

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. © 2020 Society for Industrial and Applied Mathematics
Vol. 42, No. 4, pp. C169--C191

COMPUTING WITH FUNCTIONS IN THE BALL\ast

NICOLAS BOULL\'E\dagger AND ALEX TOWNSEND\ddagger

Abstract. A collection of algorithms in object-oriented MATLAB is described for numerically
computing with smooth functions defined on the unit ball in the Chebfun software. Functions are
numerically and adaptively resolved to essentially machine precision by using a three-dimensional
analogue of the double Fourier sphere method to form ``Ballfun"" objects. Operations such as function
evaluation, differentiation, integration, fast rotation by an Euler angle, and a Helmholtz solver are
designed. Our algorithms are particularly efficient for vector calculus operations, and we describe
how to compute the poloidal-toroidal and Helmholtz--Hodge decompositions of a vector field defined
on the ball.

Key words. functions, spherical, double Fourier sphere method, poloidal-toroidal decomposi-
tion, Helmholtz--Hodge decomposition

AMS subject classification. 65D05

DOI. 10.1137/19M1297063

1. Introduction. Three-dimensional spherical geometries are common in com-
putational science and engineering, arising in weather forecasting [18], geophysics [23,
45, 50, 61], hydrodynamics [36, 39, 64, 65], and computational fluid dynamics [38, 48].
In each of these applications, it is routine to derive models that are continuous, even
though one immediately discretizes them to compute an approximate solution. Ball-
fun is a software system written in MATLAB that exploits object-oriented program-
ming to allow users to compute with scalar- and vector-valued functions defined on
the three-dimensional unit ball while being oblivious to our underlying discretizations.
Ballfun is the first extension of Chebfun to three-dimensional spherical geometries [21]
and follows the development of Spherefun [56] and Diskfun [60] for computing with
functions in the sphere and the unit disk. Software systems in Dedalus [12] (written in
Python) and Approxfun [43] (written in Julia) for computations on the ball may fol-
low soon. Dedalus and Approxfun already have excellent functionality for computing
on the 2-sphere and disks [43, 59].

For computations with functions defined on the unit ball, a standard approach
is to employ spherical coordinates (r, \lambda , \theta) \in [0, 1] \times [- \pi , \pi] \times [0, \pi], where r, \lambda ,
and \theta denote the radial, azimuthal, and polar variables, respectively. Thus, com-
putations on the unit ball can be conveniently related to analogous tasks involving
functions defined on a cuboid, which allows for efficient algorithms based on tensor-
product structure. Unfortunately, this simple coordinate transform comes with sev-
eral significant disadvantages due to the artificial pole singularities introduced by the
transform.

In this paper, we employ a technique known as the double Fourier sphere (DFS)
method [25, 42, 45] in conjunction with tensor-product expansions of functions. More
precisely, we use a three-dimensional analogue of the DFS method that extends ideas

\ast Submitted to the journal's Software and High-Performance Computing section November 1, 2019;
accepted for publication (in revised form) June 29, 2020; published electronically August 17, 2020.

https://doi.org/10.1137/19M1297063
Funding: The work of the first author was supported by the EPSRC Centre for Doctoral

Training in Industrially Focused Mathematical Modelling through grant EP/L015803/1. This work
was supported by National Science Foundation grant 1818757.

\dagger Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK (boulle@maths.ox.ac.uk).
\ddagger Department of Mathematics, Cornell University, Ithaca, NY 14853 (townsend@cornell.edu).

C169

D
ow

nl
oa

de
d

06
/2

6/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1137/19M1297063
mailto:boulle@maths.ox.ac.uk
mailto:townsend@cornell.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C170 NICOLAS BOULL\'E AND ALEX TOWNSEND

from the disk and sphere [56, 60] (implemented in Spherefun and Diskfun, which
are part of Chebfun), while preserving the additional structure that is present in
the three-dimensional ball (see Definition 2.1). The DFS method alleviates some of
the computational difficulties with spherical coordinates while having approximants
that have an underlying tensor-product structure for efficient algorithms and fast
transforms based on the fast Fourier transform (FFT) [19]. We use DFS approximants
to develop a collection of algorithms for performing everyday computational tasks
on scalar- and vector-valued functions defined on the unit ball and thus provide a
convenient computational environment for scientific explorations.

Our algorithms are designed, whenever possible, to compute each operation on
a function to essentially machine precision by using data-driven techniques from ap-
proximation theory. Our codes are also designed to have no required user-defined
algorithmic parameters and to be as intuitive as possible for MATLAB users. For
example, sum(v) returns the sum of the entries of a vector v in MATLAB, while
sum3(f) returns the integral of a function f over the unit ball. Moreover, v.*w per-
forms entry-by-entry vector multiplication, while f.*g returns a function representing
the multiplication of f and g in Ballfun. During the operation f.*g, our algorithm
automatically selects the discretization of the output so that the result is approxi-
mated to essentially machine precision. We repeat this idea in the one hundred or so
Ballfun commands by constantly expanding and pruning underlying discretizations
to represent functions as efficiently as possible.

There are several existing approaches for computing with functions on the unit
ball, and we seriously considered two other approaches:

Spherical harmonic expansions: Spherical harmonic expansions of a function
are given by f(r, \lambda , \theta) =

\sum \infty
\ell =0

\sum \ell
m= - \ell f

m
\ell r

\ell Y m
\ell (\lambda , \theta), where Y m

\ell is a surface spherical
harmonic. These expansions can be thought of as the ball analogue of trigonometric
expansions for periodic functions. When truncated, they provide essentially uniform
resolution of a function over the ball. They have major applications in geophysics [40]
and the numerical solution of separable elliptic equations.

Orthogonal polynomials on the ball: Given an appropriate weight function
on the ball, one can derive various families of orthogonal polynomials that are built
from ultraspherical polynomials [22, sect. 5.1]. Expanding functions in any one of
these bases provides excellent resolution properties, along with fast evaluation, differ-
entiation, and integration of the expansions. Unlike spherical harmonic expansions,
they are rarely employed in practice.

We require a representation for functions on the ball that can be adaptively com-
puted, as we would like to achieve an accuracy close to machine precision. While there
are optimal-complexity spherical harmonic transforms [49], it is highly desirable to
have the most computationally efficient fast transform associated with an expansion.
The Chebfun software project is currently not equipped with spherical harmonics
transforms.

The DFS method offers a simple and computationally efficient fast transform
based on the FFT (see subsection 2.2). In addition, the algorithms in Ballfun must
interface with existing components of Chebfun such as Diskfun and Spherefun for
computing with functions on the unit disk and sphere, which both use the DFS
method. For example, a Spherefun object can be provided as boundary conditions
for solving Helmholtz equations in the ball (see section 4). Unlike spherical harmonic
and orthogonal polynomial expansions, the DFS method does not guarantee that an
expansion is infinitely differentiable on the ball, even when the original function is.

D
ow

nl
oa

de
d

06
/2

6/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING WITH FUNCTIONS IN THE BALL C171

For this reason, our algorithms must strictly preserve a structure in the DFS expan-
sions to ensure that they represent a smooth function on the ball (see Definition 2.1).

Using DFS approximants, we develop a variety of algorithmic tools to provide
a convenient computational environment for integrating, differentiating, and solving
partial differential equations (see section 4), as well as representing vector-valued
functions. This allows us to develop a set of algorithms for performing vector calcu-
lus (see section 5), including computing the Helmholtz--Hodge and poloidal-toroidal
decompositions.

The majority of Chebfun's multivariate approximation algorithms employs low-
rank decompositions of functions. Here, we use standard tensor-product approx-
imation together with the DFS method. Since the algorithms in Ballfun must pre-
serve a symmetry structure, called block-mirror-centrosymmetric symmetries (see sub-
section 2.1), using low-rank decompositions would be quite technical on the ball
(see (2.1)).

The paper is organized as follows. We briefly introduce the software that ac-
companies this paper in subsection 1.1. Then, in section 2, we explain the meth-
ods used to discretize smooth functions on the ball. Next, in section 3, we discuss
some of the operations implemented in the software such as integration, differen-
tiation, and a fast rotation algorithm. Following this, in section 4, we describe
a fast and spectrally accurate Helmholtz solver for solving equations with Dirich-
let or Neumann boundary conditions. Finally, section 5 consists of a description of
the vector calculus algorithms, including the poloidal-toroidal and Helmholtz--Hodge
decompositions.

1.1. Software. Ballfun is part of Chebfun [21], which is a software system for
computing with functions and solving differential equations on an interval [5], rec-
tangle [54], cuboid [34], disk [60], and the surface of a sphere [56]. Accompanying
this paper is the publicly available MATLAB code in Chebfun [21] with two new
classes called ballfun and ballfunv. We encourage the reader to explore this paper
with the latest version of Chebfun downloaded and ready for interactive exploration.
On the Chebfun website, we provide documentation in the form of a chapter of the
Chebfun Guide [21] as well as several examples.1 Functions on the ball can be eas-
ily constructed in the software by calling the appropriate command. For instance, f
= ballfun(@(x,y,z) sin(cos(y))) defines the function f(x, y, z) = sin(cos y). Un-
derneath, Ballfun adaptively resolves the function to machine precision and represents
it using the DFS method. For example,
f = ballfun(@(x,y,z) sin(cos(y))) \% ballfun representing sin(cos(y))

ballfun object:

domain r lambda theta

unit ball 21 45 41

where 21, 45, and 41 are discretization parameters that Ballfun automatically deter-
mined necessary to resolve f to machine precision. The Ballfun software is highly
adaptive and automatically truncates the expansion to resolve functions on the ball
to machine precision after each operation. After its construction (see section 2), a
function can be manipulated and analyzed through the nearly one hundred operations
implemented in the package (see Table 1 and Table 2).

1The Ballfun examples are available at http://www.chebfun.org/examples/sphere/.

D
ow

nl
oa

de
d

06
/2

6/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

http://www.chebfun.org/examples/sphere/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C172 NICOLAS BOULL\'E AND ALEX TOWNSEND

Table 1
A selection of Ballfun commands for scalar-valued functions.

Ballfun command Operation

+, -, .*, ./ basic arithmetic
coeffs2vals, vals2coeffs fast transforms

feval pointwise evaluation
sum, sum2, sum3 integration

diff differentiation
rotate rotate using Euler angles

helmholtz Helmholtz solver

Table 2
A selection of Ballfun commands for vector-valued functions.

Ballfun command Operation

cross cross-product
dot dot-product

feval pointwise evaluation
curl curl

divergence divergence
PTdecomposition poloidal-toroidal decomposition

HelmholtzDecomposition Helmholtz--Hodge decomposition

2. The Ballfun constructor. In this section, we explain how smooth functions,
expressed in Cartesian or spherical coordinates, are discretized and constructed in our
software. Smooth functions on the ball expressed in the spherical coordinate system
(r, \lambda , \theta) \in [0, 1] \times [- \pi , \pi] \times [0, \pi] can potentially introduce artificial boundaries at the
origin or poles, as well as the loss of periodicity in the polar variable \theta . To overcome
this issue, we first sample functions on a tensor-product grid in spherical coordinates.
Then, we compute a Chebyshev--Fourier--Fourier (CFF) expansion that interpolates
the samples, using the ball analogue for the DFS method.

2.1. The DFS method in the ball. The DFS method for the sphere was
originally proposed by Merilees [42] and is used to construct Spherefun objects in
Chebfun. It naturally extends to the three-dimensional settings and maps a function
defined on a ball onto a three-dimensional cuboid so that the origin and poles of the
ball are not treated as artificial boundaries and the polar variable can be represented
in a Fourier series [10, 24, 45, 63]. The method can also be applied to disks, cylinders,
and ellipsoids [56, 60].

The ball analogue of the DFS method is obtained by constructing a CFF expan-
sion of a function defined on [- 1, 1]\times [- \pi , \pi]\times [- \pi , \pi] instead of [0, 1]\times [- \pi , \pi]\times [0, \pi].
A continuous function fcart(x, y, z) on the ball is first written in spherical coordinates
as

f(r, \lambda , \theta) := fcart(r cos\lambda sin \theta , r sin\lambda sin \theta , r cos \theta), (r, \lambda , \theta) \in [0, 1] \times [- \pi , \pi] \times [0, \pi].

The function f(r, \lambda , \theta) is not periodic in \theta . Under the DFS mapping, it is recovered by
``doubling up"" the polar variable to [- \pi , \pi] in the sense that f is sampled twice. The
radial variable is also doubled to remove the artificial boundary at r = 0. Using these
ideas, we extend the function f to a new function \~f , defined on [- 1, 1] \times [- \pi , \pi] \times
[- \pi , \pi]. The function \~f can be expressed as

D
ow

nl
oa

de
d

06
/2

6/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING WITH FUNCTIONS IN THE BALL C173

\~f(r, \lambda , \theta) =

\left\{

g(r, \lambda + \pi , \theta), (r, \lambda , \theta) \in [0, 1] \times [- \pi , 0] \times [0, \pi],
h(r, \lambda , \theta), (r, \lambda , \theta) \in [0, 1] \times [0, \pi] \times [0, \pi],

g(- r, \lambda , \pi - \theta), (r, \lambda , \theta) \in [- 1, 0] \times [0, \pi] \times [0, \pi],
h(- r, \lambda + \pi , \pi - \theta), (r, \lambda , \theta) \in [- 1, 0] \times [- \pi , 0] \times [0, \pi],

h(r, \lambda + \pi , - \theta), (r, \lambda , \theta) \in [0, 1] \times [- \pi , 0] \times [- \pi , 0],
g(r, \lambda , - \theta), (r, \lambda , \theta) \in [0, 1] \times [0, \pi] \times [- \pi , 0],

h(- r, \lambda , \pi + \theta), (r, \lambda , \theta) \in [- 1, 0] \times [0, \pi] \times [- \pi , 0],
g(- r, \lambda + \pi , \pi + \theta), (r, \lambda , \theta) \in [- 1, 0] \times [- \pi , 0] \times [- \pi , 0],

(2.1)

where

g(r, \lambda , \theta) = f(r, \lambda - \pi , \theta), h(r, \lambda , \theta) = f(r, \lambda , \theta), (r, \lambda , \theta) \in [0, 1] \times [0, \pi] \times [0, \pi].

Functions that satisfy (2.1) are said to be block-mirror-centrosymmetric (BMC) [60].
A more intuitive description is given by the visualization

\~f =

\Biggl[\biggl[
g h

flip1(flip3(h)) flip1(flip3(g))

\biggr]
;

\biggl[
flip3(h) flip3(g)
flip1(g) flip1(h)

\biggr] \Biggr]
,(2.2)

where flip1 (resp., flip3) refers to the MATLAB command that reverses the order
of the first (resp., third) component of a tensor.

In addition to satisfying the BMC structure, \~f must be constant at r = 0 as well
as \theta = 0 and \theta = \pi , corresponding to the origin and the poles. We call these func-
tions BMC-III functions. (BMC-I and BMC-II functions are defined in [56] and [60],
respectively.)

Definition 2.1 (BMC-III function). A function \~f : [- 1, 1]\times [- \pi , \pi]\times [- \pi , \pi] \rightarrow
C is a BMC-III (type-III BMC) function if it is a BMC function, \~f(0, \cdot , \cdot) = \alpha , and,
for any r \in [0, 1], \~f(r, \cdot , 0) = \beta (r) and \~f(r, \cdot , \pi) = \gamma (r), where \beta and \gamma only depend
on r such that \beta (0) = \gamma (0) = \alpha for some constant \alpha .

Figure 1 shows the DFS method applied to the earth and the type-III BMC
structure.

There are two salient features of the DFS method that make it attractive for
developing a package for computing with functions on the ball. First, tensor product
expansions of Fourier and Chebyshev bases can be used to represent \~f . If fcart(x, y, z)
is a function in Cartesian coordinates on the ball, then after applying the DFS method,
we have a function \~f(r, \lambda , \theta) defined on the cuboid (r, \lambda , \theta) \in [- 1, 1]\times [- \pi , \pi]\times [- \pi , \pi]
that can be approximated as

\~f(r, \lambda , \theta) \approx
m - 1\sum
i=0

n/2 - 1\sum
j= - n/2

p/2 - 1\sum
k= - p/2

\alpha ijkTi(r)e
\bfi j\lambda e\bfi k\theta ,(2.3)

where (r, \lambda , \theta) are spherical coordinates, Ti denotes the Chebyshev polynomial of the
first kind of degree i, and m,n, p are integers determined by the adaptive procedure
described in subsection 2.3. This representation allows us to use fast transforms as well
as one- and two-dimensional algorithms for Chebyshev and trigonometric expansions.
The second feature is that the DFS mapping of a function leads to a BMC structure
(see Figure 1) that, if preserved, ensures smoothness of the solution throughout the

D
ow

nl
oa

de
d

06
/2

6/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C174 NICOLAS BOULL\'E AND ALEX TOWNSEND

(a) (b)

r

\theta

\lambda

(c)

r

\theta
\lambda

Fig. 1. The DFS method applied to the globe. (a) The solid earth including the land masses.
(b) The projection of the land masses using spherical coordinates. (c) Land masses after applying
the DFS method. This is a BMC-III function that is periodic in \lambda and \theta and defined over (r, \lambda , \theta) \in
[- 1, 1]\times [- \pi , \pi]\times [- \pi , \pi].

entire domain [56, 60]. The BMC symmetry is imposed exactly by evaluating the
function on (r, \lambda , \theta) \in [0, 1]\times [- \pi , \pi]\times [0, \pi] and extending it to [- 1, 1]\times [- \pi , \pi]\times [- \pi , \pi]
using (2.2). This ensures that the resulting function is smooth on the ball, i.e., at
least continuous and differentiable. There are representations of functions on the ball
that preserve full regularity [59]; however, they are less appropriate in our settings
since they do not allow efficient FFT-based transforms.

2.2. Computing the CFF coefficients. Once the BMC-III function \~f is found,
it is approximated by a truncated CFF series [41, 57, 58]. For some even integers
m,n, p, the CFF coefficients are stored as an m \times n \times p tensor, and the entries are
computed in \scrO (mnp log(mnp)) operations, as follows:

1. The function f is evaluated over [0, 1] \times [- \pi , \pi] \times [0, \pi] at the tensor-product
grid:

\Biggl(
cos

\Biggl(\bigl(
m
2 - 1 - i

\bigr)
\pi

m - 1

\Biggr)
,

2j\pi

n
,

2k\pi

p

\Biggr)
, 0 \leq i \leq m

2
 - 1, - n

2
\leq j \leq n

2
 - 1, 0 \leq k \leq p

2
.

(2.4)

2. The samples of f are doubled-up (see (2.2)). This extends them to be samples
of \~f on [- 1, 1] \times [- \pi , \pi] \times [- \pi , \pi] at the tensor-product grid:\biggl(

cos

\biggl(
i\pi

m - 1

\biggr)
,

2j\pi

n
,

2k\pi

p

\biggr)
, 0 \leq i \leq m - 1, - n

2
\leq j \leq n

2
 - 1, - p

2
\leq k \leq p

2
 - 1

without any additional evaluations of f .

D
ow

nl
oa

de
d

06
/2

6/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING WITH FUNCTIONS IN THE BALL C175

3. The CFF coefficients are computed using the discrete Chebyshev transform
(DCT) [30, 31, 41] and the FFT [19].

There is also the inverse procedure, which evaluates f at the grid in (2.4) in
\scrO (mnp log(mnp)) operations. This operation is particularly important in our plotting
commands and is achieved by reversing steps 1--3, using the inverse DCT and FFT.

2.3. Determination of the discretization size. To construct a Ballfun object
to represent a given function f , we first sample \~f at a 17 \times 17 \times 17 CFF grid and
compute the corresponding CFF coefficients (see subsection 2.2). We then successively
increase the grid size independently in each variable from 17 to 33 to 65, and so on,
until we deem the function to be resolved in each variable. We use these samples to
compute the CFF coefficients A = (\alpha ijk) corresponding to an m\times n\times p tensor, where
m,n, p = 17, 33, 65, . . . , and then gauge the resolution in each variable by creating
vectors of the absolute maximum of the coefficients along each variable, i.e.,

Colsi = max
j,k

| \alpha ijk| , Rowsj = max
i,k

| \alpha ijk| , Tubesk = max
i,j

| \alpha ijk| .

One can now inspect these vectors to identify whether or not the function is resolved to
machine precision in each variable, relative to the magnitude of f on [0, 1]\times [- \pi , \pi]\times
[0, \pi] [2, 34, 62]. One can identify a near-optimal discretization size in that variable by
recording the last entry in each vector above machine precision, though the algorithm
internally employed in Chebfun is more involved [2].

The constructor typically terminates when the magnitude of the coefficients of
the vectors Cols, Rows, and Tubes exhibit a decay to machine precision, as shown
in Figure 2 for f(x, y, z) = sin(cos y). In particular, for f(x, y, z) = sin(cos y), the
Ballfun constructor selected a CFF series of size 21 \times 45 \times 41 to represent f to es-
sentially machine precision over the ball. Once the function \~f is represented in a

0 5 10 15 20

Degree of Chebyshev polynomial

10
-20

10
-15

10
-10

10
-5

10
0

M
a

g
n
it
u

d
e

 o
f

c
o

e
ff

ic
ie

n
t

Cols

-20 -10 0 10 20

Wave number

10
-20

10
-15

10
-10

10
-5

10
0

Rows

-20 -10 0 10 20

Wave number

10
-20

10
-15

10
-10

10
-5

10
0

Tubes

Fig. 2. The absolute maximum Chebyshev and Fourier coefficients in the radial, azimuthal,
and polar variables of f(x, y, z) = sin(cos y). The Ballfun constructor selected a discretization size
of 21 \times 45 \times 41 to represent f to essentially machine precision over the ball. One can visually see
that the function is likely to be resolved as the entries of Cols, Rows, and Tubes decay to machine
precision.

D
ow

nl
oa

de
d

06
/2

6/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C176 NICOLAS BOULL\'E AND ALEX TOWNSEND

CFF expansion, the approximant is stored as a ballfun object, ready for further
computation.

3. Algorithms for numerical computations with functions on the ball.
Once a ballfun object is computed, there are many operations that can be per-
formed on it. In fact, many of the operations can be decomposed into a sequence
of one-dimensional operations, which are particularly efficient for approximants of
the form (2.3). This includes pointwise evaluation (see subsection 3.1), integration
(see subsection 3.2), differentiation (see subsection 3.3), and fast rotation (see subsec-
tion 3.4).

3.1. Pointwise evaluation. The evaluation of a function f(r, \lambda , \theta) at a point
(r\ast , \lambda \ast , \theta \ast) in the ball can be computed in \scrO (mnp) operations. It follows from the
CFF approximation of \~f in (2.3) that one has

\~f(r\ast , \lambda \ast , \theta \ast) =
m - 1\sum
i=0

n/2 - 1\sum
j= - n/2

p/2 - 1\sum
k= - p/2

\alpha ijkTi(r
\ast)e\bfi j\lambda

\ast
e\bfi k\theta

\ast

=

p/2 - 1\sum
k= - p/2

\left(n/2 - 1\sum
j= - n/2

\Biggl(
m - 1\sum
i=0

\alpha ijkTi(r
\ast)

\Biggr)
e\bfi j\lambda

\ast

\right) e\bfi k\theta
\ast
.

Therefore, \~f(r\ast , \lambda \ast , \theta \ast) can be computed by first evaluating
\sum m - 1

i=0 \alpha ijkTi(r
\ast) using

Clenshaw's algorithm [17], which returns an n \times p matrix of values. Then, one can
compute the summand over the j index using Horner's scheme [62], which returns
an p-vector, before finally computing the summand over the k index using Horner's
scheme. This algorithm is implemented in the feval command and returns a scalar
for \~f(r\ast , \lambda \ast , \theta \ast). It is also possible to evaluate functions in Cartesian coordinates, and
Ballfun does a change of variables to spherical coordinates in this case.

3.2. Integration. The triple definite integral of a function \~f(r, \lambda , \theta) on the unit
ball can be written as follows:�
B(0,1)

\~f(r, \lambda , \theta) dV =

� 1

0

� \pi

0

� \pi

 - \pi

\~f(r, \lambda , \theta)r2 sin \theta d\lambda d\theta dr

=
m - 1\sum
i=0

n/2 - 1\sum
j= - n/2

p/2 - 1\sum
k= - p/2

\alpha ijk

� 1

0

r2Ti(r) dr

� \pi

 - \pi

e\bfi j\lambda d\lambda

� \pi

0

sin \theta e\bfi k\theta d\theta ,

= 2\pi
m - 1\sum
i=0

p/2 - 1\sum
k= - p/2

\alpha i0k

\biggl(� 1

0

r2Ti(r) dr

\biggr) \biggl(� \pi

0

sin \theta e\bfi k\theta d\theta

\biggr)

= 2\pi
m - 1\sum
i=0

p/2 - 1\sum
k= - p/2

\alpha i0k\nu i\omega k,

where \nu i and \omega k are defined by

\nu i =

\left\{
3 - i2

(i2 - 1)(i2 - 9) , i even,

3 - 2i(- 1)
i - 1
2 - i2

(i2 - 1)(i2 - 9) , i odd,
\omega k =

\Biggl\{
1+e\bfi \pi k

1 - k2 , k \not = \pm 1,

0, k = \pm 1.

Moreover, \nu i has removable singularities for i = 1, 3 and \nu 1 = 1/4, \nu 3 = - 1/12. Here,
the last equality in the computation of the integral of f on the unit ball follows by

D
ow

nl
oa

de
d

06
/2

6/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING WITH FUNCTIONS IN THE BALL C177

calculating the integrals in \theta (see, for example, [56, eq. (4.3)]) and in r explicitly.
Therefore, the integral of \~f reduces to a basic task in linear algebra and can be
computed in \scrO (mp) operations. This is implemented in Ballfun in the sum3 command.
For example, the function f(x, y, z) = x2 has an integral of 4\pi /15 over the ball and
can be computed in Ballfun by
f = ballfun(@(x,y,z) x.\^2); \% ballfun representing x\^2

sum3(f) \% Integrate over the ball

ans =

0.837758040957278

The absolute error is computed as abs(sum3(f) - 4*pi/15) and is given by 1.102\times
10 - 16.

3.3. Differentiation. Differentiation of a function on the ball with respect to
spherical coordinates in r, \lambda , and \theta may introduce singularities at the poles and origin.
For instance, consider the smooth function f(r, \lambda , \theta) = r cos \theta . The derivative of f with
respect to \theta is - r sin \theta , which is not smooth at the poles because it does not satisfy the
BMC structure described in subsection 2.1. However, we are interested in computing
derivatives that arise in vector calculus, such as the gradient, the divergence, the curl,
or the Laplacian. All these operations can be expressed as partial derivatives in the
Cartesian coordinates system. Therefore, our default is to allow for Ballfun objects
to be differentiated in the Cartesian coordinate system.

We follow the same approach as Spherefun [56] and express the partial derivatives
in x, y, and z in terms of the spherical coordinates r, \lambda , and \theta as follows:

\partial

\partial x
= cos\lambda sin \theta

\partial

\partial r
 - sin\lambda

r sin \theta

\partial

\partial \lambda
+

cos\lambda cos \theta

r

\partial

\partial \theta
,(3.1)

\partial

\partial y
= sin\lambda sin \theta

\partial

\partial r
+

cos\lambda

r sin \theta

\partial

\partial \lambda
+

sin\lambda cos \theta

r

\partial

\partial \theta
,(3.2)

\partial

\partial z
= cos \theta

\partial

\partial r
+

sin \theta

r

\partial

\partial \theta
.(3.3)

Then, (3.1), (3.2), and (3.3) involve \scrO (mnp) operations on the tensor of CFF coef-
ficients representing \~f . For example, the derivative of \~f with respect to \lambda can be
expressed as

\partial \~f

\partial \lambda
=

m - 1\sum
i=0

n/2 - 1\sum
j= - n/2

p/2 - 1\sum
k= - p/2

\alpha ijkijTi(r)e
\bfi j\lambda e\bfi k\theta .

Multiplications and divisions by sin \lambda , cos\lambda , sin \theta , and cos \theta in (3.1)--(3.3) are com-
puted by multiplying the tensor of CFF coefficients A = (\alpha ijk) by the corresponding
matrices of linear operators, expressed in the Fourier basis. For example, we write
\~f(r, \lambda , \theta)/ sin \theta \approx

\sum m - 1
i=0

\sum n/2 - 1
j= - n/2

\sum p/2 - 1
k= - p/2 bijkTi(r)e

\bfi j\lambda e\bfi k\theta , where B = (bijk) satis-

fies

B(:, j, :) = A(:, j, :)M - \top
sin , - n

2
\leq j \leq n

2
 - 1, Msin =

i

2

\left[
0 1

 - 1
. . .

. . .

. . .
. . . 1
 - 1 0

\right] .
Here, Msin is the matrix of multiplication by sin \theta in the Fourier basis. It is nonsingular
if we choose p to be even (in this case the eigenvalues are cos(\pi l/(p+ 1)), 1 \leq l \leq p).

D
ow

nl
oa

de
d

06
/2

6/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C178 NICOLAS BOULL\'E AND ALEX TOWNSEND

Moreover, we write \~f(r, \lambda , \theta)/r \approx
\sum m - 1

i=0

\sum n/2 - 1
j= - n/2

\sum p/2 - 1
k= - p/2 bijkTi(r)e

\bfi j\lambda e\bfi k\theta , where

B = (bijk) satisfies

B(:, j, :) = M - 1
r A(:, j, :), - n

2
\leq j \leq n

2
 - 1, Mr =

\left[

0 1
2

1 0 1
2

1
2

. . .
. . .

. . .
. . . 1

2
1
2 0 1

2
1
2 0

\right]
.

Here, Mr stands for the matrix of multiplication by r in the Chebyshev basis. This
matrix is invertible for even m since its determinant is equal to - (- 1/4)m/2 - 1/2.

Working directly on coefficients allows us to circumvent potential singularity is-
sues at r = 0 and the poles, while the standard technique uses a ``shifted grid""
procedure in the physical space [13, 24, 35]. This procedure shifts the grid of sampled
points in the latitude and radial directions, which avoids evaluation at the poles and
the origin but can be numerically inaccurate near these points.

These operations are implemented in Ballfun in the diff command. For example,
the derivative of f(x, y, z) = cos(xy) with respect to x is also represented as a Ballfun
object and can be computed as
f = ballfun(@(x,y,z) cos(x.*y));\% ballfun representing cos(xy)

diff(f, 1) \% Compute ballfun representing df/dx

ans =

ballfun object

domain r lambda theta

unit ball 24 43 40

Ballfun calls the constructor after each operation to readjust the grid sizes (see sub-
section 2.3). Here, a discretization size of 24 \times 43 \times 40 was determined necessary to
resolve \partial f/\partial x while f is represented by a 21 \times 41 \times 37 CFF series.

3.4. Fast rotation algorithm using a nonuniform Fourier transform. Ro-
tating functions defined on the ball has applications in many fields, including quantum
mechanics, inverse scattering, and geophysics. Ballfun has a rotate command to ef-
ficiently perform rigid-body rotations of functions. Every rigid-body rotation can be
specified by an Euler angle (\alpha , \beta , \gamma) in the Z-X-Z convention [1], which corresponds to
rotating first by \alpha around the z-axis then rotating by \beta around the (original) x-axis
and then, finally, rotating by \gamma around the new z-axis. All the angles are given in
radians. The algorithm to achieve this rotation requires a nontrivial computation
because the rotated function must be represented by an approximant in the original
coordinate system.

The classical algorithm for computing the rotation of a function f on the ball is to
first express f in terms of a spherical harmonic expansion and then to use the fact that
the spherical harmonics form a basis of SO(3) [29]. Since Ballfun does not represent
functions using spherical harmonic expansions, we use an algorithm based on the DFS
method and the two-dimensional nonuniform FFT [47]. We do this by taking the CFF
grid in (2.4) and rotating it by Euler angle (\alpha , \beta , \gamma). Then, we evaluate the function
at this rotated grid and call the Ballfun constructor. Since the rotated grid is almost
always nonuniform in the \theta and \lambda variables of the doubled-up spherical coordinates
and a Chebyshev grid in r, the evaluation is done in \scrO (mnp log(mnp)) operations
with a two-dimensional nonuniform FFT in \theta and \lambda and a DCT in r.

D
ow

nl
oa

de
d

06
/2

6/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING WITH FUNCTIONS IN THE BALL C179

Fig. 3. The function f(x, y, z) = sin(50z) - x2 (left) and its rotation by the Euler angles
\phi = - \pi /4, \theta = \pi /2, and \psi = \pi /8 (right). The rotation of the function is computed with the rotate

command and the functions are visualized with the plot command.

For example, the following code snippet calculates the rotation of f(x, y, z) =
sin(50z) - x2 by Euler angle (- \pi /4, \pi /2, \pi /8) (see Figure 3).
f = ballfun(@(x,y,z) sin(50*z) - x.\^2) \% ballfun for sin(50z)-x\^2

f =

ballfun object

domain r lambda theta

unit ball 90 5 179

g = rotate(f, -pi/4, pi/2, pi/8) \% Rotate by (-pi/4,pi/2,pi/8)

g =

ballfun object

domain r lambda theta

unit ball 91 180 182

As one can see, the rotate command is also adaptive and selects the appropriate
discretization to resolve the rotated function.

4. Fast spectral method for solving the Helmholtz equation. In this
section, we describe a fast algorithm for solving the Helmholtz equation on the ball
with Neumann boundary conditions. An optimal-complexity algorithm for solving the
Helmholtz equation with Dirichlet conditions on the boundary of the ball is described
in [26], though it cannot immediately be generalized to the situation with Neumann
conditions. Helmholtz solvers are useful in computational fluid dynamics as well as the
computation of vector decompositions such as the poloidal-toroidal and Helmholtz--
Hodge decompositions [3, 7].

4.1. Discretization of the Helmholtz equation. Consider the Helmholtz
equation on the ball, i.e., uxx + uyy + uzz + K2u = f with Neumann boundary
conditions g(x, y, z) on the sphere x2 + y2 + z2 = 1 and a real wave number K.
The change of variables given by (x, y, z) = (r cos\lambda sin \theta , r sin\lambda sin \theta , r cos \theta), where
r \in [0, 1], \lambda \in [- \pi , \pi], and \theta \in [0, \pi], transforms the equation into

1

r2
\partial

\partial r

\biggl(
r2
\partial u

\partial r

\biggr)
+

1

r2 sin \theta

\partial

\partial \theta

\biggl(
sin \theta

\partial u

\partial \theta

\biggr)
+

1

r2 sin2 \theta

\partial 2u

\partial \lambda 2
+K2u = f.(4.1)

One can multiply (4.1) by r2 sin2 \theta to remove the singularities in the variable co-
efficients at the origin and at the poles of the ball. We then use the DFS method

D
ow

nl
oa

de
d

06
/2

6/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C180 NICOLAS BOULL\'E AND ALEX TOWNSEND

(see subsection 2.1) to represent u over the domain (r, \lambda , \theta) \in [- 1, 1]\times [- \pi , \pi]\times [- \pi , \pi].
This allows us to solve (4.1) by seeking a tensor of CFF coefficients for u (see (2.3)).

Let U = (uijk) and F = (fijk) be m \times n \times p tensors of CFF coefficients of u
and (r2 sin2 \theta)f , respectively. Since (4.1) decouples in the azimuthal variable \lambda , the
following equation holds for - n/2 \leq j \leq n/2 - 1:

sin2 \theta
\partial

\partial r

\biggl(
r2
\partial uj
\partial r

\biggr)
+ sin \theta

\partial

\partial \theta

\biggl(
sin \theta

\partial uj
\partial \theta

\biggr)
+
\bigl(
K2r2 sin2 \theta - j2

\bigr)
uj = fj ,(4.2)

where the functions uj and fj are defined by

uj(r, \theta) =
m - 1\sum
i=0

p/2 - 1\sum
k= - p/2

uijkTi(r)e
\bfi k\theta , fj(r, \theta) =

m - 1\sum
i=0

p/2 - 1\sum
k= - p/2

fijkTi(r)e
\bfi k\theta .

We discretize (4.2) in the radial variable using the ultraspherical spectral method [44],
and in the polar variable using the Fourier spectral method. Partial derivatives in
the polar variable \theta and multiplication by sin \theta are represented by sparse and banded
matrices in the Fourier basis. The ultraspherical spectral method results in sparse and
banded matrices of operators (such as differentiation or multiplication by r) between
Chebyshev and ultraspherical polynomials. This allows us to write (4.2) in the form
of a generalized Sylvester equation [28] in the unknown matrix U(:, j, :):

LrU(:, j, :)M\top
sin2 + S02U(:, j, :)Lj\top

\theta = S02F (:, j, :),(4.3)

where Lr is the matrix representing the operator u \mapsto \rightarrow \partial u
\partial r (r2 \partial u

\partial r) + K2r2u from the

Chebyshev basis T to the ultraspherical basis C(2) and S02 is the conversion matrix
between these bases [44]. The matrices Msin2 and Lj

\theta represent the multiplication by
sin2 \theta and the operator u \mapsto \rightarrow sin \theta \partial u

\partial \theta (sin \theta \partial u
\partial \theta) - j2u in the Fourier basis, respectively.

4.2. Imposing Neumann boundary conditions when K \not = 0. It is essential
to slightly modify (4.3) to impose Neumann boundary conditions on u, i.e., \partial ru| r=1 =
g(\lambda , \theta). The first step is to double-up the smooth function g(\lambda , \theta) in the \theta variable
using the DFS method [56] and define its Fourier--Fourier matrix of coefficients G+ =
(g+jk). Since the radial variable r of (4.1) has been doubled-up, we need to impose a
Neumann condition at r = 1 and r = - 1. The matrix of coefficients of the boundary
condition at r = - 1, G - = (g - jk), can be deduced from G+ (see subsection 2.1) and
takes the form

G - (j, :) = (- 1)jG+(j, :), - n
2
\leq j \leq n

2
 - 1.

The Neumann operators u \mapsto \rightarrow \partial u
\partial r

\bigm| \bigm|
r=1

and u \mapsto \rightarrow \partial u
\partial r

\bigm| \bigm|
r= - 1

are represented in the Cheby-
shev basis by the 1 \times m matrices

B+(i) = i2, B - (i) = (- 1)i+1i2, 0 \leq i \leq m - 1,

respectively. The Neumann conditions also decouple in the variable \lambda and can be
written as \biggl(

B+

B -

\biggr)
U(:, j, :) =

\biggl(
G+(j, :)
G - (j, :)

\biggr)
, - n

2
\leq j \leq n

2
.(4.4)

Therefore, a Helmholtz's solver (4.1) with Neumann boundary conditions is realized
by solving the following m\times p generalized Sylvester equation with linear constraints:

D
ow

nl
oa

de
d

06
/2

6/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING WITH FUNCTIONS IN THE BALL C181

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

Fig. 4. Sparsity structure of the matrix \~Lr (left) and sparsity structure of the banded matrix
Msin2 (right) for m = p = 50.

LrU(:, j, :)M\top
sin2 + S02U(:, j, :)Lj\top

\theta = S02F (:, j, :),(4.5) \biggl(
B+

B -

\biggr)
U(:, j, :) =

\biggl(
G+(j, :)
G - (j, :)

\biggr)
,(4.6)

where - n/2 \leq j \leq n/2 - 1. The constraints (4.6) can be used to remove degrees of
freedom in U(:, j, :) and transform (4.5) into a generalized Sylvester equation with a
unique solution without constraints [53], i.e.,

\~LrXjM
\top
sin2 + \~S02XjL

j\top
\theta = \~S02

\~F (:, j, :), - n
2
\leq j \leq n

2
 - 1.(4.7)

Figure 4 shows the sparsity structure of the matrices \~Lr and Msin2 in (4.7).
We obtain n decoupled Sylvester matrix equations, where each one can be solved in
\scrO (m3 + p3) operations using the Bartels--Stewart algorithm [4, 28]. Once Xj has
been computed, the matrix of coefficients U(:, j, :) can be recovered using the linear
constraints. Thus, the total complexity is \scrO ((m3 + p3)n) operations.

4.3. Imposing Neumann boundary conditions when K = 0. We consider
the zeroth Fourier mode j = 0 of (4.3) with K = 0 (Poisson equation). The so-
lution to this equation with Neumann boundary conditions is unique only up to a
constant. However, this additional constraint cannot be imposed on a Sylvester ma-
trix equation. Therefore, we transform (4.3) into the Chebyshev--Legendre basis to
decouple this Sylvester equation in the polar variable \theta . The function u0(r, \theta), defined
in subsection 4.1, satisfies the following equation:

\partial

\partial r

\biggl(
r2
\partial u0
\partial r

\biggr)
+

1

sin \theta

\partial

\partial \theta

\biggl(
sin \theta

\partial u0
\partial \theta

\biggr)
= r2f0.(4.8)

The functions u0 and r2f0 can be expressed in the Chebyshev--Legendre basis as

u0(r, \theta) =
m - 1\sum
i=0

p - 1\sum
k=0

\~ui0kTi(r)Pk(cos \theta), r2f0(r, \theta) =
m - 1\sum
i=0

p - 1\sum
k=0

\~fi0kTi(r)Pk(cos \theta).

The zeroth Fourier modes j = 0 of the Neumann boundary conditions at r = 1,
g+0 (\theta), and at r = - 1, g - 0 (\theta), can also be written as Legendre series

D
ow

nl
oa

de
d

06
/2

6/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C182 NICOLAS BOULL\'E AND ALEX TOWNSEND

g+0 (\theta) =

p - 1\sum
k=0

\~g+0kPk(cos \theta), g - 0 (\theta) =

p - 1\sum
k=0

\~g - 0kPk(cos \theta).

The orthogonality of the Legendre basis allows us to decouple (4.8) in the polar
variable \theta as p ordinary differential equations with Neumann boundary conditions:

\partial

\partial r

\biggl(
r2
\partial \~u0k
\partial r

\biggr)
 - k(k + 1)\~u0k = \~f0k,(4.9)

\partial \~u0k
\partial r

\bigm| \bigm| \bigm| \bigm|
r=1

= \~g+0k,
\partial \~u0k
\partial r

\bigm| \bigm| \bigm| \bigm|
r= - 1

= \~g - 0k(4.10)

for 0 \leq k \leq p - 1. The functions \~u0k and \~f0k are defined by

\~u0k(r) =
m - 1\sum
i=0

\~ui0kTi(r), \~f0k(r) =
m - 1\sum
i=0

\~fi0kTi(r), r \in [- 1, 1].

For each 0 < k \leq p - 1, (4.9) and (4.10) can be solved in \scrO (m) operations using the
ultraspherical spectral method [44]. The case k = 0 is solved by the same technique
with the additional linear constraint \~u000 = 0 to impose uniqueness of the global
solution u.

Once the matrix of Chebyshev--Legendre coefficients \~U0 = (\~ui0k) has been com-
puted, it can be converted to the Chebyshev--Fourier basis in \scrO (mp log2 p) operations
using the Legendre--Chebyshev tranform [55].

4.4. Numerical examples. In Figure 5(a) we plot a solution to the Helmholtz
equation

\nabla 2u+ 20u = - 80 sin(10x)(4.11)

with Neumann boundary conditions g(x, y, z) = 10x cos(10x). The error between the
computed and the exact solution to (4.11) is shown in Figure 5(c) and confirms the
spectral convergence of our method. The computed solution is resolved to machine
precision for n \geq 50. Our Helmholtz solver on the ball can be invoked in Ballfun via
the helmholtz command.
rhs = ballfun(@(x,y,z)-80*sin(10*x)); \% Right-hand side

bc = @(x,y,z)10*x.*cos(10*x); \% Boundary conditions

K = sqrt(20); \% Wave number

n = 50; \% Spectral discretization

u = helmholtz(rhs, K, bc, n, flneumannfl); \% Helmholtz solver

The execution times2 to solve (4.11) for different discretization sizes n are dis-
played in Figure 5(d). We can then solve Helmholtz's equation on a ball with one
million degrees of freedom in a few seconds on a standard CPU.

As a second example we consider the advection-diffusion equation on the unit ball

\partial c

\partial t
= D\nabla 2c - v \cdot \nabla c,(4.12)

where D is the diffusion coefficient and v is a divergence-free vector field. We choose
D = 1/5000 and v = \nabla \times [ze - 5(x2+y2+z2)(x, y, z)] to satisfy the no-slip condition. The

2Timings were performed on a 3.3 GHz Intel Core i5 CPU using MATLAB 2018a without explicit
parallelization.

D
ow

nl
oa

de
d

06
/2

6/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING WITH FUNCTIONS IN THE BALL C183

(a) (b)

10
1

10
2

10
-20

10
-15

10
-10

10
-5

10
0

10
5

(c)

m = n = p

\| u
n
 -
u
e
x
a
c
t
\| 2

10
1

10
2

10
-2

10
-1

10
0

10
1

10
2

(d)

m = n = p

E
x
ec

u
ti

on
ti

m
e

(s
) \scrO (n

3)

Fig. 5. Function f(x, y, z) = - 80 sin(10x) (a) and solution u to the Helmholtz equation \Delta u +
20u = f(x, y, z) with Neumann boundary conditions g(x, y, z) = 10x cos(10x) (b). The solution u is
computed with a spectral discretization of m = n = p = 50. (c) Error in the 2-norm between the
exact solution uexact = sin(10x) and the computed solution obtained with the helmholtz command.
(d) The computational timings.

no-flux condition for c reduces to \partial c/\partial \vec{}n = 0 at the boundary. We impose the initial

condition c0(x, y, z) = - xe - 5(x2+y2+z2) and solve (4.12) by using the implicit-explicit
backward differentiation of order one (IMEX-BDF1) scheme. This yields the following
Helmholtz equation:

\nabla 2cn+1 +K2cn+1 = K2cn +
1

D
v \cdot \nabla cn, \partial c

\partial \vec{}n

\bigm| \bigm| \bigm| \bigm|
\partial B(0,1)

= 0,

where cn denotes the solution at time t = n\Delta t, \Delta t = 5 \times 10 - 2 is the time step, and
K2 = - 1/(D\Delta t). The solution c to (4.12) at different times is illustrated in Figure 6.

5. Vector-valued functions on the ball. Ballfun is also designed to work
with vector-valued functions defined on the unit ball as well as scalar-valued ones.
Expressing vector-valued functions in spherical coordinates is inconvenient since the
unit vectors in this coordinate system are singular at the poles of the ball [51]. There-
fore, we express vector-valued functions in Cartesian coordinates as the components
of the vector field are then themselves smooth functions. After using this conven-
tion, vector-valued functions introduce few complications from the point of view of
approximation as each component is represented as an independent scalar function.
A vector-valued function can be constructed in Ballfun as follows:
V = ballfunv(@(x,y,z) sin(x), @(x,y,z) x.*y, @(x,y,z) cos(z))

ballfunv object containing

ballfun object:

D
ow

nl
oa

de
d

06
/2

6/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C184 NICOLAS BOULL\'E AND ALEX TOWNSEND

(a) (b)

(c) (d)

Fig. 6. Solutions to the advection-diffusion equation at t = 0 (a), t = 5 (b), t = 10 (c), and
t = 15 (d).

domain r lambda theta

unit ball 14 27 27

ballfun object:

domain r lambda theta

unit ball 3 5 5

ballfun object:

domain r lambda theta

unit ball 15 1 29

It can be seen that a vector field is stored as a ballfunv object, which consists of three
ballfun objects corresponding to the three components in Cartesian coordinates.
Each ballfun object has its own discretization in r, \lambda , and \theta .

5.1. Vector calculus on the ball. The more interesting side of vector-valued
functions in Ballfun is the set of operations that can be implemented, which are
potentially useful for applications. The standard operations for vector calculus such
as the curl, the gradient, or the divergence are implemented in Ballfun in the curl,
gradient, and divergence commands, respectively. Due to the way we represent
vector-valued functions, we compute these operations in the Cartesian coordinate
system. For example, the curl of a vector-valued function V can be written as

\nabla \times V =

\biggl[
\partial Vz

\partial y
 - \partial Vy

\partial z
,
\partial Vx

\partial z
 - \partial Vz

\partial x
,
\partial Vy

\partial x
 - \partial Vx

\partial y

\biggr] T
.

The curl of V(x, y, z) = (sinx, xz, cos z) can be computed and displayed using the
quiver command (see Figure 7):

D
ow

nl
oa

de
d

06
/2

6/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING WITH FUNCTIONS IN THE BALL C185

Fig. 7. The vector-valued function V (x, y, z) = (sin(x), xz, cos(z)) (left) and its curl (right),
plotted using the quiver command.

W = curl(V); \% Compute curl of V

quiver(W) \% Plot vector field W using quiver

One can also verify basic vector calculus identities. For example, the divergence
theorem asserts that the vector-valued function V satisfies

�
B(0,1)

(\nabla \cdot V) dV =

�
\partial B

V \cdot \vec{}n dS,

where \vec{}n denotes the unit normal vector to B(0, 1). This theorem can be verified
numerically in Ballfun by executing the following code:
lhs = sum3(divergence(V)); \% Compute volume-integral of div(V)

nhat = spherefunv.unormal; \% Unit normal vector to surface of ball

Vbc = V(1,:,:, flsphericalfl);\% Restrict V to the bdy of ball

rhs = sum2(dot(Vbc, nhat)); \% Compute dot-product \& surface-integral

The absolute error between lhs and rhs is 2.2204 \times 10 - 15.

5.2. Poloidal-toroidal decomposition. The poloidal-toroidal (PT) decompo-
sition of a smooth divergence-free vector field expresses the field as the sum of two
orthogonal fields. The PT decomposition is a well-known tool in fluid dynamics [37]
and magnetohydrodynamics [6, 8, 9] simulations to analytically impose an incom-
pressibility condition on flows in cylindrical and spherical geometries. In this section,
we describe an algorithm for computing the PT decomposition of a smooth vector
field in the ball.

Given a smooth divergence-free vector field, V, defined on the ball, the PT de-
composition [3] writes V as an orthogonal sum of a poloidal and toroidal field, i.e.,

V = P + T,

�
B(0,1)

P \cdot T dV = 0.

Here, there exist two poloidal and toroidal scalar-valued functions \Phi and \Psi such that
P = \nabla \times \nabla \times (r\Phi er) and T = \nabla \times (r\Psi er), where er is the unit radial vector. It can
be shown that \Phi and \Psi are unique up to the addition of an arbitrary function of r [3].

A vector field V whose components are expressed in the Cartesian coordinate
system (Vx,Vy,Vz) can be converted in spherical coordinates (Vr,V\lambda ,V\theta) using
the following identities:

D
ow

nl
oa

de
d

06
/2

6/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C186 NICOLAS BOULL\'E AND ALEX TOWNSEND

Vr = sin \theta (cos\lambda Vx + sin\lambda Vy) + cos \theta Vz,

V\lambda = - sin\lambda Vx + cos\lambda Vy,

V\theta = cos \theta (cos\lambda Vx + sin\lambda Vy) - sin \theta Vz.

Then, any poloidal and toroidal scalars for V = (Vr,V\lambda ,V\theta) satisfy the following
relations [3]:

\nabla 2
1\Phi = - rVr,(5.1)

\nabla 2
1\Psi =

1

sin \theta

\biggl[
\partial

\partial \theta
(V\lambda sin \theta) - \partial

\partial \lambda
V\theta

\biggr]
,(5.2)

where \nabla 2
1 stands for the dimensionless surface Laplacian defined in the spherical

coordinate system (r, \lambda , \theta) by

\nabla 2
1 =

1

sin \theta

\partial

\partial \theta

\biggl(
sin \theta

\partial

\partial \theta

\biggr)
+

1

sin2 \theta

\partial 2

\partial \lambda 2
.

After multiplying by sin2 \theta to remove the singularities, (5.1) and (5.2) become

sin \theta cos \theta
\partial \Phi

\partial \theta
+ sin2 \theta

\partial 2\Phi

\partial \theta 2
+
\partial 2\Phi

\partial \lambda 2
= - r sin2 \theta Vr,(5.3)

sin \theta cos \theta
\partial \Psi

\partial \theta
+ sin2 \theta

\partial 2\Psi

\partial \theta 2
+
\partial 2\Psi

\partial \lambda 2
= - sin \theta [\partial \theta (V\lambda sin \theta) - \partial \lambda V\theta] .(5.4)

Moreover, any smooth function u on the unit ball has a unique interpolant \~u (section 1)
of the form

\~u(r, \lambda , \theta) \approx
m - 1\sum
i=0

n/2 - 1\sum
j= - n/2

p/2 - 1\sum
k= - p/2

\alpha ijkTi(r)e
\bfi j\lambda e\bfi k\theta .

Thus, (5.3) and (5.4) decouple in \lambda and r with this basis. However, these equations
are not well defined since P and T are unique up to addition of arbitrary functions
of r. Then, (5.3) and (5.4) are solved numerically with the condition that the zeroth
Fourier mode in \lambda , and \theta is equal to zero. This is equivalent to \alpha i00 = 0 for all
0 \leq i \leq m - 1.

LetMsin cos andMsin2 be the multiplication matrices for sin \theta cos \theta and sin2 \theta in the
Fourier basis, Dp the matrix of differentiation with respect to \theta , F the tensor of CFF
coefficients of - r sin2 \theta vr and G the tensor of CFF coefficients of - sin \theta [\partial \theta (v\lambda sin \theta) -
\partial \lambda v\theta]. For example,

Dp = diag
\Bigl(\Bigl[

 - p
2
i, . . . , - i, 0, i, . . . ,

p

2
i
\Bigr] \Bigr)
.

Equations (5.3) and (5.4) are discretized into\bigl(
Msin cosDp +Msin2D2

p - j2I
\bigr)
P (i, j, :) = F (i, j, :),\bigl(

Msin cosDp +Msin2D2
p - j2I

\bigr)
T (i, j, :) = G(i, j, :)

for 0 \leq i \leq m - 1 and - n/2 \leq j \leq n/2 - 1. P (i, j, :) denotes the vector of Fourier
coefficients in \theta . These equations are of the form

AX(i, j, :) = B(i, j, :),

D
ow

nl
oa

de
d

06
/2

6/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING WITH FUNCTIONS IN THE BALL C187

where A is a sparse banded matrix with bandwidth b = 4, which is the Fourier number
of sin \theta cos \theta and sin2 \theta . Then, by band Gaussian elimination [32], it can be solved in
\scrO (b2p) operations. Thus, the complexity of the PT algorithm is \scrO (mnp), which is
linear in the number of interpolation points over the ball.

As an example we consider the induction equation [20, Chap. 2], which is one of the
equations arising in magnetohydrodynamics and resulting from Maxwell's equations,

\partial B

\partial t
= \nabla \times (V \times B) +D\nabla 2B,(5.5)

\nabla \cdot B = 0,(5.6)

where B denotes the magnetic field, V = \nabla \times [e - 5(x2+y2+z2)(x2, y2, xz)] is the velocity
of particles, and D = 1/3000 is the diffusion constant. We use the PT decomposition
to ensure that the divergence-free condition on B is satisfied and decouple (5.5) into
the following equations on the poloidal and toroidal scalars \Phi \bfB and \Psi \bfB :

\partial \Phi \bfB

\partial t
= \Phi \nabla \times (\bfV \times \bfB) +D\nabla 2\Phi \bfB ,(5.7)

\partial \Psi \bfB

\partial t
= \Psi \nabla \times (\bfV \times \bfB) +D\nabla 2\Psi \bfB .(5.8)

The two equations above are decoupled and independent, and therefore the use of
the PT decomposition does not induce any additional error in the solution. Then,
according to the IMEX-BDF1 time-stepping scheme (see subsection 4.4), at each time
step we compute the PT decomposition of the nonlinear term \nabla \times (V\times B) and solve
two Helmholtz equations:

\nabla 2\Phi n+1
\bfB +K2\Phi n+1

\bfB = K2\Phi n
\bfB +

1

D
\Phi n

\nabla \times (\bfV \times \bfB),

\nabla 2\Psi n+1
\bfB +K2\Psi n+1

\bfB = K2\Psi n
\bfB +

1

D
\Psi n

\nabla \times (\bfV \times \bfB),

where \Phi n
\bfB (resp. \Psi n

\bfB) denotes the magnetic poloidal (resp., toroidal) scalar at time
t = n\Delta t, \Delta t = 5\times 10 - 2 is the time step, and K2 = - 1/(D\Delta t). We choose the initial

magnetic field B = \nabla \times [ze - 5(x2+y2+z2)(x, y, z)] and impose homogeneous Dirichlet
boundary conditions on the poloidal and toroidal scalars, which are computed at each
time step using the following code snippet:
B = ballfunv.PT2ballfunv(Phi\.B, Psi\.B);\% Compute B from P and T

N = curl(cross(V, B)); \% Nonlinear term

[Phi\.N, Psi\.N] = PTdecomposition(N); \% PT decomposition of N

\% Solve the toroidal and poloidal equation

Phi\.B = helmholtz(K\^2*Phi\.B+Phi\.N/D, K, @(x,y,z)0, 100);

Psi\.B = helmholtz(K\^2*Psi\.B+Psi\.N/D, K, @(x,y,z)0, 100);

The magnetic field B is illustrated at different time steps in Figure 8.

5.3. Helmholtz--Hodge decomposition. The Helmholtz--Hodge decomposi-
tion has been an important tool in computational fluid dynamics since the introduc-
tion of projection methods by Chorin [14, 15, 16] to solve the Navier--Stokes equations
for incompressible fluids. The decomposition is then used to preserve the divergence-
free property of the velocity field during the computation of the solution. Applications
of the Helmholtz--Hodge decomposition also arise in computer graphics and visualiza-
tion of incompressible fluids such as water [11, 46, 52]. The Helmholtz--Hodge decom-
position has also been exploited in the field of computer vision and robotics to analyze

D
ow

nl
oa

de
d

06
/2

6/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C188 NICOLAS BOULL\'E AND ALEX TOWNSEND

0

0.05

0.1

0.15

0.2

0.25

0.3(a)

0

0.05

0.1

0.15

0.2

0.25

0.3(b)

0

0.05

0.1

0.15

0.2

0.25

0.3(c)

Fig. 8. Solution to the induction equation (5.5)--(5.6) at time t = 0 (a), t = 1 (b), and t = 2 (c).

0

0.2

0.4

0.6

0.8

1(a)

0

0.2

0.4

0.6

0.8

1(b)

0

0.2

0.4

0.6

0.8

1(c)

Fig. 9. The vector field V(x, y, z) = (cos(xy)z, sin(xz), yz) (a), together with its Helmholtz--
Hodge decomposition \nabla f (b) and \Psi (c). The decomposition is computed using HelmholtzDecom-

position and plotted with the quiver command.

cardiac videos [33] and find singularities in fingerprints images [27]. A survey of appli-
cations is available in [7]. Ballfun has a HelmholtzDecomposition command, which
computes and returns the Helmholtz--Hodge decomposition of a smooth vector field.

The Helmholtz--Hodge decomposition [7] states that any smooth vector field v on
the unit ball can be decomposed into a sum of a solenoidal and irrotational fields

V = \nabla f + \psi ,(5.9)

where \psi is a divergence-free vector field. Moreover, this decomposition can be made
unique by imposing that the incompressible component, \psi , is tangent to the boundary.
This condition is equivalent to a Neumann boundary condition on the scalar function
f . That is, \vec{}n \cdot \nabla f = \vec{}n \cdot V [7]. The first step of the algorithm implemented in Ballfun
consists of taking the divergence of V in (5.9) to obtain the Poisson equation

\nabla 2f = \nabla \cdot V

with the Neumann boundary conditions given by

\vec{}n \cdot \nabla f =
\partial f

\partial r

\bigm| \bigm| \bigm| \bigm|
\partial B

= \vec{}n \cdot V.

We then obtain the incompressible component using the following equality:

\psi := V - \nabla f.

Finally, the poloidal and toroidal scalars of \psi are computed using the algorithm
described in subsection 5.2, and the command HelmholtzDecomposition returns the
scalar function f together with the poloidal and toroidal scalars of \psi .

Figure 9 shows the Helmholtz--Hodge decomposition of the vector-valued function
V(x, y, z) = (cos(xy)z, sin(xz), yz) computed by Ballfun using the following code:

D
ow

nl
oa

de
d

06
/2

6/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING WITH FUNCTIONS IN THE BALL C189

\% Define the vector field V

V = ballfunv(@(x,y,z)cos(x.*y).*z, @(x,y,z)sin(x.*z), @(x,y,z)y.*z);

\% Compute the Helmholtz-Hodge decomposition of V

[f, Ppsi, Tpsi] = HelmholtzDecomposition(V);

\% Recover Psi from it poloidal and toroidal scalars

Psi = ballfunv.PT2ballfunv(Ppsi,Tpsi);

6. Conclusions. The analogue of the DFS method for the ball is exploited to
impose BMC structure on functions and represent them by CFF series. A collection
of fast and spectrally accurate algorithms is developed for differentiation, rotation,
solving the Helmholtz equation, vector calculus, PT decomposition, and Helmholtz--
Hodge decomposition. These ideas have been implemented in Ballfun, which is part
of the freely available software Chebfun.

Acknowledgments. We thank Vassilios Dallas and Jonasz S\lomka for discus-
sions on the poloidal-toroidal and Helmholtz--Hodge decomposition. We also thank
Nick Trefethen, Heather Wilber, and Grady Wright for comments on the Ballfun
software and the paper. We thank the referees for their time and expert reviews.

REFERENCES

[1] G. B. Arfken, Mathematical Methods for Physicists, 3rd ed., Academic Press, Orlando, FL,
1985.

[2] J. L. Aurentz and L. N. Trefethen, Chopping a Chebyshev series, ACM Trans. Math.
Software, 43 (2017), pp. 33:1--33:21.

[3] G. Backus, Poloidal and toroidal fields in geomagnetic field modeling, Rev. Geophys., 24
(1986), pp. 75--109.

[4] R. H. Bartels and G. W. Stewart, Solution of the matrix equation AX+XB = C, Commun.
ACM, 15 (1972), pp. 820--826.

[5] Z. Battles and L. N. Trefethen, An extension of MATLAB to continuous functions and
operators, SIAM J. Sci. Comput., 25 (2004), pp. 1743--1770.

[6] E. R. Benton and K. A. Whaler, Rapid diffusion of the poloidal geomagnetic field through
the weakly conducting mantle: A perturbation solution, Geophys. J. Internat., 75 (1983),
pp. 77--100.

[7] H. Bhatia, G. Norgard, V. Pascucci, and P.-T. Bremer, The Helmholtz--Hodge
decomposition--A survey, IEEE Trans. Visual. Comput. Graph., 19 (2013), pp. 1386--1404.

[8] P. Boronski and L. S. Tuckerman, Poloidal--toroidal decomposition in a finite cylinder. I:
Influence matrices for the magnetohydrodynamic equations, J. Comput. Phys., 227 (2007),
pp. 1523--1543.

[9] P. Boronski and L. S. Tuckerman, Poloidal--toroidal decomposition in a finite cylinder: II.
Discretization, regularization and validation, J. Comput. Phys., 227 (2007), pp. 1544--1566.

[10] J. P. Boyd, The choice of spectral functions on a sphere for boundary and eigenvalue prob-
lems: A comparison of Chebyshev, Fourier and associated Legendre expansions, Monthly
Weather Rev., 106 (1978), pp. 1184--1191.

[11] R. Bridson, Fluid Simulation for Computer Graphics, AK Peters/CRC Press, Boca Raton,
FL, 2015.

[12] K. J. Burns, G. M. Vasil, J. S. Oishi, D. Lecoanet, and B. P. Brown, Dedalus: A flexible
framework for numerical simulations with spectral methods, Phys. Rev. Res., 2 (2020),
023068.

[13] H.-B. Cheong, Application of double Fourier series to the shallow-water equations on a sphere,
J. Comput. Phys., 165 (2000), pp. 261--287.

[14] A. J. Chorin, A numerical method for solving incompressible viscous flow problems, J. Comput.
Phys., 2 (1967), pp. 12--26.

[15] A. J. Chorin, Numerical solution of the Navier--Stokes equations, Math. Comp., 22 (1968),
pp. 745--762.

[16] A. J. Chorin, On the convergence of discrete approximations to the Navier--Stokes equations,
Math. Comp., 23 (1969), pp. 341--353.

[17] C. Clenshaw, A note on the summation of Chebyshev series, Math. Comp., 9 (1955), pp.
118--120.

D
ow

nl
oa

de
d

06
/2

6/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C190 NICOLAS BOULL\'E AND ALEX TOWNSEND

[18] J. Coiffier, Fundamentals of Numerical Weather Prediction, Cambridge University Press,
Cambridge, UK, 2011.

[19] J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier
series, Math. Comp., 19 (1965), pp. 297--301.

[20] P. A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge University Press,
Cambridge, UK, 2002.

[21] T. A. Driscoll, N. Hale, and L. N. Trefethen, Chebfun Guide, Pafnuty Publications,
Oxford, UK, 2014, http://www.chebfun.org/docs/guide/.

[22] C. F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables, Cambridge University
Press, Cambridge, UK, 2014.

[23] N. Flyer and G. B. Wright, A radial basis function method for the shallow water equations
on a sphere, Proc. A, 471 (2009), pp. 1--28.

[24] B. Fornberg, A pseudospectral approach for polar and spherical geometries, SIAM J. Sci.
Comput., 16 (1995), pp. 1071--1081.

[25] B. Fornberg and D. Merrill, Comparison of finite difference-and pseudospectral methods
for convective flow over a sphere, Geophys. Res. Lett., 24 (1997), pp. 3245--3248.

[26] D. Fortunato and A. Townsend, Fast Poisson solvers for spectral methods, IMA J. Numer.
Anal., (2019).

[27] H. Gao, M. K. Mandal, G. Guo, and J. Wan, Singular point detection using discrete Hodge
Helmholtz decomposition in fingerprint images, in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, 2010, pp. 1094--1097.

[28] J. D. Gardiner, A. J. Laub, J. J. Amato, and C. B. Moler, Solution of the Sylvester matrix
equation AXBT + CXDT = E, ACM Trans. Math. Software, 18 (1992), pp. 223--231.

[29] I. M. Gelfand, R. A. Minlos, and Z. Y. Shapiro, Representations of the Rotation and
Lorentz Groups and their Applications, Courier Dover Publications, New York, 2018.

[30] W. M. Gentleman, Implementing Clenshaw--Curtis quadrature, I. Methodology and experi-
ence, Commun. ACM, 15 (1972), pp. 337--342.

[31] W. M. Gentleman, Implementing Clenshaw--Curtis quadrature, II. Computing the cosine
transformation, Commun. ACM, 15 (1972), pp. 343--346.

[32] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, 2012.

[33] Q. Guo, M. K. Mandal, G. Liu, and K. M. Kavanagh, Cardiac video analysis using Hodge--
Helmholtz field decomposition, Comput. Biol. Med., 36 (2006), pp. 1--20.

[34] B. Hashemi and L. N. Trefethen, Chebfun in three dimensions, SIAM J. Sci. Comput., 39
(2017), pp. C341--C363.

[35] W. Heinrichs, Spectral collocation schemes on the unit disc, J. Comput. Phys., 199 (2004),
pp. 66--86.

[36] R. Hollerbach, Magnetohydrodynamic Ekman and Stewartson layers in a rotating spherical
shell, Proc. A, 444 (1994), pp. 333--346.

[37] S. Horn and O. Shishkina, Toroidal and poloidal energy in rotating Rayleigh--B\'enard convec-
tion, J. Fluid Mech., 762 (2015), pp. 232--255.

[38] R. Kerswell, Recent progress in understanding the transition to turbulence in a pipe, Nonlin-
earity, 18 (2005), R17.

[39] W. Kuang and J. Bloxham, Numerical modeling of magnetohydrodynamic convection in a
rapidly rotating spherical shell: Weak and strong field dynamo action, J. Comput. Phys.,
153 (1999), pp. 51--81.

[40] W. Lowrie, Fundamentals of Geophysics, Cambridge University Press, Cambridge, UK, 2007.
[41] J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, CRC Press, Boca Raton, FL,

2002.
[42] P. E. Merilees, The pseudospectral approximation applied to the shallow water equations on

a sphere, Atmosphere, 11 (1973), pp. 13--20.
[43] S. Olver, G. Goretkin, R. M. Slevinsky, and A. Townsend, Approxfun, 2019, https://

github.com/JuliaApproximation/ApproxFun.jl.
[44] S. Olver and A. Townsend, A fast and well-conditioned spectral method, SIAM Rev., 55

(2013), pp. 462--489.
[45] S. A. Orszag, Fourier series on spheres, Monthly Weather Rev., 102 (1974), pp. 56--75.
[46] M. Pharr, W. Jakob, and G. Humphreys, Physically Based Rendering: From Theory to

Implementation, Morgan Kaufmann, Cambridge, MA, 2016.
[47] D. Ruiz-Antolin and A. Townsend, A nonuniform fast Fourier transform based on low rank

approximation, SIAM J. Sci. Comput., 40 (2018), pp. A529--A547.
[48] E. Serre and J. Pulicani, A three-dimensional pseudospectral method for rotating flows in a

cylinder, Comput. Fluids, 30 (2001), pp. 491--519.

D
ow

nl
oa

de
d

06
/2

6/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

http://www.chebfun.org/docs/guide/
https://github.com/JuliaApproximation/ApproxFun.jl
https://github.com/JuliaApproximation/ApproxFun.jl

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPUTING WITH FUNCTIONS IN THE BALL C191

[49] R. M. Slevinsky, Fast and backward stable transforms between spherical harmonic expansions
and bivariate Fourier series, Appl. Comput. Harmon. Anal., 47 (2019), pp. 585--606.

[50] W. F. Spotz, M. A. Taylor, and P. N. Swarztrauber, Fast shallow-water equation solvers
in latitude-longitude coordinates, J. Comput. Phys., 145 (1998), pp. 432--444.

[51] P. N. Swarztrauber, The approximation of vector functions and their derivatives on the
sphere, SIAM J. Numer. Anal., 18 (1981), pp. 191--210.

[52] J. Tan and X. Yang, Physically-based fluid animation: A survey, Sci. China Inf. Sci., 52
(2009), pp. 723--740.

[53] A. Townsend and S. Olver, The automatic solution of partial differential equations using a
global spectral method, J. Comput. Phys., 299 (2015), pp. 106--123.

[54] A. Townsend and L. N. Trefethen, An extension of Chebfun to two dimensions, SIAM J.
Sci. Comput., 35 (2013), pp. C495--C518.

[55] A. Townsend, M. Webb, and S. Olver, Fast polynomial transforms based on Toeplitz and
Hankel matrices, Math. Comput., 87 (2018), pp. 1913--1934.

[56] A. Townsend, H. Wilber, and G. B. Wright, Computing with functions in spherical and
polar geometries I. The sphere, SIAM J. Sci. Comput., 38 (2016), pp. C403--C425.

[57] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadelphia, PA, 2000.
[58] L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia,

PA, 2013.
[59] G. M. Vasil, D. Lecoanet, K. J. Burns, J. S. Oishi, and B. P. Brown, Tensor calcu-

lus in spherical coordinates using Jacobi polynomials. Part-I: Mathematical analysis and
derivations, J. Comput. Phys., 3 (2019), 100013.

[60] H. Wilber, A. Townsend, and G. B. Wright, Computing with functions in spherical and
polar geometries II. The disk, SIAM J. Sci. Comput., 39 (2017), pp. C238--C262.

[61] G. B. Wright, N. Flyer, and D. A. Yuen, A hybrid radial basis function--pseudospectral
method for thermal convection in a 3-D spherical shell, Geochem. Geophys. Geosyst., 11
(2010), Q07003.

[62] G. B. Wright, M. Javed, H. Montanelli, and L. N. Trefethen, Extension of Chebfun to
periodic functions, SIAM J. Sci. Comput., 37 (2015), pp. C554--C573.

[63] S. Y. K. Yee, Studies on Fourier series on spheres, Monthly Weather Rev., 108 (1980),
pp. 676--678.

[64] K. Zhang and G. Schubert, Magnetohydrodynamics in rapidly rotating spherical systems,
Ann. Rev. Fluid Mech., 32 (2000), pp. 409--443.

[65] K.-K. Zhang and F. Busse, Convection driven magnetohydrodynamic dynamos in rotating
spherical shells, Geophys. Astrophys. Fluid Dynam., 49 (1989), pp. 97--116.

D
ow

nl
oa

de
d

06
/2

6/
21

 to
 1

32
.1

74
.2

52
.1

79
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

	Introduction
	Software

	The Ballfun constructor
	The DFS method in the ball
	Computing the CFF coefficients
	Determination of the discretization size

	Algorithms for numerical computations with functions on the ball
	Pointwise evaluation
	Integration
	Differentiation
	Fast rotation algorithm using a nonuniform Fourier transform

	Fast spectral method for solving the Helmholtz equation
	Discretization of the Helmholtz equation
	Imposing Neumann boundary conditions when K=0
	Imposing Neumann boundary conditions when K = 0
	Numerical examples

	Vector-valued functions on the ball
	Vector calculus on the ball
	Poloidal-toroidal decomposition
	Helmholtz–Hodge decomposition

	Conclusions
	References

