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Abstract: Inspired by earthworms, worm-like robots use peristaltic waves to locomote. While there
has been research on generating and optimizing the peristalsis wave, path planning for such worm-like
robots has not been well explored. In this paper, we evaluate rapidly exploring random tree (RRT)
algorithms for path planning in worm-like robots. The kinematics of peristaltic locomotion constrain
the potential for turning in a non-holonomic way if slip is avoided. Here we show that adding an
elliptical path generating algorithm, especially a two-step enhanced algorithm that searches path
both forward and backward simultaneously, can make planning such waves feasible and efficient
by reducing required iterations by up around 2 orders of magnitude. With this path planner, it is
possible to calculate the number of waves to get to arbitrary combinations of position and orientation
in a space. This reveals boundaries in configuration space that can be used to determine whether
to continue forward or back-up before maneuvering, as in the worm-like equivalent of parallel
parking. The high number of waves required to shift the body laterally by even a single body width
suggests that strategies for lateral motion, planning around obstacles and responsive behaviors will
be important for future worm-like robots.

Keywords: soft robotics; worm-like robot; path planning; RRT

1. Introduction

Due to soft characteristics, nonholonomic constraints, limits on reachable space and the high
number of degrees of freedom (DOF), navigating and path planning for worm-like robots can be
difficult [1-3]. Inspired by earthworms, worm-like robots locomote by changing the body shape
of each segment. The segment shape is constrained such that extension in length is coupled with
contraction in diameter, and contraction in length is coupled with expansion in diameter. By actuating
the segments in a given sequence, the robot can generate a spatial peristalsis wave to move either
forward or backward [4].

To turn, the wave must be adjusted so the amplitude is different on the left and right of the
segment. We have previously shown that even if the robot’s structure is simplified as a series of 2D
trapezoids (Figure 1), changing from straight-line locomotion into a turn requires multiple, unique
waves that are not periodic. This is in part because the shape of the segments can only be changed
within certain bounds as shown in Figure 2 because of the limit of the segment deformation. As a
result, both the length traveled and the angle turned for each wave are limited. Turning angle also
limits traveling distance per wave: The more the robot turns in a certain wave, the less distance it can
move [3]. Our previous design, the compliant modular mesh worm robot with steering (CMMWorm-S)
is typical of such robots [4].
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Flgure 1 A typlCElll worm-like robot can be simplified as a series of 2D trapezmds [3 :
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path planning result have also been introduced depending on the specific kinetic constraints and
requirements of the given moving subject [8]. Clothoid and spline curves are often applied when the
smoothness of acceleration is required. Simpler curves such as polynomial and Dubins curves are
more preferred when the resources for runtime calculation are limited [8,9]. In contrast to autonomous
vehicles, worm-like robots have less velocity and each segment has a stationary support or anchoring
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phase while other segments locomote. As a result of these characteristics, the smoothness of acceleration
has little impact on kinematics. A simpler and less costly path smoothing method is therefore preferred.
As a result, the ellipse is selected for our case which has less maximum curvature than Dubins method.

Here we assess whether elliptical curves are appropriate approximations for the specific
nonholonomic constraints that arise from peristaltic locomotion.

For snake-like robots, techniques based on serpenoid curves and genetic algorithms have been
proposed in which the range of path and curve deviation are used as constraints to compute a path [10].
Planning a path for snake-like robots has also been solved with potential energy methods [11].

Algorithms have also been presented for deformable robots. Gayle et al. [12] presented an
algorithm for path planning of deformable robots by using the probabilistic roadmap method. In this
algorithm, they used constraints like preserving volume in order to make corrections and make an
appropriate path. In [13], roadmaps are built for deformable volumes. The nodes of these roadmaps
are equilibrium configurations of volume under constraints and hence find the path by searching the
roadmap. In [14], the probabilistic roadmap planner finds a path based on the Bezier surface and
energy function. In [15], the path is formed in two stages: first, the approximate path is formed without
considering collisions and second, the path is corrected by deforming the robot wherever there are
collisions. In soft robotics, there is also research focused on an opposite principle: finding a path where
the robot contacting the edge of the obstacles is considered having the lowest cost. In such a case, the
soft robot can utilize such contacting points to enhance its locomotion [16,17].

Meanwhile, research has been done on the locomotion of worm-like robots and its relation to the
robot properties such as size, stiffness and deforming pattern [18,19]. Our simulation models shown in
the following section follows the slip elimination criteria during locomotion. This has been previously
published [19] and states that in order for a peristaltic device to turn without slipping, the actuation
pattern must change each wave depending on the previous configuration of the robot. Such waveforms
have been termed as non-periodic waveforms.

To our knowledge, though different approaches on path-planning for the soft robot have been
developed, no other research has focused on a similar topic as of this paper: path-planning solution to
deal with the complicity and nonholonomic constraints of worm-like robot.

In order to find an appropriate pathfinding method for the worm-like robot, we started from
two kinds of simple algorithms (RRT (Algorithm 1) and elliptical path generation (Algorithm 2)).
Then we combined those two algorithms (combined RRT ellipse (Algorithm 3) to benefit both of
their advantages. Based on such combination, we introduced a more advanced algorithm (enhanced
combined RRT ellipse (Algorithm 4)) with some helpful improvements. A brief overview of these 4
algorithms is shown in Table 1.

Table 1. Implemented algorithms.

Aleorithm Guaranteed Goal Smooth Total Computational

8 Convergence Path Time

RRT (random tree of individual waves .
. v high

growing toward the goal)
Ellipse (single ellipse path tangential to

start point and goal) \ N/A
Combined RRT ellipse (random tree of v N high

ellipses growing toward goal)

Enhanced combined RRT ellipse
(random tree of ellipses and when v Vv
waypoints are close to goal, ellipse
endpoints are set at goal)

low
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The rest of this paper is organized as follows: Section 2 will provide more details about the applied
robot path planning algorithm; Section 3 will show the experimental results of the presented algorithm
in a simulated environment; Section 4 will introduce a discussion of the different algorithms and their
potentials; Finally, Section 5 will provide the summarized conclusions.

2. Methods: Pathfinding Algorithms

2.1. Random Trees (RRT)

In this classical RRT algorithm, we initialize the configuration of the robot and the maximum
number of iterations. The configuration includes the coordinate P(x,y) and heading angle of its first
segment’s center of mass; length of the left and right segments of trapezoids (W}, and Wg). At each
iteration, a random coordinate and then a configuration of the robot closest to that coordinate is selected
and added to the decision tree. The configuration of the robot is selected based on its constraints
as shown in Figure 2. When finding such configurations, previous configurations from the decision
tree are taken into consideration. Those steps will repeat until (1) the tree has reached the goal; (2)
the number of iterations has reached its preset maximum value. In case (2), it selects the point and
configuration that is closest to the goal.

Algorithm 1 RRT

Input: Initial and desired configuration of the robot, the maximum number of samples, Nyqx
Output: Tree, T
1.  Add initial configuration as a node Cj to the tree, T
2. Fori=1to Nyy:
a. R = Random Coordinate (x, y)
b. Pick existing configuration Cp of the tree whose Coordinate P is closest to R in the
geometric distance.
C. Calculate (Wy, WR) that locomotes the robot from P to R where the geometric distance to R
reduces the most to generate a new set of configurations {C}.
d. Add {C} to tree
e. Stop if any configuration of {C} is within a tolerable error range for both geometric distance and

head orientation.
3. Return T

2.2. Elliptical Path Generation

RRT can be time-consuming as it explores many configurations of the robot. In order to reduce the
time cost, we intend to find a simple mathematical expression of the path that can smoothly connect
the initial and final configuration of the robot.

In this approach, instead of randomly exploring spaces to form a path for a robot, we are going to
determine an equation of curve for the robot to follow. The equation of a curve is determined on the
basis of the initial and desired configurations of the robot. The constraints are as follows:

e The robot is tangent to the curve at the start coordinate
e Therobot is tangent to the curve at the goal coordinate
e  The start coordinate of the head center of the robot satisfies the equation of the curve.
e  The goal coordinate of the head center of the robot satisfies the equation of the curve.
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We choose an elliptical curve as the path for the robot to follow. The general equation of the
ellipse (in terms of coordinate (x,y)) can be written as:

(x=h)?*  (y=k’
St =1 (1)

,t€(0,27] )

x = h+a-cos(t)
y =k+ bsin(t)

Equations (1) and (2) are equivalent. There are four unknown parameters in the ellipse’s equation
which are the center of the ellipse (i, k), major axis 4 and minor axis b. These unknowns can be
determined by the above four constraints. As mentioned in Figure 2, our robot has a range of angles it
can turn in a single wave. Once we have the equation of the elliptical curve, we determine the angle
by which the robot should turn per peristaltic wave. These angles are chosen such that the robot
follows the generated elliptical path with minimal deviation, thereby minimizing errors. Once the
robot reaches the goal, it stops following the ellipse.

Algorithm 2 Elliptical path generation

Input: Initial and desired configuration of the robot
Output: List of angles, W
1. Apply Equation (1) to determine a,b,h,k based on initial and final configuration such that:
2 2 2 2
(xra—zh) + (%h—zk) -1 (xda_zh) n (ydb—zk) -1
(xr_h) + (yr_k>'mr =0 ’ (xd_h> + (yd_blz)'md =0

a2 b2 a?
where (xr, y) is the robot’s center coordinate of the head of initial configuration, m, is the robot’s tangent of the
orientation of initial configuration and (x4, ) is the center coordinate of the head of desired goal configuration,

my is the tangent of the orientation of the desired configuration

2. Current configuration, C; = Initial configuration, I
3. While C; # Desired Configuration, D:
a.  Execute set of angles to follow ellipse to generate a new set of configurations {C}
b.  Select new configuration, N from {C} which closely satisfies the ellipse
c.  Add angle of N to list of angles, W
d C=N

4. Return W

2.3. Combined RRT Ellipse

In some special cases, a single elliptical path from initial and final configuration may not exist.
For example, from the initial condition shown in Figure 4, if the goal is in the first quadrant and
the desired orientation is zero degrees. In this case, an ellipse cannot be formed due to geometrical
constraints. However, it is possible to reach the goal with multiple ellipses. Hence an algorithm is
needed which not only forms multiple ellipses but also follows them. Thus, combining these two
approaches wherein we take the robot’s constraints into consideration and check whether the robot is
deviating from generated ellipse and while checking whether the robot is getting stalled.

In this method, we randomly select major axis a, minor axis b and direction of the ellipse, and
direction of the worm. After determining the ellipse from a, b and direction of the ellipse (finding
center of ellipse (/, k)) we let the robot follow the ellipse until it has completed the ellipse, or drifted
from the ellipse, or is stalled. In that case, we select a new configuration by which it can reach the goal
with minimum distance and add that configuration to the decision tree. Finally, after all the iterations
we select the configuration which is closest to the goal and execute the path.

In RRT, in order to add a new configuration to the tree, we selected the configuration that is close to
the goal. In this method, we are estimating the remaining distance after each wave and adding it to the
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distance traveled so far by the robot. In order to estimate the remaining distance, we are determining a
new ellipse after each wave based on constraints mentioned in the elliptical path generation. Once we
find parameters of the ellipse, we estimate its arc length from its current position to the goal. The arc

length is determined as:
04
Lga= b- f V1 - esin®(0;) 40, 3)
0

where L, is the Elliptical Arc length, 0, is the angle between the radii from position to goal and
a2

E':l—b—z

Ltotal = Ltraveled + Lga (4)

where Ly, is the estimated total distance, Ly 0004 1S the recorded traveled distance and Lgy is the
Elliptical Arc length
As previously mentioned, for some special cases an ellipse path is not feasible. In such cases,
we eliminate the constraint that the robot is tangent to the start coordinate. From the remaining
constraints, we determine a circle and hence compute the circular arc length. In this case, in order to
determine estimated arc length, we multiply the circular arc length with a penalty and then add it to
the distance traveled. By doing this, it is less likely to select that configuration by which an elliptical
path is not possible.
Ltotat = Ltraveled + @-Larc ®)

where Ly, is the estimated total distance, L4 is the recorded traveled distance, w is a manually
selected penalty weight and Lg4 is the circular arc length.

Algorithm 3 Combined RRT and elliptical path

Input: Initial and desired configuration of the robot, the maximum number of samples, Nyax
Output: Tree, T
Add initial configuration to the tree, T

1. Fori=1to Nyy:

a. Randomly choose a,b, direction of ellipse (clockwise/anti-clockwise), direction of ellipse
b.  Sample a configuration, Cs from the tree, T
Apply Equation (2) to determine center coordinate of the ellipse (/,k) based on:
tan(0) = u;gg
Xp=h+ a-cos(6)
Yn=k + b-sin(0)
(x11,y1) is the coordinate of the head of Cs and 0; is the tangent of the orientation of Cs

d.  Execute a set of points from Cs which the robot can follow and closely satisfy the ellipse to generate
a new set of configurations {C}

e.  Find best of {C} based on Equations (4) or (5) and add it to T
2. Return T

2.4. Enhanced Combined RRT Ellipse

In this method, the procedure is the same as the combined RRT and elliptical path generation until
it selects the configuration to add it to the tree. Once the remaining path from the current configuration
to the final goal can be generated as an ellipse, it directly completes the path without introducing errors
instead of randomly selecting waypoints. After several iterations, we get many solutions. Among
those solutions, it selects the path by which it requires a smaller number of waves (Figure 3).
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3.1. Rapidly Exploring Random Trees
3. Experimental Results
As expected, RRT creates an expanding tree that considers discrete movements of individual
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where E is the error between the robot and the goal (in centimeter); (x;, ) and a, are the robot’s center
coordinate and heading angle in radian of the head of the robot’s current configuration; (x4, ;) and
ay are the center coordinate and heading angle in radian of the head of desired goal configuration;
K'is a manually chosen conversion weight indicating how critical the angle accuracy is to a specific
path-planning problem (with a unit of centimeter per radian). The parameter K can be seen as a tradeoff
between distance error and angular error is meant to be manually selected depending on scenario
requirements; the more critical angular error matters to a specific case, the higher value K should be.
For the examples in this paper, the K is always assigned to 1. The robot is considered reaching the goal
once E is smaller than 2.
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Specifically, as shown in Figure 4, the initial configuration of the robot is such that its rear edge
is on the y-axis and its centerline is on the x-axis. The initial and goal coordinates are based on the
coordinateef the center ofthedvead of the robot. 8 of 16
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the robot is not able to follow the ellipse, and thus the pink and blue curves do not coincide because
the elliptical axis length in the lateral direction is too small.

3.3. Combined RRT and Elliptical Path
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red arrow almost coincide which shows that the robot has successfully reached its goal. In case (b) the
robot is not able to follow the ellipse, and thus the pink and blue curves do not coincide because the

elliptical axis length in the lateral direction is too small.

3.3. Enhanced Combined RRT Ellipse

Using this algorithm, the robot approaches the goal in most cases. However, the RRT method is
computationally expensive as compared to the Elliptical Path Generation methods. In order to reach
the goal with a smaller error, many more iterations are required. This is shown in Figure 6 where
with maximum iterations set to 1000 it approaches close to the goal, but to get even closer 10X more

iterations are required.
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. This algorithm is much faster compared to the above three in yielding results. We demonstrate
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considered® (B%Séﬂ%%ﬁ"f?ﬂﬂ&é“ﬁ solutions are found after the set number of iterations, the path that
requires the fewest number of waves is chosen.
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significantly less time to stably find the path. The 10 s of total time consumption still holds the
potential to be further reduced by a deeper code optimization (disabling path-image display, porting
to higher execution efficient coding language). As for the low-velocity robots, such timescale is
acceptable for runtime planning in stationary environments. For example, the 6-segment
CMMMWorm-S robot typically spends 18 s to finish a whole-body wave under 3 x 1 wave pattern. In
such case the computation time is about 1% of the total time to follow a path that requires 42 waves
to reach the goal [3,19].
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Table 2. Comparison of time elapsed for algorithms where the goal is the same as in Figure 8.

. Maxuf\um Reach the . Time for One Total Time
Algorithm Iterations Final Error .
. Goal? Iteration (s) Elapsed (s)
Tried
RRT 10,000 No 3.1984 0.76 3937
Ellipse 1 No 170.9 3.23 3.23
Combined RRT Ellipse 10,000 Yes 1.1109 3.69 47719
Enhanced Combined 10 N 05697 485 312
RRT Ellipse s ' '
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3.6. Path Analysis of Reachable Space
It may seem that paths might scale with elliptical parameters, allowing previous solutions to
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right backward and then turning right forward and path 2 is forward left and forward right. Out of
these two paths, the second path has the least number of waves, so it executed path 2. Now in Figure
10b, we get similar traits of paths but in this case, it has chosen the first path as the solution. That’s
because in the figure while using paths 2 and 3, it has to take a tighter turn while changing the
direction, hence the change in angle after each wave during the change in direction is very small thus
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Thus, with enhanced combined RRT ellipse, we can characterize each point in the nearby reachable

space around the robot in terms of the number of waves required. In Figure 12, we demonstrate the
total required waves to reach each goal position with the 0° goal front segment angle (horizontal

50




Biomimetics 2020, 5, 26 14 of 16

rightwards). This seems most likely to be relevant for the case of a worm robot approaching an entry
BRINFsHRRAD 3 hatsiv b kealfthat must be entered orthogonally. 14 of 16
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factors. We expect these considerations to be especially valuable in even more cluttered planning
problems with obstacles, which will be addressed in future work.
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problem of planning for worm-like robots, we have enhanced the process by following two ellipses in
a single iteration, thereby computing the path in fewer iterations, which make it possible to commit
path planning in real-time and redo such path-planning after each wave to adjust module inaccuracy
and environmental influence.

The limitations on turning are not unique to our worm robots but could be common among soft
robots where turning depends on body deformation. While in many cases the planning may be reactive
or may take advantage of environmental features (such as an earthworm robot following the curvature
of a tube), it seems desirable that such robots also be able to cross open terrain precisely in order to
perhaps enter the next confined space opening. Understanding the planning constraints not only will
help such robots efficiently align their bodies for subsequent stages but also can guide and benefit
worm-like robot design to improve its maneuverability. Alternatively, this work may also show the
value of omnidirectional movement mechanisms even in robots with long narrow form factors. We
expect these considerations to be especially valuable in even more cluttered planning problems with
obstacles, which will be addressed in future work.

5. Conclusions

Our study aimed to build and apply the challenging path planning for robots that are using soft
body locomotion, like the worm robots in (Figure 1). Each segment has a limited range of motion
(Figure 2). This results in nonholonomic constraints, like for a rolling wheel, for each anchoring
segment. Furthermore, the turns possible depend on not only the configuration of a single segment but
of all the segments on the ground. This makes the robot in a way “hyper-nonholonomic”. Our proposed
solution is to generate a reliable smooth path (Table 1 and Figure 3). The result is a connected tree
of reachable configurations (Figure 4). If the arcs are too tight, the worm robot will only be able
to follow part of the arc (Figure 5). As expected, running the algorithm for additional iterations
makes the final configuration closer to the goal (Figure 6). Sometimes reversing is required (Figure 7).
Our enhanced combined RRT ellipse method can find multiple smooth paths faster than the original
RRT or combined RRT Ellipse (Paths are shown in Figure 8, convergence over iterations shown in
Figure 9, path generating time consumption shown in Table 2). When two paths are possible, we
choose the path with the least waves (Figure 10). As the goal position is moved laterally, the best
path requires reversing direction first (Figure 11). We used our algorithm to determine the minimum
number of waves to reach each position in local space from the initial position (Figure 12), the diagonal
discontinuity between colors indicates the boundary where reversals are required.
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