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SUMMARY

Seismic full-waveform inversion aims to reconstruct subsur-
face medium parameters from recorded seismic data. It is
solved as a constrained optimization problem in the deter-
ministic approach. Many different objective functions have
been proposed to tackle the nonconvexity that originated from
the cycle-skipping issues. The analogy between objective
functions in the deterministic inversion and likelihood func-
tions in Bayesian inversion motivates us to analyze the noise
model each objective function accounts for under the Bayesian
inference setting. We also show the existence and well-
posedness of their corresponding posterior measures. In par-
ticular, the theorem shows that the Wasserstein-type likelihood
offers better stability with respect to the noise in the recorded
data. Together with an application of the level-set prior, we
demonstrate by numerical examples the successful reconstruc-
tion from Bayesian full-waveform inversion under the proper
choices of the likelihood function and the prior distribution.

INTRODUCTION

Full-waveform inversion (FWI) (Tarantola, 1987) is the state-
of-art seismic imaging technique that seeks the optimal param-
eter by minimizing the discrepancy between the recorded real
data and the simulated waveforms produced by the current pre-
diction. The main challenges of FWI include the nonconvexity
of the objective function and the existence of the noises that
affect the accuracy of the inversion results (Tarantola, 2005).
Thus, the resolution analysis and uncertainty quantification of
the reconstructions are equally important as solving the op-
timization problem (Gouveia and Scales, 1998; Fichtner and
Trampert, 2011). Under the framework of Bayesian seismic
inversion Zhu et al. (2016); Izzatullah et al. (2019), one can
utilize the systematic way provided by Bayesian inference to
quantify uncertainties in geophysical inverse problems (Zhu
et al., 2016; Dashti and Stuart, 2016).

The likelihood function and the prior distribution are the main
components of a Bayesian calculation. A realistic noise model
is an essential a priori which partially determines the likeli-
hood function in Bayesian inversion. However, quantifica-
tion of the noise model is nontrivial, and the common additive
Gaussian assumption might not be enough to characterize the
real uncertainty (Motamed and Appelo, 2019). The shape and
curvature of the likelihood surface represent information about
the stability of the estimates, whose analogy in the determin-
istic approach of solving FWI is the objective function. Re-
cently, numerous work on the new class of objective functions
from optimal transport (Engquist and Froese, 2014; Engquist
et al., 2018) demonstrates the effectiveness in mitigating the
cycle-skipping issues in FWI. The subject of optimal transport
studies probability measures, so the use of the corresponding
Wasserstein metric is natural in statistical inference, particu-

larly in the Bayesian setting (El Moselhy and Marzouk, 2012;
Motamed and Appelo, 2019). The connection motivates us to
further analyze the Wasserstein metric under the framework of
Bayesian inversion (Zhu et al., 2016; Izzatullah et al., 2019).

In this abstract, we first analyze several new likelihood func-
tions and their corresponding noise model. We rigorously de-
fine the posterior distributions and study the existence and sta-
bility with respect to perturbations to the observed data for
the different choices of likelihood. We prove that these pos-
terior measures are stable with respect to perturbations of the
observed data measured in different norms. The theoretical
analysis demonstrates the advantages of choosing Wasserstein-
type likelihood. Besides, we discuss the advantages of using
a new type of level-set prior (Kadu et al., 2016; Dunlop et al.,
2016), and its high potential for salt body inversion. Numeri-
cal results demonstrate the importance of the properly chosen
likelihood and priors by combining the mathematical tool and
the physics knowledge of the geophysical problem.

BAYESIAN INVERSION

The Bayesian approach combines a probabilistic model for the
observed data y, P(dy|u), with a probability distribution P(du)
representing our prior belief about the unknown u. Bayes the-
orem then tells us how to construct the posterior distribution
P(du|y) of the unknown given the data: formally, if P(dy|u) =
P(y|u)dy admits a Lebesgue density,

P(du|y) = P(y|u)P(du)
P(y)

. (1)

The probability measure P(du|y) is the solution to the Bayesian
inverse problem, rather than a single state as in the determinis-
tic approach. It offers credible bounds on the solution and the
uncertainty associated with quantities of interest.

We denote the forward operator (for wave propagation) as G ,
which maps the model domain X to the data domain Y . The
observable data is y. We assume that both the synthetic data
G (u) ∈ Y, u ∈ X and the observed data y ∈ Y are functions
defined on a spatial domain D ⊆ Rd equipped with either the
counting or Lebesgue measure λ , and temporal domain T ⊆Rs

equipped with the Lebesgue measure.

Next, we define four potentials/likelihood functions, {ΦL2 , ΦW2 ,
ΦḢ−1 , ΦM}: X×Y→R+, and discuss the corresponding noise
models. The choice of norm on Y depends on the choice of
potential; here Pσ is an operator that maps functions into prob-
ability densities (which is a prerequisite for optimal transport
and Wasserstein-based metrics (Engquist and Yang, 2018)).

L2 misfit and additive Gaussian noise
We first consider the simplest case wherein the loss Φ(u;y) =
J(G (u),y) is given by the L2 misfit:

ΦL2(u;y) =
1
2

∫
D
‖G (u)(x, ·)− y(x, ·)‖2

L2(T ) λ (dx). (2)

10.1190/segam2020-3428223.1
Page    825

© 2020 Society of Exploration Geophysicists
SEG International Exposition and 90th Annual Meeting

D
ow

nl
oa

de
d 

10
/0

1/
20

 to
 2

4.
59

.5
6.

21
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

s:
//l

ib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/s

eg
am

20
20

-3
42

82
23

.1



Bayesian Full Waveform Inversion

This loss arises as a negative log-likelihood by assuming the
data is corrupted by additive Gaussian space-time white noise:

y = G (u)+η , η ∼ N(0, I).

A general additive Gaussian noise
Another loss function that has been widely used in geophysics
is closely related to the integral wavefields misfit (Huang et al.,
2014; Liu et al., 2012). Mathematically, the loss function is
equivalent to the Sobolev space Ḣ−1 semi-norm in the time
domain and L2 norm in the spatial domain (Yang and Engquist,
2018a). ‖y(x, ·)‖Ḣ−1(T ) is well-defined only if

∫
T y(x, t)dt = 0.

Since zero-frequency component is often removed from seis-
mic data, the use of Ḣ−1 here is proper.

ΦḢ−1(u;y) =
1
2

∫
D
‖G (u)(x, ·)− y(x, ·)‖2

Ḣ−1(T ) λ (dx). (3)

ΦḢ−1 has a similar data model as ΦL2 , except instead of assum-
ing that the noise is white, temporal correlations are assumed:

y = G (u)+η , η ∼ N(0,Γ)

where Γ=−∆T is the negative Laplacian on the temporal vari-
able. By changing the noise assumption on the temporal cor-
relations, one can obtain a more general class of loss functions
that are closely related to (semi-)norms of the Sobolev space.

W2 loss and the multiplicative noise
In this subsection, we consider a Wasserstein loss function,
which can be viewed as an unnormalized state-dependent mul-
tiplicative noise loss in the small noise limit.

In the absence of an explicit data model, one typically intro-
duces a scalar parameter β > 0, often referred to as the inverse
temperature, and work with βΦ(u;y) in place of Φ(u;y). As
the calibration, the parameter may either be chosen empiri-
cally (Syring and Martin, 2018) or treated as a hyperparameter
as part of the inverse problem (Zhu et al., 2016). We do not
discuss the choice of β here and assume it to be fixed.

We first introduce the Wasserstein loss function, which comes
from optimal transport theory. The core of the subject is on the
optimal plan that maps one probability distribution on a do-
main X into another one on domain Y , intending to minimize
the total transport cost of a given cost function. The transport
cost function c(x,y) maps pairs (x,y) ∈ X ×Y to R∪{+∞},
which denotes the cost of transporting one unit mass from lo-
cation x to y. If c(x,y) = |x−y|2, the optimal transport cost be-
tween probability measure ν1,ν2 gives the following squared
quadratic Wasserstein distance:

W 2
2 ( f ,g) = inf

Tν1 ,ν2∈M

∫
Rn
|x−Tν1,ν2(x)|

2 f (x)dx.

where f = dν1 and g = dν2, M is the set of all measure-
preserving maps that rearrange the distribution ν1 into ν2. The
W2 distance has been a popular choice of objective function
in FWI to mitigate the local minima issues since its first pro-
posal (Engquist and Froese, 2014).

In order to evaluate the Wasserstein distance between the data
and output of the forward map, we must first transform these
into probability densities with respect to the temporal variable.

Hence given a scalar function σ : R→ R+, we define the nor-
malization operator Pσ on functions y : D×T → R by

(Pσ y)(x, t) =
1

Zσ (x)
σ(y(x, t)), Zσ (x) =

∫
T

σ(y(x, t ′))dt ′.

Given this operator, we then define the Wasserstein loss by

ΦW2(u;y) =
1
2

∫
D

W2 ((Pσ G (u))(x, ·),(Pσ y)(x, ·))2
λ (dx).

Note that ΦW2 is not normalized in the sense that exp(−ΦW2(u, ·))
does not define a probability density with respect to some mea-
sure on Y , and it does not appear to correspond to a partic-
ular data model even if it were normalized. However, via
linearization of the W2 distance (Villani, 2003), we can de-
scribe an approximate data model that this loss corresponds to
in the limit of small observational noise. Assume that there is
η : D×T → R such that

Pσ y = (1+η)Pσ G (u),∫
T

η(x, t)(Pσ G (u))(x, t)dt = 0 for all x ∈ D.

By the linearity between the W2 metric and the weighted Ḣ−1

norm (Villani, 2003), for small ‖η(x, ·)‖Ḣ−1(Pσ G (u)),

ΦW2(u;y)≈ 1
2

∫
D
‖η(x, t)‖2

Ḣ−1(Pσ G (u)) λ (dx)

=
1
2

∫
D

∥∥∥∥ (Pσ G (u))(x, ·)− (Pσ y)(x, ·)
(Pσ G (u))(x, ·)

∥∥∥∥2

Ḣ−1(Pσ G (u))
λ (dx).

(4)

This is the negative logarithm of an unnormalized Gaussian
density N(1,L (u)), for some operator L (u) defined below,
evaluated at the ratio Pσ y/Pσ G (u). This suggests that the Wasser-
stein loss could be thought of as asymptotically coming from
the state-dependent multiplicative noise data model

Pσ y = η ·Pσ G (u), η |u∼ N(1,L (u))

where L (u) : D(L (u))→ L2(D;L2(T )) is defined by

L (u)ϕ =− 1
Pσ G (u)

∇T · (Pσ G (u)∇T ϕ) ,

where D(L (u))=
{

ϕ ∈ L2(D;H2(T )) |
∫

T ϕ(Pσ G (u))dt = 0
}

and ∇T is the gradient with respect to the temporal variable.

A general multiplicative noise
The relation of the Wasserstein loss to a multiplicative noise
model is unexpected. The use of a loss function corresponding
to a multiplicative noise model was not uncommon in other
inverse problems (Isaac et al., 2015; Iglesias et al., 2018):

ΦM(u;y) =
1
2

∫
D

∥∥∥∥ (Pσ G (u))(x, ·)− (Pσ y)(x, ·)
(Pσ y)(x, ·)

∥∥∥∥2

L2(T )
λ (dx),

(5)
which can be viewed either as arising from the model

Pσ y = η ·Pσ G (u), 1/η ∼ N(1, I),
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Bayesian Full Waveform Inversion

Figure 1: Example of independent samples from (left) plain
Gaussian prior, (middle) plain level set prior and (right) mixed
level set prior. The underlying Gaussian random fields have
Matérn covariance with the regularity and amplitude parame-
ters fixed, and the length-scale is decreased from left-to-right,
top-to-bottom within each block.

Figure 2: The true salt velocity field v we aim to infer, the
location of the four sources {s j} and the set of receivers on
which the solution is measured at each time

or alternatively, from informally assuming the size of the noise
is proportional to the size of the observed data. Note that the
data and output of the forward map do not need to be proba-
bility densities here. However, for the stability of the resulting
posterior, the forward map must be bounded away from zero;
see (Dunlop, 2019) for a discussion. The condition can be en-
sured by using the same operator, Pσ . Additionally, one may
prefer to use a model wherein η ∼N(1, I) rather than its recip-
rocal; see Dunlop and Yang (2020) for more discussions.

Existence and well-posedness
We establish existence and well-posedness of the correspond-
ing (Gibbs) posterior distributions (Dunlop and Yang, 2020):
Theorem 1 (Existence). Let π0 be a Borel probability measure
on X. Then for any choice Φ ∈ {ΦL2 ,ΦH−1 ,ΦW2 ,ΦM},

ZΦ(y) =
∫

X
exp(−Φ(u;y))π0(du)

is strictly positive and finite, and

π
y
Φ
(du) :=

1
ZΦ(y)

exp(−Φ(u;y)) π0(du)

defines a Radon probability measure on X.
Theorem 2 (Well-posedness). Let π0 be a Borel probabil-
ity measure on X. Choose Φ ∈ {ΦL2 ,ΦH−1 ,ΦW2 ,ΦM}. Un-
der mild assumptions, there exists CΦ(r) > 0 such that for all
y,y′ ∈ Y with ‖y‖L∞(D;L∞(T )),‖y′‖L∞(D;L∞(T )) < r,

dH(π
y
Φ
,π

y′
Φ
)≤CΦ(r)‖y− y′‖Y .

Remark 1. The norm Y in Theorem 2 is H−1 for ΦH−1 and
ΦW2 , but L2 for ΦL2 , ΦM . The stability result implies that

Figure 3: (Top) The MAP estimate, (middle) mean and (bot-
tom) standard deviation.

W2- and H−1-based likelihood functions are more robust with
respect to high-frequency data noise, which was also analyzed
by (Engquist et al., 2018) under the deterministic setting.

LEVEL-SET PRIOR FOR SALT INVERSION

Standard parameters of interest in FWI are technically unknown
functionals defined on the spatial domain D. For this infinite-
dimensional problem, Bayesian inversion aims to recover a
field, in which the prior distribution is often chosen to im-
pose properties such as regularity and length-scale on samples.
Gaussian priors are often used to impose continuity and certain
smoothness. However, the assumption is not always physical,
especially for seismic problems where reflections dominate the
real data.

Under such circumstances, non-Gaussian priors are more phys-
ical to be used. In particular, we introduce a new type of level-
set prior for inference of salt model inversion, which we ex-
press as nonlinear transformations of Gaussian fields. Given a
Gaussian measure ν0 = N(m,C) and scalar values u+,u− ∈R,
one could define a prior measure by the pushforward

π0 = F]
ν0, F(v)(x) = u+1v(x)>0 +u−1v(x)≤0.

That is, π0 is the law of the thresholded Gaussian field F(v),v∼
ν0: samples from π0 take the values u+,u− almost every-
where, with interface between the values given by the level set
{v(x) = 0}. Such priors have been studied previously from
a nonparametric Bayesian perspective (Iglesias et al., 2016;
Dunlop et al., 2016)

Alternatively, one may desire some combination of the above
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Bayesian Full Waveform Inversion

and plain Gaussian priors. For example, given a product Gaus-
sian measure ν0 = N(m1,C1)×N(m2,C2), one could define a
mixed level set prior:

π0 = F]
ν0, F(v,w)(x) = u+1v(x)>0 +w(x)1v(x)≤0.

Examples of samples are shown in Figure 1, which can be gen-
eralized to multiple interfaces by the vector level set method
(Bertozzi et al., 2018).

Level set methods have been considered previously for deter-
ministic FWI (Kadu et al., 2016), where the objective func-
tions are similar to what we use here when seeking the modes
(MAP estimates) of the posterior. However, one key difference
is the form of regularization. In essence, there the solution is
assumed to have a radial basis expansion. So regularization is
performed by restricting to a low dimensional space spanned
by the basis. In contrast, here, the regularization will be via
the addition of an explicit Sobolev penalty to the loss arising
from the underlying Gaussian. Note also that the Bayesian
method provides much more than just MAP estimates, allow-
ing, for example, computation of uncertainties in the solution,
and propagation of these uncertainties to error bounds on quan-
tities of interest.

NUMERICAL EXAMPLE

We consider the recovery of a salt model as illustrated in Fig-
ure 2 via the use of the mixed level set prior and the Wasser-
stein loss ΦW2 . The continuous background field is assumed
known, and we infer the level set function as well as the ve-
locity in the salt region. We use a small number (four) of
sources in order to illustrate better the uncertainty arising in
the solution. Rather than the velocity c itself, the inversion is
performed on the parameter m = 1/c2, and it is this parameter
upon which we place the mixed level set prior. The Laplace
approximation to the posterior is used as a computationally
tractable alternative to sampling, which approximates the pos-
terior with a Gaussian distribution centered around the MAP
point: π

y
Φ
≈ N(uΦ,CΦ), where

uΦ = argmin
u∈X

Φ(u;y)+
1
2
〈u,C−1

0 u〉, C−1
Φ

=∇
2
uΦ(uΦ;y)+C−1

0 .

Computationally, a low-rank approximation to the Hessian ∇2
uΦ

is made via randomized SVD. The diagonal of the regularized
inverse CΦ is approximated with a stochastic method. Addi-
tionally, the indicator functions in the definition of the mixed
level set method are replaced with mollified versions in order
to preserve the differentiability of the forward map.

Figure 3 shows the MAP estimate 1/
√

F(uΦ) for the velocity,
as well as the pointwise mean and standard deviation. Note
that since the inversion is performed on the parameter m, the
nonlinearity of the map 1/

√
F(·) means that the distribution

on the velocity will not be Gaussian, and hence the MAP es-
timate and mean do not coincide. We see that both the MAP
estimate and the mean recover the shape of the salt region and
its velocity value. There is a moderate level of uncertainty in
the salt region, and a high level of uncertainty in the region be-
low the small inclusion on the left of the domain; the latter is to

Figure 4: Reconstructions arising from deterministic inversion
using (top) L2 loss and (bottom) W2 loss.

be expected, as it has been observed that recovery is typically
more difficult below reflectors (Yang and Engquist, 2018b).

For comparison with existing deterministic methods, Figure 4
shows the reconstructions obtained by directly optimizing the
loss functions ΦL2 and ΦW2 . Though the W2 loss outperforms
the L2 loss, both fail to recover the entire salt body and the
velocity value within that region. Hence, even before taking
uncertainty into account, the MAP estimate above appears to
be preferable and may be found for approximately the same
computational cost.

CONCLUSION

We considered four potentials originating from the objective
functions for deterministic full-waveform inversion and showed
how they could be viewed as arising, or approximately aris-
ing, from specific noise models for the data. We then formu-
lated corresponding Bayesian inverse problems after quantify-
ing our prior beliefs with a probability measure, leading to the
construction of the Gibbs posterior distributions. The stability
of these posteriors regarding perturbations in the data is shown
here. In particular, the posterior arising from the Wasserstein
loss is more stable under the corruption of the data by high-
frequency noise. In the numerical example, we considered the
use of a level set prior, which leads to superior reconstructions
compared to standard deterministic approaches. Moreover, the
Bayesian approach provides an interpretable form of uncer-
tainty in the solution.
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