PARAMETRIC FURSTENBERG THEOREM
ON RANDOM PRODUCTS OF SL(2,R) MATRICES

ANTON GORODETSKI AND VICTOR KLEPTSYN

ABSTRACT. We consider random products of SL(2,R) matrices that depend on
a parameter in a non-uniformly hyperbolic regime. We show that if the depen-
dence on the parameter is monotone then almost surely the random product
has upper (limsup) Lyapunov exponent that is equal to the value prescribed by
the Furstenberg Theorem (and hence positive) for all parameters, but the lower
(liminf) Lyapunov exponent is equal to zero for a dense G set of parameters of
zero Hausdorff dimension. As a byproduct of our methods, we provide a purely
geometrical proof of Spectral Anderson Localization for discrete Schrodinger
operators with random potentials (including the Anderson-Bernoulli model)
on a one dimensional lattice.

1. INTRODUCTION

Random products of matrices appear naturally in smooth dynamical systems
[V1l, W1J, probability theory [Bel, Berl [FurKl [KS|, spectral theory and mathemat-
ical physics [DI15, [S], geometric measure theory [HS| [P, [Sh]. The main questions
are usually focused on the rate of growth of these products. In this context an
important step was made in 1960 by Furstenberg and Kesten [FurK]. They proved
that products of random matrices generated by a stationary process have well de-
fined asymptotic exponential growth rate. This rate of growth is usually called
Lyapunov exponent. It corresponds exactly to the logarithm of the spectral ra-
dius when all the random matrices degenerate to a single matrix. In [Furll [Fur2]
Furstenberg showed that in most cases the Lyapunov exponent must be positive;
see also [Vi] for a different proof. Here is the classical version of the Furstenberg
Theorem.

Theorem 1.1. Let { Xy, k > 1} be independent and identically distributed random
variables, taking values in SL(d,R), the dxd matrices with determinant one, let Gx
be the smallest closed subgroup of SL(d,R) containing the support of the distribution
of X1, and assume that

E [log || X1]]] < o0.

Also, assume that G x is not compact, and there exists no Gx -invariant finite union
of proper subspaces of R%. Then there exists a positive constant A\p such that with
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probability one
1
lim —log|| X, ... Xo2X1]| = Ar > 0.

n—oo N

This result was generalized and improved in many different ways, see [BL [CKN]|
GM] for classical surveys, and [Fu] for a more recent one. For example, Oseledets
Theorem [O] claims that Lyapunov exponent exists for large class of linear cocycles,
not only for the random products of matrices, and describes the structure of sub-
spaces of vectors with different growth rates. Dependence of the Lyapunov exponent
Ar on the distribution in the space of matrices (e.g. continuous, Hélder continuous,
or smooth dependence) was considered in [BV], [FurKif, [Kif] [KifS|, [Hel [Per| [TV] [DKT].
Also, in the case of random products of matrices that depend on a parameter the
properties of A as a function of the parameter were heavily studied. In particular,
it is known that for the uniformly hyperbolic case (the formal definition is provided
below) A is an analytic function of the parameter [R1], but in general only Hélder
continuity can be guaranteed [L].

The focus of our paper is also on the case when the matrices in the random
product depend on a parameter. But instead of studying the properties of A as a
function of the parameter, we want to fix a (generic) sequence of matrices, and ask
whether the Lyapunov exponent exists for all parameters for the product formed
by this specific sequence. In Section below we present two examples to motivate
this question, and discuss the case of uniformly hyperbolic set of matrices. Then
in Section [I.2] we formulate our main result, a parametric version of Furstenberg
Theorem. In order to illustrate the power of our approach, in Section 1.3 we
consider the Anderson model (including the Anderson-Bernoulli model) in the case
of discrete Schrodinger operators on one dimensional lattice, and give a purely
geometrical proof of Anderson Localization (pure point spectrum and exponential
decay of eigenfunctions). Finally, in Section we complete the introduction with
the statement of the result on properties of finite random products of SL(2,R)
matrices; this result is the main technical part of the proof of parametric version
of Furstenberg Theorem, but is also of interest by itself.

1.1. Two examples. Before providing the formal statement of our results let us
consider two examples.

Example 1. Consider two matrices A, B € SL(2,R), and the family of matrices
cosa —sina

{Rs 0 A, R, o B}, where R, = sina cosa
[a1, a0]. Denote A, = R, 0 A, B, = R, o B and consider random products of
A, and B, (chosen with some given probabilities p and 1 — p) . Assume that for
each a € [aq, as] the set of matrices {A,, B, } satisfies the Furstenberg genericity
conditions, i.e. the group generated by A, and B, is not contained in any compact
subgroup of SL(2,R), and there is no finite union of proper subspaces of R? that
would be invariant under both A, and B,. Then due to Theorem for any
a € [ay, as] for almost every sequence {C;(a)}, Ci(a) € {Aq, Ba}, there is a limit

> is a rotation by angle a, a €

(1) lim 2[[C1(@)Ca(a) . .. (@) = Ar(a) > 0.

n—oo 1

Is it true that for almost every sequence {C;} the limit (1)) exists for all o € [an, 2] ?

Example 2. Let us consider Schrodinger cocycle associated with the one-
dimensional Anderson model, where the role of parameter is played by the energy.
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Namely, we consider Schrédinger operators H acting on ¢%(Z) via
(2) [Hu](n) =u(n+1) +u(n — 1) + V(n)u(n).

We will assume that {V(n)} are i.i.d. random variables, distributed with respect to
some compactly supported non-degenerate (support contains more than one point)
probability measure p. Notice that we do not require the distribution p to be
continuous; in particular, the Anderson-Bernoulli model (when potential V(n) can
takes only two different values) is included in our setting. We will denote by V,,,
where w € (supp u)%, the particular choice of the potential V', and by H,, the
corresponding operator .

A sequence u € ¢%(Z) is an eigenvector of H, that is, satisfies Hu = Eu for some
eigenvalue (“energy”) E, if and only if it solves the difference equation

(3) u(n+1) +uln—1)+ V,(n)u(n) = Eu(n), n€Z.
Now, u solves if and only if

W () = ) ) mem

One naturally defines

so that implies

(U(Z(Z)l)) =g X X Ty g <ZE(1)D

for n > 1 and any solution « to (3]). Thus, the study of spectral properties of H
motivates the study of such random products; we set T}, g, = Iy g0 X+ X111 £ .

Due to Theorem for any E € R for almost every w € (supp p)? there is a
limit

.1
(5) lim —log | Ty, p.ul| = Ar(E) > 0.

However, from the spectral point of view it makes sense to fix the potential V,
first, and then vary the value of the energy E. Is it true that for almost every
w € (suppp)? the limit (@ exists for all E € R? For all E from a given interval
JCR?

To give a comprehensive answer to the questions in both examples let us intro-
duce a more general framework.

1.2. Parametric version of Furstenberg Theorem. Let (€2, i) be a probability
space, J C R be a compact interval of parameters, and F': Q x J — SL(2,R) be a
bounded measurable (and continuous in second argument) map that to any w € Q
puts in correspondence a matrix Fy,(w) that depends continuously on the parameter
a € J. In Example 1 above the role of parameter was played by the angle «, and in
Example 2 — by the value of energy E. For a given sequence @ € QN, @ = wywsy ...
denote

Thaw=Faolwn)Fo(wn-1)...Fs(wr).

sy
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Furstenberg-Kesten Theorem [FurK] implies that for each value of the parameter
a € J there is a subset 2, C QY with zN(Q,) = 1 such that for any @ € Q, the
limit

. 1
(©) Ap(@) = lim —log |Toa]

exists.
Is it possible to choose 2, uniformly in the parameter? In other words, is it true
that pN-almost surely the limit (@ exists for all values of the parameter a € J ¢
Notice that the questions stated in Section |1.1] are partial cases of this one. It
turns out that the answer to these questions is drastically different depending of
presence or absence of uniform hyperbolicity.

Definition 1.2. A collection of SL(2,R) (or SL(k,R)) matrices { M, }oeca is called
uniformly hyperbolic if there exists a constant n > 1 such that for any finite sequence
of matrices My, , Ma,, ..., My, we have | My, Mq, ... My, || > 0™

There is a number of equivalent ways to describe uniform hyperbolicity of
SL(2,R) (or SL(k,R)) cocycles, such as an invariant splitting into stable and un-
stable directions, or the absence of a Sacker-Sell solution; compare, for example,
[ABYL,[DFLYTH, [Y] [Z1]. In particular, existence of invariant one-dimensional stable
and unstable directions for uniformly hyperbolic SL(2,R) cocycles combined with
Birkhoff Ergodic Theorem immediately implies the following statement:

Proposition 1.3. In the setting above, assume that for each a € J the collection of
matrices {Fy(w)}weq is uniformly hyperbolic. Then, for uN-a.e. @ € QN the limit

1
lim —log||Th el =Ar(a) >0
n—oo N
exists for all a € J.

Remark 1.4. In the case of SL(k,R), k > 2, even uniform hyperbolicity does not
guarantee the convergence uniformly in parameter, or even pointwise convergence
for all parameters. More restrictive assumptions (e.g. positivity of all entries of the
matrices, as in [CN| [Poll, or existence of a dominated splitting of index or co-index
1, see [BoGo|) are needed; see also [G, Theorem 2.2].

The goal of this work is to provide the detailed description of the case comple-
mentary to the setting of Proposition This case (positive Lyapunov exponent in
absence of uniform hyperbolicity) is usually referred to as non-uniformly hyperbolic
case.

From now on, we will proceed under the following standing assumptions:

(Al) (Furstenberg condition) Denote by p, the measure g = (Fy). (). We
assume that for each a € J the measure y, on SL(2,R) satisfies the (in-
dividual) Furstenberg non-degeneracy condition, that is, its support is not
contained in any compact subgroup of SL(2,R), and there is no supp fiq-
invariant finite union of proper subspaces of R2.

(A2) (C'-boundedness) The maps F,(w) are C'-smooth in the parameter a €
J, with uniformly bounded C'-norm, i.e. there exists M > 0 such that for
alweQandallaecJ

R 4Rt <.
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(A3) (Non-uniform hyperbolicity) For each a € J the collection of matrices
{F,(w)}weq is not uniformly hyperbolic.

(A4) (Monotonicity) There exists § > 0 such that

d%arg(Fa(w)@) 5550

for all @ € Jyw € Q,0 € R?\{0}. In other words, as we increase the
parameter, the image of any given vector v spins in the positive direction
with a speed that is bounded from below.

Remark 1.5. The condition (A1) is sometimes referred to as strong irreducibility
(non existence of proper subspaces invariant under the closed semigroup generated
by the support of the measure u,) and contractivity (existence of matrices of arbi-
trarily large norm in that semigroup) assumptions. In it known that under these
assumptions the Lyapunov exponent Ap(a) is continuous [FurK]. For the current
state of art regarding continuity of Lyapunov exponents see the monographs [DKI]
and [V1].

Our main result is the following theorem, describing the behaviour of the random
parameter-dependent products of SL(2,R) matrices:

Theorem 1.6 (Parametric version of Furstenberg Theorem). Under the assump-
tions (A1) — (A4) above, for uN-almost every @ € QN the following holds:
e (Regular upper limit) For every a € J we have

1
limsup — log || Th,a.c] = Ar(a) > 0.

n—oo N

o (Gs-vanishing) The set
1
So(@) :== {a € J |liminf —log||Th.acl = 0}
n—oo m

is a (random) dense Gg-subset of the interval J.

e (Hausdorff dimension) The (random) set of parameters with exceptional
behaviour,

1
Se(@) = {a € J | liminf —log ||Th,0.0| < /\F(a)} ,
n—oo N

has zero Hausdorff dimension:
dim g Se(a)> =0.

Remark 1.7. Let us consider the properties (A1) —(A4) in the context of Examples
1 and 2 from Section [I.] to show that Theorem [I.6] can be applied to both of them.

Example 1: The assumptions (A2) and (A4) obviously hold. It is also not hard
to give an explicit example of {A,, B, } and an interval J such that {A,, By} is
not uniformly hyperbolic and satisfy Furstenberg non-degeneracy conditions for all
a € J, e.g. see [GI, Example 2.2]. It is interesting to compare Theorem in the
context of Example 1 with [ABl Corollary 4].

Example 2: Assumption (A2) is certainly satisfied. Notice that the Furstenberg
conditions are satisfied automatically for transition matrices {IL, g .}, e.g. see the
proof of Theorem 2.17 from [DI15]. As for assumption (A3), Johnson showed in [J]
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that the set of energies £ for which the collection of matrices {IL,, 5w }uwe(supp )
is uniformly hyperbolic, is equal to the resolvent set of H,, for u”“-almost every w.
Besides, p”“-almost surely the spectrum of H, is a finite union of intervals of length
at least four (more precisely, it is equal to [—2,2] 4+ supp p), e.g. see Theorem 4.1
from [D16]. Therefore, an interval of energies inside of the spectrum corresponds
to the non-uniformly hyperbolic case. Finally, notice that while the condition (A44)
(monotonicity) does not hold in general for matrices II,, g o, it is a straightforward
calculation to check that it does hold for a product of two consecutive matrices
I, g w1ln+1,E,w, and this allows to apply Theorem in the context of Example 2.

Notice that in this case existence of a dense subset of energies in the spectrum
for which the limit that defines the Lyapunov exponent does not exist was shown
in [Gl Theorem 6.2].

Remark 1.8. Monotonic cocycles (i.e. satisfying the property (A4)) were con-
sidered previously, for example, by Avila and Krikorian in [AvK]. There they
developed, in particular, a dynamical analog of Kotani Theory, see [AvKl Theo-
rem 1.7]. Theorem also has some counterparts in spectral theory. Namely, the
statement on “Regular upper limit” can be considered as a dynamical analog (and,
in fact, improvement) of the result by Craig and Simon [CS, Theorem 2.3]. Also,
“Gs-vanishing” part seems to be related to [DMS, Theorem 2, Theorem 2.1], see
also [Gorl, Theorem 2]. Namely, the set of exceptional parameters S, from Theorem
is analogous to the set of “exceptional energies” for rank one perturbations of
a (continuous) Schrodinger operator without a.c. spectrum, see [DMS, Example
5.2]. Moreover, one could extract from the proofs in [DJLS] the arguments needed
to show that in the case of random potential the set of “exceptional energies” must
have zero Hausdorff dimension [J]. We are grateful to Lana Jitomirskaya for this
remark.

Remark 1.9. It is interesting to compare Theorem with the result from [Bo]
that claims that for any fixed invertible ergodic dynamical system over a com-
pact space, there is a residual set of continuous SL(2,R)-cocycles which are either
uniformly hyperbolic or have zero exponents a.e.; for related results on SL(k,R)
cocycles see [BoV1l [BoV2]. In the opposite direction, denseness of SL(k,R) cocy-
cles with non-zero Lyapunov exponents was shown in [Av]. Moreover, for a generic
smooth (or Holder) cocycle over a hyperbolic base positivity of Lyapunov expo-
nents was shown in [V2] [BGV]; see also [BV], [BocV], [VY] for other related results.
The question about positivity of Lyapunov exponent for Schrédinger cocycles over
a hyperbolic base in some specific cases was studied in [ChS| [Z2]; in full generality
essential progress was also announced [DJ.

Remark 1.10. One of the powerful methods currently available to study the prop-
erties of cocycles with positive Lyapunov exponent is Avalanche Principle, see [GS],
[DK1]. Notice that this is not an approach we are using in this paper. Indeed,
Avalanche Principle allows to establish an inductive procedure by using estimates
on the norms of products of “blocks” of matrices under an assumption that no
critical cancelations happen between two subsequent “blocks”. We do not establish
any inductive procedure; instead we analyze the properties of large finite products
of parameter dependent matrices directly, see Theorem [T.19 below. We are grateful
to one of the referees for this remark.
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1.3. Anderson Localization. One important application of Furstenberg’s Theo-
rem on random matrix products lies in the context of Anderson Localization for
discrete Schrodinger operators with random potentials on one dimensional lattice;
this model is described in Example 2 from Section The following result is well
known.

Theorem 1.11 (Spectral Anderson Localization, 1D). The spectrum of the opera-
tor H,, defined by (@ is p”-almost surely pure point, with exponentially decreasing
eigenfunctions. The same statement holds for spectrum of discrete Schrodinger
operator with random potential in ¢2(N) with Dirichlet boundary condition.

Remark 1.12. In Example 2 above we assume that p is a non-degenerate com-
pactly supported measure on R. Theorem [1.11]is known to hold also for the case
of p with unbounded support (under some extra conditions), e.g. see Theorem 2.1
from [CKM]. We believe that our approach and results (including Theorem |1.6)
can also be extended to the case of distribution with unbounded support under
some reasonable conditions, but do not elaborate on it in this paper.

There are many different proofs of Theorem see [GMP), [KuS|] the initial
proofs of related statements, and [DI15] for a survey. Most of the proofs rely either
on Furstenberg Theorem (Theorem, or on Kunz-Souillard method [D15, Section
4] (but there are exceptions, e.g. see [FLSSS, Remark 4.2]). The Kunz-Souillard
method requires absolute continuity of the distribution x. The same condition (or
at least existence of an absolutely continuous component) is needed for shorter
proofs that use Furstenberg Theorem, e.g. the method of Spectral Averaging [SW]|
(see also [D15] Section 3.2]). The first complete proof of Theorem that would
also cover the Anderson-Bernoulli model (the case when the support of u consists
of two points) was given by Carmona, Klein, and Martinelli in [CKM]|, see also
[DSS] for continuum case. When this paper was at the final stage of preparation,
we learned about two other proofs. The paper [BDEGVWZ] provides a proof of
Anderson Localization in 1D that is relatively elementary and avoids multi-scale
analysis, using Furstenberg Theorem as the main tool. Also, the very recent paper
[JZh| gives a short proof of Theorem Anderson Localization of random Jacobi
operators (and related version of Large Deviation Estimates) was studied by Duarte
and Klein in [DK2].

We would like to present here a purely geometrical proof of Theorem [T.11] based
on techniques similar to the parametric version of Furstenberg Theorem above,
that shows that in 1D case Anderson Localization can arguably be considered as a
dynamical rather than purely spectral phenomenon.

More specifically, we can show that the following statement holds:

Theorem 1.13. Under the assumptions (A1) — (A4) we have:
e For almost all @ € QN, for all a € J the following holds. If

1
(7) lim sup — 10g | Tya () | < Ar(a),

n—4oo N

then in fact [Ty, 0.0 (§)| tends to zero exponentially as n — oco. Namely,

1
lim —log|Thaw()|l=—Ar(a).

n—+ocon
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e For almost all @ € QF, for all a € J the following holds. If for some
v € R?\ {0} we have

1 1
(8)  limsup —log|Ty ea7| < Ar(a), and limsup —log|T_, ¢&0| < Ap(a),

n—+oo T n—+oo T

where
T pow = Fy(w_p)™t... Fa(w_l)lea(wo)fl,

then both | T}, 4,50, |T—n,qa0| in fact tend to zero exponentially. Namely,

1 1
lim —log|Thest = —Ar(a), and lim —log|T_, .50 = —Ar(a).

n—+o0o N n—-+oo n

Remark 1.14. In the first claim of Theorem [1.13|it is crucially important that the
initial vector (in our case (§)) is fixed. Otherwise the statement would not hold. In
the context of Example 2 above this is related to results on rank one perturbations,
see [DMS], [Gorl, Theorem 3].

Remark 1.15. It is interesting to notice that exponential decay of eigenfunctions
(this is how Theorem can be interpreted in the context of Example 2) is a
specific property of Anderson Model that does not have to hold in general. For
example, there are regimes where Almost Mathieu operator exhibits Anderson Lo-
calization with sub-exponential decay of eigenfunctions, see [JI Theorem 1.2].

The following result is usually referred to as “Schnol Theorem”, due to a similar
result in the paper [Schl (see also [Gl1] [GI2]):

Theorem 1.16. Let H : (*(Z) — (*>(Z) be an operator of the form
Hu(n) =u(n—1)+u(n+1) + V(n)u(n),

with a bounded potential {V(n)}nez. If every polynomially bounded solution to
Hu = Fu is in fact exponentially decreasing, then H has pure point spectrum,
with exponentially decaying eigenfunctions. Similar statement holds for operators
on (2(N) with Dirichlet boundary condition.

In continuum case Theorem follows also from [Siml Theorem 1.1]. For
the formal proof in the discrete case see, for example, [Kir, Theorem 7.1]; some
improved versions of this result can be found in [JZ, Lemma 2.6] or [H].

Now Theorem follows directly from Theorem Remark and Theo-
rem [1. 16l

1.4. Properties of finite matrix products and density of states measure.
Here we discuss the statement that forms the main technical part of the proof of
Theorem but is also of independent interest. Namely, we consider random
matrices that depend on a parameter and satisfy the conditions (A1) — (A4), and
study the growth of products of large but finite number of these matrices. It
turns out that for most parameters the growth is “uniformly exponential” with
exponent prescribed by Furstenberg Thereom, but there are exceptional parameters
that have well defined asymptotic distribution. This asymptotic distribution is a
generalization of the density of states measure, the key notion in the theory of
ergodic Schrédinger operators.

To give the formal statement we need the notion of a rotation number. In our
case this is given by the following construction. For each a € J and each linear map
F,(w) € SL(2,R) denote by f,. : S! — S, S = RP!, the projectivization of the
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map F,(w) : R? — R2. Recall that the map F : Q x J — SL(2,R) is measurable,
continuous in a € J, and bounded (due to (A2)). Therefore one can also choose
the lifts fo. : R = R, fou(z)(mod1) = f,.(z(mod1)), in a measurable way,
depending continuously on a € J, and such that the set {fa’w(O)}weg C R is
uniformly bounded in a € J.

Proposition 1.17. There exists a continuous function p : J — R such that for all
a€J, ae @eQV, and every x € R the limit

1. .
nhanc}o Efa,wn o fa,wn,l ©...0 fa,w2 © fa,wl (I)

exists and is equal to p(a).

The number p (that depends on a parameter a € J) from Proposition is
called rotation number. For iterates of a homeomorphism of the circle the notion
of rotation number goes back to Poincare; for cocycles it appeared, for example, in
[Her]. Notice that it depends on the choice of the lifts { fa)w}weg, but a different
choice of the lifts will only add a constant to the function p. Also, it is clear that
due to the monotonicity assumption (A4) the function p must be non-decreasing.

Hence, it can be used to define a (non-atomic, non-probability) measure on J that
we will denote DO.S:

DOS([b,b]) = p(b') — p(b) Vb <V, bt €J

(the notation reminds that this is a generalization of the Density of States Measure
from the spectral theory of ergodic Schrédinger operators). Moreover, Theorem
m (generalized Johnson’s Theorem) together with the assumption (A3) imply
that DOS has the whole interval J as its support.

Remark 1.18. The rotation number of a Schrédinger cocycle is the distribution
function of the density of states measure (that can be defined in purely spectral
terms) of the corresponding ergodic Schrédinger operator. This holds for a large
class of ergodic potentials, not only for random potentials, see [DS| [JM].

In order to study the properties of finite products of matrices of length n, we
split the interval of parameters J into N = [exp({/n)] equal intervals Ji,..., Jy,
and denote J; = [b;—1,b;], i =1,..., N. Notice that by and by are the endpoints of
the interval J. To emphasize their independence of n, let us denote these endpoints
by b_ and by, so J = [b_,by]. The number of small intervals N and the whole
construction depend on the length of the products n; to simplify the formulas we
do not reflect it in the notation.

By U.(x) we denote the e-neighborhood of the point z.

Theorem 1.19. For any € > 0 there exist ng = ng(e) and do = do(€) such that for
any n > ng the following statement hold. With probability 1 — exp(—do/n), there
exists a number M € N, exceptional intervals J;,, ..., Ji,, (each of length %), and
corresponding numbers mq,...,my € {1,...,n}, such that:

I (Quantity) The number M is ne-close to (p(by) — p(b-)) - n.

II (Uniform growth in typical subintervals) For any i different from
i1y...,00, for any a € J;, and for anym =1,...,n one has

| € Upe(Ar(a)m).

log | Tm,a,0
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IIT (Uniform growth in exceptional subintervals) For anyk =1,...
for any a € J;,, and for any m =1,...,my one has
10g (| Tom,0.0 | € Une(Ar(a)m);
for anym =my +1,...,n one has

108 [Ty m.a 5]l € Une(Ar(a)(m —my)),

where

T[mk,m],a,w = Tm,a,@Téi?a,@ = Fa(wm)Fa(wmfl) cee Fa(wmk+1)'

IV (Cancellation) For any k = 1,..., M there exists ar € J;, such that for

anym=1,...,n
9) log ”Tm,ak,@H € Une(Ar(ax) - m, (m)),
where
m, m < m/,
V(M) =< 2m' —m, m' <m <2m’,

m—2m/, m > 2m/;
in other words, for m > my the parts of the product over the intervals
[1,my] and [my, m] cancel each other in the best possible way.

V (Measure) For each k =1,..., M consider the point (m’“,ak) €[0,1] x J.

n
The measure
M
>0
- e
n (T’“k)
k=1

is e-close (in Levy-Prokhorov metrifﬂ i.e. in a metric that defines weak-*
topology) to the measure Leb x DOS on [0,1] x J.

Remark 1.20. The Levy-Prokhorov metric in Theorem [I.19] can be replaced by
any other metric that induces the weak-* convergence, e.g. by “earth mover’s
distance” or, more generally, any of the Wasserstein metrics.

Remark 1.21. We expect that the statement on representation of DOS measure
as distribution of “exceptional” intervals in Theorem allows numerous and far
reaching generalizations. For example, compare it with the notion of bifurcation
current (supported on bifurcation locus) from [DD].

1.5. Structure of the paper. In Section [2] we show that almost surely the
Furstenberg Lyapunov exponent gives an upper bound on upper Lyapunov expo-
nent for all values of the parameter. This can be considered as a dynamical analog
of Craig-Simon’s result [CS, Theorem 2.3] on Schrédinger cocycles.

In Section [3] we deduce the main result of the paper, Theorem [I.6] from the
properties of finite matrix products described in Theorem [1.19

Section [4] is devoted to the proof of Theorem [1.19l This is the most technical
part of the paper. In Section [.1] we introduce the language of projective dynamics
on the circle and study possible behaviors of an image of a given point under

it p1, p2 are two measures on a compact metric space M, the Levi-Prohorov distance can be
defined as infimum of & > 0 such that for any Borel E C M one has p1(E) < p2(E€) + € and
2 (E) < p1(E€) 4 €, where E° is an e-neighborhood of E.
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finite random compositions of maps when the parameter is changing along a small
interval. Proposition gives the list of scenarios that exhaust all the possibilities
with probability close to one. The rest of Section [4.1] provides an informal non-
technical explanation how Theorem [I.19]follows from Proposition 4.1} and the main
idea of the proof of Proposition Then, after providing technical tools (distortion
control in Section [£.2] large deviation estimates in Section £.3] and quantitative
estimates on exponential contraction in Section , we deduce parts II and III
of Theorem from Proposition [4.1] in Section [£.4] part IV — in Section [4.5)
and parts I and V — in Section [£.7] In Section we give the formal proof of
Proposition

Dynamical analog of Anderson Localization, Theorem is proven in Sec-
tion [l

Finally, in Appendix [A] we provide a dynamical analog of Johnson’s Theorem,
that in the context of ergodic Schrédinger operators claims that a given energy
belongs to the spectrum if and only if the corresponding Schrédinger cocycle is not
uniformly hyperbolic. While this statement is certainly not surprising to the experts
in spectral theory of ergodic Schrodinger operators, it is probably less known to the
dynamical community, and we include it here formulated in the form convenient
for a reader with background in dynamical systems.

2. UPPER BOUND FOR THE UPPER LIMIT

The following statement can be considered as a dynamical analog of Craig-
Simon’s result [CS, Theorem 2.3] on Schrodinger cocycles.

Proposition 2.1. For a.e. @ € QN and any a € J one has
) 1
limsup —log [|Th a5l < Ar(a).
n—oo N
Proof. This event is an intersection of a countable number of events of the type

1
(10) limsup — log || T} 0.5

n—oo N

| < Ap(a)+e foral aeJ

along a sequence of values of € > 0 that tend to zero. Hence, it suffices to show
that each value € > 0 the event has full probability.

Fix € > 0. Note that (due to the subadditive ergodic theorem) for any fixed
a € J we have

n—o00 N,

1
Ar() = Jim [ o8 Tl 4P ().

In particular, for any a € J there exists ng = ng(a) such that for any n > ng

1
o[ dog Tl dP(w) < Avfa) + 5.
n Jjw|=n 2

As both Ap(a) and T, 4., (for any fixed n) depend on a continuously (see Remark
11.5)), any a is contained in a neighborhood J, such that for ng = ng(a) one has
1
11 — 1 Tho.arwl| dP(w) < min Ap(a’) +e.
(11) 10 J olne 0og (glea}i 1 To,0 w|| AP (w) ;}gi rla’) +e
Extracting a finite subcover, we see that the whole interval J is covered by finitely
many such intervals J,. Let us recall the notation

T[m/,m”],a,@ = Fa(wm//)Fa(me_l) ce Fa(wm/).
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On each interval J,, we have for any a” € J, and n = ng(a)

1 1
limsup —log || TN 0" ol = hm sup — log || Tkn,a” ||
N —o00 N kn

< limsup — Z log | Ti(j—1)n+1,5n],a” & |

k—o0

k—o0

k
. 1 1
< limsup E Z n log glgi ”T[(jfl)nJrl,jn],a’,cZJ”'

The right hand side almost surely (and independently of a”’) equals to

1
— log max [T}, o || dP(w) < min Ap(a’) +e.
2 om s Tl 4P(w) < iy Ar(e) +
Thus we get the desired estimate for the parameters from J,. Intersecting finitely
many such events, associated to the chosen intervals that form the finite subcover,

we get . Proposition follows. (I

Remark 2.2. While we assume that the assumptions (A1) — (A4) hold throughout
the paper, it is worth to note that the proof of Proposition does not really use
the monotonicity assumption (A4).

One can combine the above arguments with the Large Deviation Theorem. This
gives the following useful finite-n upper bound:

Proposition 2.3. For any ¢’ > 0 there exists c3 > 0 and ny € N such that for any
n > ny with the probability at least 1 — exp(—cgn) the following statement holds.
For any a € J and any m,m’, 1 <m <m’ <n one has

(12) 10g || Tjm 0]l < ne’+ Ap(a) - (m' —m).

Proof. It suffices to obtain an upper bound of the form 1 — Py(n)exp(—c4n) for
some ¢ > 0 and a quadratic polynomial P,. Indeed, taking ¢z > 0, ¢z < ¢, we
have for all sufficiently large n

exp(—c3n) > Po(n) exp(—cyn).
For any given &' > 0, set € = %, and consider the finite cover of J by intervals of
the form J,, constructed in the proof of Proposition It is enough to obtain
the desired estimate for each of them separately: indeed, the probabilities that
does not hold at most add up.

Fix an interval J, C J such that for some ng = ng(a) the inequality (L1} . holds
For all a € J and w € Q we have ||Fy(w)|| < M. Therefore, if m’ —m < 210gM’
the 1nequahty . holds. So we have to handle less than n? pairs (m,m’) with
m'—m > g M"
Define ¥ : Q"O - R,

1
U (w1, wa, ...y Wy ) = n—o log arpgag{ |1 Far (wng ) Far (Wng—1) - -« For(w1)])-

Given @ € QY set V(@) = ¥(wWjng+1,---,W(j+1)n,). Then {¥;} is a sequence of
i.i.d. random variables on QY. By we have

Ev in A\p(a’ .
< Inin rla)+e
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Therefore, if we denote P = uN, then due to the Large Deviation Theorem for
random matrix products we have

Z\I/ ) > mln )\F( V42 p <e ok

for some ¢ = ((e) > 0.
Therefore, if m’ —m is large, m’ —m = ngk +r, where 0 < r < ng, a” € J,, and
M > 0 is given by (A2), then

1
— IOg HT[m,m/],a,a) || <
m

o
k—1
1 rlogM
= | 28 I Tommssmtnoen-naral | + 5720 <
= B
72 V@) e,
§=0

where 0 = wpwWm41 - -
Hence

1
P

k—1
m/ —m < el
U,(w0")+¢e>4e+ mln )\F( " <e Sk <e T <e (”0 QIOgM)n.

j=0

10g [| T, m a7 |l > €+ Ap(a”) for some o € Ja> <
m

1
P (m’ mgnea} log || T, m,ar @ || > 4€ + mem Ar(a )) <

P

?v\»—*

This completes the proof of Proposition O

3. PROOF OF PARAMETRIC FURSTENBERG THEOREM
VIA PARAMETER DISCRETIZATION

Here we derive Theorem (parametric Furstenberg Theorem) from Theo-
rem m (on properties of finite products of random matrices).

Proof of Theorem[I.6, Combining Borel-Cantelli Lemma with Theorem we ob-
serve that for any e > 0 pMN-almost surely there exists ng = ng(e) such that for
any n > ng there are M,, € N and exceptional intervals J;, n, Jis n, - - JiMn,n such
that the properties I-V from Theorem hold. Notice that comparing to the
notation used in Theorem [1.19| we add n as an index to emphasize the dependence
of these objects on n. Let us also define

Vn’,s = U U Jik,na
n>n’ k=1,...,M,

and
Ho= (1] Vue

n'>ng(e)
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Regular upper limit: Due to Proposition we only need to show that M-
almost surely for all a € J we have

1
(13) limsup — log | Ty 0.5] > Ar(a).
n—oo T

If a given a € J does not belong to H., then it does not belong to exceptional
intervals J;, ,, for all sufficiently large n. Therefore due to property |E| from The-
orem for all sufficiently large n we have log ||Th o5l > (Ar(a) —e)n, or
Llog |T,a.0] = Ar(a) — e. Hence

1
(14) limsup — log | Ty a5/ > Ar(a) —¢.
n—oo N

If a € H., there is an arbitrarily large n such that a € J;, , for some ex-
ceptional interval J;, ,,. Consider the corresponding value my , and notice that
the property from Theorem implies the following. If % > /g, then
IOg ||ka1n,a,d)|| > )\F(a‘)mk,n —é&n, or

n

(15) > Ar(a) - V2.

log [Ty 0.0/l = Ar(a) — ¢

N k,n

If % < /g, then

log ||Tn,a,u7H > log ”T[mk,n,n],a,cDH — log Hka,nfLa@” >
Ar(a)(n —mgn) —en — (Ap(a)my, +en) =
Ar(a)(n —2my.,) — 2en > Ap(a)n — (26 + 2Ap(a)Ve)n,

hence
1
(16) Slog|[Thael = Ar(a) = (2¢ + 2Ar(a)Ve).
Therefore, in any case from and we get

1
(17) lim sup - log |Tha.5] > Ar(a) — max(y/e, 2 + 2Ap(a)Ve).
n—oo

Finally, applying and along a sequence of values of ¢ > 0 that tends
to zero, we observe that pN-almost surely holds, and hence the first claim of
Theorem (on regular upper limit) follows.

G5 vanishing: For each n,p € N introduce the set
1 2
Wip = {a € J | for some m > n we have — log || Ty, 0.5/ < } .
m p

We claim that W, , is open and dense for any n,p € N. Indeed, it is clear that
each set W, , is open. Apply Theorem for e = 11;. Property [V| and the fact
that DOS has the whole interval J as its support imply that the set of parameters
{ay} for which =t € (1/4,1/2) is r(¢)-dense in .J, where r(¢) — 0 as ¢ — 0 (or,
equivalently, p — 00).
For each sufficiently large n and each such k with “* € (1/4,1/2), the property
[IV] of Theorem implies that
1 ne € 2
—— log || T o] <K — =—F7— <2 = —
2my, 811 Toms 0o 2my  2mg/n D
for some ay € J;, n. Hence, for any n and any p the set W, , is r(¢)-dense in J,
where ¢ = L. Since W, ,y C W,,,, if p’ > p, this implies that W,, , is dense in .J.
p 9. 9. 9.
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Since W, , is open and dense in J, the intersection ()

np=1 Wnp 1s a dense G-
subset of J, and for any a € ("

np=1 Wnyp we have

lim inf — log 1 Tn,0,0l = 0.
n—oo N

Hausdorff dimension: First of all, notice that H. C J has zero Hausdorff di-
mension. Indeed, H. is contained in V, ¢, which is covered by {Jik’n}n>n’,k)<Mn'
Taking into account property I from Theorem [I.19] d-volume of this cover can be
estimated as follows:

ZMn( ul ) 3 const-n ) < const’ 3 nexp(—d /).

n>n’ n>n' n>n’

Therefore it tends to zero as n’ tends to co. Since this holds for any d > 0, we have
Ifa¢ H <, then due to property [T from Theorem for all sufficiently large n
we have L log ||T}, 0.0l > Ar(a ) — ¢, hence

liminf —log||Th,acl > Ar(a) —e.
n—oo m

Taking a countable union of sets H. over a sequence of values of ¢ > 0 that tend
to zero, we get a set of zero Hausdorff dimension that contains all values of a € J
such that

1
liminf —log || Th.a.cl < Ar(a).
n—oo N
This proves the last part of Theorem [

4. ON FINITE PRODUCTS OF RANDOM MATRICES

In this section we prove Theorem [1.19

4.1. Key proposition and the outline of the proof. Theorem [I.19] describes
the “most-probable” behaviour of a finite long product of random matrices, han-
dling “uniformly” sufficiently small intervals of parameter. Hence, it is natural to
inquire how does such a product change as we change the parameter. The answer,
stated in terms of the corresponding projective dynamics on the circle and its lift
to the real line, is given by Proposition [{.1] below, and it is a key ingredient of the
proof of Theorem @ We will formulate it (with a geometric interpretation of its
conclusion in Remark @ below), and then provide an informal outline of the rest
of the proof of Theorem [1.19

First, together with the initial linear dynamics of SL(2,R)-matrices Fy(w), w €
, we consider their projectivizations that act on the circle of directions S! = RP!,
and lift this action to the action on the real line R for which S* = R/Z: let

faw: St — st
be the map induced by F,(w) : R? — R?, and let
fow: R=R

be a lift of f,, : St — S!. The lifts fa_’w can be chosen continuous in a € J and
measurable in w € Q. Also, denote by

fnaw' HSI
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the map induced by T}, 45 : R* — R? and define
fras :R—=R

to be the lift of f,, 4. : S — S! given by fma@ = fa@” o...0 fw—JI. For any fixed
value of parameter a € J, the (exponential) growth of norms of T;,, ,, , is related to
the (exponential) contraction on the circle of the projectivized dynamics. Namely,
standard easy computation shows that for a unit vector vy in the direction given
by the point xg, one has

(18) R p—

1T, (vo) 12

Fix some point 29 € S, for example, the point that corresponds to the vector
(3). Denote by &g € [0,1) its lift to R'. Recall that the interval J = [b_,by]
was divided into N = [exp(4/n)] equal intervals Ji,..., Jy that were denoted by
Ji = [bi—labi}7 i=1,...,N.

Let %, ; be the image of Zy after m iterations of the lifted maps that correspond
to the value of the parameter b;,

-im,i = fm,bi,@(j}O)
(we omit here the explicit indication of the dependence on w), and let
(19) Xm,i = [Zm,im1,Tm,i]

be the interval that is spanned by m-th (random) image of the initial point &y while
the parameter a varies in J; = [b;_1, b;].

a
A
by
J .
bo
0 n m m’ m!

FIGURE 1. Left: a grid of parameters and numbers of iterations.
Right: graphs of Z,,,;, where m varies in a subinterval 0 < m’ <
m < m', with the occurring suspicious intervals marked with blue
(dotted) lines and the jumping ones with red (dashed) lines.

Proposition 4.1 (Types of the behavior). For any &’ > 0 there exists ¢y > 0 such
that for any sufficiently large n with the probability at least 1 — exp(—c1/n) the
following holds. For eachi=1,...,N the lengths | X, ;| behave in one of the three
possible ways:
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Vo

! T[mk;n],a,w

FIGURE 2. Left: a unit circle with a marked point xg. Center: its
image after m;, iterations under two different values of parameter
a = b, —1 and a = b;, , together with a most contracted direction
for Tjy, n],a,e for some a € J; , marked by a cross. Right: final
image after n iterations; note that the images of xy are almost
opposite, meaning that they have made a full turn on the projective
line of the directions.

o (Small intervals) The lengths | X,, ;| do not exceed ¢’ for allm =1,...,n;
e (Opinion-changers) There is mo such that | X, | > €', and

| Xmil<e' ifm<mg or m>my+en;
o (Jump intervals) There is mo such that | X, .| > €', and
| Xomi|<e" if m < my,
1< |Xpmil<l+€  if m>mo+en.

Remark 4.2. Let us explain the geometrical meaning of Proposition[4.1] Consider
the images f,, .o (Z0) as a sequence of functions of the parameter a. As the number
n of iterations grows, the increment of this function on J grows asymptotically
linearly in n, and is roughly equal to (p(by) — p(b—)) - n. However, this increment
is not distributed uniformly on J; rather, most of it comes from “jumps by one”,
when a very small increment of the parameter a leads to the increment of the image
by 1; see Figure

The latter happens exactly at the exceptional intervals J;,. Namely, when we
increase the parameter from b;, 1 to b;,, the maps fi,, oo and fim, n),a,e do not
change much and continue to be hyperbolic. However, the image of Ty under
fmp.a.o (that is exponentially close to the image of the most expanded direction for
Ty, a,m) mMoves past the most repelling point of f[mkm @ (that corresponds to the
most contracted direction for T}, n)...c); see Figure

In particular, we find the values a; € J;, (from property in Theorem
as those where the image of the most expanded direction under 7}, 4,.& coincides
with the most contracted direction of Tj,,, n],a,,c- Proposition provides the
formal justification of (part of) this picture.

Now the proof of Theorem [1.19|splits into two parts: deduction of Theorem [1.19
from Proposition and the proof of Proposition Since both of these parts
are somewhat technical, we start here with a brief informal outline of the proofs.

First, let us discuss how Proposition .1 will be used to prove Theorem[T.19] Con-
sider the random products of matrices for the parameter values b;, j =0,1,...,N.



18 A. GORODETSKI AND V. KLEPTSYN

For each individual parameter value a = b;, the growth (with large probabil-
ity) is exponential, as prescribed by Furstenberg Theorem, hence the derivatives
~7/7’L,bj (%0) decrease exponentially. Moreover, due to the (uniform in parameter)
Large Deviations Theorem ([T Theorem 4], reproduced below as Theorem ,
the probability of “irregular behaviour” is exponentially small. Hence, as we have
chosen the number N to be subexponential in n, with the probability exponen-
tially close to 1 the derivatives fvlmb,-,@(f()) admit a well controlled exponentially
decreasing bound for all j = 0,1,..., N; this argument is formalized in Lemma [4.8
below.

Next, for each interval J; consider the increments of the images of &y over J;,
that is, the lengths of the corresponding intervals X,/ ;, m’ = 1,...,m. A modi-
fication of the standard distortion control technique implies that if > _, [ X,/ ;

is sufficiently small, then the logarithms of the derivatives of all the maps fp 4,0,
a € Jj, at To are sufficiently close to each other. This implies that the derivatives
at Zo stay exponentially decreasing uniformly in a € J;, and hence the products
T,0,o admit the desired exponential growth lower bound uniformly in a on such J;.
This argument handles both the “small” and the “opinion-changing” intervals from
Proposition in both these cases, the sum of the lengths of X, ; does not
exceed 2e'n, which is sufficient to obtain the desired control (see Lemma for
the distortion control and Proposition [£.12] for the extension of the “hyperbolic”
behavior inside the parameter intervals). In these cases the interval J; is not excep-
tional, and combining the obtained lower estimates with the upper estimates from
Proposition [2.3] proves part [[T of Theorem

The “jump” intervals from Proposition correspond to the exceptional inter-
vals J;, from Theorem For these intervals, we still have a sufficient control on
the distortion “before the jump”, thus obtaining a uniform bound on the growth
of the norm of the products T}, 45 for m < my. At the same time, “after the
jump” we consider intervals X{n,i = [Tm,i—1 + 1, Tm ], that are again of controlled
lengths for all m > my, + &'n. Applying again the control of the distortion, we get
a uniform lower bound for the norm of the product T, n},4.e for all a € J;, , thus
establishing part [[T] of Theorem [T.19]

The obtained description for the norms of the maps T, oo and Ty, n).ae for
a € J;, together with the “jump by 17 from Proposition implies that for some
parameter value aj, € J;, the image of the most expanded by T}, 4o direction will
coincide with the most contracted by Tj,,, n,a.o direction. This will imply the part
(Cancellation) of Theorem see Section [4.5] for details.

Finally, the parts I (Quantity) and [V](Measure) of Theorem [1.19are obtained by
the same argument. Namely, most of the increment ,, ; — &y, v = m(p(b;) — p(bi))
comes from the “jumps” that has already occurred at this moment. Hence, the
number of exceptional intervals J;, such that m; < m and ap € [by,b;] can be
approximated as m - (p(b;) — p(b;7)). Thus, if we denote

m 1Y
M= [0, E] x [bib;] and €= 525(%%)’

then (with large probability) we have

§(I) = = - (p(b:) = (b)) = Leb x DOS(ID).
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These arguments are formalized in Section [£.7} which concludes the proof of The-

orem [[.T9]

Let us now describe the main idea of the proof of Proposition

Consider the lengths of all the intervals X,,;, ¢ =1,...,N, m =1,...,n. Let
us say that an interval J; is suspicious if at some m we have | X,, ;| > &. All
the non-suspicious intervals are automatically “small” and satisfy the conclusion of
Proposition (1]

The sum of lengths of all |X,, ;| over all i and m grows with n as

n

N n
Z Z |Xm,i| == Z(fém,N - jm,O) ~ Zm(p(b-i-) - p(b—)) ~

(p(by) — p(b-)) 5 = O(n?),

hence there are at most ~ ;‘—z,(p(b+) — p(b_)) = O(n?) suspicious intervals.

Suppose now that .J; is a suspicious interval, and m is the first iterate when
| Xom.i| > €’. With large probability, under subsequent iterates the images of the
points Z,, ;-1 and T, ; either quickly become very close, or diverge to a distance
that is very close to 1, and stays exponentially close or at the distance close to 1
under all the remaining iterates. Indeed, for any specific value of the parameter
a Furstenberg Theorem implies that with large probability a given pair of points
on the circle converge exponentially fast under a random sequence of projective
maps. In our case the points Z,, ;-1 and Z,,; will be iterated by the sequence of
maps that correspond to different values of parameter, namely b;_; and b;, but
since these values are very close to each other, it does not change the picture
qualitatively. Finally, the probability of such a behavior approaches 1 faster than
any inverse power of n, thus for all sufficiently large n with large probability this
description holds simultaneously for all the suspicious intervals.

The formal presentation of these arguments is contained in Section [I.8]

4.2. Distortion control. The distortion estimates is a standard tool in smooth
one dimensional dynamics, e.g. see [KH, Lemma 12.1.3] and [W2, Lemma 6.1].
In our case we need the distortion estimates for compositions of different but very
close to each other maps. Here is the statement that we need:

Lemma 4.3 (Distortion control). For any & € N O =wiwa ... W ..., the follow-
ing holds. Given m’ <m”, y1 < ya, and a1 < as, define the sequence of intervals
Ym = [ym,lay’m,ZL m = ml7 "'7m//7 by

Ym',j = Yy, Ym4+1,5 = f&j,wm(ym,j)v ] = 1727 m = mlv "'7mu -1

"

Then for any as € [a1,az], any m =m',...,m", and any ys € [y1, y2] we have
B ~ m’' —1
108 Ft . (85) — 108 Flt g )] < 3 Vil + Clas — |- (" — ),

k=m/'

where the constants k and C are defined by

K= sup |0, log f, ,(y)|, C = sup |0a10g £, (y)]-
yERY, wEN, acJ yeRY, weN, acJ
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Proof. By the monotonicity assumption, for any m and any a € [a1,a2] we have
fa w (Ym) C Yiup1. The difference of logarithms can be estimated as

(20) ‘IOg f[/m’,m],dg,w (y3) - IOg f[,m/,m],z’zl,w (yl) ‘ =

m—1
> 108 fiy o (Uks) —log fa, o (yk1)| <
k=m'
m—1 5 B
< Z (‘logfag Wi yk 3) logfal Wk (yk 3 ‘ + ’logfzizl,wk (yk,3) - logf;zl,wk (yk,l)D <
k=m'
m—1 _ m—1
< |as — a| - sup [dalog fi (W) + D [yks — vkl - sup |0y log f1,.,(y)| <
k=m’ Yrwra k=m’ Yow
m'’ —1
<Clag —ay|- (m" —m/)+ 5 Y |Vil.
k=m/'

(]

Another estimate that we will need shows how fast nearby points can diverge
under iterates of different but close maps.

Lemma 4.4. In notations of Lemma[].3, we have
(21) [y = Y2l < L™ [y 1 =y + Lyp(m” =) - L™ "V — ),

where L = SupyGRl,aGJ,wGQ |f(i,w(y~)‘ and LP = SupyGRl,aGJ,wEQ |aa]ga,w(y)| are the
Lipschitz constants for the maps fq..(y) in space and parameter directions respec-
tively.

Proof. By induction. The base, m” = m/, is evident: in this case, left and right
hand sides of coincide. For the induction step, once m” > m’, we decompose

the difference |y, = |f&1,wm/ (Ymr1) — f&z,wm/ (Ym,2)| into two parts:

|ym” 1 — Ym, 2| < ‘fal,wm// (ym”—l,l) - fal,wmu (ym”—1,2)|
+ ‘fdhwm// (ym”—l,?) - faz,wm,” (ym"—172)|'

The first summand does not exceed L|ym»—1,1 — Ym~—1,2], the second one does
not exceed L, - |a1 — @z, as L and L, are Lipschitz constants in the circle- and
parameter directions respectively. Applying the induction assumption (and using
the inequality L > 1), we finally get

[ym 1 = Ymrr 2| < Llymer—11 = Ymr—12] + Lplay — Gz| <
L (mefmlflwmf,l = Ymr 2| + Lyp(m” —m/ = )L™ " 2 |ay — C7‘1|)"'LP|EL1_@| =
L™ 1 = Y 2| + Lyp(m” = = 1) - L™ @y — @y | + Lylay — @] <
L™ g1 = Y 2| + Lyp(m” —m) - L7 " fay — @,

O
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4.3. Large deviations: convenient versions. Here we formulate several ver-
sions of Large Deviation Theorem in the context of random matrix products that
will be specifically useful in our setting.

Let us first formulate the classical Large Deviation Theorem for the random
matrix products. Initially it was obtained in [L], see also [BL, [BQ]. Improved
versions of the Large Deviation Theorem, with explicit relation between ¢ and ¢
(in the notations of Theorem as well as with relaxed or removed conditions on
irreducibility of the cocycle, were obtained by Duarte and Klein in [DKIl [DK2].
Here we will use the version of Large Deviation Theorem that is uniform in the
parameter.

Theorem 4.5 (Proposition 3.6 from [BDEFGVWY], Theorem 4 from [T]). For each
e > 0 there exists an ( > 0 such that for all |jul| =1,

1
]P’{‘n log || Tp.a.oull — Ar(a)| > 5} <e

foralla e J.

Let us recall that together with the random products of matrices {F,(w)} we
consider the random dynamics of corresponding projective maps {f, .} and their
lifts { o }- By , if vy is a unit vector in the direction given by the point zy € S!,

and limy, 0 210g[| 7,00 (v0)|| = Ar(a), then limy, o %log|f,’L7a@(io)| = —2Ap(a).
Let us denote

)\RD(a) = —2)\1:‘(0,).
From Theorem one can deduce the following statement:

Lemma 4.6. For any &' > 0 there exists (1 > 0 such that for all sufficiently large
n € N the following holds. For any a € J, any given 0 < mq < mg < n, and Ty € R
with probability at least 1 — exp(—(1n) one has

(22) 108 flny mal,ae (fmia.(F0)) € Uen(Arp(a) - (ma —ma)).

Remark 4.7. Notice that in the case m; = 0, mo = n the statement of Lemma
[£.6] turns into Theorem (.51

Proof. Set

. . e <!
¥ = min — .
28UDPzeR geJwen |log fé,w(x” 2maxees Arp(a)

If mo — mq < e*n, then

ma
108 Fhony oo (@) < Y0 108 Fo, (Frot.0.0(0) | <
k=mi+1
= e’ e’
(mg —myq) - sup sup sup|log f; ,(Z)| < (ma —m1)-— < —n,
FERWEQ a€J 2e 2
and )
. 5
Arp(a)(ma —mq) < e*Agp(a)n < 7n
Therefore,

log -f[/ﬂll,mg],a,@(fo) € Uern(Arp(a)(ma — my)).
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If e*n < mg — my < n, then by Theorem we have
P (198 flny mafoo(Fons 05(50)) & Usrnmp (@) (ma —ma)) ) <

P (log s ot (Fm.a.(%0)) & Ut (mg—my) (Arp () (Mo — ml))) <

o Clma—ma) < y—Cen
Hence, Lemma [4.6] holds with ¢; = e*C. O

Let us recall that the interval J is divided into N = [exp({/n)] equal subintervals
Ji,...,Jn detoted J; = [bi_1,b;], i = 1,...,N. With large probability holds
simultaneously for all possible m1, my with 0 < m; < mg < n and all parameter
values that form the grid {bg, b1, ...,by}. Namely, the following statement holds:

Lemma 4.8. For any €' > 0 there exists (o > 0 such that for all sufficiently large
n € N the following holds. For a given Zo € R with probability at least 1 —exp(—(an)
one has

(23) 108 f{s ot or.(Frmnbe@(80)) € Uern(Arp (i) - (m2 — my)).
for all my,mo with 0 < my <mg <n and allt=0,1,...,N.

Proof. Let (1 be given by Lemma and take any positive (5 < (7. For a given
a € {bo,b1,...,bn} and given m € {1,...,n} the event holds with probability
at least 1 — exp(—(in). Intersecting the events for all a € {bg, b1,...,by} and
all my,ms =0,1,...,n with m; < msy we observe that holds with probability
at least 1 — %(N + 1) exp(—¢in). Since N = [exp(¥/n)] and (2 < (7, we get
n(n+1)
-
for all sufficiently large n. (|

1 (N +1)exp(—Cin) > 1 —exp(—(2n)

We will also need Large Deviation Theorem stated in the context of the rotation
number.

Proposition 4.9. For uN-almost every @ € QY, the sequence %fma@(fco) converges
to p(a) uniformly in a € J. Moreover, for every e > 0 there exists a constant (3 > 0
such that for all sufficiently large n € N

P (|3 Fuostin) - o0

Corollary 4.10. For any € > 0 there exists {4 > 0 such that for all sufficiently
large n € N

> ¢’ for some a € J> < e Gem,

P ( ‘fm,a,w(jo) - mp(a)‘ > e'n for some a € J and m < n) <e4an,

Proof of Proposition[{.9 Take any fixed ny € N. Note first that (upon replacing &’
with a smaller value, e.g. 3¢’/4) we can restrict ourselves to n that are multiples
n

of ng. Indeed, taking k =[], we get

no
fn,a,&) = f[kno,n],a,w © fkno,a,wv

and as the increment f[knom],a@ (§) — 9 is uniformly bounded, the same holds for
the difference

fn,a,w (570) - fkng,a,@(i’O) .
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For n = kng we can split the length n composition fn,a@ into groups of length ng:

fn,a,&) = f[(k—l)ng,kno],a,w O... f[n0,2n0],a,<b © fno,a,w~

If we denote (compare with Section

Pa,no (@0,9) = fno’a@ (@) — 7,
then we have
k—1

fkno aw(mo _-'170 — Z‘pa no w fjno,a w(-’z‘O»

7=0

Now for any ng and @ € QY we have OSCQGR(fnma@ (9) — 9) < 1. Define
Pa.no (@) = 102X(frg.0.0(8) — §)-

Notice that @, depends only on the first ng letters of the word &. We have

1 1
(fkno,a,w xO - 1'0 E Pa,no W]no+1a cee 7wjno+n0> < —
k"l’Lo =0 no
Jj=

In particular, passing to the limit £ — oo for an individual a, we see that

1 1
24 — —Eoin | < —.
1) 9(0) = 2B | < o
Now, take ng > . Then, we have
" i (0) ko - p(a)] < |p(a@) = B Gy | +
o ng,a,o (L — Rng - a)| = a) — — a,n,
kno kno,a, 0 0P P o Pa,ng
1 k—1 ‘.’ﬁ |
s ~ ~ _ 0
kng (fkno,a,w(xo) 390) = ‘Pam()(wjno-&-l’"'awjno+no) + knoJr
k—1
1 1
7 7_(171 in. sy Wing4n *7E_an .
k;:(): n()(P ; o(w] o+1 Wing+ o) 1o Pa,no

Each of the first three summands on the right hand side does not exceed %. Hence,
for any a € J the event

1 - -
’kn()fkno,a,w(xo) - p(a’) > 5/
is contained in the event
k—1
1 1 1 Te!
(25) % ;} niogpaﬁo (wjn0+17 cee ’wj7lo+no) - ;OE Pa,no| > E

Now, for any fixed a the event in the left hand side of can be estimated
using the standard Large Deviations Theorem from the theory of probability: we
have a sum of bounded i.i.d. random variables.

Let us now extend these argument to the full interval J. Notice that for a fixed
no the displacements ¢4 n,(@,J) are continuous in a uniformly in both ¢ and @.



24 A. GORODETSKI AND V. KLEPTSYN

Therefore, @y, (@) is also continuous in a uniformly in @ € QY. Hence, any o’ € J
is contained in an open interval J, such that

/

€
“Pano( ) = Par o (W)| < = 10
for any a € J, and @ € QY. In particular, this implies that
5/
|E @a,no -E @a',ng | < Ea

and, moreover, for any a € J,/ the event (25) is contained in the similar event for

a,

/

1 1_ 5¢/ €
(26) % Zo Pa’ no wjno+17 cee ’wjno-i-no) - %E Pa’ng| > ﬁ = E

As J is compact, we can extract a finite cover J,, of J; for each o’ = a;, the
event has exponentially small probability: less than e ¢®* for all sufficiently
large k. As there is a finite number of them, we get the desired estimate with any
(3 < 5 min; ().

Finally, uniform convergence + fraw(@o) = pla) for pN-ae. @ directly follows
from the Large Deviation estimate and Borel-Cantelli type arguments. ]

Remark 4.11. Since uniform limit of continuous functions is continuous, Propo-
sition implies continuity of the rotation number p(a). In fact, it is known that
the function p(a) must be Holder continuous, see [L], but we are not using this fact
in our proof.

4.4. Uniform growth estimates. Here we deduce parts [[I] and [ITI] of Theo-
rem from Proposition [L.I} Let us recall that “jump intervals” in terms of
Proposition [I.1] correspond to the exceptional intervals in Theorem [T.19}

First let us show that the distortion control given by Lemma [£.3] together with
Proposition allows us to use Lemma to estimate the derivatives at Z( at all
parameter values a € J:

Proposition 4.12. There exists a constant Cy such that for any ' > 0 the fol-
lowing property holds for all sufficiently large n. Assume that @ is such that the
conclusions of Lemma [[.8 and Proposition [[.1] hold. Then, for any a € J:

o Ifa€ J;, and J; is either “small” or “opinion-changing” interval in terms
of Proposition then

(27) Vm=1,...,n logf) .s(F) € Uc,ern(Arp(a) - m).

e Ifa€ J;, and J; is a “jump” interval in terms of Proposition [{.1], with the
associated moment mg, then

(28) Vm=1,....m\ logf .)€ Ucen(Arp(a) m),
where my :=mg +&'n, and
(20) Vm=mh+1...;n 108 [ maw@) € Uciem(Arp(a) - (m — mp)),

for any ¥, € X!

mo,t’?
[:Emé],i—l + ]-a xmo,z]-

where my = mo + €'n and we denote X, . =
0
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Proof. In the first case, regardless of whether the interval J; is a “small” one or
an “opinion-changer”, we have an upper bound for the sum of the corresponding
lengths

n—1
(30) > X
m=0

Lemma [£.3] implies that for all @ € J; and all m = 1,...,n we have

5 5 J
108 F 0.0(0) ~108 F g, 0(0)| < 2+ O 2l
Since Agp(a) is a continuous function of the parameter a € .J (see Remark [LF)),

for a given &' > 0 and sufficiently large n we have:

= > X+ D Xmil<n-e+ne’ 1= 2ne,
[ Xom,i|<e’ | X, | >

I _

|/\RD(a) — )\RD(bz)| < 5/, and F <e€.
Together with the estimate this gives

(31)  [log fr.00(0) — Arp(a)m| < [log fr, 4 &(F0) —10g f, 4, & (Fo)|+
+ 110 f, 4, o (Fo) = Arp (b)m| + [Arp (b)m — Arp(a)m| <
2ke'n + Ce'n+e'n+e'm < (26 + C + 2)e'n.

Therefore holds once C7 > 2k + C + 2.
Suppose now that J; is a “jump” interval. Checking goes exactly in the

same way as in :

m(/] mo—1 m(/]—l
Z | X = Z | X i] + Z | Xl <n-e +ne’-2=3ne.
m=0 m=0 m=mg

Hence, in the same way as in , we have for any m < mj,
|10g f1, 0.5(Z0) — Arp(a)m| < 3ke’n + Ce'n+e'n+'m < (3k + C + 2)en,

and we have the desired once C; >3k +C + 2.
Finally, the intervals X l{’m for m > m{) also satisfy the assumptions of Lemma
One has

n
Z |Xm,z| S Elna

m=m
and thus (again, together with ) we get
|log f[’m()’m]’a’@(il) —Arp(a)(m—my)| < ke'n+Ce'n+e'n+e'm < (k+C+2)'n.

This proves for any C7 > k+C+2, and thus concludes the proof of Proposition
4.12 ([l

Proposition implies the parts [[T] and [ITI] of Theorem Indeed, for any
A € SL(2,R) and for any vector v # 0 one has

2
(52) Faton) = b
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where z, € S! is the direction corresponding to the vector v. Therefore, for any
point z on the circle one has log || A|| > —3log f () (as the right hand side of
is not less than W) In particular, for any m, a, o we have

1 _
(33) log | Tm,a.l > D) log f;na@(x)

If a belongs to “small” or “opinion-changing” interval .J;, by joining this estimate
with , we obtain a lower bound for the norm

1 C
log [| .00 > —5 (Arp(a)m + Cine’) = Ap(a)m — 715’71.

Hence, to obtain the lower bound in the “Uniformity” part, it suffices to take
g < 2—5
C1
On the other hand, Proposition [2.3] states that the upper bound
log | T acll < Ar(a)m + ne
holds with the probability 1 — exp(cgn). We thus obtain the desired
log | Tim.a.cll € Une(Ar(a)m)

for all a € J;, provided that the interval J; was “small” or “opinion-changing”. Now,
assume that a € J;, and the interval J; is a “jump” interval. Set m := mg + &’.

Then again, joining with 7, we obtain

C
Vm=1,....,m log||Tmawl > Ar(a)m— 715'71 > Ap(a)m —en
and
_ _ Cl 2 _
vm =m+1,....,n  log||Timm]awll > )\p(a)(m—m)—7a n > Ap(a)(m—m)—en,

where the last inequalities come from the choice of €’.
Again, Proposition [2.3| gives the upper bounds

Vm=1,...,m log||Tmacl < Ar(a)m+ne

and
Vm=m+1,....,n 1og|Timm) el < Ar(a)(m—m)+ ne.

This implies the desired “Uniformity” estimates

Vm=1,...,m log HTm,a,wH € Unc(Ar(a)ym)

Vm = m + 1,...,m 10g ||ﬂ7ﬁ;m],a,®” € UnE(AF(a)(m - ’ﬁl)),
thus concluding the proof of parts [T and [ITI) of Theorem [I.19]
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4.5. Cancellation lemmas. The arguments in this paragraph use in essential way
the properties of projective dynamics. This is not an artifact of the proof. In fact,
we expect the behavior of generic parameter-dependent random dynamical system
on the circle to be different.

For any A € SL(2,R) denote by fa the corresponding projective map of S!.
Also, for A ¢ SO(2,R) let 27 (A) € S! be the point where f4 has the largest
derivative, and x7(A) € S! be the image under f4 of the point where f4 has the
smallest derivative. Equivalently, 27 (A) is the direction of the large axis of the
ellipse, obtained by applying A to the unit circle, and 2~ (A) = 2T (A1),

Let o and 3 be the angles of 7 (A) and " (A) respectively. Then, using singular
value decomposition, we see that

_ 1Al o -1
A — :l:RB ( O ||A||_1 RDLJrTK‘/Q'

In particular, one has the following useful

Lemma 4.13 (Cancellation for matrices). Let A, B € SL(2,R) \ SO(2,R) be two
matrices such that x*(A) = x~(B). Then

1B [IAll

IBA|| = max(-—, 77)-
1A 1B

The proof of Lemma [4.13]is straightforward, and is left to the reader.

We will also use the following lemma, saying, roughly speaking, that a direc-
tion that is expanded is sent close to the maximally expanded direction. Here we
will measure a distance between two directions by a smallest angle between those
directions, i.e. interpret the projective space as R/27Z.

Lemma 4.14. Let A € SL(2,R) \ SO(2,R), x € S' be a point on the circle, and
v, be some vector in the corresponding direction. Then:
o dist(fa(x), 2t (A)) < 5 - Al
o dist(z,27(4)) < % - 7‘””{),?””‘;
o If we have fi(z) < %, then [|[A] > VC and x*(A) belongs to -
neighborhood of fa(x).

U

Uy
L“‘
/NO(

FiGURE 3. Vectors v,, vy, their images u,, u4, and the angle
between these images.

Proof. Take vy to be the unit vector in the most expanded direction, that is,
|Avy| = ||Al|. Let uy := Avy, and let a be the angle between Av, and uy (see
Fig. [3). In particular, uy is a vector in the direction given by x*(A), and we can
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assume (changing the sign of one of the vectors if necessary) that « is the distance
between 7 (A) and fa(z).

Now, the area of the parallelogram defined by unit vectors v, and v, is at most
|vz] - |vg], hence the same holds for the area of the parallelogram defined by their
images. We thus have

[vz| > [Avg| - [ug| - sina = [|A| - [Avy| - sina;
hence sina < %, and we get the desired o < 7 - %.
The second part is obtained from the first one by replacing A with A=1.

2
For the last part, recall that f/(z) = |,‘:5,‘,|27 where v, is any vector in the
direction given by 2 € S'. Hence,

|Av,| 1

I4) > T = —
x fax)
joining this with the first part, we get the desired estimate:

7 luol/lAve| 7 1L/VE _ w

2 |4 2 JC 207

>\/5;

O

Let us now prove the “Cancellation” part[[V]of the conclusions of Theorem [T.19}
to do that, we have to handle the “jump” intervals. Namely, assume that the con-
clusions of Lemma[£.8 hold, and J; is a “jump” interval in terms of Proposition [£.1}

Set m := mg + €'n, where mq is given by the definition of “jump interval” in
Proposition Notice (we will use it later) that

o 5171
(34) |Xm+1,z| > 1+ N’

where 0 > 0 is given by the standing assumption (A4). Indeed, the inequality
Lfﬁmﬁ‘ > i’m’i,1 +1 1mphes that

‘%ﬁlJrl,i - "%erl,i*l = waerl,bz‘ (jm,i) - fwm+1,b1‘71 (i.ﬁl,ifl)
= (fwm+17bi (fmﬂ') - fwm+1,bi—1 (fﬁm))
+ (fwﬁz#»lyb'ifl (‘iﬁl,i) - fwm+17b¢71 (i‘ﬁl,i—l));

the former summand is bounded from below by d(b; — b;—1), and the latter is at
least 1.

We start by handling the case when the jump moment happens too close to the
first or the last iteration.

Lemma 4.15. Let &/',¢"” > 0, and assume that the conclusions of Proposition
hold, and also that the conclusions of the part[IIl of Theorem [I.19 hold with the
value &' instead of €. Suppose J; is a “jump” interval with associated index mq, and
set m :=mg +e'n. Assume that m < e'’n orm > (1 —¢&")n. Then the conclusions
of the “Cancellation” part[IV] of Theorem are satisfied for an arbitrary a € J;,
provided that one has

2¢’ + 2\p(a)e” < e.
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Remark 4.16. Notice that using ¢’ instead of ¢ in the part of Theorem
does not lead to any problems. Indeed, largeness of n € N needed for which the
conclusions hold does depend on the value of ¢, but those conclusions hold for all
n larger than some threshold, so by increasing that threshold we can assume that
the conclusions of Proposition and the conclusions of the part [[TI] of Theorem
hold with the value €’ instead of ¢ simultaneously for all sufficiently large n.

Proof. Consider first the case m < £’n. For m < m, due to the conclusions of
part [ITI] we have

log || Tl <ne’+ Ar(a)m, ¥m(m) =m <m,
and hence
og | T el — Ar(a)m(m)| < ne’ 4+ 2Ap(a)m < (' + 2Ap(a)e’)n < en
thus guaranteeing the desired @D On the other hand, once m > m, we have
108 [T, o]l < 1’ + Ap(@)en, 108 | Ty oll € Uner (@) - (m — ),
hence
(35) 10 | T, € Usner o (apern (Vre(a) - (0 — 7).
Finally, the functions (m—m) and 17 (m) differ by at most m, and we get from
the desired
og | Trm.acll — Ar(a)m(m)| < 2ne’ + Ap(a)e’n + Ap(a)en
= (26 +2¢"Ap(a))n < en.

The case m > (1 —¢”)n is handled in the same way: for m < m, the conclusions
of part [[V] coincide with the conclusions of part [III} At the same time, if m > m,
one has

Tm,a,@ = T[m,m],a,@Tm,a,w,
and hence log ||Th 0ol is 2ne’ + Ap(a)ne’-close to Ap(a)m. And the latter is
Ar(a)ne”-close to Ap(a)m(m), finally implying the desired
log | Ton,a.0]l = Ar(a)dm(m)] < (2¢" + 2Ap(a)e”)n.
]
Let us now consider the case when the jump moment is sufficiently away from

the endpoints of the interval of iterations, ¢’n < m < (1 —&’)n. First, we find the
corresponding value of the parameter a € J;. Denote

Amin ;= minAp(a), Amax := maxAp(a).
acJ acJ
Lemma 4.17. Let ¢',&"” > 0 satisfy
A
36 el >
(36) TR

where Cy > 1 is given by Proposition[{.13 For all sufficiently large n, the following
statement holds.

Assume that the conclusions of Lemmal[].§ and of Proposition[{.1] hold, J; is a
“ump” interval with associated index mg, and set m := mg + €'n. Assume also
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that the conclusions of the part [IT hold with the value €' instead of . Then there
exists a € J; such that

$+(Tm,a,w) = xf(T[m,m'],a,az)’
where ' ;= min(2m, n).

Proof. Note that the uniformity estimates imply that the products Ty 4,0 and
Tim;m),a,0 are of norm bounded away from 1 for all @ € J;. Indeed, the conclusions
of the part [[TI] imply that
log | Tl > mAr(a) —ne’ > n(e" Apin — ') > 0,
log || T, m el > (M —m)Ap(a) —ne’ > n(e" Anin —€’) > 0,
where the last inequalities are due to (36)).

Hence the directions % (T a,0) and 2~ (Tjm;m/),a,0) depend continuously on a €
J;. To shorten the notations, we denote

z¥(a) =2 (Traw), 2 (a) =2 (Tmm)ae)

Lemma implies that =T (a) stays 5 f} (xg)-close to the image f, .o (z0)

m,a,w
as a varies in J;. Also, for any a € J; we have
T T olJ
T Frao(0) < & exp(~2Ap(ay + Cune') < exp (~Ap(aym) < 20
where the second inequality is due to the assumptions m > ne’’ and ’;Lcil“e’ "> ¢
and the last one is due to the subexponential growth of N = [exp(/n)].

At the same time, due to , we have | X/, ;| > %7 where X[, ;= [Tm,i-1 +

1, Zy,:]. Hence, as a varies over J, the point z*(a) passes through the midpoint
. <(im,i—1 +1) + fm,z‘)
ri=m
2

of the interval (X[, ;) = 7([Tm,i—1 + 1,Zm.i]) at least twice, making the full turn
in between; see Figure [

We know from the distortion control estimates given by Proposition that

the derivatives of fi5 m/),a,0 O X,’ﬁ,i do not exceed

exp(Arp (m'—m)+C1e'n) = exp(—2ne”’ Ap(a)+C1e'n) < exp((—2Amine” +C1")n) < 1,

again using for the last inequality.

Hence the point 7 (a) never crosses r for a € J;. Thus, we can choose the
lifts #%(a) and Z~ (a) on the real line of 27 (a), ™ (a) respectively such that the
difference 77 (a) — Z~ (a) changes sign while a varies in J;. Hence, there exists a
point a € J; for which the directions z*(a) and x ™ (a) coincide. O

We are now ready to conclude the proof of the “Cancellation” part [V] Take

¢’,e” > 0 such that holds, as well as
€
g < T 2(e" + dmaxe”) < e.

Assume that the conclusions of Lemmal[4.8 hold and of Proposition [£.1 hold, that
J; in its terms is a “jump” interval, with m := mg + &’n being the corresponding
jump moment. Assume also that the conclusions of the part [III] hold with the
value &’ instead of e.

Let us show that then the part [V]of conclusions of Theorem [[.19] are satisfied.
Indeed, if m < €’n or m > (1 — &”)n, this directly follows from Lemma [£.15]
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FIGURE 4. While the parameter a varies over a jump interval J;,
the z(a) := 2" (Th,w,4) makes more than a full turn, staying in a
neighborhood of the corresponding image fi 4., (Z). At the same
time, the point 27 (a) := 7 (T} m/),q0) Dever enters the interval
m(X},.;) (the arc shown in bold).

Otherwise we can apply Lemma take a; to be the value of the parameter a
given by Lemma and let us check that @D holds for all m =1,...,n.

Note that for any m € [1,7m] the estimates of the part imply
(37) 10g | Tn,a;,0| € Uern(Ap(a)m) = Uern(1(m)).

We have now to handle the case m € [m,n]. The next steps depend on whether m

is greater or less than 7.
Consider first the case m < % (in this case m' = 2m). Then, applying

Lemma and the uniformity estimates on the intervals [1,7m] and [m, 2/m], we
get
(38)  1og | T2im,aswll = [l0g [ Tin a0l — 10g 1 Tim 21,002l
< [10g | Tma:,0 ] = Ar(as)m| + |log | Tim,2m) a0 5|l — Ar(ai)m| < 2ne’.
For any m € [m, 2m] we can represent
-1
Tm,ai,az = T[m’zm])ai)a,TQﬁl,ai e
The log-norm of the latter factor does not exceed 2¢’n by , while the log-norm
of the former factor is 2ne’-close to Ap(a;)(2m —m) = ¥(m) due to the conclusion
of the part [ITI] and Proposition Indeed,
||T[7_n172m]7ai@” = HT[m,?ﬁl],ai@H’
and
T[m,2m],a7¢,w = T[m,zm],ai,@T[;—l{m],ai’w~
Due to the part [[TI] of Theorem [I.19]
10g | Ty o) 5| € Usrn A (@i)), 108 [Tl € Usrn(Are(ai) (m — ),
and hence

log ”T[m,QﬁL],ai,w” > log HT[m,Zm],ai,LDH — log ||T[fn,m],ai,w|| > AF(az)(2m - m) —2¢'n.
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On the other hand, by Proposition [2.3]

108 [| Tm 2m),a:.0ll < Ar(ai)(2m —m) +'n.

Therefore,

log | Tim 2m),0:,0 || € U2ne (Ar(as)(2m —m)).
Hence
(39) 108 | Ton,a, 0|l € Usner (Ar(ai)i(m)).

Finally, for any m € [2/m, n] we have

Tm,ai W = T[2ﬁz,m] ,aq ,QTQﬁ’L,ai W

Again, the log-norm of the latter factor does not exceed 2¢’n by , while the
log-norm of the former factor is 2ne’-close to Ap(a;)(m — 2m) = ¥(m), due to the
conclusion of the part [ITT] and Proposition 2.3} This implies the desired

(40) 10g || T a0l € Usner (Ar(ai)ib(m)).
Together , and cover all possible m < n, thus implying
‘ € Usner ()‘F (az)l/)(m))

As we have ¢’ < §, we obtain the desired estimate.
Finally, consider the case /n > % (in this case m’ = n). Then in the same way

as in the estimates of the part imply
log ||Tm,ai,a;|| € Une’()‘F (ai)m)a log HT[ﬁz,n],ai,LD” € Uper ()‘F (al)(n - m))v

Vm=1,...,n log||Tmaee

and thus finally
(41) log [ Tn,0;.0ll € Uzner (Ar(ai)(2m — n)) = Usner (Ar (ai)pm (n))-
Now, for any m € [m, n] we have two representations for Ty, 4, &:

(42) Tnaso = Timmlas,0Tmase = 15, Ty -

- T [m,n],a;,@
By Proposition 2.3 we have
1Og ||T[m,m],ai,@|| < )\F(az)(m - m) + n&_/’ IOg ||T[m,n],a,;,@|| < AF(az)(n - m) + nEI7
so from and we get both the upper estimate

log ||Tm,a,-,® ‘ < log ||Tn,ai,c2) | + log HT[m,n],ai,@H <
< (Ap(a;)(2m —n) + 2ne’) + (Ar(a;)(n — m) + ne’) = Ap(ai)Ym(m) + 3ne’

and the lower one

10g | Tm,a;,01l = log | Tim,as,0 |l — 10g (| Tim,m) a0l =
> (mAr(a;) — 2ne’) — (Ap(a;)(m —m) + ne’) = Ap(a;)m(m) — 3ne’.

Thus, in this case we also get the desired
1og | Tim.a,. @l € Usner (¥m(m)Ar(ai)),
concluding the proof of the “Cancellation” part [IV] of Theorem [1.19
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4.6. Contraction on average: quantitative statements. We will need a quan-
titative way to control the exponential contraction of the corresponding random
dynamics. The Furstenberg Theorem implies that for the projective dynamics on
the circle the points almost surely approach each other exponentially fast. More-
over, for a non-projective C'-smooth dynamics (under mild assumptions) such a
statement also holds due to the Baxendale theorem [Bax], that implies negativity
of the Lyapunov exponent. And even (quite surprisingly!) it was recently shown
by D. Malicet [M] for the case of homeomorphisms, with no regularity assumptions
at all.

However, here we will need a qualitative estimate that can be used for the dy-
namics involving a parameter, so we cannot make a pure reference to one of these
papers. The main result of this section is the following proposition (that was also
simultaneously and independently proven by Czudek, Szarek, and Zdunik [C7]):

Proposition 4.18. There are constants s € (0,1] and K € N such that for any
a € J the function

(13) ol y) 1= (dister (2, )’
satisfies
(1) Ep(finn(e) Sianlt)) = [ ¢(fian(o) fraw@)dn (@) < 5el@0).

Proof. Notice first that for any x € S' we have
1
E —log f1, oo(x) = Arp(a) <0 as m — oc.
m o

Moreover, the convergence here is uniform in z € S* (this follows from the unique-
ness of the stationary measure v, on the circle, see [BLL Theorem 4.1], in the same
way as unique ergodicity implies uniform convergence of time averages, compare
with the proof of [HK| Theorem 4.3.1]). Hence, taking Ky to be sufficiently large,
we can find §; > 0 such that

(45) Vo €S' Elog fi,.a5(®) < =61

Compactness arguments show that Ky and d; > 0 in can be chosen uniformly
alsoin a € J.
For any d > 0, as s — 0, Taylor’s formula gives
log d)2d¢
d® = exp(slogd) =1+ slogd + 32%,

for some & € (0, s). Therefore we have

2 (log f}('o,a,&;(x))z(f;('o,a,w(‘r))g
2! ’

([Koa0(®))* =1+ s(log [k, 4.0(x)) + s
and, since |ff, , (@)| is uniformly bounded,

E (fkga(®)® =1+ sE log fi, . 5(x) +O(s?),

where O(s?) is uniform both in x € S! and a € J. Hence implies that for a
sufficiently small s > 0 there exists do > 0 such that

(46) VaeJ Vo eS' E(fi,an(®)’ <1—26.
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Next, the Mean Value Theorem implies that for the function ¢(z,y) defined
by for any sufficiently close z,y € S' and any @ we have

P(fKo.0.0(2), fro.as¥)) = ([K,0.0(2) (@, y)

for some z on the shortest arc connecting = and y (closeness here is needed to ensure
that the image of this arc is the shortest arc connecting f(x) and f(y)).

As the function (fg, , 5(2))° is continuous in z uniformly in a, z, @, there exists
r > 0 such that if dists: (x,y) < r, then

| (Fiorae(®))* = (Fig,a0(2))°] < 2.
Hence, for any z,y with distg: (2, y) < r one has

E@(fKo,a@(x)a fKo,a,fD(y)) < (1 - 62)90(37>y)

Let us fix Ky, r and 2 as above.

Next, let us handle case of two initial points being far away from each other.
The contraction of orbits for random dynamical systems on the circle is well-known:
after many iterations the images of two initial points will be most probably very
close to each other. We will need its version that is uniform in parameter a and in
the initial points x, y.

Lemma 4.19. For any €1,e2 > 0 there exists Ky such that for any a € J and any
x,y € S we have

P (dist(fiy.0. (0), fitoao(®)) < 1) > 1 - .

Let us show that it suffices to conclude the proof of Proposition Note first
that it implies the following

Corollary 4.20. There exists K1 > 0 such that for any x,y € S' with distg: (x,y) >
r and any a € J one has

(47) E@(le,a,(D(x),le,a,zI)(y)) S

Proof. Indeed, take

o(z,y).

DN | =

r ré
€1 = 4L/s’ &g I= Za

and let K7 be the corresponding number of iterations from the conclusion of
Lemma, Then for any a € J and any z,y € S! with dist(z,y) > r we have

(48) o(w,y) > 1,

and

(49) E@(tha,@(x)?tha@(y)) <P (diSt(tha@(x)vtha@(y)) 2 51) 17+
+ P (dist(fxy,0.0(%), frya0(y) <e1)-ef <

r S

TS ,rS
442
Joining and 7 we get the desired . (I
We are now ready to conclude the proof of Proposition (modulo
Lemma [4.19). Indeed, consider the following random process on the pairs of points
(x,y): if they are closer than r, we do K, random iterations of f,,,, otherwise
K, iterations. Repeating this process untill the total number of random iterations

<eg+ef=—+
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exceeds a given number K, we define a random Markov moment ¢(@) such that
K <t(w) < K +max(Kp, K1). Then

(50) Eo(fi(@),0.0(2); f@),ae®) < Axe(z,y),
where

A = max((1 — §,) /%o (1/2)K/Ky,
At the same time, application of any f,, (or its inverse) changes the distances with
multiplier at most M? (recall that the norms of all the matrices T4, are uniformly
bounded by M). Hence implies that if instead we stop the process exactly
after K random iterations, we get

E¢(fi.0.0(2), fK.as(y) < M2mxEoKON oz, y).

The first factor is constant, while Ay — 0 as K — oo. Taking K such that
M2smax(Ko. Ka) ) p < 1/2, we obtain 7 as desired. O

For the sake of completeness, we provide here a proof of Lemma

Proof of Lemma[{.19 We start by recalling some standard general arguments from
the theory of random dynamical systems. Namely, it is known that the Fursten-
berg’s theorem implies an individual contraction of orbits:

Proposition 4.21. For any a € J, for any x,y € S' for almost all @ one has
lim dist(fn0.6(x), freo(y)) =0.
n—oo

Note, that this automatically implies the (almost-sure) existence of a (random)
“repelling” point r_ (a, @), such that all the points except for it approach each other:

Lemma 4.22. For any a € J, for almost all & there exists a (random) point
r— =r_(a,w) €S! such that

(51) Vae,y e St x,y#r_ li_>m dist(frn,a.0(2), frnas(y)) =0.

Proof. Proposition implies that for any two points zg,7o the length of the
positive direction arc [z, yy], joining their images

Ty = fn,a,@(xO)a Yn = fn,a,&:(y())a
tends either to 0, or to 1. Now, take an arbitrary ! and consider [ initial points
xh =i/l,i=1,...,1 on the circle. For any fixed [, the images
x’Eli) = n,a,@(xél))

of these points almost surely approach each other, and hence (almost surely) exactly
one of the arcs [ng), ngﬂ)] has its length tending to 1, while the length of the other
ones tend to zero. We denote this arc by I; (omitting the dependence on a and w).
If neither of two initial points = and y does not belong to I;, the distance between
their images also tends to zero. Now, as [ becomes larger and larger, the arcs I
become smaller and smaller, and in the limit we see that there exists a random
point r_ such that holds.

In fact, translating the above description, we see that the preimages of the
Lebesgue measure by the dynamics converge to the Dirac measure:

(fra@)<Leb = 8, (&) asn— oo
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The description above implies that the length of the composition that we have
to apply to bring two points x and y close to each other with a high probability
can be chosen uniformly in z and y, at least for any fixed parameter a:

Lemma 4.23. For any a € J and any 1,2 > 0 there exists Ko such that

(52) Vo,y € St P (dist(fry.a.0(T), fro.an(¥)) <e1) >1—es.

Proof. Note that the point r_(a,®) from the conclusion of Lemma satisfies
the relation
_ -1 _
r(a,@) = £, (- (a,09));
indeed, the application of f, ,, sends the conclusion for @ to the conclusion
for ow. In particular, the distribution of values of _, that is, the measure v_ defined

as v_ = (r_(a,-)).u" satisfies

v= (£ ) du(o).

In other words, the measure v is stationary for the system of the inverse maps f, L

Such a measure v_ is known to be non-atomic: otherwise, the set of atoms of
highest possible weight would be completely invariant (e.g. see [KN|, Proposition 6]),
and this would contradict to the Furstenberg condition (Al). Hence, given g9 > 0,
we can find a (sufficiently large) [ such that

Vi=1,...,1 P (r,(a,w) € [x((f),x((fﬂ)]) < %2
In turn, for every ¢ the lengths |[x£f), x£f+1)]| tend to 0 or 1. Hence, for a suffi-

ciently large n one has with the probability at least 1 — <2
Vi |o@,alt )| < et or [,V > 1 - e,

and the second possibility happens for the interval that contains r_ (a,@). We will
denote the index ¢ for such an interval (if it exists) by i— = i_(a,®).

Denote such n by Ky and show that for it the conclusion of the lemma holds.
Indeed, for any two points z,y € S' there are at most two indices i such that

T € (xéi)wéiﬂ)) ory € (méi),xéiﬂ)).

Hence, with the probability at least 1 — £ — 2% =1 — &3 the index i_ is defined,
and we have
i) (i—+1
2y ¢ g ooy ).
On the other hand, if this is the case, one of the two arcs [z,y] and [y, z] does not
(o) (io+1)
Zo )

intersect (xg =/, . Hence, its image, joining fr, «(%) and fi,.q.o(y), does

not intersect the image (ac(()i’), xéi’H)), that is of length more than 1 — &;. Hence,
we get the desired
dist(fx,0.0(2), fKo,a0(Y)) < 1.

O

Remark 4.24. Note that if for some a € J the conclusions of Lemma hold
for some K, they automatically hold for any K > K. Indeed, we can decompose
fK,a,tD(x) - fKo,a,AD/ (CL'/), fK,a,w(y) = ng,a,cD’(y/);

where
¥ = fr_Koaw(®), ¥V =fk-Koas(y), @ =0 @.
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For any z,y € S! conditionally to any ws,...,wx_r, the points 2’y are non-
random, while @’ is independent from them. Applying Lemma to z’,y" and
then averaging over wq,...,wk_k, (in other words, applying the total probability
formula), we get the desired estimate.

We are now ready to conclude the proof of Lemma [£.19] Namely, the interval
J is a compact interval, and for any a € J there exists the corresponding Ky(a)
in the sense of Lemma On the other hands, its conclusion is an open
condition, hence due to the continuous dependence on a for the same value Ky(a)
the same conclusion holds in some open neighborhood I, 3 a of a in J.

Such neighborhoods form an open cover of J. Due to the compactness of J there
exists a finite subcover I,,,...,I,,. Take

K = max Ko(a;).

Then, for each of the neighborhoods I(a;), we have K > Ky(a;), and due to Re-
mark the desired conclusion holds for all a € I(a;). As these neighborhoods
form a cover of J, we finally get the conclusion of the lemma for all a € J. O

Finally, we use Proposition to estimate the behavior of random iterations
with different parameters:

Corollary 4.25. Fiz constants K, s given by Proposition [[.18 There exists a

constant Cy, such that for any a,a’ € J, z,y € S' one has

(53) Eo(fkas(®), fra o) < 5e,y) + Cola—a'|”.

N | =

Proof. Since s € (0, 1], we have

P(fK.a0(@), fra o) = (dist(fkao(@), fKaoy)) <
(diSt(fK,a,w ('T)v fK,a,LD (y)> + diSt(fK,a,JJ (y)v fK,a’,JJ (y))
(diSt(fK,a,LD ((E), fK,a,cD (y))s + (diSt(fK,a,w (y)v fK,a/,LZ) (y)

Application of Proposition [4.18] completes the proof. O

Iterating Corollary we get

Corollary 4.26. There are positive constants C;, and C;; (that depend on K, s,
and constants L, L, from Lemma such that for anyl € N, k' < K, and any
a,a’ € J, z,y € S' we have

Cl
(54) Eo(fik+r,0.0(®), fiktr,a,6(y)) < 2*2090(96, y) + Cla—d'|*.
Proof. Corollary [1.25] says that
(55) Eo(fk.ae(@), fraay) < gle(z,y)),
where

d
g:dr—>§+C¢\afa'|5.
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The map g is linear, with the unique fixed point d, := 2C,|a — a/|®. Iterating
the application of Corollary we get

E (o) fic.ra0)) < 9o, 9)) = oy (ol y) — ) + d <

1 S
ggo(x,y) +2C,la —d'}°.

Notice that this proves for k' = 0. To prove for ¥’ > 0, use Lemma 4.4 to
replace z and y by fi o.c(x) and fir o .5(y). O

4.7. Distribution of jump intervals. This section is devoted to the proof of the
“Quantity” and the “Measure” parts of Theorem [1.19] i.e. parts I and V.

Let us recall that for a given large n, M is the number of exceptional (“jump”)
intervals on [b_,b.], and those intervals were denoted by {J;, }x=1,. . Let us
also recall that for a given exceptional interval J;, the value of the corresponding
iterate my, from part IV of Theorem Was defined as mg + 'n, where myq is the
index that corresponds to the first moment when |X,, ;, | becomes larger than &',
as defined in Proposition

We know that %fma@ (Zo) converges to p(a) uniformly on J as n — co. More-
over, we know that due to Proposition [£.9] the Large Deviation principle for the
rotation number, with probability exponentially close to one for any a € J
<ée.

L fonalin) oo

In particular,

Fabs.(@0) = Fap (@) = (p(b+) = p(b-))m| < 2¢'n.

On the other hand, below we prove the following statement. Recall that we denoted
Tmi = fmp:.o(Zo), and intervals X, ; were defined by .

Proposition 4.27. For any € > 0 there exists (5 > 0 such that for any m <n
~m - ~m - j Xm i 2 1
(56) P ((x N = Fm0) = #4G [ Xmgl 2 1} > 5’> < exp(—(sv/n).

n

Proposition applied to m = n, gives that with probability at least 1 —
eXp(—CS{L/’Tl), M = #{J : ‘Xn,j| > 1} is e'n-close to fn,b+7w(‘%0) - fn,b,,w(-%O)
and, hence, 3¢'n-close to (p(b+) — p(b—)) n. This gives the part I (“Quantity”) of
Theorem

The part V (“Measure”) follows from Proposition and Corollary in a

similar way. Namely, define the measure

1 m
6= o 8 (T
k=1

Let us show that for arbitrarily small € > 0, the measure &, is e-close to Leb x DOS
for sufficiently large n. In order to do that it is enough to show that for any a € J,
s €10,1]

£n((0,8] x [b_,a]) = %#{k 1, M | mi, <ns, ai, € [b_,a]}

is sufficiently close to s - (p(a) — p(b-)).
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From Corollary [£.10] we know that with probability exponentially close to one
we have

[ Fimsa.0(50) = Fn- o(0) = (pla) — plb-))m| < 2¢'n.

At the same time, with probability at least 1 — exp(—(5¥/n), for all m € [0,n] the
difference fm,a@ (Zo) — fm,b_,@(ico) is €'n-close to the number of jump intervals on
[b—,a] with the corresponding indices mj < m. Hence, if we take m = sn, then
£n([0,5] x [b_,a]) is 3&’-close to * (p(a) — p(b-)) = 5- (p(a) — p(b_)). This implies
the part V (“Measure”) of Theorem

Let us now prove Proposition [£.27]

Note that the increments z,, N — Zm,0 and Tppr N — Tmir,o differ by at most
Cyr, where C is a uniform constant. Hence, instead of showing it suffices to
establish that for some (5 > 0 for any n sufficiently large we have for all m € [0, n]

(57) P ((:”’"’N —Tmo) Z# : Kmergl 21 2) < exp(—(5v/n),

n
where r := [\/n].
The main step in the proof of this proposition is the following lemma, allowing
us to launch a “bisection” procedure.

Lemma 4.28. For all sufficiently large n the following holds. Let
b1y < b2y < b3 by €J, by — b >M b3y — b2 >M.
1) (2) 3): 904) YTt = P TP = Ty
Also, let m < n — [{/n], and let 21y < z2) < z) be points on the real line. Define

2t = fimtege(20), §=1,2,3.
Then with probability at least 1 — exp(—+/n)
[Zmr 2 = Zmr 1] + [2mr 3 — 2o 2] 2> [2(3) — 2(1))
where m’ = m + [¥/n).
Let us first deduce Proposition from Lemma

Proof of Proposition[{.27 Let us prove (57). To do so, we define inductively
a branching random process on the set of intervals of parameter of the form
[bi,b;]. That is, to each moment my := m + ¢[{/n], we associate a set of inter-

vals {[bi, . bj,]}Z,, such that [f[m,mq],quvl,@(i‘o) - f[m,mq],biq_,l,w(io)] > 0. This
will at the end provide us the desired intervals X, ,; of length more than one;
however, we reserve a (small) chance for the construction to result instead in FAIL.
Let
I(iajv mq) = [xmq,bj - zmq,bi}
be the integer part of the increment at the moment m, over the parameter interval
[bs, b;].
The branching process is defined in the following way:

e We start at the moment m with the only interval [by,bn] = J.

e For each interval [b;,b;] that is present at some moment mg = m + q[/n],
at the next moment my4; we do as follows. If j =i + 1, we leave it as it
is. If j > i+ 1, we take p = i + [(j — ¢)/2] and consider two parameter
subintervals, [b;, by] and [by, b;].
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e For these intervals, if we have

I(ivpa mq+1) + I(p7ja mq+1) < I(Z,j, mq)
all the process results in FAIL.
e Otherwise,

(58) I(i7p7mq+1) +I(p7.]a qurl) Z ](iaj7mq)
the descendants of this interval at the moment m,; will be those among
[bi, by], [bp, bj], for which the corresponding integer parts of the increment
are positive.

Note that in at most R := [logy N] + 1 steps, if the process does not result in
FAIL, all the descendants will be of the form [b;, b; 1] (as the difference j —i —1 is
reduced at least twice on each step). On the other hand, for each interval present
at some moment of time, the corresponding integer part of the increment is at
least 1, hence there is at most Cyn descendants present at any moment. Hence,
due to Lemma [£.28] the total probability of the process resulting in FAIL is at most
Cyn - ([logg N] +1) - exp(—v/n).

Then, by an induction on k we obtain that the sum of Z;qzl I(ig,Jq,1,mq) Of
the integer increments corresponding to the selected intervals is non-decreasing:
the induction step is exactly . Thus, at the moment mpr we find the desired

parameter intervals [, ,, bi ,+1] for which [ Xy, i, | > 1 and such that

lr
Z[|XmR7iR,L|] > [mm,N - .’L‘m70].
1=1
Proposition implies that the integer parts under the sum are not greater
than 1 with the probability at least 1 — exp(—cy¢/n), and if this is the case, the
sum in the left hand side is equal to the number [z of summands. As the integer
part of the increment cannot decrease, and r = [\/n] > R[¢/n], we finally get the
desired
lr
#l Xl 21 2 {0  Xonpal 21} 210 = ) [ Xmpsinal] 2 [Emy = Zmool,
=1
concluding the proof of , as we have a lower bound for the probability

1—Cyn - ([logy N] +1) - exp(—+/n) — exp(—c1v/n) > 1 — exp(—(sv/n)

for any (5 < min(cy, 1) for all n sufficiently large.

Now, all that is left is to prove Lemma [£.28]

Proof of Lemma[4.28 Note that we can increase z(1) and decrease z(3) as soon as
we do not change the value of [z(3)—z2(1)]: if the conclusion of Lemma is satisfied

for the new values, it is also satisfied for the old ones. Moreover, increasing z(y)
by 1 increases all its images exactly by 1, and the same applies to z(3). Hence, it
suffices to consider the situation

Z1y < z@) < Z@) =21 + 1,

to which a general case can be reduced. Let now x and y be the points on the
circle that are projections of z(1) (and thus of z(3)) and of z(y) respectively, i.e.

W(Z(l)) = 71'(2(3)) =, ’iT(Z(Q)) =Y.
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Consider the iterations of x and y under the random dynamical system on the
circle corresponding to the parameter b(yy (for the same sequence of iterations de-
fined by @). Let us show that if they approach each other at the moment m’ at the

distance less than %, then we are done. Indeed, we have

21 = fimomon.o(20)) = Fo, s b0 Fimum— 10,000 (2(1)))
1719
N b

where we have used the monotonicity assumption (A4) and the assumption b(g) —

< e bz Fimoms 115y 0(21))) = 8(b2) = b1)) < Fimm ey (2(1)) —

by > % In the same way we have

/18

Zm!’,3 > f[m,m’],b(2),@(z(3)) =+ T

Now, if the points = and y approach each other in such a way that the (positive
direction) arc [z, y] is expanded on almost all the circle (that is, becomes of length

grater than (1 — %)), then we have

; ; |6
fimm b2 (21)) < fimm b .o (22)) — (1 -

N
and hence
; |J]0
Zmr1 < f[m,m’],b(z),w(z(l)) TN
z |J|67\  [J]é
< f[m,m/],b(g),w(Z(Z)) - (1 - T - T =Zm’,2 — 1,

thus implying the desired [z, 2 — Zm/ 1] > 1.

In the same way, if the points z and y approach each other in such a way that the
(positive direction) arc [y, z] is expanded on almost all the circle (that is, becomes
of length more than (1 — %))7 then we have

; ; |J|6
Smam by 2 (23)) > fimm beoy .o (2(2)) + (1 -

N
and hence
z |J|6
Zm’ 3 > fimm) b o (2(2)) + N
~ J|é J|6
> f[m,m’],b(z),@(Z(Q)) + (1 — |]\|7) + % =Zm2+ 1,

thus implying the desired [z, 3 — Zm/ 2] > 1.
Let us now show that indeed the points x and y approach each other with the
desired probability. Applying Proposition [£.18] we get that

1 1
(59) ]E (p(f[m,m’],b@),w (LL’)7 f[m,m’],b(g),tﬁ (y)) S 2[(m/—m)/K} = 2[[%/}(] .

On the other hand, two points x’, 3y’ are %—close to each other if and only if

p(z',y) < <|J]\|,5>



42 A. GORODETSKI AND V. KLEPTSYN

Combining the Chebyshev inequality with , we see that the probability that
the random images f[m_’m,]ﬁb(%@(x), f[m’m/]’b@)@ (y) of x and y will not be %—close

to each other is at most

. J|é
P (dwt(f[m,mq,b@,w(x),f[m,mq,bm,w(y>) > N')

<<|J6>i L1 ()
N ) AR T (776 exp(([/n]/K]log2)’

and the right hand side is smaller than exp(—+/n) for all n sufficiently large.

We have obtained the desired lower bound for the probability that the random
images of x and y will be sufficiently close to each other. This concludes the proof
of Lemma (and hence of Proposition [4.27)). O

4.8. Intervals characterization. This section is devoted to the proof of Propo-
sition describing the behaviour of the intervals X, ;. Our first step will be to
understand the behaviour of an individual interval, that is, for a specific index 1.
To do so, we take an initial moment m < n, two points g, 1, Ym,2 € R (that will be
later interpreted as the end points of the interval X, ;) and define

Ukl = ﬁm7k],bi,17w(gm,l)7gk,2 = f[m,k],bi,w(gmﬁ)a

where k=m+1,...,n.
‘We then show that

e if this interval was small, it will stay small till the last (n-th) iteration with
high probability (see Lemma below);

e for any initial interval, it quickly (in &’n steps) becomes either of length
close to 0, or of length close to (and larger than) 1, and stays like that till
the last (n-th) iteration (see Lemma [4.35)).

Note that initially all the intervals are quite small (they vanish at m = 0, and
are of length ~ <2 at the moment m = 1). But the above statements do not
guarantee that they all will stay small: even if each individual interval stays small
with high probability, there are too many of them (N = [exp({¢/n)]), so among this
huge number there may be ones making and “individually-improbable” growth. In
fact, there should be: we know from Proposition [£.27] that there should be jump
intervals, and that most of the increment &, y — 0 is concentrated on them.

The key to the proof here is the following argument. Instead of considering the
evolution of all the N intervals {X,, ;}"_;, we consider only those among them
that at some moment m become larger than ¢’; we call such intervals suspicious.
The non-suspicious intervals are automatically small in the sense of Prop. .1} and
hence for them there is nothing to prove. i )

At the same time, at each moment m there is at most % < const - m
suspicious intervals, hence, there is at most const - n? of them in total. Thus,
Lemmas can be applied to them simultaneously: the probability of a
bad behavior of an individual interval is at most exp(—const+/n). This is done in
Corollary [£:38) and Lemma [£.39 below, and their application concludes the proof of
Proposition

We call this scheme the dystopia argument: as an analogy, even if a “dystopic
state” does not have a power to control all of its “population” (exp(+/n) intervals),
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it suffices for it to control only those few (const-n?) that it finds “suspicious”. The
reader is referred to [Za] for comparison.

Let us realize this program. As we have already said, we first study the behavior
of the end points of the intervals X,, ; for a specific index ¢ =1,2,..., N. In order
to do that take some m < n and two points @m. 1,9m,2 € R (that will be later
interpreted as the end points of the interval X,, ;) and define

Jk1 = fimklbior.@(Um1)s  Jr2 = fim k) beo(Tm,2),
where k=m+1,...,n.

We first consider how the interval [gx 1, Jk,2] can become longer than 1 (so that
its projection covers all the circle). It is easy to see that at the first moment when
it happens, the projections of §x 1 and g 2 are very close to each other.

Let us denote 7 := exp (—/n); then the parameter increments b; —b;_1 = I—I‘\],I are
comparable to . The next lemma shows that once these two orbits are sufficiently
close to each other, they most probably stay close till the last (n-th) iteration:

Lemma 4.29. For all sufficiently large n, if |§m.1 — Gm.2| < /3, then with prob-
ability at least 1 — /20 we have

|Gk — Gk,2| <A1
forallk=m,... n.

Proof. T [§ma — Gm.al < 4'/3, then @(Ym.1,Ym.2) < 7*/3, and due to Corollarym
forany k > m, k= KI+ kK <K,

C/
E @(Yk,1, Yk,2) < Tf@(ym,hymﬂ) + CJlbi = bi1]* <
C’/
27;975/3 + Calp/|‘]|s’ys < 75/6

for large n. Chebyshev inequality implies that

78/6
(60) P (‘P(yk,17yk,2) > 78/12> < W = ’73/12-
Notice that
- _ . - _ 1
O(Yk+1,1, Yet+1,2) = |Uk41,1 — Ukt1,2|°  provided that |gr1 — Jr2| < 3

Since |Jm,1—Gm,2| < ~1/3 at the first moment k& > m such that |Tk,1 — Uk 2| > /12
if such moment exists, one has ¢(yx 1, yr.2) > v*/2. Hence, for any k = m+1,...,n
the probability that this is the first such moment is upper bounded by

P (\371@1 — Ur,2| > 71/12‘ |G — G2l <AVP2 form <t < k) < /12
due to . Summing it over k, we finally get

P (|gjk,1 — Jr,2| > 12 for some k = m + 1,...,n) =

n
Z P (|Z7k1 — Uk2| > 71/12‘ |Te,1 — T2
k=m-+1

§,71/12 form§t<k:)

n
< ) P (w(yk,l,yk,z) > 75/12) <y < 20,
k=m+1
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d

Substituting g, 1 + 1 instead of gy, 1 (shift by 1 commutes with the dynamics),
we easily get the following

Corollary 4.30. Similarly, if |Gm,1+1—Gm2| < ~1/3 | then with probability at least
1 —~%/20 we have
Gk + 1 — ol <A1
forallk=m,... n.
Denote by yx 1, yk2 € S the projections of g 1,7k 2 € R. Let K, s, and the func-
tion ¢ be as in Proposition The following lemma shows that the projections

on the circle of their images most probably quickly become close to each other (so
that Lemma and Corollary become applicable).

Lemma 4.31. In the setting above, for any ym.1,Ym.2 € St and for all sufficiently
large n € N, with probability at least 1 — v*/3 one has

(61) diStgl (yk,17 yk,Q) S 71/37
for all k > m + K[/n].
Proof. Let us apply Corollary For any k > m + K[¥/n]| we get

!

Cy s
(62)  Ewnprwn®Wr1,Uk2) < [ﬂ +Cg (b = bi—1)” < 3C7|J|°y*

recall that
J
7] | ~ ]y, = exp(—/n)) > 27V

Due to Chebyshev inequauhty7 we have

bi —bi—1 =

P (dist51 (Yh1, Yk 2) > 71/3) =P (‘P(yk,layk,Q) > 75/3) <

E@(yk,l, yk,2)
73/3

IN

< 30”|J‘S 2s/3
for large n; the last inequality here is due to (62)). Therefore,

P (distgl (Yk,1, Yi,2) > 71/3 for some k > m + K[\“‘/ﬁ]) <
<n- 30//|J|9 2s/3 < 71/3
for all sufficiently large n. O

Let us remind that

L= sup |foo@| Lp= _sup  [Oafaw(y)l

yER! a€J,weN yER aeJweN
are the space- and parameter-wise Lipschitz constants respectively, and § > 0 is
a small constant from the monotonicity condition (A4). The next few lemmas
guarantee that if the length of the interval X}, ; becomes close to 1 (and thus stays
close to 1), there will be an actual “jump”, that is, the interval will become longer
than 1 sufficiently quickly. The first two of these lemmas are devoted to the moment
of the jump:
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Lemma 4.32. Suppose for some k' > m we have p1 < Gpo2 < Gp1 + 1 for
k=m,....,k' =1, and Gy 2 > G 1 + 1. Then
Lyl J|
N
Proof. We have §r_12 < grr—1,1 + 1, and hence

(63) U2 — (U +1) < < const - .

Uk 2 = fbi,wk/ (Trr—1,2) < fbi,wk, (=11 +1) = fbi,wk/ (Urr—1,1) + 1.
This implies that

o — (Gwa+1) < fbi,wk/ (Jrr—1,1) — bei_l,wk/ (rr—1,1) <

Ly|J|
N

The definition N = [exp({/n)] then implies the second inequality of (63). O

< Ly-(b;—bi—1) =

Lemma 4.33. If Z,§ € R are such that | — g| < %7, then for any w €  and

anyi=1,... N we have
fbi,,w(g) > fbi—lyw(f)'

Proof. Indeed, due to monotonicity assumption (A4) we have

fbi,w(g) - fbi—l’w(:’i.) = (fbi’w(g) - fbi’w(j)) + (fbhw(‘%) - fbi—lgw(‘%)) 2
LG F|+ 6]y >0
[

Let us introduce the notation UX (z) := [z,z + ¢) and U (x) := (z — ¢, ] for
the right- and left- e-neighborhoods of the point = € R respectively.

Lemma 4.34. If G2 € U,;l/g(gm,l + 1), then with probability at least 1 — 3y5/20
we have

Uk,2 € U,::_l/s (Yma +1)
for all k >m+ K¥/n.
Proof. Since |§m.2 — Gm1 — 1| < ¥/, Lemma implies that with probability at
least 1 — ~*/20 for all k > m we have

k.2 — Gra — 1] < 412,

Together with Lemma this implies that with probability at least
1— ,}/8/20 _ 75/3 >1— 278/20
we have
(64) (G2 = Gra — 1| <41/
for all k > m + K[¢/n]; in other words, the images of ., 2 stay close to those of
gm,l + 1.
However, as b; > b;_1, the images of §,, 2 are in a sense “pushed forward” with

respect to those of g, 1 + 1. That is, consider a sequence of points {Z;} C R,
k=m,...,n, given by

2]{: = .f[m,k],bifl,ii (gm72)'
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Then monotonicity assumption (A4) implies that for all k& > m we have §i o > Z.
Due to Corollary (applied for a = a’ = b;_1) for kg = m + K[¢/n] we have

! /

E o(2kys Yro,1) < 2T\}%@(vaym,l) < 27\7%

Now (in the same way as before), we have an lower bound for the probability that
the images zj, and yg,,1 are close to each other. Indeed, by Chebyshev inequality

. 8|7 SN
P <dIStS1(Zkoayko,1) > |L|’Y) =P <<P(Zk07yko,1) > <|L|> 0 ) <

C! L -3

< %o _exp (—{/nlog2) < oxp _log2% _ 31
0%|J|5  exp(—s¥/n) 2 9 V/n/2

Hence with probability at least

1
_ s/20 _ s/20
1—2y NTTE >1-3y
we have
- - . 5| J|
Uko,2 > Zko = Uko,1 +1 — I

Hence, either g, 2 > Jro,1 + 1, or, due to Lemma [.33] Jr,11,2 > Ukgt1,1 + 1. In
both cases,

Uk,2 > Uk +1
for for k = kg + 1, and hence, by monotonicity, for all k¥ > m + K/n. Joining it
with , we finally get the desired
Ur2 € Uliys (k1 +1)
fork=ko+1,...,n. (I
Lemma 4.35. If §m.2 € (G, Jma + 1), then with probability at least 1 — 5y°/20
etther

Z]k,z € Ujfrl/s (?jm,l),
or
gk,Q S U,‘—;/g (gnz,l + 1)
for all k > m+ 2K ¢/n.

Proof. Due to Lemma [4.31] with probability at least 1 — v*/3 we have
Uk,2 € U Uyr/s (kg +1).
leNu{0}
Lemma implies that in this case for some k¥’ < m + K[¥/n] we have
2 € U,y (Grr1) U Uyiss (G +1).
Lemma [4.29 now implies that with probability at least
1 _ 73/3 _ 73/20 > 1 _ 273/20
we have
Tr2 € U jia (Ge,) | J Uiz (G0 + 1)
for all k > m + K[¥/n].
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Since we assume that holds, this in fact implies that

G2 € Uy () | J Uss (Giea +1)

for all £k > m + K[/n].
Now Lemma implies that if gro € Ul (Gka +1) for & = m + K[¢/n],
then with probability at least 1 — 3y*/2% for all k > m + 2K |[{/n] we have j 2 €

Uiy (G + 1)
Summarizing, with probability at least

1— 375/20 . 275/20 =-1— 5,}/8/20

for all k > m + 2K[¢/n] either g € Ujl/g (Uk.1), OF g2 € U;/g (U1 +1). O

Now we are ready to prove Proposition Fix &/ > 0.

Definition 4.36. Let us say that an interval J; = [b;_1,b;] is mo-suspicious if
| Xki| <e' fork=1,2,...,mo—1, and | Xy, | > €.

Definition 4.37. Let us say that an interval J; = [b;_1, b;] is good if it satisfies the
claim of Proposition i.e. it is either small (| X,,;| < & forall m =1,...,n),
or opinion-changer (J; is mp-suspicious, and |X,, ;| < ¢’ for all m > mg + €'n), or
jump interval (J; is mg-suspicious, and 1 < | X, ;| < 14 ¢' for all m > mg + &'n).
Otherwise J; will be called bad.

In these terms, we get from Proposition an immediate
Corollary 4.38. For any i, mg we have

P (J; is bad | J; is mo-suspicious) < 5v*/°.

In other words,

(65) P (J; is bad and mq suspicious) < 5v*/20 . P (.J; is myq suspicious) .

Now, the number of suspicious intervals is easily bounded from above:

Lemma 4.39. For any mo =1,...,n, and any @ € Q™, number of mg-suspicious
intervals is not greater than Ag—,mo, where

M* =L, |J|]+ 1.
Proof. Indeed,
i'm,N - jvjm,O = fm,b+,w(§70) - fm,b,,w(i'O) < M*m7

and at the same time

N
Tm,N — Tm,0 = Z | Xmil > - #{i=1,...,N | J; is mg suspicious}. O

=1
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Applying this lemma, for any mo = 1,...,n we get an upper bound for the
probability of the presence of a bad mg-suspicious interval:

P (3i e {1,...,N} | J; is bad and myp-suspicious) <
E (#{ie€{1,...,N} | J; is bad and mg-suspicious}) =

N
= Z P (J; is bad and myg-suspicious) <
i=1

N
< Z 5y5/20p (J; is mg-suspicious) =
1

=5v/2E (#{ie{1,...,N} | J; is mo-suspicious}) <

M*my _ SM*

0 T
e -

6/

< 5’78/20 . . n,\/s/20,

where the last inequality comes from Lemma (4.39
Finally, summing over mg, we get the desired

P (at least one of the intervals J; is bad) <

Z P (Jie{l,...,N} | J; is bad and mg-suspicious) <
m0:1
5M*
5/
for large n. This completes the proof of Proposition

<n-

-y < exp (—% \‘Vﬁ)

5. ANDERSON LOCALIZATION

In this section we prove Theorem |1.13

The following two lemmas use only linear algebra. We assume that a sequence
of matrices A; € SL(2,R), ||A;]| < M, and an initial vector vy € R?\ {0} are given.
Then, we consider the corresponding sequence v,, of images, defined by

(66) Um = AmUm_1, m=1,...,n,
and describe its possible behavior.

Definition 5.1. Given matrices A1,..., A4, € SL(2,R) with ||4;]| < M, we say
that the product A, ... Ay is (r, \)-hyperbolic if for any 0 < m < m’ < n for the
product Tjy, p) := A .. Apg1 one has

10g || T, m || € Ur(A(m” —m)).

For instance, the conclusion |I_I| of Theorem combined with Proposition
implies (2ne, Ar)-hyperbolicity for the corresponding product Fy,(wy,) ... Fy(wy). At
the same time, the conclusion implies (2ne, Ap)-hyperbolicity of both products
Fo(wm,,) .- Folwr) and Fy(wy) ... Fo(wm,+1)-

Let us first prove the following lemma.

Lemma 5.2 (line-shape). For any M, \ e > 0 there exists €' > 0 with the follow-
ing property. Assume that vy has the norm smaller than any other vector in the
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log |vy| log |vy| log |vy,|

FIGURE 5. Behaviour of log-norm of iterations of a given vector
as in Lemmas Dashed region corresponds to the en-
neighborhood

sequence (66)), i.e. |vo| < |um| for allm =1,...,n, and that the product A, ... A;
is (ne’, \)-hyperbolic. Then

Ym=0,1,...,n log|v,|—log|vg| € Une(mA).
Geometrically speaking, the conclusion this lemma states that if we plot the
graph of log |v,,| for m = 0,1,...,n, and then contract this graph n times (both

vertically and horizontally), then it will be in the e-neighborhood of a line with
slope A (see Fig. [5)).

Proof. Without loss of generality, we can assume that vy is a unit vector. Take
another unit vector, ug, that realizes the norm of the full product,
Tio,nyuol = [|Tjo,m I,
and consider the associated sequence of its intermediate images,
U = Apllm—1, m=1,....n.
Then, we have a lower bound for their norms: as u, = T, n)tm,
|un|

HT[m,n] H

Next, vy and ug form a parallelogram of area at most 1, hence the same holds for
the parallelogram formed by v, and wu,, for any m. As |v,,| > 1 by assumption and
|t | > exp(mA—2ne’), the angle between the lines passing through v,, and w,, does
not exceed § exp(—mA + 2ne’). Here we are using the inequality arcsinz < Zx.

Now, we have

(67) log |t | > log = log || Tio,n)l| = 10g | Tipn) | > mA — 2ne’.

Ry
log o] = 3 _log == =3 L 6, (10j-1)),
=1 i1 =1
where ¢4 is a function on the projective line RP', defined by
Av
oa(s) =tog 7

for any nonzero vector v (where [v] is the corresponding point of RP?).
The family of the functions ¢4 for A € SL(2,R), || A|| < M, is equicontinuous
on RP!. Hence, for any € > 0 there exists § > 0 such that

(68) [da(lu) = da(le])] < 5
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for all A € SL(2,R) with ||A|| < M and all u,v with the angle between the corre-
sponding lines less than §. At the same time,

(69) log [vm| = log [um | + Z (‘PAj([Uj—l]) - WAJ([uj—l])) .

Jj=1

The first summand is within 2ne’ from mA due to and the assumption on
(ne’, A)-hyperbolicity. The sum in the second summand can be decomposed into
two parts: where the angle between w,,_; and v,,_1 is greater than § and where
it is smaller than . The summands of the second type give the contribution of at
most m$ due to , while there will be at most

2ne’ +log T +|logd| 3¢’
< —n
A ~ AF
summands of the first one (assuming n to be sufficiently large), giving their total
contribution of at most 2log M - i—in Adding up, we get an estimate

3¢’ 6log M
|10g|vm|—m)\|§2n6’—|—m;—|—21ogM~§n§<(2+ Of )8'4—;)71.

o 6log M -1 € :
Fixe' = (2+ =%~ - £, and we get the desired

[1og |vpm| — mA| < en.
This completes the proof of Lemma [5.2 O

Remark 5.3. In fact, the proof of Lemma [5.2] uses only the exponential growth of
the product of lengths |v,,]| - |u.,|. Hence, the assumption of vy being the shortest
vector of a sequence {v,,} can be weakened to a mere lower bound on the allowed
exponential decrease speed. Namely, it suffices to assume that for some ¢ > 0
N < X we have [v,| > ce™™ |vg| all m = 1,...,n for the conclusion of Lemma
to hold for all sufficiently large n.

The next lemma allows to get rid of the assumption of vy being the shortest
vector in the sequence of iterations.

Lemma 5.4 (V-shape). For any M, \,e > 0 there exists ' > 0 with the following
property. Assume that the product A, ...A; is (ne’, \)-hyperbolic, and v, be a
sequence of intermediate images associated to some vy € R?\ {0} given by (@)
Then there exists m’ € {0,...,n}, such that

Vm =0,1,...,n log|vm,| —1og [vm/| € Upe(X - |m —m/|).

Again, this lemma admits a geometric interpretation in terms of the graph of
log |vm|: plotting this graph for m = 0,1,...,n, and then contracting it n times
in both directions, we get a graph that is contained in the e-neighborhood of a V-
shaped piecewise-linear function with slopes +X (see Fig. |5]).

Proof. We will choose m’ so that v, is a least-norm vector in this sequence:

v | = Ogggn |V

Now apply previous Lemma separately on the intervals [0, m] and [m/,n]. O

Lemma [5.4] allows us to prove the first part of Theorem [I.13] on one-sided prod-
ucts.
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Proof of the first part of Theorem[I.13 If (7)) holds, then for some £y > 0 one has

(70) limsup — log [To.ew () | < Ar(a) - o.
n—+oo T
Due to the standard argument of a countable intersection (considering a sequence
of positive values of €y that tends to zero) it suffices to show that the conclusion of
the theorem holds with @ replaced with . From now on, fix small ¢y > 0.
Take the point x( on the circle to be the projectivization image of the vector vy :=
((1)) Note that the series

Z exp(—dov/n)

converges for any dg > 0. Hence, due to Borel-Cantelli lemma, for any ¢, > 0
almost surely for all sufficiently large n the conclusions of Theorem [I.I9) and of
Proposition (for this specific choice of the point xg) hold.

We will fix sufficiently small values of € and ¢’ for the arguments below to work;
in fact, as the reader will see, it suffices to take an arbitrary

€0 ’ 1
71 < — d = —c¢,
(71) € 50 and ¢ 10 Cls
where Cy is given by Proposition [£.12]
Assume now that for some a € J the inequality holds; it also implies that
for all sufficiently large m

1
(72) —log||Tiaw (o) Il < Ar(a) = <o

Let n; be such that conclusions of both Theorem [1.19] and of Proposition 4.12} as
well as , hold for all m,n > n;.

For any n > n; consider the interval J; that contains a. Note that for all suffi-
ciently large n it is one of the exceptional intervals in the sense of Theorem [I.19]
in other words, it cannot be neither small nor opinion-changing in terms of Propo-
sition Indeed, otherwise Proposition would imply the derivatives con-
trol , and thus the derivatives at xy would satisfy the exponential contraction
with almost fastest possible speed:

log fv/n,a,w(xo) < Agp(a)-m+ Cie'n.

Recalling the relation between the derivative and the norm change, we thus
would get an almost fastest possible expansion:
1 1
log [Trn.a.5(vo)| > _i(ARD(a) -m+ C1e'n) = Ap(a) - m — 5016/71.

However, once 0125/ < g9, we would get a contradiction with at m = n. Hence,
J; should be an exceptional interval.

Moreover, the same arguments imply that for all sufficiently large n the index
my, defined in 7 associated to this n, satisfies my < %0”' Indeed, otherwise
from for m = m{, we would get

016/
2
thus again obtaining a contradiction with .

1 1
Elog |Tom0.0(v0)| > EQF(G) -m — n) > Ap(a) — 5C1e" > Ap(a) — e,
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Finally, the product Tj;.n),a,0 is also (2ne’, Ar)-hyperbolic. Thus, we can apply
to it Lemma [5.4] obtaining from the conclusion of this lemma the corresponding
m’ € [my, n].

Note now that the above arguments can be applied for all n > nj, so for each
such n we get the corresponding exceptional interval J; (), the corresponding
mg’(n) and the moment m’(n) € [mé),(n)7 n] obtained by the application of Lemmal5.4

We then have the following auxiliary

Lemma 5.5. m’( > %n for any n > ny.

n)
Proof. Tt is easy to show that if the statement of Lemma[5.5] does not hold for some
n, it does not hold also for 2n. Indeed, assume mz ny < %n Then due to Lemma
we have

(73) log |vn| — log [t /2] > AF% — 4ne.

We already know that mgy(%) < %—g < 2 50 having m’(2n) > 20 — p would imply

20 = 2
that from n/2 to n we are on the “decreasing” branch of the V-shaped graph for

log-length, and thus
log |vn| —log vy, 2| < —/\pg + 8ne’.

This would contradict as ¢ < é—i. Hence, assuming m’(n) < %n we also get
okp) < % -2kn for all k. Note now that can
be rewritten as a lower bound for the slope
log vy, | — log vy, /2|
> A
n/2 =0

Joining such inequalities for n, 2n, 4n, etc., we get

1 . .
m’(gn) < 5 -2n, and by induction m’(

— 8¢,

limsup ~7— log |vgry, | > Ap — 8¢,
k—o0 2Fn
and we thus have a contradiction with , as 8¢’ < gg. This completes the proof
of Lemma [5.5] O

Now, the inequality mzn) > %n implies that
n
(74) log |vy, /2| — log |vy, /4| < _)\FZ + 4ne’,

or in terms of a slope,

log |vy, /2| — log |vy, /4]
n/4

Joining such inequalities for n, n/2, n/4, etc., until we hit ni, we get the desired

< —Ap +16¢’.

log |Un|

lim sup < —Ap +16€'.

n—oo
Finally, as ¢’ can be chosen arbitrarily small, we finally get

1
lim sup 208 Vn] [vn] < =AF
n

n—oo

and hence, due to Proposition [2.1]

i log [v,|
1m =
n—oo n

—Ar.
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This completes the proof of the first part of Theorem [[.13] O

Remark 5.6. If the initial vector was not fixed, the statement of the one-sided
version of Theorem [1.13| would not hold. Moreover, almost surely there exists a
residual set of parameters a € J, for each of which there exists a nonzero vector vy
such that for the norms of its images v,, one has

1
lim sup — log |v,,| = 0.
n

Now, the conclusions [[T) and [IT]] of Theorem [I.19] together imply that for any
a € J the product T}, 4, either is (ne, Ap)-hyperbolic itself, or can be divided into
two hyperbolic products. Thus, under the conclusions of Theorem we have

Lemma 5.7 (W-shape). For any e > 0 there exists €’ > 0 with the following prop-
erty. Assume that the conclusions of Theorem [1.19 with the given &' are satisfied
for some finite product Fy(wy)...Fy.(w1). Then for any sequence Uy, of nonzero
vectors such that Uy, = Fo(wm)(Um—1), there exists a continuous piecewise-linear
function o(-) with slopes +Ap and at most one “upwards” break point, such that

Ym=0,1,...,n log|vm| € Une(v(m)).
As earlier, this lemma can be seen geometrically in terms of the corresponding

graphs (see Fig. [5]).
Let us now conclude the proof of Theorem

Proof of the second part of Theorem[I.13 Let v, := T, 45(v) for all n. Without
loss of generality, we can assume that |vg] = 1. As in the proof of the first part, it
suffices to show that

(75) lim sup — log |vn| < Ap(a) —eo
n—too ‘ |

in fact forces

lim sup —
n—=+oo ‘ |

As before, implies that for all sufficiently large n we have

log |vn] = —Ar(a).

1 1
(76) ﬁlogh)n\ < Ap(a) — &g, E10g|v_n\ < Ap(a) —ep.

Also as before, we can assume that for any ,&’ > 0 for all n sufficiently large
the conclusions of Theorem hold for the product

ﬂfn;n],a,w = Fa<wn> ce. Fa(wfn)a

and hence Lemma can be applied. We will take € and ¢’ as in , and let ng
be such that the mentioned above statements hold for all n > ns.

From now on, for any n > ny let m/ Ly < mo( y < m 4 () be the breakpoints
of the function ¢, given for it by Lemma n the central one being the upwards
break point.

Note first that one has m’_v(n) <0<m/ ) Indeed, if one had m+ (n) < 0, this
would imply that ¢, is linear on [0, n], and thus ¢,)(n) — @) (0) = nAp. On the
other hand,

(77) log [un| —log|vo| 2 (p(n)(7) = ¢ (n)(0)) — 2en
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and thus we would get
log |vn| — log |vo| > (AF — 2¢)n,

and this would contradict as 2e < g9. In the same way we get m’_ n) < 0.
Now, in the same way as in the first part, we are going to prove that

1

Indeed, we have
log |Um6’(n>‘ 2 (‘p(n) (mé,(n)) — P(n) (0)) — 2ne = AF‘mi),(n)| — 2ne,
and from we know that

log[vmy 1< (Ar = 20) - [mg ),
Hence,
€0+ Mg (m)| < 2ne,
and thus
2e
Mg, ()| < s—on < 0"

Now, in the same way as in the first part, we are going to prove the auxiliary

Lemma 5.8. m’

Fi(n)’ |ml,7(n)| > in for any n > n,.

’Jr,(n), the statement for m’ (n) 18 abso-

lutely analogous. The proof goes in the same way as in Lemma Namely, we
first note that if its conclusion does not hold for some n > no, it does not hold for
2n neither. Indeed, if we had m’Jr (n) < %, then we would have

Proof. We will prove the conclusion for m

(79) log [v,| — log |vy, /2| > AF% — 2en.

Then, we have m67(2n) < %, and if we had m’Jﬁ@n) > n, this would imply that ¢ (o)
is linear on the interval [§,n], and hence

(80) 10g |vn| — log [ 2 < —/\F% + den.

And as e < %7, the inequalities and contradict each other.

Thus, if the conclusion of Lemmal[5.§ did not hold for some n > no, it would also
be wrong for 2n, and by induction m’+’(2kn) < % -2Fn for all k. Note now that
can be rewritten as a lower bound for the slope

log [vp| — log vy, | > Ap

—4e.
n/2 c

Joining such estimates for 2¥n, we get

1
limsup — log |[vgry, | > Ap — 4e,
k—o0 2Fn

thus obtaining a contradiction with . This contradiction proves Lemma [
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Let us now conclude the proof of the second part of Theorem [[.13] Lemma [5.8]
together with imply that the function ¢y is linear on [%, 5] and hence that

n
(81) log [vy, j2| — log |vy, /4] < _/\FZ + 2ne;

in terms of a slope, it means that

IOg |Un/2| - log |Un/4‘

< —Ap + 8.
n/4 = 0F
Joining such inequalities for n, n/2, n/4, etc., until we hit ny, we get the desired
lo
lim sup M < —Ap + 8e.
n— 00 n

As e > 0 can be chosen arbitrarily small, we finally get

log |v
lim sup M < -\
n—00 n
and hence, due to Proposition [2.1
1
tim 0810l _
n—oo n

The asymptotics at —oo can be handled in the same way. This completes the
proof of Theorem [1.13 O

APPENDIX A. GENERALIZED JOHNSON’S THEOREM

Suppose that 9t is a compact metric space, o : 9T — 9N is a homeomorphism,
and m is an ergodic invariant Borel probability measure supported on 1. Assume
also that we are given a continuous map g. : M — Homeo™ (S'). Then, one can
consider an associated skew product

F i (,2) o (0w, 0(2)
Next, let us choose for any w € 9 a lift g, : R — R of the map g, €
Homeo™ (S1),
oo (7(2)) = 7(Gu (),
where 7 : Rl — S1 = R/Z is a natural covering map, in such a way that {g.(0)}

is a bounded measurable (in w) function (e.g. one can require g,,(0) € [0, 1) for all
w € M). We then can consider the associated lift of the skew product:

F: (w,2) = (ow, §u(x)).

Finally, let G, ., and C:‘mw be the length m fiberwise compositions associated
to these skew products:

F"™w,z) = (0"w,Gmu(z)), F™(w,z)=(0"w,Gmnw()),

so that for m > 0 we have

Gm,w =9on-1wb©° ... 9%gow © Gu-

Then, we have the following
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Proposition A.1. In this setting above the following statement holds. There exists
a number p € R such that for m-a.e. w € M and every x € R the limit

(82) lim (G (2) — 2)

n—o00 N,

exists and is equal to p.
Definition A.2. The number p from Proposition [A:]is called rotation number.
Remark A.3. Notice that the rotation number p depends on the choice of lifts g,,.

Remark A.4. Tt can happen that the lifts {g,} cannot be taken continuous in w.
At the same time, in the case when {g,} are projectivizations of the transfer ma-
trices of a Schrédinger cocycle defined by a continuous potential, the lifts {g,, } can
always be chosen continuously in w (since any Schrodinger cocycle is homotopic to
a constant one).

Remark A.5. Some of the assumptions in Proposition can be essentially
relaxed. For example, one can start with a probability space (9, m) and a measure
preserving transformation ¢ instead on a measure preserving homeomorphism of a
compact metric space, or relax the assumption on continuity of g,. To keep the
presentation more transparent, we are not trying to give the statements in the most
general form.

Remark A.6. While the case that we consider in this paper in a sense corresponds
to the case of linear cocycle (i.e. the maps g, are projective maps of the circle), in
Proposition the cocycle is non-linear (i.e. we allow arbitrary homeomorphisms
of the circle, not necessarily projective). Notice that in fact many of the questions
and results that we consider here can also be posted for non-linear case as well. For
example, if one reformulates the Furstenberg Theorem as a statement on almost
sure exponential convergence of vectors in projective space under random projective
dynamics, then non-linear analogs of Furstenberg Theorem are known [Al Baxl
DKNI KN, [GGKV], M].

Proposition [A.1]is certainly well known (see [Her, Section 5] and [R2] for similar
statements), but we provide the proof here for the convenience of a reader.

Proof of Proposition[A.]. Define the displacement function ¢ : M x R — R by

p(w,r) = gu(r) — .

Then, the displacement under n iterations in (82]) can be rewritten as a sum
of n individual displacements:

n—1 n—1
(83) Gnw(®) =2 =) (Grpr0(2) = Gru(@) = ) o(F* (w,2)).
k=0 k=0

Moreover, note that the function p(w, x) is in fact 1-periodic in the x variable, and
hence as a function of  can be considered as a function on the circle. Indeed, if
y=z+k, k€Z, then

Pw,y) = go(z + k) = (z+ k) = go(2) -z = p(w, ).
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Hence, a function v : MM x St = R, ¥(w,t) = ¢(w, 7 1(t)), is well defined, and the
sum in can be written as

n—1 n—1
Y e(Frw,2) = Y p(F*(w, ).
k=0 k=0
Thus,
1 - 1 n—1
(84) E(Gn,w( ZEZ'IZJ Fk w ZL’
k=0

is a time-average of a bounded function v on a compact space M x S'.

Now, Krylov-Bogolyubov arguments imply that the map F(w,t) = (ow, g, (t))
has an invariant measure 7 such that the projection of n to the first coordinate of
the product Mt x S! gives the measure m. Birkhoff Ergodic Theorem then implies
the existence of the limit for n-a.e. point (w,z) € M x St.

Finally, note that C:'n,w is the lift of G, ., and hence for any x,y € R one has

(én’w(.’b) - 1.) - (én,w(y) - y) < 1.

Hence, if the limit exists for some point (w,z), it also exists and takes the
same value for any other point (w,y) on the same fiber. This limit thus defines a
function p(w) on 9M. Finally, as this function o-invariant, and the measure m is
ergodic, this function is m-almost everywhere equal to some constant p. O

Let us now consider the dependence of the rotation number on a parameter.
Namely, assume now that we are given a continuous family g.. : 9 x J —
Homeo, (S') of maps as above. Then, we can consider their lifts g, : R — R
to be chosen continuously in parameter a € J. The corresponding skew products
G, and G, as well as the fiberwise compositions Fj, 4, and Fn’a’w then can be
defined in the same way as before. The notion of monotonicity can then be applied
in this situation, too.

Definition A.7. The family is monotonous if for any w € M,z € S the function
Jaw () is monotonous increasing in a € J.

An important note is that the increments of the images Gn7a/7w(1‘) — én,a,w(a:)
do not depend on a particular choice of lifts g, .. Moreover, this increment is a
continuous in w and x (and in fact is a well-defined function of the point x on the
circle, not on the real line). Also, dividing by n and passing to the limit, one gets
that the difference of the corresponding rotation numbers p(a’) — p(a) does not
depend on the choice of lifts gq ., thus getting the following important note.

Remark A.8. Even though the rotation number p depends on a particular choice
of the lifts gq ., the differences of rotation numbers p(a’)—p(a) do not. In particular,
different choice of lifts g, ., leads to a shift of the rotation number p(a) by a constant,
and intervals of constancy of p are independent of the choice of the lifts.

The following result is known in many particular cases, e.g. see [GJ, Theo-
rem 4.8], [Le]. For example, the ergodic Schrodinger cocycles satisfy the assump-
tions of Theorem [A0} the corresponding statement in the context of Schrodinger
cocycles is known as Johnson’s Theorem, see [J]. Generalizations to the cases of
Jacobi matrices [Ma] and CMV matrices [DFLY16] are also available. Monotone
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SL(2,R) cocycles homotopic to a constant were treated in [ABD] Proposition C.1].
For the convenience of a reader we provide here the proof of the statement that is
just slightly more general, but covers many of those cases.

Theorem A.9. Suppose that a family of SL(2,R) cocycles is given by a continuous
map
A:Mx J— SL(2,R),

where J C R is an interval of parameters, and A, = A(-,a) : M — SL(2,R) is a
cocycle corresponding to the parameter a € J.

Assume that for each w € M and any vector v € R?\{0}, arg A,(w)v as a
function of the parameter a is strictly increasing.

Let go . : ST — St be a projective map induced by A,(w) : R? — R?, and choose
a family of lifts Ga. : RY — R! as in Proposition that depend continuously on
the parameter a for each w. Let p(a) be the corresponding rotation number. Then
p is constant on an open interval U C J if and only if the cocycle A, is uniformly
hyperbolic for all a € U.

The first step in the proof of this theorem does not require the cocycle to be
projective:

Lemma A.10. Let G, be a monotonous family as above, and assume that for
some m,a,a’, T, one has

(85) Ca @() = Gnae(E) > 2.

Then p(a’) > p(a).

Note that a lower bound of an increment by 1 in the assumptions of Lemma[A10]
would not suffice, even in the case of one circle homeomorphism. Indeed, consider a
very strong North-South map g, and a family of its perturbations g. := R.ogo R..
Then, on the one hand, the rotation number vanishes in a neighborhood of € = 0.
On the other hand, the images of the repelling fixed point « can gain more than a
full turn in such a neighborhood: see Fig.[f] In fact, Proposition below shows
that this example is quite instructive.

FIGURE 6. Behavior of the family R, ogo R, with a strong North-
South map g; dashed arrows indicate the image of the repeller x
of g for positive (left) and negative (right) values of .

Proof of Lemma[A.10 Tt suffices to consider the case m = 1, otherwise passing to
the m-th iteration of the initial system. Now, as Gq. = G1,q.0 is a lift of a circle
homeomorphism, inequality implies that

VY Garo(y) — Gaw(y) > 1.
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The continuity of the increment in w thus implies, that there exists a neighbor-
hood V' > @ such that

(86) Yw € Va Vy ga’,w(y) - ga,w(y) > 1.

Finally, for a generic w* € M, its orbit {o"w*} visits V' with an asymptotic
frequency of m(U) > 0. On the other hand, if during n iterations the orbit has
visited U at k moments n; < --- < ng, then it is easy to see from that

Vy Gn,a’,w* (y) - Gn,a,w* (y) > k.
Taking a generic w*, dividing by n and passing to the limit, we get
pla’) = pla) = m(V) > 0.
|

Let us now pass to the proof of Theorem [A9} the arguments below will start
using the projective nature of the cocycle. Denote by A, . the corresponding
fiberwise composition: let

Ag(o™m 1wy - Ay (w), it m > 0;
Aymw =< Idge, if m=0;
Ag(o™w)™t - Ag(oTiw) T ifm <0,

so that Gy, . is the projectivization of A, 4., and ém%w is the corresponding
lift.

Proof of Theorem[A.9 If the cocycle is uniformly hyperbolic for some parameter
a € J, then the cone condition holds for all parameters from some neighborhood
U of a (with stable/unstable cones independent of parameter). Therefore, for all
values a’ € U for any w € M and any = € S* that corresponds to a vector from an
unstable cone, the values of C:'n’a/’w will remain on bounded distance from C:'n,a,w
for all n € N. Hence, p(a) is locally constant for uniformly hyperbolic cocycles.

Now assume that the cocycle is not uniformly hyperbolic for some value of the
parameter. Without loss of generality we can set this value of the parameter to
0 € J. We need to show that the rotation number p(a) cannot be constant in any
interval containing 0.

Theorem certainly holds if 90T consists of just one periodic orbit of o. There-
fore we assume that this is not the case.

It is known that a cocycle is not uniformly hyperbolic if and only if there exists
a Sacker-Sell solution, i.e. for some w € M, some K > 0, and some unit vector
v € R? we have

(87) |Ap(0"w) ...  Ag(w)v| < K, and |Ag'(c7"w)-...- Agt (e w)v| < K

for all n € N, e.g. see [DFLY16, Theorem 1.2].
We will need the following statement.

Proposition A.11. In the setting of Theorem[A.9, let w,v be such that the forward
iterations of the vector v, associated to w, are bounded:

dK: VneN |A, 0.0 <K
Then for an arbitrary small o > 0 there exists n > 0 such that
én,a,w(xv) - én,—a,w(xv) > ]-a

where x,, € R is one of the lifted points associated to the direction of the vector v.
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Postponing for the moment the proof of this lemma, let us see that it implies
Theorem Indeed, due to it can be applied to both forward and backward
iterations of the vector v. Thus, for an arbitrary a > 0 there exist n,n’ > 0 such
that

Gn,a,w(-xv) - Gn,—a,w(-rv) > 1,
and
an’,fa,w(xv) - anﬂa,w(mv) > 1.

Take an arbitrary y € [é_nga,w(arv); é_ng_a,w(a:v) —1], and let @ := o~ w. Then,

Gn’,fa,w(y) < T — ]-» én/,a,&)(y) > Ty,

hence

Gn+n’,—a,w(y) < én,—a,w(xv) -1, Gn+n/,o<,@ (y) > Gn,(x,w (xv)7

and finally

Crint,0a(y) = Gnin'—ao(y) > Gnaw(@) = (Gn—aw(,) = 1) > 2.
An application of Lemma concludes the proof.

Proof of Proposition[A.11, We will consider the following two cases separately:

Case 1. There is a constant C' > 0 and a sequence {n;} of indices such that
ng — +00 as k — 400, and [|Ag,, ol < C.

Case 2. We have ||Ag .| = o0 as n — +occ.

Consider Case 1 first. Suppose [|Agn, w| < C. Let us show (by induction
in k € N) that for any small o > 0 there is 6; = §1(,C) > 0 such that for any
zeR

(88) G’g’ik,w ) éamw(x) —x > koy.

Since éa,m,w are strictly increasing functions of the parameter a, by compactness
arguments for some €1 = ¢1(«) > 0, any w’ € M, and any x € R we have

Jow (T) = Gowr () > €1.
and hence (considering the last iteration) for any m > 0,
(89) Gamw (1) = Gomw () > €1,

Since G 71% » 1s a projectivization of a matrix of a norm at most C, it is a monotone

function with derivative bounded away from zero by some constant that depends
only on C. Thus we have for some §; = d;1(a, C)

(90) if yo—y1 >e1, then Go, ,(y2) — G, o(y1) > 01
In particular,
Compw © Gamwo (@) =2 = G0 Gy (@) = Gy © Gy (@) 2 01

Take and fix such d;. Assume now that for some k € N and for any y € R we have

éa}tk,hw o éa,nk—l,w(y) -y > (k - 1)6
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Then using and we have

1

O_,nk,w © Ga;nk7w(x) —T=

(G(;le,k,w © Gaank7w(x) - O_}Lk,l,w © Ga77lk—law(x))+

+ (é_l oéa7nk71,w(x) —x).

0nk—1,w

The second summand in the right hand side is no less than (k—1)d; by the induction
assumption. At the same time, the first one can be rewritten as

Gy wW2) = Goe w(W1),
where

h= éo’nk‘fnk—lvo'nk_lw(yo)’ Y2 = Ga,nkfnk—hdnk—lw(yO)v Yo = éo,nk—17w<x)'
and joining with we see that it is greater than d;. We finally get
éaﬂl’tkw °© éaﬂnkvw(w) —T> 51 + (k - 1)51 = k51

This completes the step of induction, and hence proves (88]).
Now, taking k > %, we have k§ > 1, and thus implies that

Gan@) = Gy (G © Gam(@)) =
éO,nk,w(x + ]{6) > éomk,w(x + 1) = éO,nk,w(x) +1,
proving the conclusion of the Proposition in this case.

Let us now consider Case 2. First, decreasing €1 = £1(«) if needed we can be
sure that additionally to we also have that for any w’ € 9, any z € R, and we
have

g&i/(ga,w’(‘r)) >+ e, ga,w’(goiiﬂ(x)) > T+ €1
Joining the two together (applying one for the first and one for the last iteration),
for any m > 2, any z and any w’ we get
(91) Gomw () > Gomw (T +61) + 1.
In the same way (again, reducing the value of £; if necessary) we get for all z,w’,
and m > 2
G,a’m’w/(x) S éo’m’w/(‘r — 51) —€£&1.
Now, take n such that the norm |[Ag | becomes sufficiently large (we will

choose the lower bound later). As we will see, the point z, is close to a lift of the
point Z_ :=z_(Aonw) € R. Let

iy <Gomw(@_ ) <@y +1

be the two lifts of the image of the most expanded direction. We will show that,
assuming appropriate lower bound for the norm ||Ag ., .||, we have

(92) Gamw(Ty) > 7 +1, G_gnw(zy) < 7.

Together, these estimates will imply the desired C;‘a’n?w (zy) — C;’_a,n,w (zy) > 1.
Let us obtain the first of them. Indeed, due to Lemma [4.14] we have
by Mol <K
2 ||A0,n,w ‘ 2||A(],n,w”

|z —

In particular, provided that ||Ag .| > %, we have |z, —Z_| < &
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Ly

=z, +e;

Tt
'’ + e

FIGURE 7. Point z, on the circle and a lower bound @o%w (zy +
€1) + &1 for its image Ga nw(Ts)-

Hence, 2’ := 2, + €1 > Z_ + 5. Now, an easy corollary to Lemma is that
for any A, x we have

2
(93) dis(Fa(e). 4 () -dise(o - () < (5757

(it suffices to multiply the first two conclusions, and the numerators cancel out).
As o' —2Z_ > 5, we get an upper estimate for the distance from its image to

@4 + 1. Indeed, if we have G 0 (2") < 4 + 1 — &, the left hand side of is
at least (£1/2)2. If || Ao nw| > Z, having this would imply a contradiction.

_517

Adding up, once ||Agnw| > mmax(K,1)

- , we have

~ . €
GO,n,w(zv + 51) >xy + 1- 517
and thus we get the desired
. ~ - € ~
Ganw(@s) > Gonw(@y+e1)+e1 >34 +1+ 51 > Ty + 1.

The second inequality of is absolutely analogous. We have obtained , and

thus have concluded the proof of the proposition. ([l
As Proposition is proven, so is Theorem O
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