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Abstract

Full–waveform inversion (FWI) is a method used to determine properties of the Earth from infor-
mation on the surface. We use the squared Wasserstein distance (squared W2 distance) as an objective
function to invert for the velocity of seismic waves as a function of position in the Earth, and we discuss
its convexity with respect to the velocity parameter. In one dimension, we consider constant, piecewise
increasing, and linearly increasing velocity models as a function of position, and we show the convexity
of the squared W2 distance with respect to the velocity parameter on the interval from zero to the true
value of the velocity parameter when the source function is a probability measure. Furthermore, we
consider a two–dimensional model where velocity is linearly increasing as a function of depth and prove
the convexity of the squared W2 distance in the velocity parameter on large regions containing the
true value. We discuss the convexity of the squared W2 distance compared with the convexity of the
squared L2 norm, and we discuss the relationship between frequency and convexity of these respective
distances. We also discuss multiple approaches to optimal transport for non–probability measures by
first converting the wave data into probability measures.

1 Introduction

The study of seismic waves has many practical applications in geology, especially in searching for natural
resources such as oil or natural gas. It plays a major role in determining the type of material underground,
given the position of several receivers on the surface and the amount of time it takes for the wave to rebound
to the surface. The velocity of the wave (as a function of its position) is unknown, and finding the wave
velocity function is equivalent to finding the underground substance. With the same wave source, different
wave velocity properties produce different wave data (such as wave amplitude and travel time) measured
at a given receiver. This wave data can be used to find the velocity. We use an objective function, or
misfit function, which measures the “distance” between two sets of wave data. This allows us to compare
the observed data with simulated data to find the true velocity function. Some examples of objective
functions are the Lp distance and the pth Wasserstein distance (Wp distance) from the theory of optimal
transport [20], the latter of which is the main tool of this research project.

The objective function becomes zero when the observed data and simulated data are equivalent,
which occurs when we have the correct velocity model. Thus, finding the correct velocity model is an
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(a) Squared L2 metric as a plot in s (b) Squared W2 distance as a plot in s

Figure 1: Comparison between squared W2 distance of f(x) and f(x − s) and squared L2 norm of
f(x)− f(x− s) as plots in the shift s.

optimization problem: minimizing the objective function, which measures the error between simulated
and observed wave data. Although it is necessary to have a gradient of zero to minimize the objective
function, this is not enough, as it is possible to reach a saddle point or a local minimum at such a point.
However, this issue is fixed if the objective function is convex, as it will have only one global minimum.
Thus, it is important for the convex region near the global minimum to be as large as possible. For this
reason, we investigate the convexity of the squared W2 distance as an objective function.

The conventional choice of objective function is the least–squares (L2) norm, used in both time [19]
and frequency [15, 16] domains. If we have data from multiple receiver locations Xr (where r is the index
for the receiver location), we can consider the squared L2 norm of the difference between the predicted
wave data g(Xr, t, c) and the observed wave data h(Xr, t) = g(Xr, t, c

∗)

L(c) =
1

2

∑
r

∫ T
0
|g(Xr, t, c)− h(Xr, t)|2 dt, (1.1)

from [2], where c∗ is the true velocity parameter. While L(c) is minimized (and therefore equal to zero)
exactly when c = c∗, algorithms for minimizing the squared L2 norm may reach local minima instead of
the global minimum when c = c∗, due to the nonconvexity of the squared L2 norm as discussed in [2, 22].
In addition, its sensitivity to noise can make it an unsuitable choice of objective function [3]. Thus, we
use the squared W2 distance from [5, 22, 23] instead. If there are multiple receiver locations Xr, our final
objective function will be

W(c) =
∑
r

W 2
2 (g(Xr, t, c), h(Xr, t)). (1.2)

Previous results show that the squared W2 metric is jointly convex in translations and dilations of the
data [23], suggesting that the squared W2 metric is a suitable choice for the objective function. Taking
the function

f(x) =

{
1

2π sin2(x), −2π ≤ x ≤ 2π,

0, otherwise.

as an example, we compare in Figure 1 the graphs of the squared L2 norm of f(x) − f(x − s) with the
squared W2 distance between f(x) and f(x − s). It can be observed that the squared W2 distance is
convex in the shift s while the graph of the squared L2 norm is not.

In this paper, we present a theoretical approach to velocity inversion using optimal transport by
investigating the convexity of the squared W2 distance as a function of the velocity parameters – this has
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not been studied theoretically before. We investigate several velocity models in one dimension and show
that the squared W2 distance is a suitable objective function when inverting for the velocity parameter.
In two dimensions, we consider a particular velocity model, and we show that the squared W2 distance
is a suitable objective function in the case where the source function f is nonnegative. We generalize to
when the source function alternates between negative and positive values, and we show that the squared
W2 distance is a suitable objective function given certain requirements on f . These theorems suggest that
the squared W2 distance is a suitable objective function when inf f is close enough to zero. Numerical
evidence suggests that the squared W2 distance is a better objective function than the squared L2 norm
when the source function is nonnegative.

The paper is structured as follows. In Section 2, we discuss background knowledge which is used later
on in this paper. First, we introduce optimal transport and the Wp distance, along with an explicit formula
as well as some of its properties. Furthermore, we discuss the solution of wave equations in one dimension
and introduce ray tracing, which is used to solve wave equations in higher dimensions. In Section 3, we
first consider one–dimensional velocity models, where the velocity is either constant, piecewise constant,
or linearly increasing as a function of position, and the source function is a probability measure. Then,
we study a two–dimensional velocity model where the wave velocity v satisfies v(X, z) = a+ bz where a
and b are positive constants, X is the horizontal position, and z is the depth of the wave. Initially, in
Section 3.3.1, we assume that the source function f is a probability measure and that the wave amplitude
is unchanged, and we show Theorem 4. In Section 3.3.2, we involve the wave amplitude and we allow the
source function to alternate between positive and negative values, and we show Theorem 5. In Section 4,
we compare the convexity of the squared W2 distance with the squared L2 norm, and we include numerical
examples. We also discuss the relationship of the W2 distance with the Ḣ−1 norm, and we discuss multiple
approaches to optimal transport for non–probability measures. We summarize this paper in Section 5
and discuss a possible direction for future research.

2 Background

We introduce optimal transport, and essential background on wave equations.

2.1 Optimal Transport

In this section, we establish the main goal of optimal transport (originally introduced by Monge [14]) and
introduce the Wp distance along with some of its useful properties. Optimal transport involves probability
spaces, which are nonnegative measure spaces with total measure equal to one. We discuss the convexity
of the squared W2 metric, which is a distance between two probability measures on a probability space,
and introduce some of its properties.

2.1.1 General Problem

Consider two distinct probability measures µ and ν defined on the Borel sets of Rn. The goal of optimal
transport is to find a map T : Rn → Rn, shown in Figure 2, which minimizes the total cost of mapping
µ to ν according to the map T, for a given cost function c : Rn × Rn → R [1]. The Wp metric, based on
optimal transport [24], gives the optimal transportation cost when the cost function is c(x, y) = |x− y|p.

2.1.2 Computing the W2 metric in one dimension

Let µ and ν be probability measures defined on the Borel sets of Rn. We define the Wp distance as

Wp(f, g) =

(
inf

T∈M(µ,ν)

∫
Ω
|x− T (x)|pdµ

) 1
p
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Figure 2: The two functions f and g have the same total area, and T maps all points of f to g. The goal
of optimal transport is to find T such that the cost function is minimized.

where f(x)dx = dµ, g(y)dy = dν, Ω is the support of µ, and M(µ, ν) is the set of all mass–preserving
maps T : Rn → Rn which map µ to ν. The integral within the infimum is the total cost of the transport
map T, so computing Wp(f, g) is equivalent to minimizing the transport cost. We study the case where
p = 2, and our objective function is W 2

2 (f, g).
In one dimension, it is possible to express W 2

2 (f, g) for probability measures f and g in a simpler
way: Let F and G be the cumulative distribution functions of f and g, respectively. Then, Rachev and
Rüschendorf derive the formula for the squared W2 distance in one dimension [17] as

W 2
2 (f, g) =

∫ 1

0
(F−1(s)−G−1(s))2 ds =

∫
Ω

(t−G−1(F (t)))2f(t) dt (2.1)

where Ω is the domain of f . This formula for W 2
2 (f, g) is useful when the wave data is only a function of

time.
As wave data are not usually probability density functions, we can normalize a function k(t) defined

on [0, T ] by replacing it with
k(t) + γ∫ T

0 (k(t) + γ) dt

for some constant γ > 0 such that k(t) + γ > 0 for all t ∈ [0, T ) [11].

2.1.3 Computing the W2 Metric in Higher Dimensions

In general, there is no explicit formula to compute the W2 metric in higher dimensions. However, certain
requirements derived from the concept of cyclical monotonicity [13] make it possible to calculate the
optimal map T , and therefore the W2 metric, through numerical methods. This is shown in the following
theorem of Brenier [4, 6, 22]:

Theorem 1 (Brenier’s theorem). Let µ and ν be two compactly supported probability measures on Rn. If µ
is absolutely continuous with respect to the Lebesgue measure, then there is a convex function w : Rn → R
such that the optimal map T for the cost function c(x, y) = |x−y|2 is given by T (x) = ∇w(x) for µ–almost
every x.

Furthermore, if µ(dx) = f(x)dx, ν(dy) = g(y)dy, then T is differentiable µ–almost everywhere and

det(∇T (x)) =
f(x)

g(T (x))
, (2.2)
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from the mass preserving property of T . Replacing T (x) in Equation (2.2) with ∇w(x) leads to the
Monge–Ampère equation

det(D2w(x)) =
f(x)

g(∇w(x))
,

where D2w(x) is the Hessian matrix of w. Then, the squared W2 distance satisfies

W 2
2 (f, g) =

∫
Ω
|x−∇w(x)|2f(x) dx,

where Ω is the domain of f .

2.1.4 Properties of the Squared W2 Distance

Results about the convexity of the squared W2 distance with respect to changes in the data are known [9,
22, 23].

Theorem 2. Let f and g be compactly supported probability density functions on an interval Ω ⊂ R.
Then,

W 2
2 (f(t− s), g(t)) = W 2

2 (g(t), f(t)) + s2 + 2s

∫
Ω

(x− T (x))f(x) dx (2.3)

where s ∈ R and T is the optimal map from f to g. Furthermore, W 2
2 (f(t), Af(At− s)) is convex in both

A and s, for A ∈ R+.

The convexity with respect to shifts and dilations suggests that the squared W2 distance is more
suitable when inverting for wave data.

2.2 Background on Wave Equation

We introduce the partial differential equation which governs the behavior of n–dimensional waves. We
also introduce d’Alembert’s solution to the one–dimensional wave equation and present the ray tracing
approach to solving higher dimensional wave equations.

2.2.1 General Wave Equation

An n–dimensional wave can be expressed as a function ψ of n position variables x1, x2, . . . , xn and time
t, which in general satisfies the partial differential equation

∂2ψ

∂t2
− C(x)2

(
∂2ψ

∂x1
2

+
∂2ψ

∂x2
2

+ · · ·+ ∂2ψ

∂xn2

)
= f(x, t)

for a variable coefficient C(x) which is a function defined on Rn, and a source function f which is a
function of both space and time. In general, the wave equation might not have an analytical solution.

2.2.2 Solution to 1D Wave Equation

In one dimension, we consider a simple case where C(x) is equal to a constant c. The partial differential
equation becomes

∂2ψ

∂t2
= c2∂

2ψ

∂x2
,

but unlike its n–dimensional variant, it is possible to obtain an explicit solution as derived by d’Alembert [7]:

ψ(x, t; c) =
j(x+ ct) + j(x− ct)

2
+

1

2c

∫ x+ct

x−ct
k(s)ds (2.4)

given the initial conditions ψ(x, 0) = j(x) and ψt(x, 0) = k(x).
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Figure 3: The method of ray tracing tracks the path of a ray passing through the Earth, and the paths of
two rays are shown here. Each ray leaves the source location, reaches a turning point, and then returns
to the surface at the indicated receiver location.

2.2.3 Solution for Higher Dimensional Wave Equation

In higher dimensions, however, a wave equation might not have an analytical solution, so we use ray
tracing to obtain information about the wave function [18]. An example of ray tracing is shown in
Figure 3, where an original signal is released, and two receivers on the surface are present to measure the
wave data. We assume that the velocity v of a wave can be expressed as a function of depth z in the
Earth, and the ray parameter p, or the horizontal slowness, can be expressed as u(z) sin θ by Snell’s law
where u(z) = 1

v(z) and θ is the angle the ray makes with a vertical axis. The ray parameter is constant

throughout the path of the ray. We also define the vertical slowness η(z) as
√
u(z)2 − p2. The path of

the ray is symmetric about a vertical line passing through a turning point at depth zp, and u(zp) = p
while η(zp) = 0. By examining a ray passing through several layers in the Earth and eventually returning
to the surface, we may calculate the horizontal distance and the traveltime of the wave as a function of
the velocity. We can calculate

X = 2p

∫ zp

0

dz√
u2(z)− p2

(2.5)

as the distance from the source to the receiver, and

T = 2

∫ zp

0

u2(z)√
u2(z)− p2

dz (2.6)

as the total travel time. Using Equation (2.5), it is possible to solve for p in terms of X and the velocity
parameters. It is also possible to use Equation (2.6) to solve for T as a function of X and the velocity
parameters, and it is possible to calculate the predicted time Tpred by guessing the velocity parameter. The
method of traveltime tomography uses the above formulas to calculate the predicted time and approaches
the problem as minimizing the squared difference between the predicted time and the observed time:
(Tpred − Tobs)2 [25].

However, this method does not work when the velocity model is not continuous [18]. In addition to
using Equations (2.5) and (2.6), we make use of the wave’s amplitude as well to deal with discontinuous
velocity models and other issues that traveltime tomography runs into. This method is known as full–
waveform inversion (FWI), where both the amplitude and the traveltime are used to approximate the
properties of the Earth [21].
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The final amplitude is asymptotically scaled by a factor of

A =

(
2

∫ zp

0

u(z)√
u2(z)− p2

dz

)−1

, (2.7)

which is the reciprocal of the total arc length of the ray’s path [18], and the ray’s path is symmetric
about the turning point at depth zp. Thus, if the source function is f(t), then the observed wave
function is approximated by Af(t− Tobs). To invert for the velocity we use an objective function such as
Equation (1.1) and Equation (1.2) to compare observed data with simulated data and minimize it using
standard algorithms, and we will see that the squared W2 metric can be a suitable choice.

3 Convexity in the Model Parameter

In this section, we study multiple velocity models in one dimension as well as a model in two dimensions,
and we prove convexity of the squared W2 distance with respect to the velocity parameter on certain
domains. First, we consider one–dimensional velocity models. We begin with a model with constant
velocity c and prove convexity of the squared W2 distance with respect to c. We then consider two models
with piecewise increasing velocities with respect to distance from the source and a model where velocity
is linearly increasing. In every one–dimensional velocity model, we assume that the source function is
nonnegative. Finally, we consider a two–dimensional model where the velocity v satisfies v(X, z) = a+ bz
where a and b are positive constants, X is the horizontal position of the ray, and z is the current depth
of the ray. In Section 3.3.1, we assume that the source function is nonnegative, which allows us to use
Theorem 2 when computing the squared W2 distance. After this, we consider a more general case where
the source function is alternating in Section 3.3.2, and the predicted wave function has an amplitude
which is a function of a, b, and the receiver location X. We also use the following result [12]:

Lemma 1. Let P : Ω1 → R and Q : Ω2 → Ω1 be convex functions where Ω1 ⊆ R and Ω2 ⊆ Rn are convex
sets and n ≥ 1. Furthermore, assume P is nondecreasing. Then, P (Q(x)) is a convex function on Ω2.

An example of this is when P (x) = x2. Then, if Q is convex and nonnegative, we see that Q2 is also
convex on its domain.

3.1 Constant Velocity in One Dimension

Let c be the constant wave velocity, and let our initial wave function be f(t). For this section, we assume
that f(t) is a probability distribution. We assume that the final wave function at a fixed spatial location d
is of the form f(t−T (c)), where T (c) is the amount of time it takes to receive the wave signals at location
d as a function of the velocity c. Since the total distance is d, T (c) = d

c , which means the predicted wave

function is f(t− d
c ). Letting c∗ be the true value of the velocity gives us

W 2
2

(
f

(
t− d

c

)
, f

(
t− d

c∗

))
=

(
d

c
− d

c∗

)2

,

as the squared W2 distance from Theorem 2, because the integral in Equation (2.3) is zero. In addition,
d
c −

d
c∗ is a convex function of c on (0,∞), and it is nonnegative on the interval (0, c∗]. Hence, by Lemma 1,

the squared W2 distance is convex on (0, c∗].

Remark 1. Due to the convexity of the squared W2 distance in the interval (0, k∗], choosing a small
value of k as the initial guess guarantees being able to find the true velocity parameter k∗ through
gradient–based optimization methods.
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(a) First velocity model. (b) Second velocity model. (c) Third velocity model.

Figure 4: Three types of non–constant velocity models in one dimension that we study.

3.2 Non–constant Velocity in One Dimension

When the velocity is non–constant, the d’Alembert solution Equation (2.4) does not hold anymore. Thus,
we study the convexity of the squared W2 distance for several non–constant velocity models, shown in
Figure 4. We first study a model where the velocity is piecewise constant, after which we add multiple
pieces. Then, we study a model where the velocity is linearly increasing as a function of position. For all
of these models, we assume that the source function f(t) is a probability distribution.

3.2.1 Piecewise Constant Velocity

The first scenario we study is a piecewise constant velocity model. Assume the velocity v(x) satisfies
v(x) = c1 for 0 ≤ x ≤ d1 and a known constant c1, and v(x) = c2 for d1 < x ≤ d1 + d2, as seen
in Figure 4a – we show convexity in the unknown c2. The total travel time, as a function of c2, is

T (c2) = d1
c1

+ d2
c2

. Letting c∗2 be the true value of c2 gives
(
d2
c2
− d2

c∗2

)2
as the squared W2 distance by

Theorem 2. As the function d2
c2
− d2

c∗2
is convex and nonnegative on (0, c∗2], the squared W2 distance is also

convex on (0, c∗2] by Lemma 1.

3.2.2 Piecewise Constant Velocity with Multiple Pieces

The second scenario we consider is the piecewise constant velocity with n pieces of equal length d, such
that the velocity of the wave is

v(x) =


c1, x ≤ d,
c1 + k, d < x ≤ 2d,
...

...

c1 + (n− 1)k, (n− 1)d < x ≤ nd.

Here, the unknown variable is k. In this case, the total travel time is

T (k) =

n−1∑
m=0

d

c1 +mk
,

so the squared W2 distance becomes (T (k) − T (k∗))2 by Theorem 2 where k∗ is the true value of the
velocity parameter. We claim that the squared W2 distance is convex in k on the interval [0, k∗]. To do
this, we initially show that T (k) is convex in k on [0,∞). Taking the second derivative, we get

T ′′(k) =

n−1∑
m=0

2dm2

(c1 +mk)3
,
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which is nonnegative for all k ≥ 0. Hence, T (k) is convex in k on [0,∞). Since T (k) is strictly decreasing
on [0,∞), the function T (k) − T (k∗) is nonnegative (and also convex) on the interval [0, k∗]. Thus, the
squared W2 distance (T (k)− T (k∗))2 is convex in k on the interval [0, k∗] by Lemma 1.

3.2.3 Linearly Increasing Velocity

Next, we consider a linearly increasing velocity, which is of the form c1 + kx at a position x, for a known
constant c1. Here, k is unknown and k∗ is the true value of the velocity parameter. Letting d be the total
travel distance, we have the following integral representation for the traveltime:

T (k) =

∫ d

0

dx

c1 + kx
=

ln(c1 + kd)− ln(c1)

k
. (3.1)

We first prove a lemma.

Lemma 2. T (k) is convex in k on the interval [0,∞), where T (0) = d
c1

.

Proof. We take the second derivative of T :

T ′′(k) =
d2

dk2

∫ d

0

dx

c1 + kx
=

∫ d

0

d2

dk2

(
1

c1 + kx

)
dx,

and the second equation follows by the Leibniz Integral Rule. Because d2

dk2

(
1

c1+kx

)
= 2x2

(c1+kx)3
≥ 0, the

integrand is nonnegative. This implies the convexity of T (k).

Now we are ready to show that (T (k)− T (k∗))2 is convex on the interval [0, k∗].

Theorem 3. (T (k)− T (k∗))2 is convex in k on the interval [0, k∗], where T (0) = d
c1
.

Proof. By Lemma 2, T (k) − T (k∗) is convex. As the square of a nonnegative convex function is convex
by Lemma 1, it is enough to determine the interval in which T (k) − T (k∗) is nonnegative. From the
integral representation of T (k) in Equation (3.1) we see that T (k) is strictly decreasing in k. Hence,
T (k) − T (k∗) is nonnegative on the interval [0, k∗] implying the convexity of (T (k) − T (k∗))2 on this
interval by Lemma 1.

3.3 A Velocity Model in Two Dimensions

Consider a velocity model in two dimensions where the predicted velocity at a point (X, z) is of the form
v(X, z) = a + bz where a and b are positive constants, X is the horizontal position of the ray, and z is
the current depth of the ray. We analyze the travel time of a ray emanating from a single receiver which
has a final distance X from the source, as well as the amplitude of the wave at a receiver. We compute
the squared W2 distance of the predicted wave function with the observed wave function (with velocity
a∗ + b∗z at depth z) and aim to find a region in R2 for which this distance is convex in (a, b).

3.3.1 Constant Amplitude

While the source function and the observed wave function always have the same amplitude in one dimen-
sion, for higher dimensions this is not the case. With a source function f(t), the observed wave data is of
the form Af(t−T ) for constants A and T because there are no reflections when the velocity is a continuous
function of depth. However, we analyze the convexity with the assumption that A = 1. We treat the
observed wave data as f(t − T (X, a∗, b∗)) where T (X, a, b) = Tpred is the predicted traveltime expressed
as a function of a, b, and X and T (X, a∗, b∗) = Tobs is the observed traveltime of the wave data. X is
the receiver location, or the distance from the source to the receiver. Furthermore, we assume that f(t)
is a probability distribution with compact support in the interval [p1, p2] ⊂ [0, T ], where T > Tobs + p2.
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(a) Sum of squared W2 distance (b) Sum of squared L2 norm

Figure 5: Here, f(t) = e−50(t−5)2 is the source function and (a∗, b∗) = (1, 2) is the true value of the velocity
parameter. As f is not a probability density function, the wave data, which is of the form g(X, t, a, b) =

f(t − T (X, a, b)), is normalized according to the formula g̃(X, t, a, b) =
g(X, t, a, b)∫ T

0 g(X, t, a, b) dt
where T =

50. The objective function W(a, b) =
100∑

Xr=10

W 2
2 (g̃(t− T (Xr, a, b)), g̃(t− T (Xr, a

∗, b∗))), where Xr is the

location of receiver r, is compared with L(a, b) =

100∑
Xr=10

∫ T
0
|f(t− T (Xr, a, b))− f(t− T (Xr, a

∗, b∗))|2 dt.

When the source function is a probability distribution, this method is equivalent to traveltime tomography
because the squared W2 distance is equal to (Tpred − Tobs)2 by Theorem 2.

Even when the observed wave data is not a probability distribution, we may normalize the data to
reduce it to this case. For example, if we normalize a nonnegative function k(t) of the form Af(t−T ) with

compact support in the interval [0, T ] using the formula k̃(t) = k(t)∫ T
0 k(t) dt

, where k̃(t) is the normalized

wave data, then the amplitude of the normalized data remains constant. Thus, the squared W2 distance
becomes (Tpred−Tobs)2. Using this expression for the squared W2 distance, we can determine its convexity
in a large region containing (a∗, b∗) and points arbitrarily close to the origin.

We first explicitly compute T (X, a, b). Letting the ray parameter be p, we find that X = 2η1
bu1p

from

Equation (2.5) where u1 = 1
a is the initial slowness, and η1 =

√
u2

1 − p2 is the initial vertical slowness.
We can solve for p and η1 in terms of X, a, and b as

p =
2√

b2X2 + 4a2
, η1 =

bX

a
√
b2X2 + 4a2

.

From these formulas as well as Equation (2.6), we can solve for the time:

T (X, a, b) =
2

b

(
ln

(√
b2X2 + 4a2 + bX

2a

))
.

Then, the squared W2 distance becomes (T (X, a, b)− T (X, a∗, b∗))2 where v1(X, z) = a∗+ b∗z is the true
velocity function. We first claim that T (X, a, b) is convex subject to a restriction on bX

2a .

Lemma 3. Let S0 > 0 be the largest root of the equation S2φ(S) + 2φ(S)− S2 = 0, where

φ(S) = 2

(
1 +

1

S2

) 3
2

ln(
√
S2 + 1 + S)− 2

S2
− 3.

Then, the traveltime T (X, a, b) is jointly convex in (a, b) whenever bX
2a ≥ S0.

118



Proof. Let y1 =
√
b2X2 + 4a2 and S = bX

2a . We can compute the first order derivatives of T (X, a, b) as

∂T

∂a
=
−2X

ay1
and

∂T

∂b
=

2X

by1
−

2 ln
(√

S2 + 1 + S
)

b2
.

The Hessian matrix of T (X, a, b), where we treat X as a constant, becomes 2X
y31

H, where

H =

8 + 4S2 2SX

2SX X2

(
2(S2+1)

3
2

S3 ln(
√
S2 + 1 + S)− 2

S2 − 3

) .
To prove the convexity of T (X, a, b), it is enough to show that the Hessian matrix of T (X, a, b) is positive
semidefinite, which is equivalent to showing that H is positive semidefinite. Using Sylvester’s Criterion,
because 8 + 4S2 is always positive, we see that H is positive semidefinite exactly when detH ≥ 0. Letting

φ(S) = 2(1 +
1

S2
)
3
2 ln(

√
S2 + 1 + S)− 2

S2
− 3,

we see that
detH = 8X2φ(S) + 4S2X2(φ(S)− 1) = 4X2(S2φ(S) + 2φ(S)− S2),

so it is enough to show that S2φ(S) + 2φ(S) − S2 ≥ 0 for all S ≥ S0. Since S0 is the largest root of
S2φ(S) + 2φ(S) − S2 = 0, it is enough to show this inequality for all sufficiently large S. Observe that
φ(S) ≥ ln(S) for all sufficiently large S, implying that S2φ(S) + 2φ(S) − S2 ≥ S2(ln(S) − 1) + 2 ln(S),
which is at least 0 for all sufficiently large S. Since S = bX

2a , this proves the lemma.

We are now ready to prove the convexity of (T (X, a, b)− T (X, a∗, b∗))2 over a certain region U .

Theorem 4. Let a∗ and b∗ be positive constants, and let

U := {(a, b) ∈ R2 : a, b > 0,
bX

2a
≥ S0, T (X, a, b) ≥ T (X, a∗, b∗)},

where X > 0 is a fixed constant. Then U is nonempty and (T (X, a, b) − T (X, a∗, b∗))2 is jointly convex
in (a, b) ∈ U .

Proof. First, as a decreases, both bX
2a and T (X, a, b) increase and approach infinity, implying that U is

nonempty. From Lemma 3 we see that the function T (X, a, b)−T (X, a∗, b∗) is jointly convex in (a, b) ∈ U .
In addition, as T (X, a, b) ≥ T (X, a∗, b∗) on U we have that T (X, a, b) − T (X, a∗, b∗) is also nonnegative
on U . Thus, by Lemma 1, the squared W2 distance, which is (T (X, a, b)−T (X, a∗, b∗))2, is jointly convex
in (a, b) ∈ U .

Remark 2. To ensure that (a∗, b∗) ∈ U , it is enough to require that b∗X
2a∗ ≥ S0 because T (X, a∗, b∗) −

T (X, a∗, b∗) is equal to 0. Thus, choosing large values of X will ensure that the squared W2 distance is
convex in (a, b) in a region containing (a∗, b∗). To find a suitable initial guess, we may choose a point
(a, b) such that bX

2a ≥ S0 and scale it by a sufficiently small constant in order to satisfy the condition
T (X, a, b) ≥ T (X, a∗, b∗).

However, this function is not suitable as an objective function because (T (X, a, b) − T (X, a∗, b∗))2

may equal 0, its minimum, even when a is not equal to a∗ or b is not equal to b∗ – there is not enough
information to find a∗ and b∗ through one receiver alone. To fix this, we add multiple receiver locations
Xr.

Fact 1. The equation T (X, a1, b1)− T (X, a2, b2) = 0 has at most one solution in X > 0 where (a1, b1) 6=
(a2, b2) are fixed ordered pairs of positive real numbers.
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Proof. Assume for the sake of contradiction that the equation T (X, a1, b1) = T (X, a2, b2) has two positive
solutions. Since T (0, a1, b1) = T (0, a2, b2) = 0, there are at least three nonnegative solutions in X to the
equation T (X, a1, b1) = T (X, a2, b2). Therefore, the equation T ′(X, a1, b1) = T ′(X, a2, b2), or equivalently,

2√
b21X

2 + 4a2
1

=
2√

b22X
2 + 4a2

2

,

has at least two positive solutions in X by the Mean Value Theorem. Thus, there are two positive solutions
to the equation (b2

1 − b22)X2 + (4a2
1 − 4a2

2) = 0, a contradiction.

This implies that the value of T (Xr, a, b) at two different receiver locations Xr uniquely determines
the pair (a, b). We use the objective function

∑
r(T (Xr, a, b)− T (Xr, a

∗, b∗))2, where the sum is over the
receivers r, and the Xr are the receiver locations. We plot this objective function in Figure 5a, where
a∗ = 1 and b∗ = 2 and the Xr range from 10 to 100 inclusive. We compare it to the sum of the squared
L2 norm where the set of receiver locations is the same and the source function is f(t) = e−50(t−5)2 . The
L2–based objective function is mostly flat with a sharp incline close to the true velocity parameter (1, 2).
It is clearly nonconvex, as shown in Figure 5b. On the other hand, the W2–based objective function
(which does not depend on the source function, as long as it is nonnegative) appears convex in (a, b).

3.3.2 Varying Amplitude

In general, the amplitude of the wave equation solution is non–constant. The predicted wave function at
receiver X can be considered to be of the form

g(t, a, b) = A(X, a, b)f(t− T (X, a, b)),

where A(X, a, b) is the amplitude as a function of the receiver location X and the velocity parameters
a, b. The observed wave function at receiver X can be considered of the form g(t, a∗, b∗) where (a∗, b∗) is
the true velocity parameter. Using Equation (2.7), we obtain

A(X, a, b) =
b

√
b2X2 + 4a2

(
π
2 − arcsin

(
2a√

b2X2+4a2

)) .
Since b and X are positive, we may simplify this expression to get

A(X, a, b) =
1

X

√
1 +

(
2a
bX

)2(π
2 − arcsin

(
1√

( bX2a )
2
+1

)) =
1

RX

√
1 +

(
1
S

)2 (3.2)

where

S =
bX

2a
and R =

π

2
− arcsin

(
1√

S2 + 1

)
.

While the amplitude function in Equation (3.2) is not fully accurate, it is still a good approximation if
the velocity model is continuous.

We will only consider points (a, b) with a > a∗

100 and b
a ≥

b∗

a∗ , which is a positive constant independent of

X. This also implies that b > b∗

100 . We treat X as a sufficiently large constant, which causes S = bX
2a ≥

b∗X
2a∗

to be large as well. In particular, X is taken to be large enough so that b∗X
2a∗ > S0. For large S, the

amplitude is approximately 2
πX . Taking the derivative of the amplitude with respect to S gives

∂

∂S
A(X,S) =

1

X

 1(
1
S2 + 1

) 3
2 S3R

− S(
1
S2 + 1

) 3
2 S3R2

 = O
(

1

S2

)
.
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Thus, ∣∣∣∣ ∂∂aA(X, a, b)

∣∣∣∣ =

∣∣∣∣ ∂∂aS · ∂∂SA(X,S)

∣∣∣∣ =

∣∣∣∣−Sa · ∂∂SA(X,S)

∣∣∣∣ = O
(

1

S

)
because a > a∗

100 . Similarly, because b > b∗

100 ,∣∣∣∣ ∂∂bA(X, a, b)

∣∣∣∣ =

∣∣∣∣ ∂∂bS · ∂∂SA(X,S)

∣∣∣∣ =

∣∣∣∣Sb · ∂∂SA(X,S)

∣∣∣∣ = O
(

1

S

)
.

Therefore, it is reasonable to assume the amplitude remains unchanged for large values of X, and we let
A be this amplitude. We approximate a predicted wave function g(t, a, b) = A(X, a, b)f(t − T (X, a, b))
where X is a fixed large constant by the new function g1(t, a, b) = Af(t − T (X, a, b)) so it suffices to
approximate the observed wave function h(t) = g(t, a∗, b∗) by the wave function h1(t) = g1(t, a∗, b∗).

As the W2 distance is only defined when both of its inputs have total mass 1, we normalize all wave
data of the form k(t) using the formula

k̃(t) =
k(t) + γ∫ T

0 (k(t) + γ)dt

on the interval [0, T ] and 0 everywhere else. Here, γ is a positive constant such that k(t) + γ > 0 for all t.
Eventually, we compute the squared W2 distance between g̃1(t, a, b) and h̃1(t). We have

g̃1(t, a, b) =
Af(t− Tpred) + γ

AI0 + γT
and h̃1(t) = g̃1(t, a∗, b∗) =

Af(t− Tobs) + γ

AI0 + γT
, (3.3)

where
∫ T

0 f(t) dt = I0, Tpred = T (X, a, b), and Tobs = T (X, a∗, b∗). We also assume that γ is large enough

to ensure that g̃1(t, a, b) and h̃1(t) are strictly positive with total mass 1.
Then, we let

G(t, a, b) =

∫ t

0
g̃1(y, a, b) dy and H(t) =

∫ t

0
h̃1(y) dy = G(t, a∗, b∗).

Since g̃1(t, a, b) and h̃1(t) are both probability distributions, we may compute the squared W2 distance
between them using Equation (2.1) to get

W 2
2 (g̃1, h̃1) =

∫ 1

0
(G−1(s, a, b)−H−1(s))2 ds

where G−1(s, a, b) : [0, 1]→ [0, T ] is the unique function satisfying

G(G−1(s, a, b), a, b) = s and G−1(G(t, a, b), a, b) = t

for all s ∈ [0, 1] and t ∈ [0, T ].
Observe that g̃1 = g̃1(t, a, b) and G = G(t, a, b) can be expressed as functions of time t and the velocity

parameters a, b, and G−1(s) = G−1(s, a, b) can be expressed as a function of s and a, b. It is also possible to
express g̃1 = g̃1(t, Tpred) as a function of t and the predicted traveltime Tpred using Equation (3.3). Thus,
we can alternatively express G = G(t, Tpred) as a function of t and Tpred, and G−1(s) = G−1(s, Tpred) as
a function of s and Tpred. In the proofs of the following claims, we sometimes omit the variables a, b, and
Tpred in the arguments of g̃1, G, and G−1.

We compute
∫ 1

0 (G−1(s))2 ds to simplify W 2
2 (g̃1, h̃1).

Lemma 4. Let I0 =
∫ T

0 f(t) dt, I1 =
∫ T

0 tf(t) dt, and I2 =
∫ T

0 t2f(t) dt. Then, if Tobs ≤ Tpred ≤ T − p2,∫ 1

0
(G−1(s, Tpred))

2 ds =
1

I0 + γT
A

(
γT 3

3A
+ I2 + 2TpredI1 + T 2

predI0

)
.
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Proof. From the substitution s = G(t), we can compute
∫ 1

0 (G−1(s))2 ds as∫ 1

0
(G−1(s))2 ds =

∫ T
0
t2g̃1(t) dt =

∫ T
0
t2
f(t− Tpred) + γ

A

I0 + γT
A

dt.

We may write the integral as∫ T
0
t2
f(t− Tpred) + γ

A

I0 + γT
A

dt =
1

I0 + γT
A

(
γT 3

3A
+

∫ T
0
t2f(t− Tpred) dt

)
.

However, note that
∫ T

0 t2f(t− Tpred) dt =
∫ T −Tpred
−Tpred (t+Tpred)

2f(t) dt. As f has compact support [p1, p2] ⊂
[0, T ] and Tpred ≤ T −p2, we may write the integral as

∫ T
0 (t+Tpred)

2f(t) dt. This becomes I2 +2TpredI1 +

T 2
predI0, where I2 =

∫ T
0 t2f(t) dt, I1 =

∫ T
0 tf(t) dt, and I0 =

∫ T
0 f(t) dt, which proves the lemma.

Now, observe that the squared W2 distance may be expressed as a function of Tpred = T (X, a, b),
because G−1(s, Tpred) is a function of both s and Tpred. Using this, we may compute the first and second

derivatives of W 2
2 (g̃1, h̃1) with respect to Tpred. To compute the first derivative of W 2

2 (g̃1, h̃1) with respect
to Tpred, it is enough to find the first derivative of G−1 with respect to Tpred.

Lemma 5. The first derivative of G−1(s, Tpred) with respect to Tpred is

∂

∂Tpred
G−1(s, Tpred) =

f(G−1(s, Tpred)− Tpred)
f(G−1(s, Tpred)− Tpred) + γ

A

= 1−
γ
A

f(G−1(s, Tpred)− Tpred) + γ
A

. (3.4)

Proof. Because
∫ G−1(s)

0 g̃1(t) dt = G(G−1(s)) = s, we may apply the Leibniz integral rule to see that

0 =
∂

∂Tpred
s =

∂

∂Tpred

∫ G−1(s)

0
g̃1(t) dt

= g̃1(G−1(s))
∂

∂Tpred
G−1(s) +

∫ G−1(s)

0

∂

∂Tpred
g̃1(t) dt.

Thus, we have that

∂

∂Tpred
G−1(s) =

−
∫ G−1(s)

0
∂

∂Tpred
g̃1(t) dt

g̃1(G−1(s))
=
−
(
I0 + γT

A

) ∫ G−1(s)
0

∂
∂Tpred

g̃1(t) dt

f(G−1(s)− Tpred) + γ
A

.

From Equation (3.3), we see that

−
∫ G−1(s)

0

∂

∂Tpred
g̃1(t) dt =

∫ G−1(s)
0 f ′(t− Tpred) dt

I0 + γT
A

=
f(G−1(s)− Tpred)

I0 + γT
A

,

where we use the fact that f(−Tpred) = 0. Thus, Equation (3.4) holds.

Now, we use this to compute the first derivative of the squared W2 distance with respect to Tpred.

Lemma 6. Suppose Tobs ≤ Tpred ≤ T − p2. The first derivative of W 2
2 (g̃1(t, Tpred), h̃1(t)) with respect to

Tpred is

2

I0 + γT
A

((
I0 −

γT
A

)
(Tpred − Tobs) +

γ

A

∫ T
0

∫ Tpred

Tobs

γ
A

f(G−1(H(t), y)− y) + γ
A

dy dt

)
.
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Proof. Because ∂
∂Tpred

(H−1(s)) = 0,

∂

∂Tpred
W 2

2 (g̃1, h̃1) =
∂

∂Tpred

∫ 1

0
(G−1(s))2 ds− 2

∫ 1

0
H−1(s)

∂

∂Tpred
(G−1(s)) ds,

using the Leibniz integral rule. By Lemma 4 and Lemma 5 we simplify

∂

∂Tpred
W 2

2 (g̃1, h̃1) =
2TpredI0 + 2I1

I0 + γT
A

− 2

∫ 1

0
H−1(s)−

γ
AH

−1(s)

f(G−1(s)− Tpred) + γ
A

ds.

From the change of variables s = H(t), we see that
∫ 1

0 H
−1(s) ds =

∫ T
0 th̃1(t) dt, which can be computed

as ∫ T
0

tf(t− Tobs) + γt
A

I0 + γT
A

dt =
1

I0 + γT
A

(
γT 2

2A
+

∫ T −Tobs
−Tobs

(t+ Tobs)f(t) dt

)

=
γT 2

2A + I1 + TobsI0

I0 + γT
A

.

This means

∂

∂Tpred
W 2

2 (g̃1, h̃1) =
2

I0 + γT
A

(
I0(Tpred − Tobs) +

γ

A

∫ 1

0

H−1(s)

g̃1(G−1(s))
ds− γT 2

2A

)
.

Furthermore, observe that
∫ 1

0
H−1(s)

g̃1(G−1(s))
ds =

∫ T
0 H−1(G(t)) dt from the substitution s = G(t). Because

H−1(G(t)) is the inverse function of G−1(H(t)), we have that
∫ T

0 H−1(G(t)) dt = T 2−
∫ T

0 G−1(H(t)) dt.
Thus,

∂

∂Tpred
W 2

2 (g̃1, h̃1) =
2

I0 + γT
A

(
I0(Tpred − Tobs) +

γT 2

2A
− γ

A

∫ T
0
G−1(H(t)) dt

)
. (3.5)

Observe that G−1(H(t), Tobs) = t. From Equation (3.4), we have that

G−1(H(t), Tpred) = t+

∫ Tpred

Tobs

∂

∂y
G−1(H(t), y) dy

= t+

∫ Tpred

Tobs

(
1−

γ
A

f(G−1(H(t), y)− y) + γ
A

)
dy.

Substituting this expression for G−1(H(t)) into Equation (3.5) gives

2

I0 + γT
A

((
I0 −

γT
A

)
(Tpred − Tobs) +

γ

A

∫ T
0

∫ Tpred

Tobs

γ
A

f(G−1(H(t), y)− y) + γ
A

dy dt

)
as the value of ∂

∂Tpred
W 2

2 (g̃1, h̃1).

Expressing ∂
∂Tpred

W 2
2 (g̃1, h̃1) in this form allows us to prove the convexity of W 2

2 (g̃1, h̃1) with respect

to a, b subject to a restriction on the source function f . Here, we assume that f reaches both positive
and negative values.

Theorem 5. Let q =
γ
A

sup f+ γ
A

and suppose that I0 ≥ (1− q)γTA . Let a∗ and b∗ be positive constants such

that b∗X
2a∗ ≥ S0 and let

V = {(a, b) ∈ R2 : a >
a∗

100
,
bX

2a
≥ b∗X

2a∗
, T (X, a∗, b∗) ≤ T (X, a, b) ≤ T − p2}.

Then, V is nonempty and W 2
2 (g̃1(t, a, b), h̃1(t)) is jointly convex in (a, b) ∈ V .
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Before beginning the proof of Theorem 5, we remark that the function f(t) = (t−15)2−A with domain
[0, T ], where T = 30, γ = 2A, and 0 < A ≤ 73, satisfies the condition I0 ≥ (1 − q)γTA and reaches both

positive and negative values. To see this, observe that I0 = 2250−30A ≥ 60 while (1−q)γTA = 60 sup f
sup f+2 < 60.

Hence, our assumption that I0 ≥ (1− q)γTA is a reasonable assumption to make.

Proof. First, the point (a∗, b∗) is clearly in V , so V is nonempty. Now, we prove that W 2
2 (g̃1(t, a, b), h̃1(t))

is jointly convex in (a, b) ∈ V . Because b∗X
2a∗ ≥ S0, V is a subset of U , which is defined in Theorem 4.

This implies that T (X, a, b) is jointly convex in a, b over the region V by Lemma 3. Thus, it is enough to
show that W 2

2 (g̃1, h̃1) is convex and nondecreasing in Tpred in the interval [Tobs, T − p2]. We first claim

that W 2
2 (g̃1, h̃1) is nondecreasing in Tpred in this interval. By Lemma 6, we see that

∂

∂Tpred
W 2

2 (g̃1, h̃1) ≥ 2

I0 + γT
A

((
I0 −

γT
A

)
(Tpred − Tobs) +

γ

A

∫ T
0

∫ Tpred

Tobs

q dy dt

)
=

2

I0 + γT
A

(
I0 + (q − 1)

γT
A

)
(Tpred − Tobs)

because Tpred ≥ Tobs. Furthermore, because I0 ≥ (1 − q)γTA , every factor is nonnegative, implying

that ∂
∂Tpred

W 2
2 (g̃1, h̃1) is nonnegative. Next, we claim that W 2

2 (g̃1, h̃1) is convex in Tpred in the interval

[Tobs, T − p2]. Using Equation (3.5) and Lemma 5, we see that

∂2

∂T 2
pred

W 2
2 (g̃1, h̃1) =

∂

∂Tpred

(
2

I0 + γT
A

(
I0(Tpred − Tobs) +

γT 2

2A
− γ

A

∫ T
0
G−1(H(t)) dt

))

=
2

I0 + γT
A

(
I0 −

γ

A

∫ T
0

∂

∂Tpred
G−1(H(t)) dt

)
=

2

I0 + γT
A

(
I0 −

γ

A

∫ T
0

1−
γ
A

f(G−1(H(t))− Tpred) + γ
A

dt

)
≥ 2

I0 + γT
A

(
I0 + (q − 1)

γT
A

)
.

Since I0 ≥ (1 − q)γTA , we see that ∂2

∂T 2
pred

W 2
2 (g̃1, h̃1) is nonnegative in the interval [Tobs, T − p2]. Thus,

W 2
2 (g̃1, h̃1) is convex and nondecreasing in Tpred in the interval [Tobs, T −p2]. Since Tpred is jointly convex

in (a, b) ∈ V , W 2
2 (g̃1, h̃1) is also jointly convex in (a, b) ∈ V by Lemma 1.

Remark 3. Through the Mean Value Theorem, Theorem 5 can be reformulated as a result with a
condition involving an upper bound on df

dt . This reformulation illustrates how the convexity of W 2
2 (g̃1, h̃1)

is influenced by the frequency of the source function.

Remark 4. The requirements needed to apply Lemma 1 are not satisfied for Tpred ∈ (0, Tobs]. To see
this, observe that the squared W2 distance is nonnegative everywhere and 0 when Tpred = Tobs. Thus,
it is impossible for the squared W2 distance to be nondecreasing in Tpred ∈ (0, Tobs], although it may be
convex in this interval.

4 Numerical Results

We continue with the velocity model studied in Section 3.3. We compute both the L2 and W2 distance and
compare the convexity of the two objective functions in (a, b), as shown in Figures 6 and 7. The source
wave function is of the form f(t) = e−α(t−5)2 and we consider α ∈ {2, 10, 100}. Here, (a∗, b∗) = (1, 2) and
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(a) α = 2 (b) α = 10 (c) α = 100

Figure 6: Plots of ||g − h||22, where there is only one receiver at X = 10.

(a) α = 2 (b) α = 10 (c) α = 100

Figure 7: Plots of W 2
2 (g̃(X, t), h̃(X, t)), where there is only one receiver at X = 10.

(a) α = 2 (b) α = 10 (c) α = 100

Figure 8: Plots of
∑

rW
2
2 (g̃(Xr, t), h̃(Xr, t)), where the receiver locations Xr range from 10 to 100,

inclusive.
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(a) The source functions are of the form e−α(t−5)2 .
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(b) The Fourier transforms of the source functions.

Figure 9: The Fourier transform of the source function depends on the value of α. As α increases, the
average absolute value of the frequency also increases.

γ = 10−6. We can consider the observed data to be of the form A(X, a, b)f(t − T (X, a, b)) because the
velocity is a continuous function of the depth. To ensure that the wave data is compactly supported, we
use the time range [0, 50] to compute the squared W2 distance.

While the squared W2 distance appears to be mostly convex for α ∈ {2, 10, 100}, the squared L2 norm
is certainly nonconvex. The plot of the squared L2 norm has large flat regions with a steep incline closer
to where the L2 norm is minimized, as shown in Figures 6a to 6c. Although the squared L2 norm is
nonconvex, by decreasing the value of α we increase the size of the convex region around (a∗, b∗) of the
squared L2 norm. As the graph of the source function becomes sharper (Figure 9a), so does the graph
of the squared L2 norm. The squared W2 distance, on the other hand, is relatively flat throughout the
entire domain and does not have a steep incline closer to the minimum, as shown in Figures 7a to 7c.
Thus, the squared W2 distance should be convex on a much larger region containing the minimum. The
squared W2 distance is also highly insensitive to the choice of source function, and this suggests that the
squared W2 distance can be used to solve various seismic inversion problems, in contrast with the squared
L2 norm.

In addition, we plot the sum of the squared W2 distance taken over multiple receiver locations in
Figure 8. The summation of the squared W2 distance over multiple receiver locations is highly convex
regardless of α, as seen in Figures 8a to 8c. Furthermore, the summation of the squared W2 distance over
multiple receiver locations is also very close to the summation of (Tpred − Tobs)2 over multiple receiver
locations, and appears to be convex in (a, b) for (a, b) closer to the origin. Thus, as an initial guess for
(a, b), it appears to be better to choose points (a, b) which are very close to the origin. This is equivalent
to choosing points (a, b) such that the predicted travel time is large.

4.1 Frequency Analysis

We observe that the changes in the squared L2 or W2 distances between g(t, a, b) and h(t) depends solely
on the value of α, which in turn affects the frequency of the source function. The graph of the source
function in the frequency domain can be derived by taking a Fourier transform. Letting

f̂(k) =

∫ ∞
−∞

e−2πiktf(t) dt =

∫ ∞
−∞

e−2πikte−α(t−5)2 dt,
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we get that f̂(k) =
√

π
αe
− (πk)2

α
−10πik, and the power at a frequency k is given by the magnitude, which is

|f̂(k)| =
√

π
αe
− (πk)2

α . The graph of |f̂(k)| is centered at k = 0 regardless of the value of α, but as the value

of α increases, the plot of |f̂(k)| becomes wider, as shown in Figure 9b. In other words, if |k1| > |k2| where

k1 and k2 are fixed frequencies, then |f̂(k1)|
|f̂(k2)|

increases as α increases. Thus, as the value of α increases,

the average absolute value of the frequency of the source function also increases. For large values of α,
the plot of the squared L2 norm also has the properties of higher frequency data, as the plot is very
sharp close to (a∗, b∗) = (1, 2). The high–frequency data seen in Figure 6c is explained by the squared
L2 norm weighting low–frequency and high–frequency terms equally, by the Plancherel Theorem. On the
other hand, the plot of the squared W2 distance is virtually unchanged as α increases, suggesting that the
frequency of the the squared W2 distance is highly insensitive to the frequency of the source function.

The relationship between the W2 distance between two functions g and h and a weighted Ḣ−1 distance
between them helps provide an explanation for these observations regarding frequency [10, 20]. We define
the space Ḣ1(Rd) through the seminorm

||f ||2Ḣ1(Rd)
=

∫
Rd
|k|2|f̂(k)|2 dk

and the space Ḣ−1(Rd) is defined as the dual of Ḣ1(Rd) through the norm

||f ||Ḣ−1(Rd) = sup{|〈z, f〉L2 | : ||z||Ḣ1 ≤ 1}.

It is known [20] that the W2 distance is asymptotically equivalent to the Ḣ−1 norm, which weights terms
of lower frequency over terms with higher frequency. Specifically, if µ is a probability measure and dπ is
an infinitesimal perturbation with zero total mass, then W2(µ, µ + dπ) = ||dπ||Ḣ−1

(dµ)
+ o(dπ) [10]. While

the objective functions in Figures 7 and 8 are not globally convex, the relationship between the squared
W2 distance and the squared Ḣ−1 metric offers an explanation for the smoothness of the plots in these
figures, which display properties of low–frequency data.

4.2 Optimal Transport for Non–probability Measures

In general, the wave data tends to alternate between positive and negative values, and the total integral
of the observed or predicted wave function does not have to be 1. Thus, we cannot immediately use the
squared W2 distance as our objective function, because it is only defined on probability distributions.
The current approach to normalizing the wave data requires two steps: first, transform the wave data
to a nonnegative function, and second, divide by the total mass [8]. This ensures that the normalized
wave data satisfies the positivity and total mass requirements. Although there are several possible ways
to complete the first step, the known methods of doing this have their own drawbacks.

If the source function f is positive, the first step becomes unnecessary. The requirement in Theorem 4
is not very strong, suggesting that when f is positive, the squared W2 distance is suitable as an objective
function. However, this method does not generalize well to source functions that alternate between
negative and positive values. In this case, we complete the first step by initially replacing an alternating
function k by k+ γ, where inf k+ γ > 0. Then, we divide by the total mass of k+ γ in the interval [0, T ].
This method of normalization takes into account the wave amplitude as well. However, the convexity of
the squared W2 distance, in this case, is not as general as with the previous method. Further restrictions
on the source f are necessary, as shown by the requirements in Theorem 5. This suggests that the squared
W2 distance is suitable as an objective function when the normalization constant γ is sufficiently close to
0, or equivalently, when inf f is sufficiently close to 0.
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5 Conclusions

In this paper, we study the convexity of full–waveform inversion using the squared W2 distance as an
objective function with respect to the velocity model parameter. We show that the squared W2 distance
is a suitable objective function for multiple velocity models when the received signal is nonnegative. Next,
we show that the squared W2 distance is suitable in some cases, in a two–dimensional velocity model where
the received signal alternates between positive and negative values. We review the smoothing property of
the squared W2 distance by its relation to the squared Ḣ−1 distance, and contrast this with the sharpness
of the squared L2 norm, which is very sensitive to high–frequency signals. We also discuss the drawbacks
of the normalization methods used in this paper. A natural direction for future research is to generalize
the W2 distance to compare functions alternating between positive and negative values.

6 Acknowledgements

Firstly, the author would like to thank Dr. Yunan Yang for her mentorship and guidance during this
project. The author thanks Dr. Tanya Khovanova and Boya Song for proofreading this paper and for
providing feedback. Finally, the author is thankful to the PRIMES–USA program for making this research
project possible. This work is supported in part by the National Science Foundation through grant DMS–
1913129.

References

[1] Luigi Ambrosio and Nicola Gigli. A user’s guide to optimal transport. In Modelling and optimisation
of flows on networks, pages 1–155. Springer, 2013.

[2] Hyoungsu Baek, Henri Calandra, and Laurent Demanet. Velocity estimation via registration-guided
least-squares inversion. Geophysics, 79(2):R79–R89, 2014.
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[21] Jean Virieux and Stéphane Operto. An overview of full-waveform inversion in exploration geophysics.
Geophysics, 74(6):WCC1–WCC26, 2009.

[22] Yunan Yang. Optimal transport for seismic inverse problems. PhD thesis, The University of Texas
at Austin, 2018.

[23] Yunan Yang. Analysis and application of optimal transport for challenging seismic inverse problems.
arXiv preprint arXiv:1902.01226, 2019.

[24] Yunan Yang and Björn Engquist. Analysis of optimal transport and related misfit functions in
full-waveform inversion. Geophysics, 83(1):A7–A12, 2018.

[25] Colin A. Zelt. Traveltime tomography using controlled-source seismic data. Encyclopedia of solid
earth geophysics, 2:1453–1473, 2011.

129




