subsets of a bounded interval. How-
ever, it turns out that it is not the case; we construct a counter-example in
Section 5.
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Thus, we continue the proof of Theorem 1.4 by iterating the re-distributions
procedure. Namely, we have the following

Lemma 2.4. Let | log rn| = o(n), and U ⊂ [0, 1] be a finite union of inter-
vals, and a measure ν = f(x) dx be a measure with a piecewise-continuous
density, supported in U . Then for any ε > 0 and any m there exist n ≥ m
and a measure ν ′ with a piecewise-continuous density, such that

I(ν ′) < I(ν) + ε,

and the support of ν ′ is contained in U ∩ Vn.

Note that Lemma 2.4 suffices to prove Theorem 1.1:

Proof of Theorem 1.1. Fix an arbitrary ε > 0. We are going to construct a
Borel probability measures νn, satisfying I(νn) < I(µ[0,1]) + ε and concen-
trating on the set S. Start (as in the proof of Corollary 2.2) with a measure
ν0 with a continuous density on [0, 1], satisfying I(ν0) < I(µ[0,1]) + ε

2 .
Recursively applying Lemma 2.4, we construct a sequence νk of measures

with a piecewise continuous density, and an increasing sequence of numbers
nk, such that the measure νk is supported on Vn1 ∩ · · · ∩ Vnk and that
I(νk) < I(νk−1) + ε

2k+1 .
Then, we have

I(νk) < I(µ[0,1]) +
ε

2
+

k∑
j=1

ε

2j+1
< I(µ[0,1]) + ε.

Now, denote Ck := V n1 ∩ · · · ∩ V nk ; note that this set differs from the
intersection of the corresponding open sets Vnj by at most a finite number
of endpoints.

The family Ck is a decreasing family of compact sets, on which mea-
sures νk are respectively supported. Hence, any weak limit point ν∞ of the
sequence νk is supported on C∞ :=

⋂
k Ck.

Recall that passing to the weak limit does not increase the energy (see,
e.g., [9, Lemma 3.3.3]). Indeed, for a ∗-convergent sequence µj → µ of
measures on [0, 1] one has

I(µ) = lim
C→∞

∫
FC(x, y) dµ(x) dµ(y), (2.2)

where FC(x, y) = min(− log |x−y|, C). Thus for any z < I(µ) there exists C
such that the integral in the right hand side of (2.2) is at least z. For such C,

lim inf
j→∞

I(µj) ≥ lim inf
j→∞

∫
FC(x, y) dµj(x) dµj(y) =

=

∫
FC(x, y) dµ(x) dµ(y) ≥ z,
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and as z < I(µ) was arbitrary, we get the desired

lim inf
j→∞

I(µj) ≥ I(µ).

In fact, that is exactly the argument that is used to show the capacity is
continuous on decreasing families of compact subsets.

Applying the above argument to our convergent subsequence µj := νkj →
ν∞, we get

I(ν∞) ≤ lim
j
I(νkj ) < I(µ[0,1]) + ε.

On the other hand, ν∞ is supported on C∞ ⊂ S∪D, where D :=
⋃
k(∂Vk)

is a countable set of endpoints. As I(ν∞) is finite, this measure does not have
any atoms hence ν∞(D) = 0, and thus the measure ν∞ is in fact supported
on S. Hence, for an arbitrary ε > 0 there exists a measure ν∞, supported
on S, such that

I(ν∞) < I(µ[0,1]) + ε,

and thus Cap(S) = Cap([0, 1]). �

Also, still before proving Lemma 2.4, note that the same construction
allows to establish Theorem 1.5.

Proof of Theorem 1.5. Indeed, assume that the relation 1
| log r| = O(h(r)) as

r → 0+ does not hold. Then there exists a sequence rj → 0 along which

h(rj) = o(
1

| log rj |
) as j →∞.

Extracting a subsequence if necessary, we can assume that

h(rj) · | log rj | < 4−j−1.

Choose now integer numbers nj =
[√

| log rj |
h(rj)

]
, roughly speaking, insert-

ing nj multiplicatively in the middle between | log rj | and 1
h(rj)

. Then (for

all sufficiently large j) we have

njh(rj) < 2−j ,
nj

| log rj |
> 2j . (2.3)

Consider now the Gδ-set

S̃ =
∞⋂
m=1

∞⋃
j=m

Vnj ,

where Vnj are still defined by (1.2)–(1.3); in other words, we are now using
only the denominators nj with the corresponding radii rj . The first of
inequalities in (2.3) then implies that this set is of zero h-volume, as the
series

∑
j njh(rj) converges. On the other, the second inequality in (2.3)

ensures that | log rj | = o(nj). Hence the same technique as in the proof of
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Theorem 1.1 is applicable, showing that the set S̃ is actually of full capacity
on [0, 1]. �

Proof of Lemma 2.4. As in the proof of Corollary 2.3, there exists a family
νδ = fδ(x) dx of probability measures, supported on U , such that fδ ∈
C([0, 1]) and such that I(νδ)→ I(ν) as δ → 0. Indeed, if intervals (ai, bi) ⊂
U are the intervals of continuity of the density f(x), we consider a new
(non-probability) density

f̂δ(x) =


x−ai
δ · f[0,1](ai + δ), x ∈ [ai, ai + δ),

f(x), x ∈ [ai + δ, bi − δ],
bi−x
δ · f[0,1](bi − δ), x ∈ (bi − δ, bi];

see Fig. 4. Then, define

ν̂δ = f̂δ(x) dx, Zδ = ν̂δ([0, 1]), νδ =
1

Zδ
ν̂δ.

U

f̂δ

f

ai bi

Figure 4. Transforming the density f(x) into a continuous one.

As before, we get

Zδ → 1, I(ν̂δ)→ I(ν) as δ → 0,

and hence I(νδ) = 1
Z2
δ
I(ν̂δ)→ I(ν).

Now, if ε > 0 is given, take such a measure νδ that I(νδ) < I(ν) + ε
2 . Ap-

plying Proposition 2.1 to the re-distributions νδn := R(νδ|Vn) of this measure,
we get that I(νδn) = I(νδ) + o(1). Hence, for some n ≥ m we have

I(νδn) < I(νδ) +
ε

2
< I(ν) + ε;

by construction, the measure νδn is supported on Vn ∩ U . �

Proof of Proposition 2.1. We conclude the section with the proof of Propo-
sition 2.1. First, note that the normalization constant µ(Vn) satisfies

µ(Vn) = nrn · (1 + o(1)).
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Indeed, for any ε > 0 due to the uniform continuity of f(x) for all sufficiently
large n we have |f(x)− f(ci,n)| < ε for all x ∈ Ji,n. Hence,∣∣∣∣∣

∫
Ji,n

f(x) dx− f(ci,n)rn

∣∣∣∣∣ < εrn;

summing over i = 0, . . . , n− 1 and dividing by nrn, we get∣∣∣∣∣ 1

nrn
µ(Vn)− 1

n

n−1∑
i=0

f(ci,n)

∣∣∣∣∣ < ε.

Now, 1
n

∑n−1
i=0 f(ci,n) →

∫
[0,1] f(x) dx = 1; as ε > 0 was arbitrary, we thus

get the desired

1

nrn
µ(Vn) = 1 + o(1).

Now, multiplying (2.1) by (1 + o(1)) does not change its right hand side,
so we can consider (non-probability) measure 1

nrn
µ|Vn instead of R(µ|Vn) =

1
µ(Vn)

µ|Vn . It is also useful to consider extend the definition of the energy,

considering it as a bilinear form: for any two (not necessarily probability)
measures µ, ν let

I(ν, µ) = −
∫∫

log |x− y| dν(x) dµ(y).

It is immediate to note that

(1) I(ν) = I(ν, ν),
(2) I(ν, µ) = I(µ, ν),
(3) I(ν, µ) > 0, if µ and ν are supported on [0, 1],
(4) I(ν, µ+ µ′) = I(ν, µ) + I(ν, µ′); I(ν, cµ) = cI(ν, µ).

The measure 1
nrn

µ|Vn can be written as

1

nrn
µ|Vn =

1

n

n−1∑
i=0

µi,n,

where µi,n := 1
rn
µ|Ji,n . Thus, we can decompose I( 1

nrn
µ|Vn) as

I(
1

nrn
µ|Vn) =

1

n2

n−1∑
i,j=0

I(µi,n, µj,n) =

=
1

n2

∑
i

I(µi,n) +
1

n2

∑
i 6=j

I(µi,n, µj,n).

Proposition 2.1 now follows from the next two Lemmas, 2.5 and 2.6, es-
timating the diagonal and off-diagonal sums respectively. �
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Lemma 2.5.

1

n2

n−1∑
i=0

I(µi,n) =
| log rn|
n

(∫ 1

0
f2(x)dx+ o(1)

)
. (2.4)

Lemma 2.6.
1

n2

∑
i 6=j

I(µi,n, µj,n) = I(µ) + o(1). (2.5)

Proof of Lemma 2.5. Let us first estimate I(µi,n) for an individual i, com-
paring it with the energy of the uniform measure 1

rn
dx|Ji,n . Indeed,

I(µi,n) =

∫∫
Ji,n

(− log |x− y|)f(x)f(y)
dx

rn

dy

rn
,

and hence

(min
Ji,n

f(x))2 · I(
1

rn
dx|Ji,n) ≤ I(µi,n) ≤ (max

Ji,n
f(x))2 · I(

1

rn
dx|Ji,n). (2.6)

Rescaling and a change of variables immediately shows that

I(
1

rn
dx|Ji,n) = log rn + I(dx|[0,1]) = log rn · (1 + o(1)). (2.7)

Fix an arbitrarily small ε > 0; for all sufficiently large n, the function f(x)2

then oscillates less than ε/2 on any of the intervals Ji,n. Joining it with (2.6)
and (2.7), for all sufficiently large n we get

1

| log rn|
I(µi,n) ∈ (f2(ci,n)− ε, f2(ci,n) + ε).

Summing over i and dividing by n, we get∣∣∣∣∣ 1

n| log rn|
∑
i

I(µi,n)− 1

n

∑
i

f2(ci,n)

∣∣∣∣∣ < ε.

The second sum converges to the Riemann integral
∫ 1
0 f

2(x)dx; as ε > 0 was
arbitrary, we get

1

n| log rn|
∑
i

I(µi,n) =

∫ 1

0
f2(x)dx+ o(1).

Multiplying by | log rn|n , we get the desired (2.4). �

Before proceeding with Lemma 2.6, let us estimate the interaction energy
for uniformly distributed measures on the subintervals, comparing it to the
interaction energy between point charges at their centers.



PHASE TRANSITION OF CAPACITY FOR THE UNIFORM Gδ-SETS 15

c c′J J ′

r
2

r′

2|c− c′| − r+r′

2

Figure 5. Two intervals J, J ′ and their centers.

Lemma 2.7. Let J, J ′ ⊂ [0, 1] be two disjoint intervals with centers c, c′

and with lengths r, r′ respectively (see Fig. 5). Then the interaction energy
between the uniform measures on these intervals satisfies

− log |c− c′| < I(
1

r
dx|J ,

1

r′
dx|J ′) < (− log |c− c′|) + ∆,

where ∆ = min(2, (− log(1− r+r′

2|c−c′|))).

Proof. The lower bound is implied by the Jensen’s inequality: as the function
F (x, y) = − log |x− y| is convex on the rectangle J × J ′,∫∫

J×J ′
F (x, y)

dx

r

dy

r′
> F (c, c′) = − log |c− c′|.

Now, for any x ∈ J, y ∈ J ′ we have

− log |x− y| = − log |c− c′| − log
|x− y|
|c− c′|

= − log |c− c′| − log

(
1− |c− c

′| − |x− y|
|c− c′|

)
and the upper bound by (− log(1 − r+r′

2|c−c′|)) follows as it is the maximal

possible value of the second term.
To get a uniform upper bound by 2, consider first the interaction between

a uniform measure and a point charge. Note that for any y ∈ J ′ we have∫
J
(− log |x− y|)dx

r
= − log |c− y| − |c− y|

r
·
∫ r/2
|c−y|

− r/2
|c−y|

log(1 + s) ds =

= − log |c− y| − |c− y|
r
·
∫ r/2
|c−y|

0
log(1− s2) ds;

as the function − log(1 − s2) is monotone increasing, the maximal value of
its average will be if it is averaged on the largest possible interval, that is,
over [0, 1] (that corresponds to |c− y| = r/2, in other words, y being on the
boundary of J). In this case, a straightforward computation shows that the
second term is equal to∫ 1

−1
(− log(1 + s))

ds

2
= 1− log 2 < 1.
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Thus, for any y ∈ J ′ we have∫
J
(− log |x− y|)dx

r
< − log |c− y|+ 1.

Finally, averaging with respect to y ∈ J ′, we get∫∫
J×J ′

(− log |x− y|)dx
r

dy

r′
<

∫
J ′

(− log |c− y|) dy
r′

+ 1 < log |c− c′|+ 2.

�

Proof of Lemma 2.6. Fix an arbitrary small δ > 0, and letM := max[0,1] f(x).
Let us decompose the sum in the left hand side of (2.5) into two parts, de-
pending on whether the centers ci,n and cj,n are closer than δ to each other:

1

n2

∑
i 6=j

I(µi,n, µj,n) =
1

n2

∑
0<|ci,n−cj,n|<δ

I(µi,n, µj,n)+
1

n2

∑
|ci,n−cj,n|≥δ

I(µi,n, µj,n).

Note that the first sum can be bounded by an arbitrarily small constant by
choosing an appropriate δ > 0. Indeed, note first that

I(µi,n, µj,n) < M2I(
1

rn
dx|Ji,n ,

1

rn
dx|Jj,n).

Taking δ < 1/e2 and thus ensuring − log |ci,n−cj,n| > 2 once |ci,n−cj,n| < δ,
we get

1

n2

∑
0<|ci,n−cj,n|<δ

I(µi,n, µj,n) <
1

n2
M2

∑
0<|ci,n−cj,n|<δ

I(
1

rn
dx|Ji,n ,

1

rn
dx|Jj,n)

< 2
M2

n2

∑
0<|ci,n−cj,n|<δ

(− log |ci,n − cj,n|)

Now, for each i we have

1

n

∑
j:

0<|ci,n−cj,n|<δ

(− log |ci,n − cj,n|) ≤
2

n

[δn]∑
k=1

(− log
k

n
) < 2

∫ δ

0
(− log s) ds,

(2.8)
as the function (− log s) is decreasing on [0, 1]; see Fig. 6, left. Averag-
ing (2.8) over i, we get

1

n2

∑
0<|ci,n−cj,n|<δ

I(µi,n, µj,n) < 4M2

∫ δ

0
(− log s) ds.

As the integral in the right hand side tends to 0 as δ → 0, for any ε > 0
we have

∃δ0 > 0 : ∀δ < δ0 ∀n ∈ N
1

n2

∑
0<|ci,n−cj,n|<δ

I(µi,n, µj,n) < ε. (2.9)



PHASE TRANSITION OF CAPACITY FOR THE UNIFORM Gδ-SETS 17

x0 1
n

2
n

δ

− log x

x0 δ

− log x

Figure 6. Comparing integral sums and the integral for the
− log x function: nonshifted (left) and shifted (right) sums.

Now, for any fixed δ > 0, the function f(x)f(y)(− log |x−y|) is uniformly
continuous on the subset {|x− y| ≥ δ}, and hence

1

n2

∑
|ci,n−cj,n|≥δ

I(µi,n, µj,n) −−−→
n→∞

∫
{|x−y|≥δ}

f(x)f(y)(− log |x− y|) dx dy.

(2.10)
The integral in the right hand side of (2.10) tends to I(µ) as δ → 0.
Hence, for any sufficiently small δ it is ε-close to I(µ). Fixing such δ < δ0,
from (2.10) for all sufficiently large n we get∣∣∣∣∣∣ 1

n2

∑
|ci,n−cj,n|≥δ

I(µi,n, µj,n)− I(µ)

∣∣∣∣∣∣ < 2ε,

and joining it with (2.9),∣∣∣∣∣∣ 1

n2

∑
i 6=j

I(µi,n, µj,n)− I(µ)

∣∣∣∣∣∣ < 3ε.

As ε > 0 was arbitrary, we get the desired

1

n2

∑
i 6=j

I(µi,n, µj,n) = I(µ) + o(1).

This completes the proof of Lemma 2.6, and hence of Proposition 2.1. �

Proof of Proposition 1.6. For any interval [a, b], denote µ[a,b] to be the prob-
ability measure with the least energy on this interval, that is,

µ[a,b] = ρ[a,b](x) dx, ρ[a,b](x) =
1

π
√

(x− a)(b− x)
.
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By assumption of the full capacity, there exists a sequence of measures νn,
supported on X, such that I(νn)→ I(µJ). Upon extracting a subsequence,
we can assume that this sequence of measures converges weakly. Again using
the fact that passing to the weak limit does not increase the energy, we get

I( lim
n→∞

νn) ≤ lim
n→∞

I(νn) = I(µJ); (2.11)

as µJ is the unique minimum of the energy function on P(J), we thus have
νn → µJ as n → ∞. Moreover, the inequality in (2.11) turns into an
equality. And an equality in (2.11) is equivalent to the uniform integrability
of the function − log |x− y| w.r.t. these measures, that is, to

∀ε > 0 ∃r > 0 : ∀n
∫∫
|x−y|<r

∣∣ log |x− y|
∣∣ dνn(x) dνn(y) < ε.

(If it does take place for some ε > 0, the sides of the inequality in (2.11)
differ by at least ε, and vice versa.)

Now, for every δ > 0, take a continuous positive function fδ ∈ C(J),
supported on J ′, such that the measures fδ dx|J ′ are probability ones and
converge to µJ ′ , and so do their energies:

I(fδ dx|J ′)→ I(µJ ′); (2.12)

it can be done in the same way as the cut-off is done on the first step of the
proof of Corollary 2.3. These measures can then be re-written as

fδ(x) dx|J ′ =
fδ(x)

ρJ(x)
ρJ(x) dx =

fδ(x)

ρJ(x)
µJ ;

denote then f̃δ(x) := fδ(x)
ρJ (x)

.

Consider the measures

µ̂δ,n := f̃δ(x)νn,

and their normalized versions

µδ,n =
1

Zδ,n
µ̂δ,n, Zδ,n := µ̂δ,n(J).

For each δ, the measures µ̂δ,n converge weakly as n → ∞ to f̃δ(x)µJ =
fδ(x) dx|J ′ ; as the limit measure is a probability one, we have

Zδ,n =

∫
f̃δ(x)dνn(x) −−−→

n→∞

∫
f̃δ(x)dµJ = 1.

Now, as the function f̃δ is bounded, the function− log |x−y| is still uniformly
integrable w.r.t. these measures, and hence

I(µ̂δ,n) −−−→
n→∞

I(fδ dx|J ′).

Thus, we also have

I(µδ,n) =
1

Z2
δ,n

I(µ̂δ,n) −−−→
n→∞

I(fδ dx|J ′)
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Now, passing to the limit as δ → 0 and using (2.12), we get

lim
δ→0

lim
n→∞

I(µδ,n) = I(µJ ′).

As the measures µδ,n are supported on X ∩ J ′, and µJ ′ is the least energy
probability measure on J ′, we get the desired

Cap(X ∩ J ′) = Cap(J ′).

�

3. Phase transition

Let us move on to prove Theorem 1.2. The key ingredient in the sub-
exponential case was that the re-distribution of µn on a single level, Vn, of a
given measure µ gave us a close approximation of I(µ). If rn = e−n

α
, then

Proposition 2.1 yields

I(µn) = I(µ) + o(1) +

(∫ 1

0
f2(x) + o(1)

)
nα−1.

For 1 ≤ α < 2, a simple re-distribution does not suffice, as the self-interaction
term has an asymptotics of nα−1 and hence does not tend to zero. The re-
distribution thus will have to be done on multi-levels. Namely, let

Fm := {n = m, . . . , 2m− 1 : n is prime},

that is, the set of prime numbers in [m, 2m− 1], and denote by Nm = #Fm
its cardinality.

Notice that Vp and Vq are disjoint for distinct p, q ∈ Fm. Indeed, this

follows from the fact that the centers ck,p = 2k+1
2p are distinct for p ∈ Fm,

and that ∣∣∣∣ a2p − b

2q

∣∣∣∣ =

∣∣∣∣aq − bp2pq

∣∣∣∣ ≥ 1

2m2
> e−m

α
.

Let µn be the re-distribution of µ on Vn, where n ∈ Fm. Given a collection
of positive numbers {pn}n∈Fm such that∑

n∈Fm

pn = 1,

consider a averaged re-distribution:

µm = R̃m(µ) :=
∑
n∈Fm

pnµn,

that is a convex combination of measures µn, supported on a finite union

V̂m :=
⋃
n∈Fm

Vn.
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The averaging allows to regain control on the self-interaction term. That
is, the energy of the averaged measure µm satisfies

I(µm) =
∑
n∈Fm

p2nI(µn) +
∑
i 6=j

pipjI(µi, µj). (3.1)

Take pi to be uniform: let pi = 1
Nm

for every i ∈ Fm. We have I(µn) =

O(nα−1), and due to the Prime Number Theorem Nm ∼ m
logm as m → ∞.

Hence, the first term in (3.1) can be estimated as∑
n∈Fm

p2nI(µn) =
1

N2
m

∑
n∈Fm

I(µn) ≤ 1

Nm
max
n∈Fm

I(µn)

=
O(mα−1)

m/ logm
= O

(
logm

m2−α

)
= o(1), (3.2)

as α < 2.
On the other hand, we claim that the interaction energy between different

µn’s is close to the one of the initial measure µ:

Lemma 3.1. Let µ = f(x) dx be a measure with a continuous density
on [0, 1]. Then for n, n′ ∈ Fm, n 6= n′ we have

I(µn, µn′) = I(µ) + o(1)

(uniformly on the choice of n and n′) as m→∞.

Postponing its proof till the end of this section, note that it immediately
imples

Proposition 3.2. Let µ = f(x) dx be a measure with a continuous density

on [0, 1]. Then for the family of its averaged re-distributions µm = R̃m(µ)
we have

I(µm) = I(µ) + o(1).

Proof. Due to (3.1), the energy I(µm) is the sum of two terms; the first one
is o(1) due to (3.2), while the second is I(µ) + o(1) due to Lemma 3.1. �

We then get

Lemma 3.3. Let rn = e−n
α

, where α < 2. Let U ⊂ [0, 1] be a finite union
of intervals, and a measure ν = f(x) dx be a measure with a piecewise-
continuous density, supported in U . Then for any ε > 0 and any k there
exist m ≥ k and a measure ν ′ with a piecewise-continuous density, such that

I(ν ′) < I(ν) + ε,

and the support of ν ′ is contained in U ∩ V̂m.



PHASE TRANSITION OF CAPACITY FOR THE UNIFORM Gδ-SETS 21

Proof. As in the proof of Lemma 2.4, we can find a measure νδ = fδ(x) dx
with continuous density on [0, 1], such that supp νδ ⊂ supp ν and that
I(νδ) < I(ν) + ε

2 . Applying Proposition 3.2 to µ = νδ concludes the
proof. �

Proof of Theorem 1.2. We now deduce Theorem 1.2 from Lemma 3.3 in ex-
actly the same way, as earlier we have deduced Theorem 1.1 from Lemma 2.4.
Namely, for any ε > 0 we iterate the re-distribution procedure, obtaining a
family of measures νk with continuous density on [0, 1], for which we control
both the supports and the energy.

To do so, we start with the measure ν0 that is supported on [0, 1] and that
satisfies I(ν0) < I(µ[0,1])+ ε

2 . Now, if a measure νk−1 is already constructed,
due to Lemma 3.3 there exists a measure νk with

I(νk) < I(νk−1) +
ε

2k+1
and supp νk ⊂ supp νk−1 ∩ V̂mk

for some mk > k. Any accumulation point ν∞ of the measures νk is thus
supported on a intersection of closures⋂

k

cl
(
V̂mk

)
⊂ S ∪D,

where D is a countable set of endpoints of Vn’s, and satisfies

I(ν∞) < (I(µ[0,1]) +
ε

2
) +

∞∑
k=1

ε

2k+1
= I(µ[0,1]) + ε.

As a finite energy measure, the measure ν∞ does not charge a countable set
D, and is thus supported on S. As ε > 0 was arbitrary, we thus get

inf
ν∈P(S)

I(ν) = I(µ[0,1]),

and hence the desired Cap(S) = Cap([0, 1]). �

We conclude this section with the proof of Lemma 3.1.

Proof of Lemma 3.1. As in the proof of Lemma 2.6, fix an arbitrarily small
δ > 0, and decompose

I(µn, µn′) =
1

n · n′
n−1∑
i=0

n′−1∑
j=0

I(µi,n, µj,n′)

into two parts, depending on the distance |ci,n − cj,n′ |:

I(µn, µn′) =
1

nn′

∑
|ci,n−cj,n′ |<δ

I(µi,n, µj,n′) +
1

nn′

∑
|ci,n−cj,n′ |≥δ

I(µi,n, µj,n′).

(3.3)
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The sum over intervals whose centers are closer than δ from each other can
be made arbitrarily small by a choice of δ and by taking sufficiently large m.
Indeed, for any fixed j we have

1

n

∑
i: |ci,n−cj,n′ |<δ

(− log |ci,n − cj,n′ |) <

< − 2

n
log min

i
|ci,n − cj,n′ |+ 2

∫ δ

0
(− log s) ds, (3.4)

see Fig. 6, right. Due to the estimates above the minimal distance minj |ci,n−
cj,n′ | is at least 1

2m2 , so the first summand does not exceed 2
m log(2m2) and

hence tends to 0. The second can be made arbitrarily small due to the
integrability of the function log at 0. Finally, averaging (3.4) over j, we get
the desired (arbitrarily small) bound for the first summand in (3.3).

On the other hand, for any fixed δ, the function f(x)f(y)(− log |x− y|) is
continuous on the set |x− y| ≥ δ, and the second summand in (3.3) behaves
like its Riemann sum. Hence, we have

1

nn′
·

∑
|ci,n−cj,n′ |≥δ

I(µi,n, µj,n′)→
∫∫
|x−y|≥δ

f(x)f(y)(− log |x− y|) dx dy

uniformly in n, n′ ∈ Fm as m→∞.
For any ε > 0, take δ sufficiently small so that the integral in the right

hand side is ε
2 -close to I(µ), and that the first summand in (3.3) does not

exceed ε
2 for all sufficiently large m. Then, we have

|I(µn, µn′)− I(µ)| < ε

2
+
ε

2
= ε,

and as ε > 0 is arbitrary, this concludes the proof. �

4. Zero capacity: Lindeberg and Erdös-Gillis theorems

This section is devoted to the Cauchy-Schwartz based proof of Corol-
lary 1.4, as well as of Lindeberg and Erdös-Gillis’ Theorem 1.3, and hence
of the first part of Theorem 1.2. The key step is the following.

Lemma 4.1. Let J ′1, J2, . . . ⊂ [0, 1] be a sequence of intervals of length
|J ′k| =: r′k, such that the series

∑∞
k=1

1
| log rk| converges. Then

I(µ) ≥ 1∑∞
k=m 1/| log r′k|

.

Proof. We transform the union
⋃∞
k=1 J

′
k into a disjoint one by setting

Ṽ1 := J ′1, Ṽk := J ′k \
k−1⋃
i=1

J ′i .
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Let µ be any measure supported on
⋃∞
k=1 J

′
k; denote pk := µ(Ṽk). Then∑

k pk = µ(
⋃∞
k=1 J

′
k) = 1. Without loss of generality, we can assume pk > 0

for all k, otherwise removing the corresponding J ′k.

Let µ′k := 1
pk
µ|
Ṽk

be the corresponding conditional measures. Then,

µ =
∑
k

pkµ
′
k,

and thus

I(µ) =
∑
k,l

pkplI(µ′k, µ
′
l) ≥

∑
k

p2kI(µ′k).

Now, the measures µk is supported on J ′k, that is an interval of length r′k,
and hence I(µ′k) ≥ | log r′k|. Thus,

I(µ) ≥
∑
k

p2k| log r′k|.

Applying Cauchy-Schwartz inequality, we get(∑
k

p2k| log r′k|

)(∑
k

1

| log r′k|

)
≥

≥

(∑
k

√
p2k| log r′k| ·

1

| log r′k|

)2

=

(∑
k

pk

)2

= 1,

and hence

I(µ) ≥
∑
k

p2k| log r′k| ≥
1∑

k
1

| log r′k|
(4.1)

�

This lemma immediately implies Theorem 1.4. Indeed, for any m the
set S̃ is contained in

⋃
k≥m J

′
k, and hence,

Cap(S̃) ≤ Cap

 ⋃
k≥m

J ′k

 ≤ exp

(
− 1∑∞

k=m 1/| log r′k|

)
.

As m is arbitrary, and the tail sum of a convergent series tends to zero,
passing to the limit as m→∞ we get the desired

Cap(S̃) = 0.

Proof of Theorem 1.3. Assume that mh0(E) = R < ∞. Then for an arbi-
trarily small ε > 0 there exists its cover

⋃
j Ij ⊃ E by intervals of length

at most ε, such that
∑

j h0(|Ij |) =
∑

j
1

| log |Ij | | < 2R. Estimate (4.1) then
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implies, that for any measure µ on E one has I(µ) ≥ 1
2R . Moreover, actu-

ally (4.1) is a lower bound for the part of the integral ε-close to the diagonal
(as x and y can be restricted to belong to the same interval):∫∫

|x−y|<ε
log |x− y| dµ(x) dµ(y) >

1

2R
. (4.2)

Recall now that ε > 0 was arbitrary; if there was a measure µ on E with
I(µ) < ∞, the left hand side of (4.2) would tend to zero as ε → 0. On the
other hand, the right hand side is a constant. This contradiction shows that
for any measure µ on E one has I(µ) = +∞, and thus that Cap(E) = 0. �

Remark. Actually, the statements Lemma 4.1 and Theorem 1.3 hold in
any dimension, with balls replacing the intervals and their diameters taken
instead of lengths, and the proofs are the same word for word.

Proof of the first part of Theorem 1.2. Take the sequence J ′k to be an enu-
meration of the family Jk,n. Then,

∞⋂
m=1

∞⋃
k=m

J ′k =
∞⋂
m=1

∞⋃
n=m

Vn;

for each n there are n intervals J ′k of length rn (that is, J0,n, . . . , Jn−1,n),
and hence

∞∑
k=m

1

| log r′k|
=
∞∑
n=m

n

| log rn|
=
∞∑
n=m

1

nα−1
(4.3)

as rn = e−n
α
. As for α > 2 the series (4.3) converges, Cap(S) = 0 due to

Theorem 1.4. �

5. Non-continuity of capacity on bounded interval

As mentioned previously, in the proof of Theorem 1.1, there is a tempting
shortcut that cannot be taken. It is already known that capacity does not
satisfy limit properties that a measure does. In particular, it is not con-
tinuous under descending collection of sets. For example, one can take the
collection of open bounded sets

On := {z ∈ C : 1− 1

n
< =(z) < 1 and 0 < <(z) < 1}.

Then, each On contains a translation of the interval (0, 1); see Fig. 7, left.
Hence, Cap(On) ≥ 1/4. If capacity was continuous on descending open sets,
we would have that

1/4 ≤ lim
n→∞

Cap(On) = Cap

(⋂
n∈N

On

)
= Cap(∅) = 0.
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0 1

On

0 1

B1

B2

B3

Figure 7. Discontinuity of capacity on [0, 1]2 and on [0, 1]

A question that appears naturally is whether capacity was continuous
under a descending collection of open sets contained in [0, 1]? If so, Corol-
lary 2.3 would imply that Cap(S) = Cap(J). Unfortunately, the answer to
the continuity question on [0, 1] is negative, as one can see from the following
example.

Example 5.1. There exist pairwise disjoint open sets B1, B2, . . . contained
in [0, 1] with capacity bounded away from 0. In other words, there exists
ε > 0 such that

Cap(Bn) ≥ ε,

for any n ∈ N.

Example 5.2. There exists a descending sequence W1 ⊃W2 ⊃ . . . of open
sets contained in [0, 1] such that

Cap

(⋂
n∈N

Wn

)
= 0 < ε ≤ Cap (Wk) ,

for some ε and every k ∈ N.

Construction of Example 5.2 out of Example 5.1 is immediate: take

Wm :=
⋃
n≥m

Bn,

where B′ns are given by Example 5.1. Indeed, one then has
⋂
nWn = ∅,

W1 ⊃ W2 . . . by construction, as well as Cap(Wn) ≥ Cap(Bn) ≥ ε. This
example shows the discontinuity of example on descending sequence of open
subsets of [0, 1] : one has Cap(

⋂
nWn) = 0 while limn→∞Cap(Wn) ≥ ε. Let

us pass to the construction proving Example 5.1.
To construct the desired sets Bn, consider the unions Vn = ∪iJi,n given

by (1.2), taking the decreasing speed for the lengths rn := 2−n. Take a
subsequence nk of indices to be defined by n1 = 210, nk = 2nk−1+1, and
define (see Fig. 7, right)

Bk := Vnk \
k−1⋃
i=1

V ni .
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The sets Bk are then open and disjoint by construction. To show that
they satisfy the conclusion of the proposition, it suffices to find probability
measures νk, supported on Bk, such that the energies I(νk) are uniformaly
bounded. That is, there exists C such that for all k one has I(νk) ≤ C. This
implies Cap(Bk) ≥ e−C , and thus the conclusion of the proposition holds
with ε = e−C .

To do so, first consider the uniform measures ν◦k on Vnk , letting ν◦k :=
R(Leb |Vnk), where Leb is the Lebesgue measure on [0, 1]. Due to Proposi-
tion 2.1,

I(ν◦k) = I(Leb) +
nk log 2

nk
+ o(1) = 3/2 + log 2 + o(1).

Now, let

νk :=
ν◦k |Bk
ν◦k(Bk)

.

Then,

I(νk) :=
1

ν◦k(Bk)2
I(ν◦k),

so it suffices to check that ν◦k(Bk) stays bounded away from zero. In fact,
we will show that ν◦k(Bk) ≥ 1/2. This will follow from a purely geometrical
observation:

Lemma 5.1.

Leb(Vnk ∩Xk) = Leb(Xk) · Leb(Vnk),

where

Xk := [0, 1] \
k−1⋃
i=1

Vni .

Proof. Note that all the endpoints of Vni , i = 1, . . . , k − 1 are of the form

2j + 1

2ni
± rni

2
=

2j + 1

2ni−1+2
± 1

2ni+1
,

and hence can be represented as
a

2nk−1+1
=

a

nk
.

Hence, Xk is (up to a finite number of points) a union of intervals of the
form

(
a

2nk−1+1
,
a+ 1

2nk−1+1

)
=

(
a

nk
,
a+ 1

nk

)
. (5.1)
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We have

Xk =
⋃
a∈A

(
a

nk
,
a+ 1

nk

)
∪ P,

where P consists of a finite number of points.

0 11
nk

a
nk

a+1
nk

Xk

Vnk

Figure 8. The set Vnk and the decomposition into dyadic intervals

On each interval of the form (5.1), the set Vnk cuts the same measure:

Leb(Vnk ∩ [
a

nk
,
a+ 1

nk
]) = rnk

and thus the same proportion rnk · nk. Hence,

Leb(Vnk ∩Xk) = rnk ·#A = (rnk · nk)
(

#A
nk

)
= Leb(Vnk) · Leb(Xk).

�

Due to this lemma, ν◦k(Bk) = Leb(Xk). On the other hand,

Leb(Xk) ≥ 1−
k−1∑
i=1

Leb(Vni) ≥ 1/2.

We have obtained the desired ν◦k(Bk) ≥ 1/2, and hence

I(νk) ≤ 4(3/2 + log 2 + o(1)),

thus concluding the construction.
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Riemannschen Fläche, Acta Math., 61 (1933), pp. 39–79.
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