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Finite-temperature density functional theory (FT-DFT) has become a standard tool for first-
principles calculations of the properties of warm dense matter (WDM) relevant to high-energy-
density physics (HEDP) applications. Here we present theoretical grounds of thermal hybrid
exchange-correlation (XC) functionals within the generalized Mermin-Kohn-Sham scheme for an
improved description of WDM. Building on the previously developed KSDT (Karasiev-Sjostrom-
Dufty-Trickey) [Karasiev et al., Phys. Rev. Lett. 112, 076403 (2014)] local density approximation
(LDA) and the KDT16 (Karasiev-Dufty-Trickey 2016) [Karasiev et al., Phys. Rev. Lett. 120,
076402 (2018)] generalized-gradient approximation (GGA) XC free-energy density functionals, we
construct a new thermal hybrid XC functional, referred to here as KDT0. The KDT0 model at
low temperature reduces to the popular ground-state PBE0 hybrid due to properties of the used
KDT16 density functional approximation. Application to static calculations of electronic band gap
and band structure at a wide range of temperatures for various systems of interest to HEDP show
that KDT0 provides a significant improvement to the lower LDA and GGA rung XC functionals
and to the ground-state PBE0 hybrid.

I. INTRODUCTION

Understanding warm dense matter (WDM) character-
ized by elevated temperature (∼ 103 - 107 K) and a
wide range of densities (∼ 10−1 - 105 g/cm3), is es-
sential to high-energy-density physics (HEDP). It poses
challenges to both experimental and theoretical efforts in
fields such as inertial confinement fusion, plasma physics,
and planetary science1–10. From the theoretical point of
view, the WDM regime is too hot for standard condensed
matter approaches, however, quantum many-body ef-
fects are strong and classical plasma physics are not ap-
plicable. An established, standard approach for accu-
rate treatment of WDM is ab-initio molecular dynamics
(AIMD), when classical treatment for ions is combined
with finite-temperature density functional theory (FT-
DFT) for electronic degrees of freedom11–18.

The biggest source of error in FT-DFT-based molec-
ular dynamics is the use of an approximate XC den-
sity functional, the choice of which is usually guided
by the desired level of accuracy and computational cost
requirements19. Regardless of choice, to the best of the
authors’ knowledge, with one exception20,21, all available
XC functionals in commonly used DFT software pack-
ages are ground-state functionals which do not explic-
itly depend on T , but are evaluated at the T -dependent
self-consistent density, i.e. Fxc[n(T ), T ] ≈ Exc[n(T )]
- an approach known as the ground-state approxima-
tion (GSA)22,23. The exception is Profess@Quantum-

Espresso package which implements KSDT thermal
LDA XC. In order to clearly distinguish between the two
DFT approaches, those utilizing Fxc[n(T ), T ] will be re-
ferred to as “finite-temperature approximation” (FTA)
or “thermal” and those utilizing Exc[n(T )], as “GSA”.
Also, for compactness, the phrase “free-energy-density
XC functionals with explicit T dependence” will be sub-

stituted with “thermal XC functionals”.

Previously developed thermal functionals belong to
the LDA and GGA level of refinement. At the LDA
level Karasiev et al. developed the nonempirical, ther-
mal functional KSDT20 (and its corrected version - cor-
rKSDT, see supplemental material in Ref. 24), which
is based on parameterized path-integral Monte Carlo
(PIMC) data for the homogeneous electron gas (HEG)
at finite T 25,26 and, in the zero-T limit, reduces to the
ground-state Perdew-Zunger (PZ) functional27. Groth
et al.28 used the KSDT approach and protocol to
reparametrize the HEG XC free-energy resulting in
“GDB” [Groth, Dornheim, Bonitz] representation. The
equivalence of these two representations, GDB and cor-
rKSDT, was recently demonstrated29.

Subsequently, driven by the need to incorporate den-
sity gradient effects and thereby account for the non-
homogeneity of the system30–32, Karasiev et al. de-
veloped the GGA-level thermal functional KDT1624 by
analyzing the gradient expansion of weakly inhomoge-
neous electron gas at finite-T and defining appropriate
T -dependent reduced variables for X and C. KDT16 is,
by construction, nonempirical and reduces to the pop-
ular Perdew-Burke-Ernzerhof (PBE) functional33 in the
zero-T limit. An example of the improved accuracy pro-
vided by the KDT16 functional was recently reported in
Ref. 34, where KDT16-based AIMD studies of shocked
deuterium showed improved agreement with experimen-
tal measurements of Hugoniot, reflectivity and dc con-
ductivity at elevated T .

While it is clear that corrKSDT and KDT16 provide
an apparent improvement on their ground-state coun-
terparts, PZ and PBE, they suffer from an inherent
fundamental drawback - underestimating the electronic
band gap, Egap

35. This is not a drawback associated
with the PZ and PBE functionals alone, but with KS
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DFT multiplicative potential in general and improving
the description of the electronic gap is the main rea-
son for the development of density functionals beyond
the GGA, such as meta-GGAs and hybrids, an approach
that includes a non-local potential operator and known
as the generalized Kohn-Sham (GKS) theory.36 Hybrid
XC functionals, such as PBE037,38 and HSE39, are con-
structed by mixing DFT XC functionals with Hartree-
Fock (HF) exact exchange (EXX) and are known to be
superior to GGAs in predicting quantities such as Egap,
atomization energy, bond length, and vibrational fre-
quency, with HSE generally showing better agreement
with experiment36,40,41. However, PBE0 and HSE are
both ground-state and a thermal XC functional at the
hybrid level of DFT is yet to be developed. Recently,
an advanced thermal XC functional with exact treat-
ment of the X interaction was presented, although not
within the Kohn-Sham DFT, but within the reduced-
density-matrix functional theory formalism42,43. In this
article we remedy that deficiency by providing theoreti-
cal grounds for thermal hybrid functionals and presenting
the KDT0 thermal hybrid model which is based on mix-
ture of finite-T HF X and thermal KDT16 GGA XC. This
thermal hybrid at low-T reduces to the popular ground-
state PBE0. As we show here, hybrid functionals with
admixture of thermal HF X predict the qualitatively cor-
rect behavior for Egap as a function of electronic tempera-
ture T (calculated at fixed ionic configuration) - Egap(T )
decreases as T rises. This is in contrast to the LDA/GGA
rung functionals, which tend to predict a monotonically
increasing Egap(T ). This results from the fact that the
HF approximation can be generalized to finite-T , there-
fore, HF EXX naturally includes the exact T dependence
of the X term12,44. Recent work31 found significant qual-
itative differences in X free energy and pressure between
the ground-state and thermal DFT and the finite-T HF
approaches.

II. THEORETICAL GROUNDS OF THERMAL

HYBRID XC FUNCTIONALS

The main goal of our work here is to develop a ther-
mal hybrid XC functional, which provides an improved
accuracy in calculations of Egap(T ) for a wide range of
T . XC free energy [see Eq. (2) in Ref. 20 for definition]
could be partitioned into exchange (X) and correlation
(C). In the zero-T case the single-determinant X energy
could be defined within the HF and EXX Kohn-Sham
methods. The EXX energy formalism developed within
the Kohn-Sham DFT45,46 formally uses the HF expres-
sion for X, but the X potential is a local multiplicative
operator, as opposed to the nonlocal HF X operator. The
two methods, HF and EXX, provide very close values for
X energy and energy of occupied orbitals, whereas vir-
tual (unoccupied) orbital energies obtained from EXX
are significantly lower as compared to the HF values. The
thermal generalization of the zero-T HF single-Slater de-

terminant X may be expressed in terms of one-electron
reduced density matrix (1-RDM) (see Ref. 47) and leads
to the following definition of thermal HF X

FHF
x [n, T ] := −

∫
dx1 dx2 {

1

2
g12Γ̄

(1)(x1|x
′
2;T )

× Γ̄(1)(x2|x
′
1;T )}x′

1
=x1,x

′

2
=x2

,

(1)

where x := r, s is a composite space-spin variable,
g12 = 1/|r1 − r2|, and the 1-RDM is defined in terms
of the MKS orbitals and Fermi-Dirac occupation num-
bers, fi(T ) = [1 − exp( εi−µ

kBT
)]−1 (µ being the chemical

potential and εi are MKS eigenvalues), as

Γ̄(1)(x1|x
′
1;T ) :=

∞∑
j=1

fj(T )φj(x1)φ
∗
j (x

′
1) . (2)

The analog of thermal HF is called finite-temperature
(ft) EXX DFT48. As in the zero-T case, ftEXX defines
the exchange free-energy formally identically with HF,
but follows a true MKS procedure with a local (multi-
plicative) exchange potential followed from the system
response function. Hereinafter we will discuss the ther-
mal HF exchange within the generalized Mermin-Kohn-
Sham (MKS) formalism, when the corresponding X po-
tential (or its fraction) is represented by a nonlocal ex-
change operator of the HF form with use of generalized
MKS one-electron states for evaluation of the exchange
energy and exchange operator.
The thermal adiabatic connection formula derived in

Ref. 49, Fxc[n, T ] =
∫ 1

0 dλUxc,λ[n, T ], provides theo-
retical grounds to develop thermal hybrid functionals.
The integrand in the above in-line equation is the dif-
ference between the electron–electron interaction poten-
tial energy of the interacting system (with the electron–
electron interaction operator scaled by a coupling con-
stant λ, Vee,λ[n, T ]) and the Hartree energy: Uxc,λ[n, T ] =
Vee,λ[n, T ]−FH[n]. A simple two-point approximation to
the integral leads to Fxc[n, T ] ≈ (1/2)(Uxc,λ=1[n, T ] +
Uxc,λ=0[n, T ]), where the energy difference Uxc,λ=0 for
the noninteracting MKS system is equal to the HF X
free-energy, FHF

x [n, T ] = Uxc,λ=0[n, T ] ≡ Vee,λ=0[n, T ] −
FH[n], and the first term, (1/2)Uxc,λ=1[n, T ], which in a
way similar to the ground-state case50, can be approxi-
mated by a suitable XC free-energy density functional ap-
proximation (DFA), (1/2)Uxc,λ=1 ≈ (1/2)FDFA

x + FDFA
c ,

such that Fxc[n, T ] ≈ (1/2)FHF
x + (1/2)FDFA

x + FDFA
c .

Generalization of the above two-point approximation
leads to a simple one-parameter hybrid XC free-energy

functional

Fhyb
xc [n, T ] = FDFA

xc [n, T ] + a(FHF
x [n, T ]−FDFA

x [n, T ]) .
(3)

The value of a = 1/4, rationalized in Ref. 37 for the
ground-state case, will provide a consistent zero-T limit
of Eq. (3). Dependence of a on T is a matter of fu-
ture investigation. Employment of the most advanced
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(up to date) KDT16 GGA XC in Eq. (3), namely
FDFA

xc = FKDT16
xc and FDFA

x = FKDT16
x , leads to the

KDT0 thermal hybrid functional discussed in this pa-
per. In the zero-T limit the KDT0 model reduces to
the PBE0 ground-state hybrid due to the KDT16 free-
energy reduces to the PBE ground-state XC, which has
been demonstrated in Ref. 24 and is the case for all
Egap(T ) calculations performed here. Proper tempera-
ture scaling in KDT0 is ensured through the correctly
scaled KDT1624,49.

III. COMPUTATIONAL DETAILS

In order to compare performance between KDT0 and
PBE0 we perform static calculations of band gap as a
function of electronic temperature Egap(T ) when posi-
tions of ions are fixed at near-ambient conditions. This
corresponds to a two-temperature model, cold ions Tion ≈
0 K, and T is temperature of electrons Te = T . This
model is relevant to HED experiments such as ultra-
fast femtosecond laser heating of materials51 or isochoric
heating via ultrafast proton beams52 in which hot elec-
trons are produced while the lattice is still cold. Full
Egap dependence on T is determined by allowing the
ions to move according to forces calculated at every elec-
tronic step (AIMD simulation), however such calcula-
tions with hybrid-level functionals are computationally
expensive and unnecessary for the purpose of introducing
and testing the new hybrid free-energy density functional
presented here. We also perform band structure calcula-
tions at low- and high-T to investigate the effect of KDT0
on valence and conduction band orbitals within the Bril-
louin zone (BZ). The systems of choice are Si, C, CH4,
polystyrene (CH), and H2O. The choice of Si and C was
motivated by the need to compare the KDT0 functional
to the highly accurate finite-T GW 53 calculations. We
also perform calculations for CH, CH4 and H2O, which
are of relevance to HEDP experiments and planetary sci-
ence where thermal functionals could provide an improve-
ment to e.g. equation-of-state calculations. In addition,
calculations on CH4 and H2O allow us to study the effect
of KDT0 on systems with a relatively large low-T band
gap.
All calculations were performed with the Vienna ab ini-

tio simulation package (VASP)54,55, which implements
the projector-augmented wave (PAW) method56,57. The
KDT16 functional was implemented in a locally modified
version of the software. KDT0, which comes at the same
computational cost as PBE0, was then constructed from
KDT16 and thermal HF X, which is readily available in
VASP. For all systems, except CH, atomic coordinates
and cell parameters were extracted from Ref. 58 and the
reported experimental lattice constants were used.
Here, it is important to note that PBE0, as imple-

mented in VASP, is constructed from thermal HF X
FHF

x [n, T ] (see Eqs. 1 and 2) and ground-state PBE
XC. This differs from the true ground-state PBE0 as in-

troduced in Ref. 37 where HF X is by definition ground
state, i.e., EHF

x [n]. Therefore, what is considered ground-
state PBE0 in the work presented here refers to PBE0
constructed from (T -independent) ground-state PBE XC
and thermal HF X. Although this is not the true ground-
state PBE0, it serves as a convenient measure of the XC
thermal effects provided by KDT0 through the finite-T
GGA KDT16.
For all hybrid functional calculations we use a rel-

atively dense k mesh for which we employ k point
parallelism59, which is implemented in VASP and allows
for simultaneous parallelism over k points and bands and
is necessary for high-T calculations, where the number
of contributing bands grows significantly due to Fermi-
Dirac (FD) thermal occupations. All bands with occu-
pation greater than 10−7 were included. Egap at all T is
defined as the energy difference between what is the low-
est unoccupied molecular orbital (LUMO) and the high-
est occupied molecular orbital (HOMO) at the zero-T
limit. For the T ranges considered here this definition
is still valid even though LUMO becomes partially oc-
cupied and HOMO partially unoccupied. An equivalent
unambiguous definition we introduce here is the follow-
ing: Egap = mink{εN+1,k} − maxk{εN,k}, where N is
the number of electrons in the system and εi,k are band
energies and we assume 0 ≤ fi,k ≤ 1 for occupations.
With BZ sampling this definition of Egap corresponds to
the energy difference between the conduction N+1 band
minimum and the valence N band maximum.
For diamond, Si, and CH4, the BZ was sampled using

a 15×15×15 Monkhorst-Pack k mesh. H2O calculations
were performed with a 7×7×7 and CH with a 3×3×8
k mesh. CH was simulated with a box containing two
styrene (C8H8) monomers that were oriented with re-
spect to each other so that the (periodic) syndiotactic
CH polymer chain is built according to Refs. 60 and 61.
Our atomistic model of CH predicts Egap = 2.92 eV with
PBE and Egap = 4.53 eV with PBE0, which are within
the expected range of values predicted by those function-
als considering the reported experimental value of 4.14
eV62 and a high-precision GW estimation of 4.4 eV63.
For band-structure calculations of Si (cubic diamond64)
and CH4 (fcc65) at each of the three selected tempera-
tures, a 20×20×20 Γ-centered k mesh was used, which
produced 11 points along the symmetry paths L - Γ and
Γ - X .

IV. RESULTS AND DISCUSSION

In order to validate any improved performance pro-
vided by hybrid-level functionals, we shall refer to high-
precision first-principles many-body perturbation theory
approaches that have been reported to achieve excellent
agreement with experiment. Recent theoretical studies of
Egap in various semiconductors at low-T based on DFT
and GW showed that the quasiparticle self-consistent
GW (QSGW ) method achieves much better agreement
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FIG. 1: Band gaps of (a) Si and (b) diamond (C) as a function
of electronic temperature calculated with ground-state PBE
and PBE0 and thermal KDT16 and KDT0 functionals. The
green curve (FT GW) was extracted from Ref. 53.

with experiment than LDA or GGA ground-state func-
tionals, which are known to significantly underestimate
the Egap(T )

66. Consequently, Faleev et al. extended
their theory to include finite-T effects (FT QPSCGW )
and published results for Egap(T ) for several widely used
semiconductors for T up to 47 kK (GaAs, Si, Ge, InSb)
and 140 kK (diamond)53.

Experimental measurements for Egap(T ) while hold-
ing contributions to Egap(T ) due to thermal motion
of ions low is difficult to obtain, although pump-probe
measurements67,68 show a decrease in the gap in the sub-
picosecond regime during which electrons are much hot-
ter than the lattice, in agreement with FT QPSCGW ,
referred to as FT GW hereafter. One of the main con-
clusions reached in Ref. 53 is that at high-T the use of
LDA within the GSA (e.g., in large-scale AIMD simu-
lations) can be justified since there is little difference in
band structure between it and FT GW - a conclusion
based on results that are largely due to error cancella-
tion as the ground-state LDA underestimates Egap at low
T and then, contrary to FT GW , predicts a universally
increasing Egap(T ) with rising T . Such error cancella-
tions, however, have a limited scope of reliability since
they only occur in T ranges that are strongly system de-
pendent and often very limited.

Fig. 1 showsEgap(T ) results for Si and diamond, which
are two of the systems addressed in Ref. 53. Let us first
compare the GSA functionals PBE and PBE0 in the case
of Si. At low-T they both give an approximately equally
wrong values for the Egap, with PBE underestimating it
and PBE0 overestimating it. At higher T PBE0 predicts
the same qualitative behavior as FT GW - monotoni-
cally decreasing Egap(T ) - while PBE predicts a mono-
tonically increasing Egap(T ), which is in direct contrast
with FT GW predictions. The correct qualitative trend
for Egap(T ) predicted by PBE0 is a direct result of in-
cluding T effects in XC through the T -dependent HF X
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FIG. 2: Band gaps as a function of electronic temperature cal-
culated with thermal (KDT0 and KDT16) and ground state
(PBE0 and PBE) functionals.

and serves as an indication of the importance of thermal
effects in XC. The same improvement in the qualitative
behavior of Egap(T ) provided by PBE0 is seen in dia-
mond [Fig. 1 (b)].

Next, we turn our attention to results obtained with
the thermal functionals KDT16 and KDT0. Most im-
portantly, in both systems thermal XC effects lower the
Egap(T ) curve toward the more-accurate FT GW results,
thereby improving qualitative behavior for all tempera-
tures considered. However, we stress two important ob-
servations: (i) the thermal corrections are strongly sys-
tem dependent, with the relative difference in the gaps
predicted by PBE0 and KDT0 reaching a maximum of
12.7 % in Si and only 1.5 % in diamond at T = 45 kK (See
Fig. 3) and (ii) ∆Egap(T ) for hybrid-level functionals is
larger than that for GGAs, which is a result of the dif-
ferent treatment of thermal effects in the X interaction
between the hybrid and GGA levels of approximation.
Note that the corrections provided by KDT0 at higher T
correspond to the magnitude of the XC thermal effects
and the fact that Egap(T ) is still significantly overesti-
mated is a drawback inherited by PBE0.

Motivated by these observations, we apply KDT0 and
KDT16 to other systems of drastically different proper-
ties, such as density ρ and Egap at near-ambient condi-
tions. Results for Egap(T ) in CH, CH4, and H2O for T
up to 30 kK are shown in Fig. 2.

In CH, ρ = 1.06 g/cm3, relative differences in Egap(T )
predicted by PBE0 and KDT0 (see Fig. 3) are small (<
2.5 %) and comparable to those in diamond. For CH4,
ρ = 0.43 g/cm3, and H2O, ρ = 0.96 g/cm3, ∆Egap(T )
reaches values comparable to those in Si at 45 kK, al-
though the peaks occur at much lower T . This suggests
that the temperature range in which XC thermal correc-
tions to Egap are most prominent is also strongly system-
dependent. This observation is consistent with the be-
havior of relative thermal XC corrections for the HEG as
a function of T and density, when thermal XC corrections
become important in the range of reduced temperature
between 0.3 and 1 (see Fig. 2 and corresponding discus-
sion in Ref. 30). At high T the trend for Egap(T ) is
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FIG. 3: Relative difference between Egap(T ) predicted by
GSA and thermal XC: [(EGSA-XC

gap −Ethermal-XC
gap )/(EGSA-XC

gap )]×
100, where GSA-XC refers to PBE/PBE0 in case of
(GGA)/(Hyb.) and thermal-XC refers to KDT16/KDT0
in case (GGA)/(Hyb.). Dotted lines correspond to GGA-
level and solid lines correspond to hybrid-level thermal cor-
rections. Colors correspond to different systems, the abso-
lute values of the gaps for which are shown in Figs. 1 and
2. For example, the thick purple line represents the rel-
ative difference in Egap(T ) predicted by hybrid-level func-
tionals PBE0 and KDT0, i.e. ∆Ehybrid

gap (T ) = [(EPBE0
gap (T ) −

EKDT0
gap (T ))/(EPBE0

gap (T ))]× 100

reversed, (see e.g., H2O at T > 20 kK) and according to
both PBE0 and KDT0 the gap starts increasing.

As seen in Fig. 2 for CH4 and H2O, the relative dif-
ference in Egap(T ) between KDT0 and PBE0 decreases
at high T . For Si at 45 kK ∆Egap(T ) starts to level off
and although calculations at higher T have not been per-
formed, based on the decrease in ∆Egap(T ) above 30 kK
due to GGAs, it is expected that it too will decrease.
This is because at the high-T limit, which is correctly
satisfied by KDT0, XC effects, and therefore XC thermal
corrections, become negligible29,30.

Results from band structure calculations at selected
temperatures with PBE0 and KDT0 for Si (Figs. 4(a)-
4(c)) and CH4 (Fig. 4(d)-4(f)) show that the Egap cor-
rections due to KDT0 come primarily from correcting the
overestimation of the conduction band states. In Si at T
= 45 kK, the lowest three conduction bands, with both
KDT0 and PBE0, are nearly degenerate at Γ point and
KDT0 predicts a 0.25 eV lowering from their PBE0 val-
ues - a 7.1 % relative correction. The eighth highest con-
duction band appears at 0.38 eV lower energy with KDT0
than with PBE0 - a 3.0% relative correction. For CH4 at
20 kK [Fig. 4 (f)] a similar trend, but with larger rela-
tive correction is observed - the lowest conduction band
is lowered by KDT0 by 14.6% while the eighth highest is
lowered by 7.6%.
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FIG. 4: Band structure of Si (top row, 15, 30, and 45 kK)
and CH4 (bottom row, 1, 10, and 20 kK). The valence band
maximum in the lowest-T case (15 kK in the case of Si and 1
kK in the case of CH4) has been shifted to E = 0 eV (black,
dashed line) and the same shift has been applied to the band
diagrams in the corresponding higher-T calculations to help
visualize any lowering of the valence band states.

V. CONCLUSIONS

Theoretical grounds of thermal hybrid XC function-
als have been presented. Use of the KDT16 GGA XC
free-energy density functional as density functional ap-
proximation for the exchange and correlation free-energy

terms in the proposed model leads to the KDT0 thermal
hybrid. Results for Egap(T ) in various systems of interest
to HEDP show that KDT0 could provide a significant im-
provement to calculations of electronic properties at tem-
peratures within the WDM regime. There are significant
thermal XC effects on the entire band structure of studied
systems, meaning that the accuracy of optic properties
calculated via the Kubo–Greenwood formalism69,70 de-
pends on accounting for those effects via thermal hybrid
XC functionals. Also, we show that the importance of XC
thermal effects depends strongly on type of system and
T range. In addition, we show that taking XC thermal
effects into account at the hybrid level of approximation
can lead to larger corrections compared to those at the
GGA level of approximation and although KDT0 takes
those effects into account, it still suffers from the funda-
mental drawback inherent through the PBE0 functional
- significantly overestimating the gap. Therefore, KDT0
also serves as a justification for the need for further de-
velopment of advanced thermal free-energy density func-
tionals.
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