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Abstract

Full-waveform inversion (FWI) is today a standard process for the inverse prob-
lem of seismic imaging. PDE-constrained optimization is used to determine un-
known parameters in a wave equation that represent geophysical properties. The
objective function measures the misfit between the observed data and the calcu-
lated synthetic data, and it has traditionally been the least-squares norm. In a
sequence of papers, we introduced the Wasserstein metric from optimal trans-
port as an alternative misfit function for mitigating the so-called cycle skipping,
which is the trapping of the optimization process in local minima. In this paper,
we first give a sharper theorem regarding the convexity of the Wasserstein metric
as the objective function. We then focus on two new issues. One is the necessary
normalization of turning seismic signals into probability measures such that the
theory of optimal transport applies. The other, which is beyond cycle skipping, is
the inversion for parameters below reflecting interfaces. For the first, we propose
a class of normalizations and prove several favorable properties for this class. For
the latter, we demonstrate that FWI using optimal transport can recover geophys-
ical properties from domains where no seismic waves travel through. We finally
illustrate these properties by the realistic application of imaging salt inclusions,
which has been a significant challenge in exploration geophysics.

© 2021 Wiley Periodicals LLC.

1 Introduction

The goal in seismic exploration is to estimate essential geophysical properties,
most commonly the wave velocity, based on the observed data. The development of
human-made seismic sources and advanced recording devices facilitate seismic in-
version using entire wavefields in time and space rather than merely travel time in-
formation as in classical seismology. The computational technique full-waveform
inversion (FWI) [26,53] was a breakthrough in seismic imaging, and it follows the
established strategy of a partial differential equation (PDE) constrained optimiza-
tion. FWI can achieve results with stunning clarity and resolution [59]. Unknown
parameters in a wave equation representing geophysical properties are determined

Communications on Pure and Applied Mathematics, 0001-0044 (PREPRINT)
© 2021 Wiley Periodicals LLC.



2 B. ENGQUIST AND Y. YANG

0 2 4 6
x (km) x (km) X (km)
(a) Observed data g (b) Synthetic data f (c) The difference f — g
1000 I — (3,1) |

— f3,1)
500 - A b
A.

-500 - B!

Amplitude

1 15 2 2.5 3 3.5
t(s)

(d) Comparison of the traces at x = 3 km

FIGURE 1.1. (a) The observed data g; (b) the synthetic data f; (c) the
difference f — g; (d) the comparison between two traces at x = 3km,
i.e., f(3.t) and g(3,t). Inversion using the L? norm suffers from cycle-
skipping issues in this scenario, which is further discussed in Section 6.2.

by minimizing the misfit between the observed and PDE-simulated data, i.e.,

(1.1) m* = argmin{J(f(m), g) + Z(m)},

where m is the model parameter, which can be seen as a function or discrete as
a vector. The misfit J is the objective function, f(m) is the PDE-simulated data
given model parameter m, g is the observed data, and % (m) represents the added
regularization. In both time [53] and frequency domain [44], the least-squares
norm J(f,g) = ||f — g||% has been the most widely used misfit function, which
we will hereafter denote as 2. In this paper, we focus on the effects of a different
choice of the objective function J and avoid adding any regularization % (m). This
is to focus on the properties of the misfit function.

It is, however, well-known that FWI based on the L? norm is sensitive to the
initial model, the data spectrum, and the noise in the measurement [60]. Cycle
skipping can occur when the phase mismatch between the two wavelike signals
is greater than half of the wavelength. The fastest way to decrease the L? norm
is to match the next cycle instead of the current one, which can lead to an incor-
rectly updated model parameter. It is a dominant type of local-minima trapping
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FIGURE 1.2. (a) Ricker wavelet f(¢) and its shift /(¢ — s); (b) signal
g(¢) and its shift g(¢ — s); (c) the L? norm and (d) the W, distance
between f(t) and f(t —s) in terms of shift s; (e) the L2 norm and (f) the
W, distance between g(¢) and g(z —s) as a function of s. The exponential
scaling (1.3) is applied to normalize the signals for the W, computation;
see Section 4.

in seismic inversion due to the oscillatory nature of the seismic waves. For ex-
ample, Figure 1.1a and Figure 1.1b show two datasets, which are 2D wavefields
measured at the upper boundary. Their phase mismatch is about one wavelength;
see Figure 1.1c and Figure 1.1d. LZ-based inversion for this case suffers from
cycle-skipping issues. We will discuss inversions based on this example in Sec-
tion 6.2. When the velocity in the model is too slow compared to the true value,
the simulated signal will arrive later than the observed true signal. It is, therefore,
natural to study the effects on the mismatch from shifts between the signals.

The quadratic Wasserstein distance (W5) is ideal for dealing with this type of
problem as it has perfect convexity with respect to translation and dilation (The-
orem 3.1). We will prove the theorem in Section 3 in a new and more general
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form. The convexity was the original motivation for us to introduce the Wasserstein
distance as the misfit function in seismic inversion [12, 13], which has now been
picked up and developed in parallel by many other research groups and generalized
to other Wasserstein metric beyond W> [9,36,37,51]. Figure 1.2 is an illustration
of the convexity of the W, metric regarding data translation. The signals used in
this example are the Ricker wavelet [49] and the more oscillatory fourth-order de-
rivative of Gaussian. The W, metric precisely captures the data shift s as the misfit
is s independent of the profile of the signal. It is not the case for the L? norm
whose basin of attraction depends on the spectral property of the signal.

Although the original goal of introducing optimal transport was to mitigate cy-
cle skipping as discussed above, we will see in this paper that there are other good
properties beyond reducing cycle skipping. These properties will be divided into
two parts. The first is the effect of data normalization [17], which is an essential
preprocessing step of transforming seismic signals to probability densities. In op-
timal transport theory, there are two main requirements for functions f and g that
are compactly supported on a domain IT:

f20. g=0, <f>=/nf=/ng=<g>.

Since these constraints are not expected for seismic signals, different approaches
have been promoted to tackle this issue. There exists a significant amount of work
from the applied mathematics community to generalize optimal transport to the
so-called unbalanced optimal transport [10, 18, 67]. Regarding the nonpositivity,
the Kantorovich-Rubinstein norm was proposed to approximate the 1-Wasserstein
metric [37], and mapping seismic signals into a graph space by increasing the di-
mensionality of the optimal transport problem by 1 is also demonstrated to be a
feasible solution [34,35].

Another way to achieve data positivity and mass conservation is to directly trans-
form the seismic data into probability densities by linear or nonlinear scaling func-
tions [16,17,46,66]. In this paper, we focus on the fundamental properties of such
data normalizations on W>-based inversion. In [66], we normalized the signals by
adding a constant and then scaling:

(1.2) f:u (‘g'zﬂ bh>0.

(f +b) (g +b)
An exponential based normalization (equation (1.3)) was proposed in [46]. Later,
the softplus function defined in equation (1.4) [20] as a more stable version of the
exponential scaling soon became popular in practice:

~ exp(bf) . exp(bg)
] = 27 =—2" ) )
(1.3) J (exp(bf))’ & {exp(bg))’ 5
(14 f _ log(exp(bf) + 1) 7= log(exp(bg) + 1) bh>0.

(log(exp(bf) + 1)) (log(exp(bg) + 1))
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In Figure 1.2, the exponential normalization (1.3) is applied to transform the signed
functions into probability distributions before the computation of the W> metric.

We remark that (1.3) and (1.4) suppress the negative parts of f, which works
well in most experiments, but it is also possible to add the objective function with
the normalization (1.3) and (1.4) applied to — f to avoid biasing towards either
side. Although the linear normalization (1.2) does not give a convex misfit function
with respect to simple shifts [65], it works remarkably well in realistic large-scale
examples [66]. Earlier, adding a constant to the signal was to guarantee a positive
function, but empirical observations motivate us to continue studying the positive
influences of certain data scaling methods. In Assumption 4.1, we summarize sev-
eral essential features for which we can later prove several desirable properties.
This class of normalization methods allows us to apply the Wasserstein distance to
signed signals, which can thus be seen as a type of unbalanced optimal transport.

We prove that the Wasserstein distance is still a metric d(f,g) = Wa(f,2)
in Theorem 4.2. Also, by adding a positive constant to the signals, one turns W,
into a “Huber-type” norm (Theorem 4.6). Researchers have studied the robustness
of the Huber norm [21], which combines the best properties of the £2 norm and
the £! norm by being strongly convex when close to the target or the minimum
and less steep for extreme values or outliers. For seismic inversion, the “Huber-
type” property means irrelevant seismic signals that are far apart in time will not
excessively influence the optimal transport map as well as the misfit function. By
adding a positive constant to the normalized data, we could guarantee the regularity
of the optimal map between the synthetic and the observed data (Theorem 4.8) and
consequently enhance the low-frequency contents in the gradient.

The second topic beyond cycle skipping is the remarkable property of W, in pro-
ducing useful information from below the lowest reflecting interface. This is one
part of the Earth from which no seismic waves return to the surface to be recorded.
The most common type of recorded data in this scenario is seismic reflection. Re-
flections carry essential information of the deep region in the subsurface, especially
when there are no transmission waves or other refracted waves traveling through
due to a narrow range of the recording. Conventional L?-based FWI using reflec-
tion data has been problematic in the absence of a highly accurate initial model.
In simple cases, some recovery is still possible, but it usually takes thousands of
iterations. The entire scheme is often stalled because the high-wavenumber model
features updated by reflections slow down the reconstruction of the missing low-
wavenumber components in the velocity. This issue can be mitigated by using
the W>-based inversion because of its sensitivity to small amplitudes and the low-
frequency bias. We will show several tests, including the salt body inversion, that
partial inversion for velocity below the deepest reflecting layer is still possible by
using the W, metric. It is another significant advantage of applying optimal trans-
port to seismic inversion beyond reducing local minima.

The focus in this paper is on the properties of the W;-based objective function
in full-waveform inversion, and the mathematical analysis here plays an important
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FIGURE 2.1. A diagram of FWI as an optimization problem. The step
in red is where we propose to use the Wasserstein metric.

role. Therefore, the numerical examples are straightforward using the same wave
propagator to generate both the synthetic and the observed data and without regu-
larization or postprocessing. In a realistic setting, the wave source for the synthetic
data is only an estimation. There are also modeling and numerical errors in the
wave simulation as well as noisy data. What makes us confident of the practical
value of the techniques discussed here is the emerging popularity in the industry
and successful application to real field data, which have been reported [41,43,47].
We include one numerical example to show the robustness of W,-based inversion
in Section 6 by using a perturbed synthetic source and adding correlated data noise.

2 Background

The primary purpose of this section is to present relevant background on two
important topics involved in this paper, full-waveform inversion and optimal trans-
port. We will also briefly review the adjoint-state method, which is a computa-
tionally efficient technique in solving large-scale inverse problems through local
optimization algorithms.

2.1 Full-waveform inversion

Full-waveform inversion (FWI) is a nonlinear inverse technique that utilizes the
entire wavefield information to estimate subsurface properties. It is a data-driven
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method to obtain high-resolution images by minimizing the difference or misfit be-
tween observed and synthetic seismic waveforms [60]. The goal of full-waveform
inversion is to estimate the true velocity field through the solution of the opti-
mization problem in (1.1). In this paper, we consider the inverse problem of find-
ing the velocity parameter of a 2D acoustic wave equation (2.1) on the domain
Q = {(x,z) € R? : z > 0} from knowing the wave solution on the part of the
boundary dQ = {(x,z) € R?: z = 0}.

In Figure 2.1, we highlight the major components of the FWI workflow in each
iteration. Starting with an initial velocity parameter, one forward solve gives the
synthetic data f = Ru. Here, R is an extraction operator that outputs the wavefield
u(x, t) on the boundary d2. u(Xx, ) is the solution to the following wave equation
on spatial domain 2 from time 0 to Tiax:

m(x) ZEED _ Au(x.£) = s(x.1).

92
Q2.1 u(x,0) =0, (x,0) =0 on Q,
Vu-n=20 on 092.
The model parameter is m(x) = — where v(x) is the wave velocity and s(x, 1)

v(x)?
is the known source term. It is a linear PDE but a nonlinear map from the m(x) to

u(x,t). Wave simulation is the most resource-intensive part of the workflow due
to the size of the discretized problem in geophysical applications. For realistic ap-
plications with hundreds of different wave sources, wave simulations are also done
as an embarrassingly parallel task on supercomputers. The difference between
the synthetic data f(m) and the real data g is calculated by an objective function
J(m). The conventional choice is the least-squares norm (L?), as we discussed
that suffers from cycle skipping and sensitivity to noise [59]:

Tmax

1
Jp2(m) = EZ// | fis (X, 1:m) — gi (x,1)|?dt dx.
is 900

In practice, the objective function is a summation over multiple sources where i
is the index representing the wavefield or data generated by a different source term
s(x,¢) in (2.1). The summation over the source helps broaden the bandwidth of
the observed data, capture waves from various illumination angles, and reduce the
effects of noise.

The adjoint-state method is used here to compute the FWI gradient of the objec-
tive function; see detailed derivations in [7,11,42]. For large-scale PDE-constrained
optimizations, the adjoint-state method is a common practice to efficiently compute
the gradient of a function or an operator numerically [6]. It has broad applications
in general inverse problems beyond seismic imaging [8,32,61].

Based on the adjoint-state method [42], one only needs to solve two wave equa-
tions numerically to compute the Fréchet derivative or gradient with respect to
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model parameters in FWI. The first one is the forward propagation (2.1). The sec-
ond one is the following adjoint equation on the domain 2 from time 7.« to O:

m82w(x,t) — Aw(x,t) = _R*8J

012 5f
(22) W, Tiax) = 0, P2(x, Tynax) = 0 on Q,
Vw-n=0 on 092.

The adjoint equation above requires zero final condition at time 7yy,«x. Thus, (2.2) is
often referred to as backpropagation in geophysics. Solving the adjoint equation is
also practically done in parallel. Once we have the forward wavefield u and adjoint
wavefield w, the gradient is calculated as follows:

§J Toax 9294 (x, 1)
2. —==> — 2wy .
( 3) 5m A at2 wl_y (X7 t)d[

S

We remark that a modification of the misfit function only impacts the source term
of the adjoint wave equation (2.2) [37].

Using the gradient formula (2.3), the velocity parameter is updated by an opti-
mization method as the last step in Figure 2.1 before entering the next iteration. In
this paper, we use L-BFGS with the backtracking line search following the Wolfe
conditions [29]. The step size is required to both give a sufficient decrease in the
objective function and satisfy the curvature condition [64].

In [66], we proposed a trace-by-trace objective function based on W,. A trace
is the time history measured at one receiver. The entire dataset consists of the
time history of all the receivers. For example, with x fixed, f(x,) is a trace. The
corresponding misfit function is

1
@4 Iatm) = 3 Y [ WEC (xtim). i, k. )
s 9

Mathematically it is W, metric in the time domain and L? norm in the spatial
domain. In Section 2.2, we will define the W, metric formally.

2.2 Optimal transport

The optimal mass transport problem seeks the most efficient way of transform-
ing one distribution of mass to the other, relative to a given cost function. It was
first brought up by Monge in 1781 [38] and later expanded by Kantorovich [23].
Optimal transport-related techniques are nonlinear as they explore both the signal
amplitude and the phases. The significant contributions of the mathematical anal-
ysis of the optimal transport problem since the 1990s [57] together with current
advancements in numerical methods [40] have driven the recent development of
numerous applications based on optimal transport [25].

Given two probability densities f = du and g = dv, we are interested in the
measure-preserving map 7 such that f = go T.
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DEFINITION 2.1 (Measure-preserving map). A transport map 77 : X — Y is
measure-preserving if for any measurable set B € Y,

w(T~'(B)) = v(B).
If this condition is satisfied, v is said to be the push-forward of p by T, and we
write v = Tyu.

If the optimal transport map T'(x) is sufficiently smooth and det(VT (x)) # 0,
Definition 2.1 naturally leads to the requirement

(2.5) J(x) = g(T(x)) det(VT (x)).

The transport cost function c¢(x, y) maps pairs (x,y) € X x Y to R U {400},
which denotes the cost of transporting one unit mass from location x to y. The
most common choices of ¢(x, y) include |x — y| and |x — y|?, which denote the
Euclidean norms for vectors x and y hereafter. While there are many maps 7'
that can perform the relocation, we are interested in finding the optimal map that
minimizes the total cost. If ¢(x,y) = |x — y|? for p > 1, the optimal transport
cost becomes the class of the Wasserstein metric:

DEFINITION 2.2 (The Wasserstein metric). We denote by &7, (X) the set of prob-
ability measures with finite moments of order p. For all p € [1, 00),

(2.6) WP(M,U)Z( inf /\x—TM,,,(x)\”du(x))”, v € Py(X).
TM_VEM Rn

T}.v is the measure-preserving map between . and v, or equivalently, (7, v)sp =
v. M is the set of all such maps that rearrange the distribution p into v.

Equation (2.6) is based on Monge’s problem for which the optimal map does not
always exist since “mass splitting” is not allowed. For example, consider u = §;
and v = %50 + %82, where & is the Dirac measure. The only rearrangement from
W to v is not technically a map (function). Kantorovich relaxed the constraints [23]
and proposed the following alternative formulation (2.7). Instead of searching for a
function 7, the transference plan 7 is considered. The plan is a measure supported
on the product space X xY where 7 (x, y1) and 7 (x, y») are well-defined for y; #
v2. The optimal transport problem under the Kantorovich formulation becomes a
linear problem in terms of the plan 7:

2.7 infI[r] = %/ c(x,y)dn|nm>0and 7w € ['(u, v)},
T XxY

where I'(u,v) = {m € P(X xY) | (Px)sw = u,(Py)smw = v}. Here (Px)
and (Py) denote the two projections, and ( Px )z and (Py )xmr are two measures
obtained by pushing forward & with these two projections.

One special property of optimal transport is the so-called c-cyclical monotonic-
ity. It offers a powerful tool to characterize the general geometrical structure of the
optimal transport plan from the Kantorovich formulation. It has been proved that
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optimal plans for any cost function have c-cyclically monotone support [58]. In
addition, the concept can be used to formulate a sufficient condition of the optimal
transport plan [4,24,58] under certain mild assumptions [1]. Later, we will use this
property to prove Theorem 3.1, one of the key results in the paper.

DEFINITION 2.3 (Cyclical monotonicity). We say thataset§ € X x Y is c-cyclic-
ally monotone if for any m € NT, (x;,y;) € £, 1 <i < m, implies

m m

S ety < 3 e yio). (%o, ¥0) = (me Ym)-

i=1 i=1

We focus on the quadratic cost (p = 2) and the quadratic Wasserstein distance
(W2). We also assume that p does not give mass to small sets [4], which is a
necessary condition to guarantee the existence and uniqueness of the optimal map
under the quadratic cost for Monge’s problem. This requirement is natural for
seismic signals. Brenier [4] also proved that the optimal map coincides with the
optimal plan in the sense that 7 = (Id x T')uu if Monge’s problem has a solution.
Thus, one can extend the notion of cyclical monotonicity to optimal maps.

The W, distance is related to the Sobolev norm H1 [39] and has been proved
to be insensitive to mean-zero noise [13, 15]. If both f = du and ¢ = dv are
bounded from below and above by constants ¢; and ¢, the following nonasymp-
totic equivalence holds:

1 1
(2.8) —If —gllg—1 =Wa(u.v) = —f = gllg-1.
Cco C1

where || fl -1 = H |$|_1f(§)HLZ, fis the Fourier transform of f, and & rep-
resents the frequency. If d¢ is an infinitesimal perturbation that has zero total
mass [57],

2.9) Walu.pt+d0) = |d¢l 1 +o(dd).

which shows the asymptotic connections. Here, H &L)
by measure u.

The 1/|£| weighting suppresses higher frequencies, as seen from the definition
of the H~! norm. It is also referred to as the smoothing property of the negative
Sobolev norms. The asymptotic and nonasymptotic connections in (2.8) and (2.9)
partially explain the smoothing properties of the W, metric, which applies to any
data dimension [15]. It is also a natural result of the optimal transport problem for-
mulation. On the other hand, the L2 norm is known to be sensitive to noise [60].

The noise insensitivity of the Wasserstein metric has been used in various applica-
tions [27,45].

is the H~! norm weighted

THEOREM 2.4 (W5 insensitivity to noise [13]). Consider probability density func-
tion f = g+36, where § is mean-zero noise (random variable with zero mean) with
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variance 1), piecewise constant on N intervals (numerical discretization). Then

If —gl3 =0m), Wi(fg) = 0(%).

Remark 2.5. Theorem 2.4 holds for general (signed) signals of zero mean if the
data is normalized by the linear scaling (1.2).

3 Full-Waveform Inversion with the Wasserstein Metric

A significant source of difficulty in seismic inversion is the high degree of non-
linearity and nonconvexity. FWI is typically performed with the .2 norm as the ob-
jective function using local optimization algorithms in which the subsurface model
is described by using a large number of unknowns, and the number of model pa-
rameters is determined a priori [54]. It is relatively inexpensive to update the model
through local optimization algorithms, but the convergence highly depends on the
choice of a starting model. Mathematically it is related to the highly nonconvex na-
ture of the PDE-constrained optimization problem and results in finding only local
minima.

The current challenges of FWI motivate us to modify the objective function in
the general framework in Figure 2.1 by replacing the traditional L2 norm with a
new metric of better convexity and stability for seismic inverse problems. Engquist
and Froese [12] first proposed to use the Wasserstein distance as an alternative
misfit function measuring the difference between synthetic data f and observed
data g. This new objective function has several properties advantageous for seismic
inversion. In particular, the convexity of the objective function with respect to
the data translation is a crucial property. Large-scale perturbations of the velocity
parameter mainly change the phases of the time-domain signals [13,22,60]. The
convexity regarding the data shift is the key to avoid the so-called cycle-skipping
issues, which is one of the main challenges of FWI. Results regarding the convexity
are given in Theorem 3.1 below.

Seismic signals are in both the time and the spatial domain. One can solve a 2D
or 3D optimal transport problem to compute the Wasserstein distance [36, 37] or
use the trace-by-trace approach (2.4), which utilizes the explicit solution to the 1D
optimal transport problem [57]. It is fast and accurate to compute the Wasserstein
distance between 1D signals, so the trace-by-trace approach is cost effective for
implementation. Nevertheless, benefits have been observed regarding the lateral
coherency of the data by solving a 2D or 3D optimal transport problem to compute
the W5 metric [33,43]. Both approaches have been appreciated by the industry [47,
62]. One can refer to [36, 66] for more discussions.

The translation and dilation in the wavefields are direct effects of variations in
the velocity v, as can be seen from D’ Alembert’s formula that solves the 1D wave
equation [13]. In particular, we will reformulate the theorems in [13] as a joint
convexity of W, with respect to both signal translation and dilation and prove it in
a more general setting. In practice, the perturbation of model parameters will cause
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both signal translation and dilation simultaneously, and the convexity with respect
to both changes is an ideal property for gradient-based optimization.

Since seismic signals are partial measurements of the boundary value in (2.1),
they are compactly supported in R4 and bounded from above. It is therefore natural
to assume

3.1 / / X — Y2 £()g()dx dy < +oo.
Rd ]Rd

Normalization is a very important step in seismic inversion that turns oscillatory
seismic signals into probability measures. It is one prerequisite of optimal trans-
port [17,35,46,66]. In this section, we regard the normalized synthetic data and
observed data as probability densities f = du and g = dv compactly supported
on convex domains X, Y C R%, respectively.

Next, we will improve our result in [13] with a stronger convexity proof in the
following theorem, Theorem 3.1, which states a joint convexity in multiple vari-
ables with respect to both translation and dilation changes in the data. Assume
that s, € R, k = 1,...,d, is a set of translation parameters and {ek}g:1 is the

standard basis of the Euclidean space R%. A = diag(1/A1.....1/Ay) is a dilation
matrix where A € RT,k = 1,...,d. We define fg as jointly the translation and
dilation transformation of function g such that

d
(3.2) fo(x) =det(A)g (A <x - Z skek)>.
k=1

We will prove the convexity in terms of the multivariable
O = {81, Sg. Mae s Agt € R,

THEOREM 3.1 (Convexity of W5 in translation and dilation). Let g = dv be a
probability density function with finite second moment and fg be defined by (3.2).
If, in addition, g is compactly supported on convex domain ¥ C R, the opti-
mal transport map between fg(x) and g(y) is y = To(x) where (To(x),er) =
/%k (x,ex) —sk), k = 1,...,d. Moreover, [(®) = sz(f@(x),g) is a strictly
convex function of the multivariable ®.

PROOF OF THEOREM 3.1. First, we will justify that y = Tg(x) is a measure-
preserving map according to Definition 2.1. It is sufficient to check that Tg satisfies
Equation (2.5):

feo(x) = det(4)g(Te(x)) = det(VTe(x))g(To(x)).

Since fg and g have finite second moment by assumption, (3.1) holds. Next,
we will show that the new joint measure g = (Id x Tg)#ue is cyclically mono-
tone. This is based on two lemmas from [57, p. 80] and the fundamental theorem
of optimal transport in [1, p. 10] on the equivalence of optimality and cyclical
monotonicity under the assumption of (3.1).
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For ¢(x, y) = |x — y|?, the cyclical monotonicity in Definition 2.3 is equivalent
to

m
D xi - (T(x;) = T(xi—1)) = 0,
i=1
for any given set of {x;}72; C X. For Tg(x), we have

> i+ (To(xi) — To(xiz1))

i=1

m d
=YD (xi.ex) - ({To(xi), ex) — (To(xi-1), ex))

i=1k=1
m d 1
=D 5 luiver) - ((xiex) — (ximr. i)
i=1k=1"k
141
= . . 2
(3-3) _EI;E;HX”“)_(’CZ—I’%H > 0,

which indicates that the support of the transport plan 7g = (Id x Tg)#ueg is
cyclically monotone. By the uniqueness of monotone measure-preserving optimal
maps between two distributions [31], we assert that Tg(x) is the optimal map
between fg and g. The squared W, distance between fg and g is

1(0) = W2(fo.g) = /X X — To(@)? fo(x)dx
d
= [ 3010 = Dtv.e) + sefa
g

d d d
(3.4) =Y ar — D> +2) bpsiu— D+ Y sz,
k=1 k=1 k=1

where ap = [y |(.ex)|>dv and by = [ (y.ex)dv.
1(®) is a quadratic function whose Hessian matrix H(®) is

Isisy oo Isisq Iiay - Igay P ... 0 b ... O
Isdsl cee Isdsd Isdll cee Isdld =2 0 cee 1 0 cee bd
Lys, o Dusy Doy oo Laay by ... 0 a; ... 0
Lysi oo Digsy Digry - Lagag 0 ... bg 0 ... a4

H(®) is a symmetric matrix with eigenvalues

ap + 1 £ \Jai —2ap +4b7 +1, k=1,...4d.
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2
w2(t,g)

FIGURE 3.1. W2( S0l &) where f, ] and g are probability density
functions of normal distribution (14, 02) and N(0, 1).

Since ar = [y (. ex)|?> dv > 0 by definition, and

2
(ap +1)% — (\/al% —2ay + 4b2 + 1)

:4(/{V|(y,ek)|2dV/Ylzd"_(/yw’e")dv)z)

3.9 >0 by Cauchy-Schwarz inequality,

all the eigenvalues of H(®) are nonnegative. Given any k = 1, ..., d, the equality
in (3.5) holds if and only if /(y) = |(y, ex)|? is a constant function Yy € Y, which
contradicts the fact that Y is a convex domain. Therefore, the Hessian matrix of
1(®) is symmetric positive definite, which completes our proof that W22 (fo.2)
is a strictly convex function with respect to ® = {s1,...,87,41,...,A4}, the
combination of translation and dilation variables. U

In Figure 3.1, we illustrate the joint convexity of the squared W, distance with
respect to both translation and dilation by comparing density functions of normal
distributions. We set f[;, ] as the density function of the 1D normal distribution
N(i,0?). The reference function g is the density of A(0,1). Figure 3.1 is the
optimization landscape of W22 (flu,01- &) as a multivariable function. It is globally
convex with respect to both translation y and dilation o.

Note that Theorem 3.1 applies when f and g are probability density functions,
which is not the case for seismic data. We will discuss more on this topic in Sec-
tion 4. Let us consider that we can transform the data into density functions and
compute the W, distance. The convexity of the “normalized” W, with respect to
translation and dilation depends on the choice of normalization function. We will
prove that the softplus scaling (1.4) still keeps the good convexity when the hyper-
parameter b in (1.4) is large.
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4 Data Normalization

We discuss the intrinsic convexity of the Wasserstein distance in Section 3, but
the fact that functions should be restricted to probability distributions is the primary
constraint of applying optimal transport to general signals, in particular, oscillatory
seismic waves. So far, mathematical extensions of the optimal transport theory to
signed measures are quite limited [2,30]. Different strategies have been proposed
in the literature to tackle this issue numerically.

The dual formulation of the 1-Wasserstein distance (W) coincides in expres-
sion with the so-called Kantorovich-Rubinstein (KR) norm while the latter is well-
defined for all functions. Using the KR norm as an alternative to Wj is a feasible
approach in seismic inversion [36,37]. Another interesting strategy is to map the
discrete signed signals into a graph space and then compare the Wasserstein dis-
tance between the obtained point clouds [34, 35, 50, 55]. One can also choose to
penalize the matching filter between datasets to be an identity based on the Wasser-
stein metric instead of working with the data itself [51,52]. Here we focus on a
different approach: to transform the data into probability density functions using a
nonlinear scaling function before the comparison.

Since properties of the Wasserstein distance are deeply rooted in the theory of
optimal transport, which studies probability measures, all the strategies above have
advantages as well as limitations. It is efficient to compute the KR norm for 2D and
3D data, but the norm does not preserve the convexity regarding data shifts. The
graph-based idea may preserve the convexity if the displacements along with the
amplitude and the phase are well-balanced, but inevitably increases the dimension-
ality of the optimal transport problem. Compared to these strategies, the approach
we present here is remarkably efficient as it does not increase the dimensionality
of the data such that it uses the closed-form solution to the 1D optimal transport
problem. The benefits in terms of computational costs are significant for practical
large-scale applications.

We have discussed normalization before in [17,46], but not until here are any
rigorous results given. In [12], the signals were separated into positive and nega-
tive parts £ = max{ £,0} and f~ = max{— f, 0}, and scaled by the total sum.
However, the approach cannot be combined with the adjoint-state method [42],
while the latter is essential to solve large-scale problems. This separation scaling
introduces discontinuities in derivatives from f* or £, and the discontinuous
Fréchet derivative of the objective function with respect to f cannot be obtained.
The squaring f2 or the absolute-value scaling | f| are not ideal either since they
are not one-to-one maps, and consequently lead to nonuniqueness and potentially
more local minima for the optimization problem (1.1). One can refer to [17] for
more discussions.

Later, the linear scaling (1.2) [66] and the exponential-based methods [46], (1.3),
and (1.4) are observed to be effective in practice. The main issue of data normal-
ization is how to properly transform the data, as one can see from the literature or
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practice that some scaling methods seem to work better than others. This section
focuses on presenting several useful scaling methods and explaining their corre-
sponding impacts on the W, misfit function. We aim to offer better understandings
of the role that the normalization function plays in inversion. First, we generalize
the class of effective normalization functions that satisfy Assumption 4.1.

ASSUMPTION 4.1. Given a scaling function o : R — R, we define the normal-
ization operator P, on function f : TI — R as follows: for x € Ily, ¢t € I,
where IT = IT; x I,,

(Po f)(x.1) = %

So () = /H (0 (f(x. 1)) + O)dx.

The scaling function o satisfies the following assumption

4.1 ¢ >0.

(1) o is one-to-one;
(i) 0 : R — Rt is a C* function.

Functions that satisfy Assumption 4.1 include the linear scaling o7(x; b), the
exponential scaling o, (x; b), and the softplus function og(x; b), where b is a hy-
perparameter. We use the definition “hyperparameter” to distinguish it from the
velocity parameter, which is determined in the inversion process:

oj(x;b) =x +b, 0.(x:b) =exp(bx), os(x;b) = Ilog(exp(bx) + 1).

Equivalent definitions are in equations (1.2), (1.3), and (1.4).

In the rest of Section 4 we prove several properties for the class of normalization
operators that satisfy Assumption 4.1 and discuss their roles in improving optimal-
transport-based FWI. Since the normalization (4.1) is performed on a domain I1,,
and the properties apply for any x € I1;, we will assume f and g are functions
that are defined on the domain I1, (instead of IT) for the rest of the section. As
mentioned in Section 2.1, we consider the trace-by-trace approach (1D optimal
transport) for seismic inversion. Hence, I1, € R, but all the properties in this
section hold for IT, C RY, d > 2, as well.

4.1 A Metric for Signed Measures

Let Ps(I1,) be the set of finite signed measures that are compactly supported
on domain I1, € R¥. Consider f = du and g = dv where 1, v € Py(I1,). We
denote f = P,(f) and g = P;(g) as normalized probability densities, where Py
is any scaling operator that satisfies Assumption 4.1. We shall use W»( f , &) as the
objective function measuring the misfit between original seismic signals f and g.

It can also be viewed as a new loss function W (£, g) = Wa( f , £) that defines a
metric between f and g.

THEOREM 4.2 (Metric for signed measures). Given Py that satisfies Assump-
tion 4.1, Wy defines a metric on Ps(I15).
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PROOF. Since W, is a metric on probability measures with finite second mo-
ment, W, is symmetric, nonnegative, and finite on Pg(I1,). Also, we have that

Wo(f. f) = Wa(Ps(f), Po(f)) = 0.
If W (f, g) = 0, then the following holds:
o(NHte  _ elgtc
Jm, o (f@)dr +c|Mz| [y, 0(g(@)dt + ¢z

Since f and g are both compactly supported on IT,, Ix* € II; such that f(x*) =
g(x*) = 0. Together with f(x*) = g(x*), we have

Ps(f) = Py (g).

oG e oot e
o 7o = T Sy el = ey el
= [ ot
II»

Together with (4.1) and the fact that ¢ is one-to-one, we have f = g on I15,.
All that remains to check is the triangle inequality. Consider 4 = dp where
p € Ps(I12).

Wo(f.8) + Wolg. h) = Wal(f.8) + Wa(Z.h) < Wa(f.h) = Wo(f.h). O

Remark 4.3 (Variance and invariance under mass subtraction). One can extend
the optimal mass transportation problem between nonnegative measures whose
mass is not normalized to unity [57]. Unlike the 1-Wasserstein distance (Wp),
which corresponds to the case of p = 1 in (2.6), Wa(f, g) is not invariant un-
der mass subtraction. This property can easily be extended to a set of functions
{he L2(T1y): f +h >0,g + h > 0} since generally

Wa(f +h,g +h) # Wa(f.g),

while the L2 norm and the W distance remain unchanged:

I(f +h) =g+l =If—glrze Wilf +h.g+h) = Wi(f.g).

W5 has the unique feature of variance under mass subtraction/addition. Later,
we will see that this feature gives us the Huber-type property (Theorem 4.6) and
regularization effects (Theorem 4.8) by adding a positive constant ¢ to the signals.

4.2 Hyperparameter b: Effects on Convexity

We list three specific scaling functions that satisfy Assumption 4.1, i.e., (1.2),
(1.3), and (1.4). In particular, the exponential scaling and the softplus function are
defined by the hyperparameter b, which controls the convexity of the normalized
Wasserstein distance. Without loss of generality, we set ¢ = 0 in (4.1).

We compare the optimization landscape of the normalized W, metric between
function f(x) and its shift f(x —s). The linear scaling affects the convexity of W,
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(d) Softplus (small b) (e) Softplus (large b)

FIGURE 4.1. Optimization landscape of the W, metric between Ricker
wavelets f(x) and f(x — s), generated by (a) the linear, (b) and (c) the
exponential with small and large b, and (d) and (e) the softplus scaling
with small and large b.

with respect to translation [17]; see Figure 4.1a. Figures 4.1b and 4.1c are ob-
tained by the exponential scaling. We choose scalar b such that |bf ||, ~ 0.5
in Figure 4.1b and ||bf ||, ~ 4 in Figure 4.1c. The objective function plot in
Figure 4.1c is more quadratic than the one in Figure 4.1b, while the latter is non-
convex. The larger the b, the more suppressed the negative counterparts of the
waveform. Similar patterns are also observed in Figure 4.1d and 4.1e for the soft-
plus scaling function. Nevertheless, one should note that an extremely large b
is not preferred for the exponential scaling due to the risk of noise amplification
and potentially machine overflow. Empirically, b should be chosen properly in the
range 0.2 < ||bf||¢., < 6. In this sense, the softplus scaling o is more stable than
the exponential scaling.

We present an extended result based on Theorem 3.1. Here, we consider signed
functions g and fg defined by (3.2), compactly supported on I1,,V0® € 7.
Here, %" is a compact subset of R24 that represents the set of transformation pa-
rameters. Under these assumptions, the convexity of the W, metric is preserved
when comparing signed functions.

COROLLARY 4.4 (Convexity of W, with the softplus scaling). Let f(;b and gp, be
normalized functions of fe and g based on the softplus scaling (1.4) with hyper-
parameter b. Then, there is b* € R™ such that 1(®,b) = W22( ff(;b, gp) is strictly
convex with respect to ® if b > b*.
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PROOF. One key observation is that 1(®, b) is a smooth function of multivari-
able © and the scalar variable b. As b — +00,

— f(;r — + —_

. . ~ g
lim fgp= = fg, lim g, = f—g+ =gt.
897

b—+00 fH% f®+ ’ b—+00

Since fg and g™ are nonnegative functions with equal total sum,

,Him 1(0.6) = Wi (fg.g")
is strictly convex in ® by Theorem 3.1. The Hessian of W22( fg ,g") in O,
H™(®), is symmetric positive definite for all ® € .#. If we denote the Hessian
of 1(®, b) with respect to ® as H(®, b), which is also a matrix-valued smooth
function in © and b, then limp_, y o, H(®,b) = H(j)r . Therefore, there is a b*
such that when b > b*, H(®, b) is symmetric positive definite for all ® € ¢,
which leads to the conclusion of the corollary. U

4.3 Hyperparameter c: Huber-Type Property

While the choice of b is essential for preserving the ideal convexity of the W,
metric with respect to shifts (Theorem 3.1), the other hyperparameter ¢ > 0 in (4.1)
regularizes the quadratic Wasserstein metric as a “Huber-type” norm, which can
be generalized to the entire class of normalization functions that satisfies Assump-
tion 4.1. In statistics, the Huber norm [21] is a loss function used in robust regres-
sion that is less sensitive to outliers in data than the squared error loss. For a vector
1, the Huber norm of s, s > 0, is O(s?) for small s and O(s) once s is larger
than a threshold. For optimal transport-based FWI, the Huber property is good for
not overemphasizing the mass transport between seismic events that are far apart
and physically unrelated as s> > s for large s. The big-O notation is defined as
follows.

DEFINITION 4.5 (Big-O notation). Let f and g be real-valued functions with do-
main R. We say f(x) = O(g(x)) if there are positive constants M and k such
that | f(x)|] < M|g(x)| for all x > k. The values of M and k must be fixed for the
function f and must not depend on x.

Assuming [T, € R, we will next show that the positive constant ¢ in the data
normalization operator P, defined in (4.1), turns the W, metric into a “Huber-
type” norm. The threshold for the transition between O(s?) and O(s) depends on
the constant ¢ and the support [1,. The constant ¢ is added after signals become
nonnegative, and the choice of o in Assumption 4.1 is independent of the Huber-
type property. Without loss of generality, we state the theorem in the context of
probability densities to avoid unrelated discussions on making data nonnegative.

THEOREM 4.6 (Huber-type property for 1D signal). Let f and g be probability
density functions compactly supported on II, C R and g(x) = f(x —s) on
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={x € R: x —s € [y} and zero otherwise. Consider fand g as new
density functions defined by linear normalization (1.2) for a given ¢ > 0; then

O(s[*) ifls| < % + [supp(S),
O(ls])  otherwise.

W2(f.8) =

PROOF. Without loss of generality, we assume f is compactly supported on an
interval [ay,az] € 1, and s > 0. Note that f and g are no longer compactly
supported on the domain I1,. In one dimension, one can solve the optimal trans-
portation problem explicitly in terms of the cumulative distribution functions

F(x) = /0 fydt, G(x) = /O g(t)dt.

It is well-known [57, theorem 2.18] that the optimal transportation cost is

1
4.2) W2(f.g) = /0 F7Y(0) — G 0P d.

If additionally the target density g is positive, the optimal map from f to g be-
comes

4.3) T(x) = GTY(F(x)).
Based on the 1D explicit formula (4.2),

~ 1 ~ ~
W2(F.5) = /O F () — G () Pdy =

2T ) = EPdy + [J2IFT () = F7H(y —crs) + s dy,
Is| < I+ laz —al,

)’12 |F~1(y) — Cy—1|2dy + yy; C% dy otherwise.

Here F, G, F,G are cumulative distribution functions of f. g, f , g, respectively.
|15 | denotes the Lebesgue measure of the bounded domain I,

c

P E— 3 = ci1a1 + c1s.
1 + c|I;] Y

cp = y1 =ciay, Y2 =ciaz+

1+ c/a|’

Since y; and y, are independent of s, it is not hard to show that W22 ( f~ , &) is linear
insifs > l + |ap — aq| while sz(f,gf) =0@G?)if0<s < l +lay —ay|. O

Remark 4.7. For higher dimensions Il C R¥, choosing the map 7' along the
shift direction gives Wi( f g) < O(s) for large s. The optimal map can reduce
W2( f g) to O(log(s)) if d = 2, which grows more slowly as s increases. We
focus on d = 1 and do not elaborate the details for higher dimensions here since
the trace-by-trace approach (2.4) is mainly used in this paper and also in practice.
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FIGURE 4.2. (a) The original signal f and g = f(t—s); (b) normalized
signals ]7 and g with ¢ = 0 and (c) with ¢ = 2 in (4.1); parameter b is
fixed in both (b) and (c). (d) The Huber effect of linear constant ¢ on the
loss function W/( ]7 , &) as a function of the shift s.

Based on the subadditivity of the W, distance under rescaled convolution [57],

~ f+ec g+c W2(f.g) )
W2(f.8) = W2 , < < WE(f. g).
2(f g) 2 (1 +C|H2| 1+C|H2| — (1 +C|H2|)2 — Z(fg)

The inequality shows that adding a constant ¢ to the data decreases the loss com-
puted by the original objective function and explains the “Huber-type” property.

The Huber-type property is also often observed in numerical tests. Consider
functions f and g where f is a single Ricker wavelet and g = f (¢t — 5); see Fig-
ure 4.2a. We apply the softplus scaling oy in (1.4) to obtain probability densities ]7
and g. According to Corollary 4.4, with a proper choice of the hyperparameter b,
the convexity proved in Theorem 3.1 holds. Thus, the Huber-type property proved
in Theorem 4.6 still applies. With b fixed, Figure 4.2d shows the optimization land-
scape of the objective function with respect to shift s for different choices of c¢. We
observe that as ¢ increases, the objective function becomes less quadratic and more
linear for the large shift, which conveys the same message as Theorem 4.6. Fig-
ure 4.2b shows the normalized Ricker wavelets for ¢ = 0; Figure 4.2c shows the
data with constant ¢ = 2 applied in (4.1). The major differences between the orig-
inal signal and the normalized ones are that we suppress the negative counterparts
of the wavelets while stretching the positive peaks. The phases remain unchanged,
and the original signal can be recovered since oy is a one-to-one function that sat-
isfies Assumption 4.1.

4.4 The Gradient-Smoothing Property

In this section, we demonstrate another important property, which is to improve
the regularity of the optimal map 7 as a result of adding the constant ¢ in (4.1).

Based on the settings of the optimal transport problem, the optimal map is often
discontinuous even if f,g € C; see Figure 4.3a for an example in which the
corresponding cumulative distribution functions F and G are monotone but not
strictly monotone. However, by adding a positive constant ¢ to the signals, we have
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FIGURE 4.3. The black arrows represent the optimal map 7'. (a) Func-
tion f is compactly supported on [3.5,6.5]. Function g is compactly
supported on [0, 3] U [7, 10]. The optimal map between f and g is dis-
continuous att = 5. (b) Signals f and g after linear normalization. The
optimal map 7 becomes a continuous function by adding the constant
¢ = 0.3 as stated in Theorem 4.8.

improved the smoothness for the optimal map, as seen in Figure 4.3b. The smooth-
ing property is based on the following Theorem 4.8. Since the positive constant ¢
is applied after the signed functions are normalized to be probability densities in
Assumption 4.1, we will hereafter show the improved regularity by applying the
linear scaling (1.2) to the probability densities with a positive constant c.

THEOREM 4.8 (The smoothing property in the map). Consider bounded probabil-
ity density functions f,g € C*(I1,) where I, is a bounded convex domain in
R? and 0 < a < 1. If the normalized signals f and g are obtained by the linear
scaling (1.2) with ¢ > 0, then the optimal map T between fand Fis Ck+1La(I1,).

PROOF. We first consider the case of d = 1. By adding a nonzero constant to
f and g, we guarantee that the cumulative distribution function of f and g, i.e.,
F and G, to be strictly monotone and thus invertible in the classical sense. The
optimal map 7 is explicitly determined in (4.3). Since f,g € Ck2 F G, F1,
G~!,and T are all in Ck+1e,

For higher dimensions d > 2, one can characterize the optimal map by the
following Monge-Ampere equation [4]:

f(x)
g(Vu(x))’
Note that f and g are bounded from below by 1++|1‘[2| Thus, f/g e Cho(I1,).
Since I, is convex, Caffarelli’s regularity theory for optimal transportation ap-

plies [5]. Thus, the solution u to (4.4) is C k+2.@ and the optimal transport map
T = Vuis CkT12 [4), O

4.4) det(D?u(x)) = x € Il,.
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FIGURE 4.4. (a) The W, data gradient (4.6) by linear scaling with¢ = 1
(blue) and ¢ = 0 (red); (b) the Fourier transform of the functions in (a).

One advantage of adding a constant in the data normalization (4.1) is to enlarge
M, the set of all maps that rearrange the distribution f into g. For example, f
and g shown in Figure 4.3a are C°° functions, but all feasible measure-preserving
maps between them are discontinuous. After normalizing f and g by adding a
positive constant such that they are strictly positive, smooth rearrangement maps
are available, and the optimal one is a C*° function for the case in Figure 4.3b.

The regularity of the optimal map is crucial for optimal-transport-based seis-
mic inversion, particularly for low-wavenumber reconstruction. A smooth optimal
map improves the smoothness of the data Fréchet derivative §J /§f where J is the
squared W5 metric. We will prove the statement in Corollary 4.9. The term 8J /§f
is also the source of the adjoint wave equation (2.2), which directly determines the
frequency content of the adjoint wavefield w. We recall that the model gradient g—,{i
is computed as a convolution of the forward and the adjoint wavefields, ¥ and w
in (2.3). Thus, a smoother source term for the adjoint wave equation (2.2) results
in a smoother adjoint wavefield w, and therefore a smoother model gradient g—’{?.
A smoother gradient can be seen as low-pass filtering of the original gradient and
thus focuses on low-wavenumber content for the subsurface model update.

Figure 4.4 shows a 1D example in which the adjoint source has stronger low-
frequency modes after data normalization following (4.1) with ¢ > 0 than the one
corresponding to the normalization with ¢ = 0. The following corollary states
the general smoothing effect in the gradient by adding a positive constant ¢ in the
normalization of data.

COROLLARY 4.9 (The smoothing effect in the gradient). Under the same as-

sumptions of Theorem 4.8, the Fréchet derivative of Wa( f, &) with respect to [ is
Ck-i—l,a'

PROOF. By chain rule of the Fréchet derivative, we have

_SWALD _swE. DS

4.5) 1 5f 8]7 5
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Since % € C for all scaling methods that satisfy Assumption 4.1, we only
check the regularity of

_ WD
sf

We first consider the case of d = 1, where H(¢) is a 1D function defined on R.
Based on the 1D explicit formula (4.2), we can write down H explicitly by taking
the first variation [66]. An important observation is that

(4.6) H

4.7 CZ—I;I =20 -G 'F@t)) =2 —-T(1)),

where T is the optimal map between f and g. By Theorem 4.8, T € C k+le and
thus H € CK*t2:2 which proves that I in (4.6) is at least Ck+le

Next we discuss the case of d > 2. One can linearize the Monge-Ampere
equation in (4.4) and obtain a second-order linear elliptic PDE of ¢ [13]:

4.8) gVu)tr((D?u)qq; D*V) + det(D?u)VE(Vu) - Vyr = §f,
' V¥ -n=0 ondll,,

where Auqj = det(A)A™! is the adjugate of matrix A4, u is the solution to (4.4),

and §f is the mean-zero perturbation to f . If we denote (4.8) as a linear operator
L where Ly = §f, H in (4.6) becomes

H =[x — Vul> = 2(L)*(V- (x — Vu) f)).

In Theorem 4.8, we have already shown that u € C k+2.a The right-hand side of
the elliptic operator, V - ((x — Vu)f), is then in C5®. As a result, H is Ck+2:@
if £ is not degenerate, and C kL if it s degenerate [15]. Therefore, the Fréchet
derivative of W ( f , &) with respect to f is at least C¥+1% for d > 1. a

Theorem 4.8 and Corollary 4.9 demonstrate the smoothing effects achieved by
adding a positive ¢ in (4.1). Nevertheless, as we have shown in [15], the “smooth-
ing” property plays a much more significant role in using the quadratic Wasserstein
metric as a measure of data discrepancy in computational solutions of inverse prob-
lems. We have characterized in [15], analytically and numerically, many principal
benefits of the W, metric, such as the insensitivity to noise (Theorem 2.4) and
the convex optimization landscape (Theorem 3.1), can be explained by the intrin-
sic smoothing effects of the quadratic Wasserstein metric. In Section 5, we will
see how the smoothing property, which is related to the frequency bias of the W,
metric, keeps tackling the challenging inversion scenarios that are noise-free and
beyond the scope of local-minima trapping.
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5 Model Recovery Below the Reflectors

Subsurface velocities are often discontinuous, which arises naturally due to the
material properties of the underlying physical system. Due to data acquisition lim-
itations, seismic reflections are often the only reliable information to interpret the
geophysical properties in deeper areas. Inspired by the realistic problem with salt
inclusion, we create a particular layered model whose velocity only varies verti-
cally. Despite its simple structure, it is notably challenging for conventional meth-
ods to invert with reflections. No seismic waves return to the surface from below
the reflecting layer. Nevertheless, we will see that partial inversion for velocity
below the reflecting interface is still possible by using W, as the objective function
in this PDE-constrained optimization.
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FIGURE 5.1. The layered model: (a) true velocity, (b) initial velocity,
(c) L?-based velocity inversion, and (d) W-based velocity inversion.

5.1 The Layered Example

The target velocity model we aim to reconstruct contains two layers of homoge-
nous constant velocity; see Figure 5.1a. The second layer with wave speed 4 km/s
is unknown to the initial model (Figure 5.1b). The wave source in the test is a
Ricker wavelet with a peak frequency of 5 Hz. There are 23 sources and 301 re-
ceivers on top in the first layer with wave speed 2 km/s. The total recording time
is 3 seconds. There is naturally no back-scattered information from the interior of
the second layer returning to the receivers. Due to both the physical and numerical
boundary conditions [14], reflections from the interface are the only information
for the reconstruction.

The numerical inversion is solved iteratively as an optimization problem. Both
experiments are manually stopped after 260 iterations. Figure 5.1c shows the final
result using the L2 norm. The vertical velocity changes so slowly that it does not
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give much more information than indicating the location of the interface. Never-
theless, the W, result in Figure 5.1d gradually recovers not only the layer interface
but also the majority of the sublayer velocity.

5.2 Tackling Issues Beyond Local Minima

In Figure 5.2a, both the normalized L% norm and W, distance are reduced from 1
to nearly 0. The plots indicate that L2-based inversion does not suffer from local
minima in this layered example. The velocity is initiated correctly above the in-
terface. In Figure 5.2b, L2-based inversion has a model convergence curve that is
radically different from its data convergence in Figure 5.2a. The normalized model
error, measured by the Frobenius norm of mje, — ms« where mije, is the recon-
struction at the current iteration and m is the truth, remains unchanged. On the
other hand, the W;-based inversion has both the W5 distance and the model error
decreasing rapidly in the first 150 iterations. Since the computational cost per iter-
ation is the same in both cases by computing the W, distance explicitly in 1D [66],
the W,-based inversion lowers the model error much more quickly. Both the inver-
sion results in Figure 5.1 and the convergence curves in Figure 5.2 illustrate that
the W5-based inversion gives a better reconstruction. Other features of W, other
than the convexity for translations and dilations (Theorem 3.1) play critical roles
in this velocity inversion.

At first glance, it seems puzzling that W;-based FWI can even recover velocity
in the model where no seismic wave goes through. The fact that there is no re-
flection from below the known interface in the measured data is, of course, also
informative. After analyzing the layered example more carefully, we have summa-
rized two essential properties of the quadratic Wasserstein metric that contribute to
the better inversion result, small-amplitude sensitivity and frequency bias.
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5.3 Small-Amplitude Sensitivity

Figure 5.3a and Figure 5.3b are the vertical velocity profiles of L2-based and
Ws-based FWI at the 50th, 100th, and 200th iterations. The inverted velocity pro-
file at the 50th iteration has a gradual transition from 4 km/s back to 2 km/s around
z = 1 km. The simulated reflector is present in the earlier iterations of both L2-
and W5-based inversion. It is often referred to as overshoot. However, this sim-
ulated reflector is the key information to uncover the velocity model below the
interface.

Although the inverted velocity at 50th iteration does not have the discontinuity
at z = 0.6 km as in the true velocity, there is a frequency-dependent reflectivity
caused by the linear velocity transition zone from z = 0.5kmto z = 1 km. In 1937
Alfred Wolf [63] first analyzed this particular type of reflectivity dispersion. We
extract the linear transition zones and create the analogous versions in Figure 5.4.
The solid plot in Figure 5.4 represents our target model, while the dashed plots are
two types of Wolf ramps, similar to the velocity profiles at the 50th and the 100th
iteration in Figure 5.3.

All three velocity models in Figure 5.4 produce strong reflections of the same
phase due to the jump in velocity at z = 1 km. However, the energy reflected is
relatively smaller from the ones with Wolf ramps. In addition to that, the linear
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FIGURE 5.5. Reflections produced by the 3 Hz and the 7 Hz Ricker
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transition zone generates another reflection which has extremely small energy. If
the amplitude of the difference in reflection is &, the L2 misfit is O (&?) while the
W, misfit is O(e). Since the reflection amplitude ¢ < 1, the W, metric mea-
sures the misfit O(g) > O(e?). Consequently, W,-based inversion can correct the
velocity model furthermore based on the relatively bigger residual.

5.4 Frequency bias

As illustrated in [28, fig. 2], the amplitude of the Wolf ramp reflection coefficient
at the normal incident is bigger for lower frequencies and smaller for higher fre-
quencies. This is also observed in Figure 5.5. The difference between the true data
reflection and the one from Wolf ramps is more significant for 3-Hz data than the
7-Hz one. When the simulated data and the observed data are sufficiently close to
each other, inverse matching with the quadratic Wasserstein metric can be viewed
as the weighted H ! seminorm [15, 39], which has a 1/k weighting on the data
spectrum with k representing the wavenumber. As a result, the W, objective func-
tion “sees” more of the stronger low-frequency reflections caused by the Wolf ramp
than the L2 norm. Based on its better sensitivity to the low-frequency modes, the
Wh-based inversion can keep updating the velocity model and reconstruct the sec-
ond layer in Figure 5.1a by minimizing the “seen” data misfit.

In Figure 5.2b, we observe that the 2-norm of the model error in L2-based inver-
sion barely changes. We decompose all velocity models in the experiment into low-
wavenumber (with Fourier modes |k| < 30) and high-wavenumber (with Fourier
modes |k| > 30 ) parts by bandpass filters. We are interested in the model error
decay of each part in the inversion. Similarly, we divide the data residual of both
inversions into the low- and high-frequency parts. The residual is computed as the
difference between synthetic data f(x, ¢;m) generated by the model m at current
iteration and the true data g(x, t):

residual = f(x,t;m) — g(x,1).
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The differences between the two objective functions are more clear in Figure 5.6,
which illustrates different convergence patterns for the smooth and oscillatory parts
of both the model and the data. The low-wavenumber model error (Figure 5.6a) and
the low-frequency data residual (Figure 5.6¢) of the W,-based inversion decreases
much more rapidly than the L2-based inversion, while the latter shows sensitivity
in reducing the high-wavenumber model error and high-frequency residuals, based
on Figure 5.6b and Figure 5.6d.

Another way of analyzing the error reduction with respect to different objec-
tive functions is to look at their data residual in the Fourier domain. Figure 5.7
consists of six plots of the residual spectrum of two inversion schemes at three
different iterations. By comparing the change of spectrum as the iteration number
increases, one can observe that the inversion driven by the L2 norm has a different
pattern in changing the residual spectrum with the W5-based inversion. It focuses
on reducing the high-frequency residual in early iterations and slowly decreasing
the low-frequency residual later. On the other hand, inversion using the W, met-
ric reduces the smooth parts of the residual first (Figure 5.7¢) and then gradually
switches to the oscillatory parts (Figure 5.7f).

The fact that W, is more robust than L? in reconstructing low-wavenumber
components while L2-FWI converges faster and achieves higher resolution for the
high-wavenumber features was already observed in [66], in an inversion example
with difficulties of local minima. For the two-layer example discussed above, the
L?-based inversion does not suffer from local minima trapping, but the properties
for these two inversion schemes still hold. Rigorous analysis has been done in [15],
where the L2 norm and the W, metric were discussed under both the asymptotic
and nonasymptotic regimes for data comparison. Theorems have demonstrated
that L2 norm is good at achieving high resolution in the reconstruction, while the
W, metric gives better stability with respect to data perturbation. Using W5-based
inversion to build a good starting model for the L2-based inversion in a later stage
is one way to combine useful features of both methods.

6 Numerical Examples

In this section, we demonstrate several numerical examples under both synthetic
and somewhat more realistic settings. We will see applications of the W, convexity
analysis in Section 3, and, more importantly, other improvements in Section 5 that
are beyond local-minima trapping. The L2 norm and the W metric will be used as
the objective function, and their inversion results will be compared. In particular,
we stick with the so-called trace-by-trace approach (2.4) for inversions using the
W5 metric.
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FIGURE 6.1. The Marmousi model inversion: (a) the true and (b) initial
velocities; (c) and (d): the L? and W, inversion results for the synthetic
setting; (e) and (f): the L? and W, inversion results for the realistic set-
ting. We use the linear scaling (1.2) as the data normalization to calculate
the W, metric. All axes are associated with the unit km.

6.1 The Marmousi Model

The true velocity of the Marmousi model is presented in Figure 6.1a, which was
created to produce complex seismic data that require advanced processing tech-
niques to obtain a correct Earth image. It has become a standard benchmark for
methods and algorithms for seismic imaging since 1988 [56]. The initial model
shown in Figure 6.1b lacks all the layered features. We will invert the Marmousi
model numerically using the L2 norm and the W> metric under one synthetic set-
ting and a more realistic setting in terms of the observed true data.

Synthetic Setting

Under the same synthetic setting, the true data and the synthetic data are gener-
ated by the same numerical scheme. The wave source is a 10 Hz Ricker wavelet.
A major challenge for the L2-based inversion is the phase mismatches in the data
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FIGURE 6.2. The realistic setting for the Marmousi model: (a) noisy
and clean observed datasets comparison at one trace; (b) estimation of
the source wavelet by the linear waveform inversion.

generated by the true and initial velocities. After 300 L-BFGS iterations, the L2-
based inversion converges to a local minimum, as shown in Figure 6.1c, which is
also a sign of cycle skipping due to the lack of convexity with respect to data trans-
lation. The Wj-based inversion, on the other hand, recovers the velocity model
correctly, as seen in Figure 6.1d. As discussed in Section 3, the W, metric has
the important convexity with respect to data translation and dilation. Hence, the
initial model is within the basin of attraction for the WW,-based inversion. Once the
background velocity is correctly recovered, the missing high-wavenumber features
can also be reconstructed correctly.

A More Realistic Setting

For field data inversions, source approximation, the elastic effects, anisotropy,
attenuation, noisy measurement, and many other factors could bring modeling er-
rors to the forward propagation. To discuss the robustness of the W>-based method
with respect to the accuracy of the source estimation and the noise in the measure-
ments, we present another test with more challenging settings.

The observed data is generated by a Ricker wavelet centered at 10 Hz as in
the previous test, which is additionally polluted by mean-zero correlated random
noise; see an illustration of the noisy data in Figure 6.2a. We estimate the source
profile by linear least-squares waveform inversion of the direct wave [44,48]. A
homogeneous medium of 1.5 km/s is used as the velocity model in the linear inver-
sion. The reconstructed source wavelet is shown in Figure 6.2b. Inversion results
are illustrated in Figure 6.1e and Figure 6.1f. The presence of noise and the inac-
curate wave source deteriorate the L2 result, but only mildly change the W-based
inversion. Most structures are recovered with relatively lower resolution. Inaccu-
racies are present for the shallow part. Nevertheless, in comparison, the W, metric
is more robust than the L2 norm for small perturbations in the data that come from
modeling error or measurement noise.
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The Scaling Method

In the W>-based Marmousi model inversions, we transform the wavefields into
probability densities by the linear scaling (1.2). The constant ¢ is chosen to be the
£%° norm of the observed data. Although the normalized W, metric lacks strict
convexity in terms of data translations as we pointed out in [17], the linear scaling
still works remarkably well in practice for most cases, including the realistic in-
versions in the industry. Also, normalization methods (1.3) and (1.4) give similar
results and are therefore not included. Nevertheless, data normalization is an im-
portant step for W,-based full-waveform inversion. More analysis and discussions
are presented in Section 4.

It is observed here and in many other works on optimal-transport-based FWI
that a slight improvement in the convexity of the misfit function seems to produce
significant effects on the inversion in mitigating cycle-skipping issues [36, 66]. It
is also the case for the linear scaling (1.2). The linear scaling does not preserve
the convexity of the W> metric with respect to translation, but as a sign of im-
provement, the basin of attraction is larger than the one for the L2 norm, as shown
previously in Figure 1.2c and Figure 4.1a.

We can point to three reasons that may contribute to the success of the linear
scaling in practice. First, as discussed in Section 4, adding a constant to the sig-
nals before being compared by the W, metric brings the Huber effect for better
robustness with respect to outliers. Second, it smooths the FWI gradient and thus
emphasizes the low-wavenumber components of the model parameter. Third, the
convexity with respect to signal translation only covers one aspect of the challenges
in realistic inversions. The synthetic data is rarely a perfect translation of the ob-
served data in practice. The nonconvexity caused by the linear scaling might not
be an issue in realistic settings, while the outstanding benefits of adding a positive
constant dominate.

6.2 The Circular Inclusion Model

We have presented the Marmousi model to demonstrate that W5-based inversion
is superior to L.2. We also show that the linear scaling (1.2) is often good enough as
a normalization method. However, to address the importance of data normalization
in applying optimal transport, we create a synthetic example in which the linear
scaling (1.2) affects the global convexity of W5.

We want to demonstrate the issues above with a circular inclusion model in a
homogeneous medium (with 6 km in width and 4.8 km in depth). It is also referred
to as the “Camembert” model [19]. The true velocity is shown in Figure 6.3a,
where the anomaly in the middle has wave speed 4.6 km/s while the rest is 4
km/s. The initial velocity we use in the inversion is a homogeneous model of 4
km/s. We have 13 sources of 10 Hz Ricker wavelet equally aligned on the top of
the domain, while 201 receivers are on the bottom. The recorded signals contain
mainly transmissions, which are also illustrated in Figure 1.1 as an example of the
cycle-skipping issues. Figure 1.1c shows the initial data fit, which is the difference
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FIGURE 6.3. Velocity model with circular inclusion: (a) True velocity;
(b) L? inversion; (c)—(f): W,-based inversion using the square, the linear,
the exponential (b = 0.2), and the softplus scaling (b = 0.2).
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FIGURE 6.4. Circular inversion: the data fit in the final models for the
L? inversion and the W, inversions with the square, linear, exponential,
and softplus scalings. All figures are plotted under the same colormap.
The initial data fit is presented in Figure 1.1c.

between the observed data and the synthetic data generated by the initial velocity
model. As seen in Figure 6.3b, the inversion with the L2 norm as the objective
function suffers from local minima trapping.
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Figure 6.3c to Figure 6.3f present inversion results by using the W5 metric as
the objective function, but with different data normalization methods: the square
scaling [17], the linear scaling o7, the exponential scaling o,, and the softplus scal-
ing oy, respectively. As shown in Figure 6.3c and Figure 6.3d, W5-based inversion
under the square scaling and the linear scaling also suffer from cycle-skipping is-
sues whose final inversion results share similarities with the reconstruction by the
L? norm. Theoretically, the W, metric is equipped with better convexity, but the
data normalization step may weaken the property if an improper scaling method
is used. On the other hand, the exponential scaling and the softplus scaling can
keep the convexity of the W, metric when applied to signed functions. The addi-
tional hyperparameter b in the scaling functions helps to preserve the convexity;
see Corollary 4.4 and the discussions in Section 4.2.

Exponential functions amplify both the signal and the noise significantly, mak-
ing the softplus scaling a more stable method, especially when applied with the
same hyperparameter b. In this Camembert model, Figure 6.3f with the softplus
scaling and b = 0.2 is the closest to the truth, while Figure 6.3e by the exponential
scaling with & = 0.2 lacks good resolution around the bottom part. All the figures
are plotted under the same color scale. We think data normalization is the most
important issue for optimal-transport-based seismic inversion. We have devoted
the entire Section 4 to this important topic, and more developments in the optimal
transport theory are necessary to ultimately resolve the issue.

Finally, we present the data misfit of the converged models in Figure 6.4, which
are the differences between the observed data and the synthetic data at convergence
from different methods. Compared with the initial data fit in Figure 1.1c, the square
scaling for the W, inversion hardly fits any data, while inversions with the LZ norm
and the linear scaling reduce partial initial data residual. The exponential and the
softplus scaling are better in performance, while the latter stands out for the best
data fitting under the setup of this experiment.

In Figure 6.5, we compare the adjoint source of different methods at the first
iteration. To better visualize the differences, we focus on one of the traces and
zoom into the wave-type features. The L2 adjoint source is simply the difference
between the observed and the synthetic signals, while the one by the linear scaling
is closer to its envelope. The enhancement in the low-frequency contents matches
our analysis in Section 4. It also partially explains why the linear scaling alone
is often observed to mitigate the cycle-skipping issues effectively. The adjoint
source by the square scaling has the oscillatory features of the seismic data. The
exponential and the softplus scaling methods share similar adjoint sources at the
first iteration of the inversion.

Remark 6.1. Although inversion with the linear scaling fails in the Camembert
example, it often works well in realistic cases where the recorded data contain var-
ious types of seismic waveforms; for example, see Figure 5.1d and Figure 6.1d. For
cases where the linear scaling struggles, one can turn to the softplus scaling [46], as
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FIGURE 6.5. Circular inversion: comparison of normalized adjoint
sources (the Fréchet derivative of the objective function with respect to
the synthetic data) at the first iteration for the L? inversion and the W,
inversion with the square, linear, exponential, and softplus scalings.

shown in Figure 6.3. With properly chosen hyperparameters, the softplus scaling
keeps the convexity of the W, metric, which we proved in Corollary 4.4. Hence,
the inversion process does not suffer from cycle-skipping issues.

6.3 The salt model

In this section, we invert a more realistic model problem, which represents the
challenging deep-layer reconstruction with reflections. It is an application of other
improvements of the W,-based inversion discussed in Section 5 that are beyond
tackling local minima.

We consider Figure 6.6a as the true velocity model, which is also part of the 2004
BP benchmark (2.8 km in depth and 9.35 km in width). The model is representative
of the complex geology in the deepwater Gulf of Mexico. The main challenges in
this area are obtaining a precise delineation of the salt and recovering information
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FIGURE 6.7. Salt reconstruction: (a) the L?-based and (b) W,-based
inversion after 100 L-BFGS iterations.

on the sub-salt velocity variations [3]. All figures displayed here contain three
parts: the original, the low-pass, and the high-pass filtered velocity models.

The well-known velocity model with strongly reflecting salt inclusion can be
seen as a further investigation of Section 5 in a more realistic setting. The inversion
results from these sharp discontinuities in velocity are the same as the layered
model in Section 5. With many reflections and refraction waves contributing to the
inversion in the more realistic models, it is harder to determine the most relevant
mechanisms. Different from the layered example in Section 5, the observed data
here contains diving waves, which are wavefronts continuously refracted upwards
through the Earth due to the presence of a vertical velocity gradient. However,
reflections still carry the essential information of the deep region in the subsurface
and are the driving force in the salt inclusion recovery.

The synthetic setting

The inversion starts from an initial model with the smoothed background with-
out the salt (Figure 6.6b). We place 11 sources of 15 Hz Ricker wavelet and 375
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(b) The original, low-pass filtered and high-pass filtered W,-FWI after 600 iterations

FIGURE 6.8. Salt reconstruction: (a) the L?-based and (b) W,-based
inversion after 600 L-BFGS iterations.

receivers equally on the top. The total recording time is 4 seconds. The observed
data is dominated by the reflection from the top of the salt inclusion. After 100
iterations, FWI using both objective functions can detect the salt upper bound-
ary. Figure 6.7a and Figure 6.7b also show that the high-wavenumber compo-
nents of the velocity models are partially recovered in both cases, while the smooth
components barely change. This is different from the Marmousi example, where
high-wavenumber components cannot be correctly recovered ahead of the smooth
modes.

With more iterations, the W>-based inversion gradually recovers most parts of
the salt body (Figure 6.8b), which is much less the case for L2-based inversion,
as shown in Figure 6.8a. In particular, one can observe that a wrong sublayer is
created after 600 L-BFGS iterations in Figure 6.8a, from which one may have a
misleading interpretation about the Earth. Figure 6.8b matches the original salt
body. In general, features related to the salt inclusion can be better determined by
using optimal-transport-related metrics as the misfit function with the help of both
refraction and reflection; also see [65, fig. 4] for example.

A more realistic setting

Similar to Section 6.1, we present another test where a refined finite-difference
mesh simulates the observed data, and thus a different wave propagator is used
in this inversion test. Additionally, the reference data contains correlated mean-
zero noise. Other setups remain the same. Figure 6.9a compares samples of the
(noisy) observed data used in this test and the one in the previous test. Figure 6.9b
is the inversion using the L2 norm as the objective function, while Figure 6.9¢
presents the inversion results based on the W, metric where the linear scaling (1.2)
is used to normalize the signals. Both tests are stopped after the L-BFGS algorithm
can no longer find a feasible descent direction. With the presence of noise, both
methods correctly reconstruct the upper boundary of the salt body based on the
phase information of the reflections. However, amplitudes of the wave signals are
corrupted by the noise, which affects the reconstruction of the entire salt body.



OPTIMAL TRANSPORT FOR FWI 39

4 T T T
——noisy data

——clean data

Amplitude

t(s)

l 4

0 1 2 3 4 5 6 7 8
x (km) X (km)

(b) L?-based inversion (c) Ws-based inversion

FIGURE 6.9. Salt reconstruction under the realistic setting: (a) the com-
parison between the clean data and the noisy data, which is also gener-
ated by a refined mesh (b) L2-based inversion and (c) W,-based inver-
sion after convergence.

The W,-based inversion with the noisy data can still recover a significant amount
of the salt body. However, the thickness of the layer is smaller than the one from the
synthetic setting (Figure 6.8b). It is expected based on our discussion on the small-
amplitude sensitivity in Section 5.3. The energy reflected by the upper boundary
of the salt is minimal, but it is critical for the W, metric to reconstruct the model
features below the reflecting interface in the previous synthetic setting. The small
reflection can be obscured by the presence of noise and modeling error under this
realistic setting.

Nevertheless, the W,-based reconstruction has almost no footprint from the
noise except the salt body, while the L2-based inversion has a distinct noise pattern;
see Figure 6.9b. It is an interesting phenomenon observed from all numerical tests
of W,-based inversion. Instead of overfitting the noise or the wrong information
in the data, W,-based inversion stops with no feasible descent direction, while L2-
based inversion continues updating the model parameter, but mainly fits the noise
and numerical errors, which in turn gives noisy and incorrect reconstructions. It is
another demonstration of the good stability of the W, metric for data-fitting prob-
lems, as discussed in [15].

7 Conclusion

In this paper, we have analyzed several favorable new properties of the quadratic
Wasserstein distance connected to seismic inversion, compared to the standard L2

9
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techniques. We have presented a sharper convexity theorem regarding both trans-
lation and dilation changes in the signal. The improved theorem offers a more
solid theoretical foundation for the wide range of successful field data inversions
conducted in the exploration industry. It shows why trapping in local minima, the
so-called cycle skipping, is avoided, and the analysis gives guidance to algorithmic
developments.

Data normalization is a central component of the paper. It has always been
a limitation for optimal transport applications, including seismic imaging, which
needs to compare signed signals where the requirement of nonnegativity and the
notion of equal mass are not natural. We study different normalization methods and
define a class with attractive properties. Adding a buffer constant turns out to be
essential. In a sequence of theorems, we show that the resulting relevant functional
for optimization is a metric, and the normalized signals are more regular than the
original ones. We also prove a Huber-norm type of property, which reduces the
influence of seismic events that are far apart and should not affect the optimization.
The analysis here explains the earlier contradictory observations [66] that linear
normalization often works better in applications than many other scaling methods,
even if it lacks convexity with respect to shifts [17].

The final contribution of the paper is to present and analyze the remarkable ca-
pacity of the W5-based inversion of sublayer recovery with only the reflection data
even when there is no seismic wave returning to the surface from this domain. The
conventional L2 norm does not perform well, and here it is not the issue of cycle
skipping. Both amplitude and frequency play a role. Compared to the W, metric,
the L2 norm lacks sensitivity to small-amplitude signals. We saw this in numeri-
cal tests and from classical refraction analysis. The inherent insensitivity of the L2
norm to low-frequency contents of the residual is a primary reason that L?-FWI of-
ten fails to recover the model kinematics. W,-based inversion captures the essential
low-frequency modes of the data residual, directly linked to the low-wavenumber
structures of the velocity model. This property is important for applications of this
type, where the initial model has poor background velocity.

With this paper, the mathematical reasons for the favorable properties of W-
based inversion become quite clear. There are still several other issues worth study-
ing that could have important practical implications. Examples are further analysis
of other forms of optimal transport techniques as, for example, unbalanced optimal
transport and W;. The scalar wave equation is the dominating model in practice,
but elastic wave equations and other more realistic models are gaining ground, and
extending the analysis and best practices to these models will be essential.
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