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SUMMARY

Full waveform inversion (FWI) and least-squares reverse time
migration (LSRTM) are popular imaging techniques that can
be solved as PDE-constrained optimization problems. Due to
the large-scale nature, gradient- and Hessian-based optimiza-
tion algorithms are preferred in practice to find the optimizer
iteratively. However, a balance between the evaluation cost
and the rate of convergence needs to be considered. We pro-
pose the use of Anderson acceleration (AA), a popular strat-
egy to speed up the convergence of fixed-point iterations, to
accelerate a gradient descent method. We show that AA can
achieve fast convergence that provides competitive results with
some quasi-Newton methods. Independent of the dimensional-
ity of the unknown parameters, the computational cost of im-
plementing the method can be reduced to an extremely low-
dimensional least-squares problem, which makes AA an at-
tractive method for seismic inversion.

INTRODUCTION

The fast growth of computational power popularizes numer-
ous techniques that utilize the full wavefields in seismic imag-
ing (Tarantola and Valette, 1982). In particular, two optimization-
based imaging techniques, full-waveform inversion (FWI) (Virieux
and Operto, 2009) and least-squares reverse-time migration
(LSRTM) (Dai and Schuster, 2013), seek a quantity of interest
in an iterative fashion by successively searching in the direc-
tion of the gradient (Métivier et al., 2012). In each iteration,

a line search is applied to select a step size, which can guar-
antee a sufficiently good decrease in the objective function (by
the Armijo rule) and a sufficiently reduced slope (by the Wolfe
condition). However, the computational cost of the exact (or
inexact) line search can be much larger than the cost of gradi-
ent evaluation. In a practical inversion application, these issues
often motivate us to avoid second-order methods or fix a step
size, which can result in slow convergence.

In this paper, we aim to combine the fast convergence of second-
order optimization methods with the low cost of evaluating the
gradient. We do this by applying an acceleration strategy in-
troduced by D.G. Anderson (1965) to the steepest descent al-
gorithm. In contrast to the Picard iteration, which uses only
one previous iterate, the method proceeds by linearly recom-
bining a list of previous iterates in a way that approximately
minimizes the linearized residual. In the last two decades, the
so-called Anderson acceleration (AA) has been widely used in
several applied fields for problems that can be regarded as in-
volving a fixed-point iteration. applications include flow prob-
lems (Pollock et al., 2018), numerical optimization (Peng et al.,
2018; Fu et al., 2019), machine learning (Geist and Scherrer,
2018) and wave propagation (Yang et al., 2020). The literature
on this subject is broad, so we only mention a few papers to
show the variety of results obtained by the AA.
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The main contribution of the paper is to apply AA to seismic
inversion to improve the convergence of the steepest descent
method. We first reformulate the iterative formula as a fixed-
point operator. The fixed-point solution is then the model pa-
rameter where the gradient is evaluated as zero. AA is applied
to produce every new iterate as a linear combination of several
previous iterates. The linear coefficients are selected optimally
to achieve the best (linearized) residual reduction. Overall, AA
speeds up the convergence of the steepest descent method and
reduces the computational cost of computing the exact Hessian
or building an approximation of the (inverse) Hessian matrix.

The paper is arranged as follows. We first introduce the the-
ory of AA and then provides details on how to integrate it
with seismic inverse problems, including FWI and LSRTM.
We show the effectiveness of the new acceleration strategy by
showing numerical examples on the reconstruction of wave
speed in FWI and model reflectivity in LSRTM. Several com-
parisons of the performance in terms of computational cost and
convergence rate between AA and other optimization schemes
demonstrate the potential of this new strategy for optimization-
based techniques for seismic imaging.

THEORY

In this section, we first review the essential background of the
gradient calculation for the large-scale inverse problem and
then introduce the algorithmic details of AA.

Gradient calculation in seismic inversion

In seismic inversion and some PDE-constrained optimization
problems, one can obtain the gradient of a parameter on the
entire domain by one forward, and one adjoint wave solves,
based on the adjoint-state method (Plessix, 2006), independent
of the dimensionality of the parameter. The PDE constraint of
FW1 is the wave equation (1), where my is the velocity param-
eter that we aim to reconstruct, « is the solution to the wave
equation on the temporal domain [0, 7] and spatial domain Q.
The source term s is known.
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The gradient for FWI is then
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where v solves the adjoint wave equation in (3). Here, the
source term is the Fréchet derivative of the objective function
Jrwi with respect to the synthetic data f = Ru, where R is the
projection operator onto the receiver locations.
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For LSRTM, the forward modeling becomes the linearized wave
equation (4), which is derived by the first-order Born approx-
imation. The solution to (4) is the scattered wavefield u;.
The background velocity m, and the incident wavefield u are
known. The reflectivity (perturbed velocity) m; is the value of
interest for reconstruction in LSRTM.

%u) (x,t %ug(x,t
o) 0Oy ) = -y ) O,
uy (x,0) =0, %(X,O) )

“
The model gradient of the LSRTM objective function can be
obtained in a similar manner with the FWI gradient; see Dai
and Schuster (2013) for more details. In this paper, we use the
% norm as the objective function for both FWI and LSRTM.

Algorithm 1 Anderson Acceleration

Given pp and m > 1.

Set p1 = G(po).

fork=0,1,2,... do
Set my, = min(m, k).
Set Fi = (fk—my»-- -+ fx), where fi = G(p;) — p; is the
residual at the i-th iteration.

Find a®) = (aok ,...,(xmkk )T to minimize
my
|Fa®]|, where Zaf’d =1. (5)
i=0

Update py. according to

my my
Pt =0=B)Y ) pi it B > o G(pr_myi)-
pa i=0

end for

Anderson acceleration

We start by stating AA in Algorithm 1. The memory parameter
m determines the number of previous iterates we use to com-
pute the next iterate. For example, when m = 0, AA reduces to
the Picard iteration as the k + 1-th iterate only depends on the
k-th iterate. That is, py1 = G(py), where G is the fixed-point
operator. For a nonzero m, py is a linear combination of the
previous m + 1 iterates, together with their evaluation by the
fixed-point operator G. If m = +ec and f is also chosen op-
timally at each iteration, then AA is essentially equivalent to
the generalized minimal residual method (GMRES) (Toth and
Kelley, 2015). The damping parameter f3; controls the weights
between the linear combination of the iterates {pg_m4i}7
and the linear combination of their evaluation by the opera-
tor {G(pk—m+i)}1-o- The mixing parameter can be adaptively
selected and could vary on different iterations.

At each iteration, k, the weighting vector a® for the linear
combination are determined by the constrained optimization
in (5). By a change of variable, we can remove the constraints
to simplify the optimization. Consider the vector

k k
,},(k) = (’Y(() )7-"7 r(nk)_l)T7
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which depends on vector ak) = (aék>7 o a,(nkk) )T as follows,
Wea o rad® 0<icm-1. ©

If we also choose the ¢2 norm in (5), y(k) is then the least-
squares solution to the following linear system:

AP = g, )

where fi = G(px) — py is the residual at iteration k. Here, Ay
is the matrix given by

Ak = (femmpt1 = Somms - S = frie1); ®)

whose column vectors are the differences in residual between
consecutive iterations. If B = 1 for any k, then we can rewrite
the updating formula in terms of y<k>, ie.,

mi—1

Pr+1 = G(pr) — Z %(k) [G(Pk—myti+1) — G(Pk—my+i)] -

i=0
©)

AA is computationally efficient to implement with the £ norm.
The matrix Ay in (8) is an n by m matrix, where n is the dimen-
sion of the parameter (i.e., the number of unknown variables),
and the memory parameter m is often chosen to be no more
than 20. A fast rank-updated QR factorization can further re-
duce the cost of solving (7).

METHOD

Within the framework of iterative methods, we consider the
gradient descent algorithm as a type of fixed-point operator.
The corresponding fixed-point solution is what we aim to re-
construct in seismic inversion, provided the initial model is
good enough. By combining both the fixed-point operator and
the objective function, AA outperforms the steepest descent
method and meanwhile saves the computational cost of high-
order methods that involve Hessian approximation.

Algorithm 2 ¢2-based AA for gradient descent

Input: Given the initial model parameter py, memory pa-

rameter m > 1, and the fixed-point operator G (10).

Set p; = G(po)-

for k= 1,2, ... until convergence or maximum iteration do
Step 1: Set my = min(m, k) and A, following (8).
Step 2: Solve the least-squares problem:
7% = argming [lAcy— filla. ¥ =5 7))
Step 3: Compute the new iterate py | following (9).
Step 4: Backtracking line search for optimal step size c.
Step 5: Set pyi1 = apiy1 + (1 —a)G(py).

end for

The fixed-point operator

Consider an objective function J(p), where p represents the
unknown parameter in seismic inverse problems. The adjoint-
state method offers an effective way to evaluate the model gra-
dient by simply two wave equation solves. We are going to
form a fixed-point operator based on the gradient.
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Figure 1: Marmousi model true and initial velocity.

We are interested in minimizing the objective function J(p)
by the steepest descent method. The (k+ 1)-th iterate py.q is
obtained by the k-th iterate p; and the model gradient at py
with an adaptive step size 1, that ensures a sufficient decrease
in the objective function:

aJ

Dik+1 :Pk_nk% = G(pr)- (10)

P=DPk

To reduce the cost of line search, 1 can be fixed as a constant
that is small enough to guarantee the misfit decrease.

Note that the right-hand side of (10) only depends on one pre-
vious iterate py, which shares a similar property with the Pi-
card iteration for fixed-point operators. Therefore, one can re-
gard the iterating scheme (10) as a fixed-point iteration with
G being the fixed-point operator. The fixed-point solutions are
then the parameters whose model gradient is zero.

Seismic inverse problems are often ill-posed, especially for
FWI. Therefore, zero gradients are not enough to guarantee
the global optimality of the solution. There has been exten-
sive literature on how to mitigate the existence of local min-
ima (Engquist and Yang, 2020; Symes, 2020). In this paper,
we choose to focus on the acceleration of the convergence and
not to address the cycle-skipping issues. Therefore, we assume
that the initial model p is appropriately chosen, and the near-
est critical point p* where p* = G(p*) is the optimal solution
of the inverse problems. Under this (strong) assumption, the
gradient-based fixed-point operator G is contractive. We aim
to find p* as fast as possible in terms of the total CPU cost
(instead of the number of iterations).

The objective function

We have successfully translated the optimization scheme into
a fixed-point problem and obtained the fixed-point operator G
defined in (10). Different from typical fixed-point problems
where residual is the only indicator of convergence, we can
also utilize our objective function in the optimization to accel-
erate the convergence of the model parameters further.
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Figure 2: FWI results using AA, L-BFGS, nonlinear CG and
steepest descent after 10° gradient evaluations.

By combining both the residual and the objective function, we
describe the new workflow of AA in Algorithm 2. We refor-
mulate Steps 1-3 to remove the constraints in the weights opti-
mization and set B = 1. As discussed earlier, we employ the ¢2
norm to measure the residual in (5) for its optimization advan-
tages over the ¢! or the £ norm. One can also use a weighted
least-squares norm to enforce the bias towards certain modes
of the solution. For example, AA based on the H~2 Sobolev
norm is well-suited to solve fixed-point operators derived from
second-order elliptic differential operators (Yang et al., 2020).
Any H’-based residual can be optimized as a weighted least-
square problem without incurring additional costs. A back-
tracking line search is added to the new workflow in Step 4 and
Step 5 to ensure a sufficient decrease in the objective function
J. The (k+ 1)-th iteration is set as a linear combination of the
output by the gradient descent, G(py), and the optimized new
iterate by AA, py1; see Algorithm 2 for details.

NUMERICAL EXAMPLE

The previous description of the algorithm and implementation
illustrate the computational advantages of Anderson accelera-
tion (AA) for large-scale seismic inverse problems. In this sec-
tion, we present two particular applications of AA to demon-
strate its fast convergence compared with the frequently used
optimization algorithms in FWI and LSRTM.

Full waveform inversion

The goal of this experiment is to reconstruct the Marmousi
velocity model (3 km in depth and 9 km in width) from a
smoothed initial guess, as shown in Figure 1. We set 11 equally
spaced sources at 150 m below the water surface, each of which
is a Ricker wavelet centered at 15 Hz. The total recording time
is 4 seconds. We remark that the initial model is selected to be
“good” in the sense that it does not suffer from cycle-skipping
issues. The convergence to the global minimum is guaranteed
for all gradient-based methods.

Although it is feasible to recover the truth, the rate of conver-
gence is our primary interest. The most time-consuming step
of FWI is wave modeling, which is essential for gradient cal-
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Figure 3: FWI convergence history in terms of computational
time (measured by the number of FWI gradient evaluations).

culation. Therefore, instead of using the number of iteration
as a reference for comparison, we switch to the number of gra-
dient evaluation, twice of which is the minimum number of
wave modeling required by FWI.

After 1000 gradient evaluations, FWI results using AA (m =
20), L-BFGS (m = 20), nonlinear conjugate gradient (CG),
and steepest descent are shown in Figure 2. Backtracking line
search is used with the same set of parameters. Results by
AA and L-BFGS have similarly good resolution, and unsur-
prisingly, steepest descent is the slowest in convergence. The
semi-log plots for the convergence history in the relative ¢2
objective function and the relative norm of the gradient in Fig-
ure 3 offer more quantitative information. In both plots, AA
gives a faster convergence within fixed CPU time than L-BFGS
and nonlinear CG. Known as quasi-Newton methods, L-BFGS
and CG converge in a smaller number of iterations than AA.
However, in each iteration, more gradient evaluations are re-
quired for line search to satisfy the Armijo-Goldstein and the
Wolfe conditions. These extra gradient evaluations slow down
the overall reconstruction. The comparison between the curves
by AA and steepest descent in Figure 3 also illustrate the dras-
tic improvement by the simple strategy of linearly combining
a list of previous iterates for the next iteration. Considering the
low cost of implementation, AA can be an attractive optimiza-
tion technique for FWI.

Least-squares reverse-time migration

Our second example is to apply AA to LSRTM to speed up the
convergence, which is to reduce the total number of required
wave solves. We still use the Marmousi benchmark for illus-
tration. The smoothed velocity model in Figure 1 is regarded
as the known background velocity. The velocity perturbation
my in (4) (reflectivity) is the target of reconstruction.

Overall, 80 shots are used for this migration task. The source
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Figure 4: LSRTM results by AA, L-BFGS and gradient de-
scent method (from top to bottom) after 10 iterations.

frequency is a Ricker wavelet centered at 25. AA (m = 10),
L-BFGS (m = 10) and the steepest descent method are applied
for the inversion, respectively. The entire workflow is the same
as the FWI example, but with a linear wave modeling. Figure 4
shows the inversion results after 10 iterations. AA obtains a
competitive migration image with the one by L-BFGS, while
the image by the steepest descent method lacks the optimal
resolution.

CONCLUSION

Anderson acceleration for seismic inversion treats the method
of steepest descent as a fixed-point operator. It speeds up the
convergence by linearly combining a list of the previous iter-
ates in an optimized way. AA can be considered as an alter-
native to L-BFGS but does not require either the storage or an
approximation of the inverse Hessian at each iteration. The
computational cost of implementing AA, which mainly comes
from the 1D optimization for the weights, does not increase
with the dimensionality of the unknown parameter. Therefore,
AA is a computationally attractive method for seismic inver-
sion, which can achieve competitive results with the widely
used optimization algorithms such as L-BFGS and nonlinear
CG, as demonstrated by our numerical examples.
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