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The leading-order dispersion and exchange-dispersion terms in symmetry-adapted perturbation

theory (SAPT), E
(20)
disp and E

(20)
exch−disp, suffer from slow convergence to the complete basis set limit. To

alleviate this problem, explicitly correlated variants of these corrections, E
(20)
disp -F12 and E

(20)
exch−disp-

F12, have been proposed recently. However, the original formalism (M. Kodrycka et al., J. Chem.
Theory Comput. 2019, 15, 5965–5986), while highly successful in terms of improving convergence,
was not competitive to conventional orbital-based SAPT in terms of computational efficiency due
to the need to manipulate several kinds of two-electron integrals. In this work, we eliminate this
need by decomposing all types of two-electron integrals using robust density fitting. We demon-
strate that the error of the density fitting approximation is negligible when standard auxiliary bases
such as aug-cc-pVXZ/MP2FIT are employed. The new implementation allowed us to study all

complexes in the A24 database in basis sets up to aug-cc-pV5Z, and the E
(20)
disp -F12 and E

(20)
exch−disp-

F12 values exhibit vastly improved basis set convergence over their conventional counterparts. The

well-converged E
(20)
disp -F12 and E

(20)
exch−disp-F12 numbers can be substituted for conventional E

(20)
disp

and E
(20)
exch−disp ones in a calculation of the total SAPT interaction energy at any level (SAPT0,

SAPT2+3, . . . ). We show that the addition of F12 terms does not improve the accuracy of low-level
SAPT treatments. However, when the theory errors are minimized in high-level SAPT approaches
such as SAPT2+3(CCD)δMP2, the reduction of basis set incompleteness errors thanks to the F12
treatment substantially improves the accuracy of small-basis calculations.



2

I. INTRODUCTION

Noncovalent intermolecular interactions are ubiquitous, and their quantitative understanding is essential when one
investigates diverse physical and chemical phenomena from scattering resonances in cold collisions1 to crystal struc-
ture and polymorphism2 to chiral discrimination in biomolecular complexes3. However, accurate computations of
noncovalent interaction energies are quite nontrivial due to the overwhelming importance of electron correlation. In
particular, London dispersion forces, which are the main reason for the attraction between nonpolar molecules, arise
entirely out of electron correlation. Actually, these forces require quite a high-level account of correlation, as the
simplest dispersion estimate, contained in the supermolecular interaction energy computed using the second-order
Møller-Plesset perturbation theory (MP2), often leads to significant overbinding4. In addition to the need for a
high-level electronic structure treatment (such as the “gold standard”5 coupled-cluster approach with single, double,
and perturbative triple excitations, CCSD(T)6), capturing the dispersion effects requires large basis sets, as the cor-
relation energy is known for its slow convergence to the complete basis set (CBS) limit. The basis set convergence
of molecular correlation energies can be enhanced by extrapolations7 as well by an explicitly correlated treatment,
where an explicit dependence on the interelectronic distance r12 is inserted into the wavefunction Ansatz8. The most
practical and successful explicitly correlated variantis use a correlation factor with nonlinear r12 dependence, in par-
ticular, the Slater-type expression e−γr12 , where the parameter γ can be varied to control the spatial range of explicit
correlation9. Such an approach is denoted by adding “-F12” to the name of the parent electronic structure theory,
and many correlated ab initio approaches have been “F12’ed”, including MP29,10, CCSD(T)11,12, or even multiref-
erence methods such as the second-order complete-active-space perturbation theory (CASPT2)13 or multireference
configuration interaction (MRCI)14. In the specific case of intermolecular interactions, another way of speeding up
the CBS convergence is an addition of “midbond” basis functions centered in between the interacting molecules15.
The inclusion of bond functions is particularly helpful in recovering the dispersion energy16, and the benefits of bond
functions can be combined with those of the CBS extrapolation17 and of the F12 treatment18.

The most rigorous definition of dispersion energy is provided by second-order perturbation theory (some higher-
order terms can also be classified as pure dispersion, but these terms are typically small)19. Thus, dispersion can
be quantified, separately from other energy contributions such as electrostatics, induction, and exchange, within the
framework of symmetry-adapted perturbation theory (SAPT)20,21. Many variants of SAPT have been proposed in
the literature, differing in the approach used to treat the intramolecular electron correlation. Model SAPT studies
for the smallest complexes have been carried out22,23 with the complete, full configuration interaction (FCI) account
of intramolecular correlation, however, this is obviously not possible for realistic systems. Instead, one can start
the perturbation expansion from the product of the monomer Hartree-Fock (HF) determinants. The simplest way
to proceed is then to ignore intramolecular correlation completely and carry out a single perturbation expansion in
powers of the intermolecular interaction operator, leading to an approach termed SAPT0. The SAPT0 dispersion

energy, closely related to the dispersion part of the supermolecular MP2 interaction energy24, is denoted as E
(20)
disp ,

where the consecutive superscripts signify that this correction is of second order in the intermolecular interaction and
of zeroth order in the intramolecular correlation. If quantitative accuracy of the SAPT energy terms is required, one
has to go beyond SAPT0 and include, in one way or another, the intramolecular correlation effects. The historically
first method of doing so is the many-body SAPT25, in which SAPT becomes a double perturbation theory in powers
of both the intermolecular interaction operator V and the Møller-Plesset fluctuation potential W = WA +WB, where
WX is the difference between the full Hamiltonian for molecule X and its HF approximation. At the highest developed

level of many-body SAPT, the dispersion energy is computed as E
(20)
disp +E

(21)
disp +E

(22)
disp , thus, it includes intramolecular

correlation through second order in W . Alternatively, an intramolecular correlation correction to SAPT0 dispersion
can be evaluated in a nonperturbative manner, using a CC-like partial infinite-order summation of terms of different
orders in W 26,27 or the frequency-dependent density susceptibilities from time-dependent density functional theory,
as in the SAPT(DFT) approach28,29. The development of improved dispersion expressions in SAPT continues to
this day: the most recent accomplishments include the computation of dispersion energies from the Bethe-Salpeter
equation30 and from the linear response of the complete-active-space self-consistent field (CASSCF) approach31.

Every electrostatic, induction, and dispersion correction in SAPT is accompanied by an exchange term that arises
from the enforcement of the full antisymmetry upon the wave function of the complex. In particular, second-order
dispersion energy has an exchange-dispersion counterpart that cancels a part of the dispersion attraction (typically
on the order of 10% at the van der Waals minimum distance). While smaller than dispersion, the exchange dispersion
energy converges in relative terms just as poorly as dispersion energy with both the theory level and the basis set. This
is quite unfortunate as all commonly used variants of many-body SAPT approximate the exchange dispersion effects

solely by their leading-order E
(20)
exch−disp term. The intramolecular correlation contributions to exchange dispersion

are approximately included in SAPT(DFT)28,29, while benchmark exchange dispersion values for small complexes
can be computed at the CCSD level using the approach of Ref. 32. It should be noted that the exchange dispersion
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effects, just like nearly all other SAPT exchange corrections, are usually computed within the so-called single exchange
approximation that neglects intermolecular swaps of more than one electron pair when applying the antisymmetry
projector (this approach is also called the S2 approximation as it neglects terms beyond the second power in the

intermolecular overlap integrals). While the full nonexpanded E
(20)
exch−disp expression has been recently derived and

implemented33, all beyond-E
(20)
exch−disp exchange dispersion terms are always computed within the S2 approximation.

As the explicitly correlated F12 approach has been quite successful improving the basis set convergence of super-
molecular MP2 and CCSD(T) interaction energies34–37, it is worth asking if the benefits of the F12 treatment can
be transferred to SAPT, in particular, to the slowly converging dispersion and exchange dispersion energies. The
calculation of both effects with the aid of explicitly correlated functions has quite a long history for model four-

electron systems, and the highly accurate CBS values of E
(20)
disp , E

(21)
disp , and E

(20)
exch−disp for the helium dimer have been

established38–40 using Gaussian-type geminal (GTG) explicitly correlated bases41. The first step towards a system-
independent F12 extension of SAPT was recently taken by Przybytek42. He proposed an algorithm to improve the

CBS convergence of E
(20)
disp using an Ansatz similar to MP2-F12, where ordinary dispersion amplitudes are augmented

by a set of F12 amplitudes approximately taking into account the excitations out of the molecular-orbital (MO) space.
The F12 amplitudes in Przybytek’s approach were obtained by a minimization of a suitable dispersion-only Hylleraas

functional. Thus, the best variational approximation to the CBS value of E
(20)
disp at a given basis set level was obtained,

and the resulting CBS convergence improvement relative to conventional E
(20)
disp was truly impressive, comparable

to increasing the orbital basis set (of the augmented correlation-consistent aug-cc-pVXZ variety43) by two cardinal
numbers. However, the approach of Ref. 42 is not very practical as the complete amplitude optimization scales like
the eighth power of the system size and sometimes suffers from numerical instabilities. Therefore, our collaborators

and we have recently proposed44 several approximate Ansätze for E
(20)
disp -F12 including the optimized diagonal Ansatz

(ODA, defined precisely in the next section) that scales like N5 just like conventional E
(20)
disp , is numerically stable,

and produces F12 dispersion energies nearly as accurate as the full F12 amplitude optimization. In the same work44,
we have employed the F12 dispersion amplitudes (computed using any Ansatz) in the calculation of an explicitly

correlated exchange dispersion energy, E
(20)
exch−disp-F12 (within the S2 approximation), substantially improving the

convergence of conventional E
(20)
exch−disp to its CBS limit.

The F12 extensions to E
(20)
disp and E

(20)
exch−disp proposed in Refs. 42 and 44 significantly improve the basis set con-

vergence of these SAPT0 corrections. However, in the original implementations, they are not competitive with

conventional E
(20)
disp and E

(20)
exch−disp calculations in larger basis sets. The reason for the suboptimal performance of

these algorithms, besides the fact that only modest effort was put into optimizing the initial proof-of-concept imple-
mentations, is the necessity to evaluate and transform multiple types of two-electron integrals over functions from
the atomic-orbital (AO) basis set and the complementary auxiliary basis set (CABS) approximately spanning the
orthogonal complement to the AO space45. The union of the AO and CABS bases is meant to provide a reasonably
complete representation of the entire one-electron space so that all three- and four-electron integrals can be expressed
by two-electron integrals using resolution of identity (RI). A further increase in the efficiency of the F12 approaches has
been possible thanks to expanding the two-electron integrals and other four-index quantities in three-index auxiliary
tensors using density fitting (DF)46–49. Density-fitted electronic structure theories benefit from their significantly low-
ered CPU time and storage requirements as the computation and transformation of two-electron integrals is avoided
(even though the formal scaling of the underlying approach is rarely reduced). It should be noted that while the
terms RI and DF are often used interchangeably in other contexts, they have separate and well-defined meanings
within the F12 formalism. Both RI and DF have been the essential factors in turning MP2-F12 and approximate
CCSD(T)-F1250–52 into robust practically useful approaches that combine improved basis set convergence with only
a modest increase in the computational cost relative to the parent MP2 and CCSD(T) methods. On the contrary, our

initial implementation of E
(20)
disp -F12 and E

(20)
exch−disp-F1244 uses RI but not DF; therefore, while the CBS convergence

of these SAPT terms is vastly improved, the computational complexity is substantially higher than for the parent

E
(20)
disp and E

(20)
exch−disp corrections due to the need to compute and transform several types of two-electron integrals.

Moreover, these integrals involve not just AO basis indices, but up to two indices running over the RI basis that is

typically several times larger than the AO set. As a result, the E
(20)
disp -F12 and E

(20)
exch−disp-F12 implementations cannot

be competitive with their conventional SAPT0 counterparts until all four-index quantities present are decomposed by

density fitting. This DF decomposition of the E
(20)
disp -F12 and E

(20)
exch−disp-F12 expressions, leading to an efficient and

practical computer implementation, is the topic of this manuscript.
Before we proceed with the development of the density fitted SAPT-F12 expressions, it is important to note, per-

haps counterintuitively, that a stand-alone CBS convergence improvement of the dispersion and exchange-dispersion
terms is likely to make the total SAPT0 interaction energies worse, not better. Just like supermolecular MP2 tends to



4

overestimate the binding, especially in aromatic complexes, the MP2-level E
(20)
disp approximation tends to overestimate

the magnitude of the true dispersion energy. As a result, it is usually preferable to perform SAPT0 calculations far
away from CBS, so that the overbinding of the SAPT0 dispersion partially cancels with the underbinding due to an
incomplete basis set. The “calendar” basis set jun-cc-pVDZ53 has been observed to provide a particularly consistent

error cancellation and is the recommended choice for SAPT0 calculations54. The replacement of small-basis E
(20)
disp and

E
(20)
exch−disp values by their F12 counterparts (which are much closer to the CBS limit) disturbs the error cancellation

and thus is likely to diminish the accuracy of SAPT0 interaction energies. Instead, the true utility of the E
(20)
disp -F12

and E
(20)
exch−disp-F12 corrections is in higher-level SAPT calculations, where the intramolecular correlation effects (in

the form of E
(21)
disp +E

(22)
disp or, even better, the coupled-cluster-level dispersion energy27) prevent the overestimation of

dispersion. While an F12 Ansatz for any intramolecular correlation terms in dispersion energy has not been proposed

yet (except for E
(21)
disp in the specific case of interactions between two-electron systems38–40), one can combine an F12-

enhanced CBS estimate of the leading-order E
(20)
disp term with an intramolecular correlation correction computed con-

ventionally in a moderate basis set. Such a “composite” treatment, in the spirit of the popular MP2/CBS+δCCSD(T)
approach to supermolecular interaction energies (with a moderate-basis δCCSD(T)=CCSD(T)−MP2 correction added
on top of the MP2 CBS limit55,56) or the many successful composite approaches to thermochemistry57,58, is completely
rigorous (no double counting occurs) and is likely to improve benchmark high-level SAPT dispersion energies and
the resulting total SAPT interaction energies. For the latter, intramolecular correlation corrections to dispersion are
included in the SAPT2+, SAPT2+(3), and SAPT2+3 levels of theory (as defined in Ref. 54), and these high-order

SAPT variants are the primary target for improvement by our F12 approach to E
(20)
disp and E

(20)
exch−disp.

In this work, we derive and implement efficient expressions for the E
(20)
disp -F12(ODA) and E

(20)
exch−disp-F12(ODA)

explicitly correlated SAPT0 corrections employing robust density fitting48,49 in all two-electron quantities. The initial
implementation of the new expressions (just like for the non-DF formulas of Ref. 44) is facilitated by the Psi4NumPy
framework59 that combines the low-level functionality (integrals, HF vectors, . . . ) of the Psi4 electronic structure
program60,61 with the tensor manipulation and linear algebra capabilities of the NumPy library. In the near future,

the new DF-E
(20)
disp -F12(ODA) and DF-E

(20)
exch−disp-F12(ODA) functionality will be implemented in the development

version of the Psi4 code itself. The new DF formalism enables us to extend benchmark studies of the explicitly
correlated SAPT dispersion and exchange dispersion to substantially larger systems and basis sets, and we first
exploit this capability by extending the SAPT-F12 calculations42,44 for the A24 database of noncovalent complexes62

to larger basis sets, including bases with midbond functions. Then, we investigate the CBS convergence of E
(20)
disp and

E
(20)
exch−disp, and the effect of its F12 enhancement, on the total SAPT2+, SAPT2+(3), and SAPT2+3 interaction

energies, on the same noncovalent databases as the SAPT benchmarking study of Ref. 54. Such an elimination of
the leading basis set incompleteness error in high-level SAPT data is expected to provide a clearer picture of the
directions for the further improvement of the SAPT methodology, both for the dispersion energy and for other terms.

II. THEORY

In Sections II A and II B we summarize the main equations which define the non-DF E
(20)
disp -F12(ODA) and E

(20)
exch−disp-

F12(ODA) energies, respectively. In Section II C the DF approximation is applied to obtain the corresponding
expressions for DF-SAPT-F12.

Throughout this paper, the index convention from Ref. 44 is adopted. Thus, separate sets of indices are defined
for monomers A and B, that is (i, k,m), a, r, x, α and (j, l, n), b, s, y, β, respectively. The range of each orbital index
is as follows: indices i, j, k, l,m, n run over occupied orbitals; a, b, virtual (unoccupied) orbitals; r, s, all molecular
orbitals (MOs), both occupied and virtual; x,y, the complementary auxiliary (CA) functions approximately spanning
the orthogonal complement of the MO space; α, β, the formally complete orthonormal set, which is constructed as
the union of the MO and CA subspaces; and A,B, the DF basis set. We will assume that a full dimer basis set is
employed for both the orbital and CABS bases: as a result, the orbitals r and s span the same space and so do x and
y. A summation over each repeated index is implied in all expressions. The index notation is summarized in Table I
for easy reference.
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TABLE I. Orbital spaces used in this work.

Orbital space Monomer A Monomer B

Occupied orbitals i, k, m j, l, n

Virtual orbitals a b

Any molecular orbitals r s

Complementary auxiliary orbitals x y

Complete orthonormal or RI basis α β

DF basis A, B

A. E
(20)
disp-F12(ODA)

The starting point for the development of the explicitly correlated dispersion energy is a “dispersion-only” Hylleraas
functional

Jdisp[χ] = 〈χ|QAQB(FA + FB − E0
A − E0

B)QAQB|χ〉
+〈χ|QAQB(V − 〈V 〉)|φAHFφ

B
HF〉+ 〈φAHFφ

B
HF|(V − 〈V 〉)QAQB|χ〉

(1)

where FX is the Fock operator, E0
X is the sum of the occupied orbital energies εXi(j), 〈V 〉 ≡ 〈φ

A
HFφ

B
HF|V |φAHFφ

B
HF〉 is the

first-order electrostatic correction E
(10)
elst , and QX is the operator projecting out the ground state for a given monomer

X ∈ {A,B}. It has been shown42,44 that E
(20)
disp -F12 is obtained variationally by minimizing the above functional using

a trial function

χ = T ijab|Φ
ab
ij 〉+ T ijklF

kl
αβ |Φ

αβ
ij 〉 (2)

where |Φαβij 〉 = ÊαiÊβj |φAHFφ
B
HF〉 is a doubly excited (once on A, once on B) determinant. The target of F12 methods

is to include the full space of doubly excited configurations, which is achieved via a set of amplitudes T ijkl and a
suitable internal contraction

Fklαβ = 〈kl|F̂12Q̂12|αβ〉 (3)

where F̂12 is a correlation factor and Q̂12 is the strong-orthogonality projector. A correlation factor plays a central
role in the F12 methods since it introduces the explicit dependence of the function on the interelectronic distance r12.
Here, the standard exponential expression is assumed63

F̂12 ≡ F (r12) = exp(−γr12) (4)

where γ stands for a length-scale parameter. The operator Q̂12 is chosen as Ansatz 3 of Ref. 10,

Q̂12 =

(
11 −

∑
i

|i〉〈i|1

)12 −
∑
j

|j〉〈j|2

(112 −
∑
ab

|ab〉〈ab|12

)
(5)

with the subscripts indicating which electron coordinates are affected by a given part of the projector.

The final expression for the Hylleraas dispersion functional, valid for arbitrary amplitudes T abij and T klij , reads

Jdisp[χ] = 4T abij T
ij
ab(ε

A
a + εBb − εAi − εBj ) + 8T ijabK

ab
ij

+ 4T klij T
ij
mnBkl,mn − 4

(
εAi + εBj

)
T klij T

ij
mnXkl,mn + 8T klij V

ij
kl

+ 8T abij T
ij
klC

kl
ab (6)
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where a handful of intermediates were introduced analogously to the MP2-F12(3C) approach10

Kab
ij = 〈ab|r−112 |ij〉 (7)

V ijkl = 〈ij|r−112 Q̂12F̂12|kl〉 (8)

Bkl,mn = 〈kl|F̂12Q̂12(f̂A1 + f̂B2)Q̂12F̂12|mn〉 (9)

Xkl,mn = 〈kl|F̂12Q̂12F̂12|mn〉 (10)

Cklab = 〈kl|F̂12Q̂12(f̂A1 + f̂B2)|ab〉 (11)

Note that in the above equations, the Fock operators f̂1 and f̂2 for the first and second electron, respectively, pertain
to different molecules. The presence of the projector operator Q̂12 in Eqs. (8)–(11) leads to three- and four-electron
integrals; thus, RI is employed to factorize these terms into products of two-electron integrals. In addition, we
assumed the generalized Brillouin condition (GBC) and the so-called approximation 3C10 to evaluate the C and B

matrix elements, containing products of the correlation factor F̂12 and the Fock operators.

The conventional (T abij ) and explicitly correlated (T klij ) dispersion amplitudes are determined by minimizing Eq. (6).

Since the full minimization comes at a cost of N8, too expensive to be practical, some approximations were proposed
and tested in Ref. 44. In this work, one of these approximations, the Optimized Diagonal Ansatz (ODA)44 is applied,
which assumes that the T klij amplitudes are diagonal, that is,

T klij = T ijij δikδjl. (12)

Within the ODA approximation, the dispersion amplitudes are computed from the following equations44 (with the
summations written explicitly this time)

T abij =
Kab
ij + T ijij C

ij
ab

εAi + εBj − εAa − εBb
(13)

T ijij

[
Bij,ij −

(
εAi + εBj

)
Xij,ij +

∑
ab

CijabC
ij
ab

εAi + εBj − εAa − εBb

]
= −V ijij −

∑
ab

Kab
ij C

ij
ab

εAi + εBj − εAa − εBb
(14)

The ODA formalism in E
(20)
disp -F12 is closely related to the original approach to explicitly correlated MP28,64 which

also retained only diagonal F12 amplitudes. Such a selection is not invariant with respect to a unitary transformation
of occupied orbitals. Thus, our formalism is restricted to canonical HF orbitals on each monomer; however, the same

restriction holds for conventional E
(20)
disp and E

(20)
exch−disp as well, so this is not a practical problem. Since the occupied

orbitals in SAPT pertain to one monomer at a time, our ODA approach most closely relates to supermolecular MP2-
F12 with an orbital-variant Ansatz using localized orbitals, which demonstrated good performance, a lack of geminal
basis set superposition error, and a correct long-range behavior in the early study of weak MP2-F12 interaction
energies64. In supermolecular F12 calculations, orbital invariance is commonly assured by means of a diagonal Ansatz
with the explicitly correlated amplitudes fixed by cusp conditions65. We have previously tested a similar fixed-

amplitude Ansatz (with an optimized common amplitude) in E
(20)
disp -F12 and E

(20)
exch−disp-F1244; however, the resulting

accuracy, while clearly superior to conventional E
(20)
disp and E

(20)
exch−disp, did not match the accuracy of ODA. As both

Ansätze exhibit virtually the same computational cost, only the more accurate ODA variant was used in the current
work.

B. E
(20)
exch−disp-F12(ODA)

The second-order exchange dispersion correction in the F12 formalism decomposes into two terms. The first one
is evaluated using the conventional exchange-dispersion formula25 involving the amplitudes T ijab (which, in this case,

are obtained from the ODA expression (13)). The second term is an explicitly correlated correction involving the T ijkl
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amplitudes44:

δE
(20)
exch−disp-F12 =2T ijkl

[
F klxbK

xb′

i′j S
b
iS

i′

b′ − 2F klxbK
xb′

ij S
b
i′S

i′

b′ + F klayK
a′y
ij′ S

a
j S

j′

a′ − 2F klayK
a′y
ij Saj′S

j′

a′

− 2F klxb(ωB)xi S
b
i′S

i′

j + F klxb(ωB)xi′S
b
iS

i′

j − F klay(ωB)yi S
a
j

− 2F klay(ωA)yjS
a
j′S

j′

i + F klay(ωA)yj′S
a
j S

j′

i − F
kl
xb(ωA)xjS

b
i

− (KF )kli′j′S
j′

i S
i′

j + 2(KF )klij′S
j′

i′ S
i′

j + 2(KF )kli′jS
j′

i S
i′

j′ − (KF )lkij

+ F lki′j′K
i′j′

ij + F lkaj′K
aj′

ij + F lki′bK
i′b
ij + F lkxj′K

xj′

ij + F lki′yK
i′y
ij

+ F klxnK
ax
ij S

n
a + F klmyK

yb
ij S

m
b + F klrsK

ab
ij S

s
aS

r
b

+ F klxnK
xn
i′j′S

j′

i S
i′

j + F klmyK
my
i′j′S

j′

i S
i′

j + F klrsK
rs
i′j′S

j′

i S
i′

j

− 2F klxnK
xn
ij′ S

j′

i′ S
i′

j − 2F klmyK
my
ij′ S

j′

i′ S
i′

j − 2F klrsK
rs
ij′S

j′

i′ S
i′

j

−2F klxnK
xn
i′j S

j′

i S
i′

j′ − 2F klmyK
my
i′j S

j′

i S
i′

j′ − 2F klrsK
rs
i′jS

j′

i S
i′

j′

]
(15)

where F klαβ = 〈kl|F̂12|αβ〉 and (KF )klαβ = 〈kl|F̂12r
−1
12 |αβ〉 are two common matrix elements involving the correlation

factor, Sij = 〈i|j〉 is the overlap integral and (ωB)ai is the matrix element of the electrostatic potential of monomer B,
that is,

(ωB)ai = 〈a|vB |i〉+ 2Kaj
ij , (16)

and vB is the nuclear potential of molecule B (the (ωA)bj matrix elements are defined similarly). All integral types in

Eq. (15) already appear in the calculation of intermediates for the E
(20)
disp -F12 energy, however, the integrals containing

F̂12 and F̂12r
−1
12 can now be of the exchange type: FBA

AB . Moreover, the T abij and T klij amplitudes are obtained from

the preceding E
(20)
disp -F12 calculations (Eqs. (13) and (14)); thus, in the ODA approach employed in this work, the

T klij tensor is diagonal.

C. Robust density-fitted formulas for E
(20)
disp-F12 and E

(20)
exch−disp-F12

We now employ density fitting (DF)48,49 to decompose the 4-index integrals into contractions of 3- and 2-index
quantities, thereby reducing the computational cost as well as storage requirements. The main idea of DF is replacing
the one-particle orbital product densities |pq) by approximated densities |p̃q). The latter are expanded in a set of
auxiliary functions (denoted as A) as follows

|pq) ≈ |p̃q) = DA
pq|A) (17)

The expansion coefficients DA
pq can be obtained by minimizing the difference between the actual and fitted product

densities46,47

∆w
pq = (pq − p̃q|ŵ12|pq − p̃q), (18)

with a suitable positive definite ŵ12 metric. It has been demonstrated48 that the Coulomb operator r−112 is the most
convenient metric for fitting not only two-electron integrals, but also other integrals of the F12 theory, hence it will
be used herein. Once the Coulomb metric is applied, the fitting coefficients are given by

DA
pq = [J−1]AB(B|r−112 |pq) (19)

where [J−1] is the inverse of the two-center electron repulsion integral (ERI) matrix

[J]AB =

∫
A(r1)

1

r12
B(r2) dr1dr2 = (A|r−112 |B) (20)

and (B|r−112 |pq) are the three-center ERIs. A crucial goal of density fitting is avoiding errors in integrals that are
linear in the density errors. This is achieved by the so-called robust fit proposed by Dunlap47,48:

(pq|v̂12|rs)robust ≈ (p̃q|v̂12|rs) + (pq|v̂12|r̃s)− (p̃q|v̂12|r̃s) (21)
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where v̂12 is any particular kernel operator for an integral. Equation (21) allows us to obtain a fitting error in the
integrals that is quadratic with respect to the fitting error in the densities, regardless of whether v̂12 and ŵ12 are the
same or different48,49. When applying the DF algorithm to ordinary ERIs, they become approximated as

(pq|r−112 |rs) ≈ (p̃q|r−112 |r̃s) = JApqD
A
rs (22)

with the D intermediate defined in Eq. (19), and the J intermediate computed as

JApq = (A|r−112 |pq) (23)

In the DF-SAPT-F12 theory, in addition to ERIs, we need to fit four types of explicitly correlated two-electron

integrals with the operators F̂12, F̂ 2
12, F̂12r

−1
12 , and the double commutator between the kinetic energy (t̂1 + t̂2)

and the correlation factor, [[F̂12, t̂1 + t̂2], F̂12]66. To do so, the explicitly robust formulas (Eq. (21)) combined with
the Coulomb metric are employed. This leads to several additional intermediates that we need to form before we

evaluate E
(20)
disp -F12(ODA) (Eqs. (7)–(11)) as well as the δE

(20)
exch−disp-F12(ODA) correction to the second-order exchange

dispersion energy (Eq. (15)) using the DF approximation:

JAB = (A|r−112 |B) (24)

FAB = (A|F̂12|B) (25)

KF
AB = (A|F̂12r

−1
12 |B) (26)

F 2
AB = (A|F̂ 2

12|B) (27)

UFAB = (A|[[F̂12, t̂1 + t̂2], F̂12]|B) (28)

FAij = (A|F̂12|ij) (29)

KF
A,ij = (A|F̂12r

−1
12 |ij) (30)

F 2
A,ij = (A|F̂ 2

12|ij) (31)

UFA,ij = (A|[[F̂12, t̂1 + t̂2], F̂12]|ij) (32)

These definitions allow us to rewrite the V , X, B and C matrix elements, Eqs. (8)–(11), explicitly. The resulting

formulas contain many instances of the Fαβα′β′ matrix element for different types of indices α, α′, β, β′. To keep the
expressions reasonably compact, we will list this intermediate in its non-DF, four-index form. In the actual evaluation

of these expressions, the robust density-fitted form of Fαβα′β′ is always used:

Fαβα′β′ = DA
αα′F

A
ββ′ + FAαα′D

A
ββ′ −DA

αα′FABD
B
ββ′ (33)

Note that, for optimal scaling and computational efficiency, this evaluation requires treating the three terms resulting
from Eq. (33) separately, and optimizing the order of contractions between the individual two- and three-index tensors,

both those forming a part of Fαβα′β′ and those arising from other matrices. The resulting expressions are

V ijkl = DA
ikK

F
A,jl +KF

A,ikD
A
jl −DA

ikK
F
ABD

B
jl − JAirDA

jsF
kl
rs − JAixDA

jnF
kl
xn − JAimDA

jyF
kl
my (34)

Xkl
mn = DA

kmF
2
A,ln + F 2

A,kmD
A
ln −DA

kmF
2
ABD

B
ln − F klrsF rsmn − F klxjF xjmn − F kliy F iymn (35)

Cklab = fAaxF
kl
xb + F klayf

B
yb (36)

Bkl,mn =
1

2
(Akl,mn +Amn,kl) (37)
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Akl,mn = DA
kmU

F
A,ln + UFA,kmD

A
ln −DA

kmU
F
ABD

B
ln

+ (DA
xm(fAxk + kAxk) +DA

rm(fArk + kArk))F 2
A,ln + (F 2

A,xm(fAxk + kAxk) + F 2
A,rm(fArk + kArk))DA

ln

− (DA
xm(fAxk + kAxk) +DA

rm(fArk + kArk))F 2
ABD

B
ln

+ DA
km(F 2

A,yn(fByl + kByl) + F 2
A,sn(fBsl + kBsl )) + F 2

A,km(DA
yn(fByl + kByl) +DA

sn(fBsl + kBsl ))

− DA
kmF

2
AB(DB

yn(fByl + fByl ) +DB
sn(fBsl + kBsl ))

− (DA
krk

A
rx +DA

kx′
kA
x′x

)FAlbF
mn
xb − (FAkrk

A
rx + FA

kx′
kA
x′x

)DA
lbF

mn
xb + (DA

krk
A
rx +DA

kx′
kA
x′x

)FABD
B
lbF

mn
xb

− DA
kx(FAls k

B
sb + FAlyk

B
yb)F

mn
xb − FAkx(DA

lsk
B
sb +DA

lyk
B
yb)F

mn
xb +DA

kxFAB(DB
lsk

B
sb +DB

lyk
B
yb)F

mn
xb

− (DA
krk

A
ra +DA

kxk
A
xa)FAlyF

mn
ay − (FAkrk

A
ra + FAkxk

A
xa)DA

lyF
mn
ay + (DA

krk
A
ra +DA

kxk
A
xa)FABD

B
lyF

mn
ay

− DA
ka(FAls k

B
sy + FA

ly′
kB
y′y

)Fmnay − FAka(DA
lsk

B
sy +DA

ly′
kB
y′y

)Fmnay +DA
kaFAB(DB

lsk
B
sy +DB

ly′
kB
y′y

)Fmnay

− (DA
krk

A
rx +DA

kx′
kA
x′x

)FAlyF
mn
xy − (FAkrk

A
rx + FA

kx′
kA
x′x

)DA
lyF

mn
xy + (DA

krk
A
rx +DA

kx′
kA
x′x

)FABD
B
lyF

mn
xy

− DA
kx(FAls k

B
sy + FA

ly′
kB
y′y

)Fmnxy − FAkx(DA
lsk

B
sy +DA

ly′
kB
y′y

)Fmnxy +DA
kxFAB(DB

lsk
B
sy +DB

ly′
kB
y′y

)Fmnxy

− (DA
kr′

(fA
r′r

+ kA
r′r

) +DA
kx(fAxr + kAxr))F

A
lsF

mn
rs − (FA

kr′
(fA
r′r

+ kA
r′r

) + FAkx(fAxr + kAxr))D
A
lsF

mn
rs

+ (DA
kr′

(fA
r′r

+ kA
r′r

) +DA
kx(fAxr + kAxr))FABD

B
lsF

mn
rs

− (DA
kr(f

A
rx + kArx) +DA

kx′
(fA
x′x

+ kA
x′x

))FAlj F
mn
xj − (FAkr(f

A
rx + kArx) + FA

kx′
(fA
x′x

+ kA
x′x

))DA
ljF

mn
xj

+ (DA
kr(f

A
rx + kArx) +DA

kx′
(fA
x′x

+ kA
x′x

))FABD
B
ljF

mn
xj

− (DA
kr(f

A
ri + kAri) +DA

kx(fAxi + kAxi))F
A
lyF

mn
iy − (FAkr(f

A
ri + kAri) + FAkx(fAxi + kAxi))D

A
lyF

mn
iy

+ (DA
kr(f

A
ri + kAri) +DA

kx(fAxi + kAxi))FABD
B
lyF

mn
iy

− DA
kr(F

A
ls′

(fBs′s + kBs′s) + FAly (fBys + kBys))F
mn
rs − FAkr(DA

ls′
(fBs′s + kBs′s) +DA

ly(fBys + kBys))F
mn
rs

+ DA
krFAB(DB

ls′
(fBs′s + kBs′s) +DB

ly(fBys + kBys))F
mn
rs

− DA
kx(FAls (fBsj + kBsj) + FAly (fByj + kByj))F

mn
xj − FAkx(DA

ls(f
B
sj + kBsj) +DA

ly(fByj + kByj))F
mn
xj

+ DA
kxFAB(DB

ls(f
B
sj + kBsj) +DB

ly(fByj + kByj))F
mn
xj

− DA
ki(F

A
ls (fBsy + kBsy) + FA

ly′
(fB
y′y

+ kB
y′y

))Fmniy − FAki(DA
ls(f

B
sy + kBsy) +DA

ly′
(fB
y′y

+ kB
y′y

))Fmniy

+ DA
kiFAB(DB

ls(f
B
sy + kBsy) +DB

ly′
(fB
y′y

+ kB
y′y

))Fmniy

− F klabfAaxF xbmn − F klabF aymnfByb (38)

The fXkx and kXkx matrices in Eqs. (36) and (38) denote the matrix elements of the Fock and exchange operators for
monomer X, respectively. Note that the explicit symmetrization of Eq. (37) is not required in the ODA case as only
the diagonal elements Bkl,kl = Akl,kl are needed.

Analogously, the density-fitted explicitly correlated correction to the second-order exchange-dispersion energy,

δE
(20)
exch−disp-F12 (Eq. (15)), is computed as
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δE
(20)
exch−disp-F12 = 2T ijkl

[
F klxbJ

A
xi′
DA
b′ j
SbiS

i
′

b′
− 2F klxbJ

A
xiD

A
b′ j
Sb
i′
Si
′

b′

+ F klayJ
A
a′ i
DA
yj′
Saj S

j
′

a′
− 2F klayJ

A
a′ i
DA
yjS

a
j′
Sj
′

a′

− 2F klxb((VB)xi + 2JAxiD
A
nn)Sb

i′
Si
′

j + F klxb((VB)x
i′

+ 2JA
xi′
DA
nn)SbiS

i
′

j

− F klay((VB)yi + 2JAyiD
A
nn)Saj − 2F klay((VA)yj + 2JAmmD

A
yj)S

a
j′
Sj
′

i

+ F klay((VA)y
j′

+ 2JAmmD
A
yj′

)Saj S
j
′

i − F
kl
xb((VA)xj + 2JAmmD

A
xj)S

b
i

− (DA
ki′
KF
A,lj′

+KF
A,ki′

DA
lj′
−DA

ki′
KF
ABD

B
lj′

)Sj
′

i S
i
′

j

+ 2(DA
kiK

F
A,lj′

+KF
A,kiD

A
lj′
−DA

kiK
F
ABD

B
lj′

)Sj
′

i′
Si
′

j

+ 2(DA
ki′
KF
A,lj +KF

A,ki′
DA
lj −DA

ki′
KF
ABD

B
lj )S

j
′

i S
i
′

j′

− (DA
liK

F
A,kj +KF

A,liD
A
kj −DA

liK
F
ABD

B
kj)

+ F lki′j′J
A
i′ i
DA
j′ j

+ F lkaj′J
A
aiD

A
j′ j

+ F lki′bJ
A
i′ i
DA
bj + F lkxj′J

A
xiD

A
j′ j

+ F lki′yJ
A
i′ i
DA
yj + F klxnJ

A
aiD

A
xjS

n
a + F klmyJ

A
yiD

A
bjS

m
b

+ F klrsJ
A
aiD

A
bjS

s
aS

r
b + F klxnJ

A
xi′
DA
nj′
Sj
′

i S
i
′

j + F klmyJ
A
mi′

DA
yj′
Sj
′

i S
i
′

j

+ F klrsJ
A
ri′
DA
sj′
Sj
′

i S
i
′

j − 2F klxnJ
A
xiD

A
nj′
Sj
′

i′
Si
′

j − 2F klmyJ
A
miD

A
yj′
Sj
′

i′
Si
′

j

− 2F klrsJ
A
riD

A
sj′
Sj
′

i′
Si
′

j − 2F klxnJ
A
xi′
DA
njS

j
′

i S
i
′

j′
− 2F klmyJ

A
mi′

DA
yjS

j
′

i S
i
′

j′

− 2F klrsJ
A
ri′
DA
sjS

j
′

i S
i
′

j′

]
(39)

One may notice that Eqs. (34)–(39) have many common intermediates, which are computed only once and reused.

The computational cost of the V , X, B and C intermediates as well as of DF-δE
(20)
exch−disp-F12 scales as N5.

III. COMPUTATIONAL DETAILS

The expressions for DF-E
(20)
disp -F12(ODA) and DF-E

(20)
exch−disp-F12(ODA) were implemented and tested within the

Psi4NumPy framework59. A production-level density-fitted SAPT0-F12 code is an ongoing project and will be
available in the Psi4 program60,61.

It is a common practice to carry out the F12 calculations with three auxiliary basis sets in addition to the AO basis:
the CABS set added to the AO one for the RI approximations, the DF basis in the calculation of correlated pair
functions, and the JKFIT basis for the DF of Coulomb and exchange operators51. In this work, the orbital basis sets
were the augmented correlation consistent aug-cc-pVXZ ≡ aXZ sets of Dunning and coworkers43,67, with X ranging
from D to 6. The CABS bases were chosen as the aXZ-RIFIT sets, a.k.a. aXZ-MP2FIT68,69. The DF and JKFIT
basis sets required for density fitting were also chosen as aXZ-MP2FIT68,69. We also examined the accuracy of the DF-
SAPT-F12 calculations with the aXZ-JKFIT70 sets utilized for fitting the Fock matrices, that is, with aXZ-MP2FIT
as the DF set and aXZ-JKFIT as the JKFIT set. The cardinal number X of the auxiliary bases was equal or larger
than the corresponding X for the orbital set. As we will write triplets such as aDZ/aDZ-RIFIT/aDZ-MP2FIT for
the orbital/CABS/DF basis set combination, for clarity we will employ the notation aXZ-MP2FIT and aXZ-JKFIT
rather than the more common aXZ/MP2FIT and aXZ/JKFIT. The F12 integrals were computed employing the
exponential correlation factor exp(−γr12) with the length-scale parameter γ set to 1.0 a−10 . This correlation factor
was fitted to a sum of 6 Gaussian terms9.

We observed that the density-fitting approximation introduces numerical instabilities in pair correlation energies
for core orbitals, where the coefficient multiplying the amplitude T ijij in Eq. (14) is very small, making an accurate
determination of this amplitude challenging. While these instabilities were never an issue in the non-DF calculations
with the ODA Ansatz in Ref. 44, we were not able to obtain reliable core-orbital T ijij amplitudes with density fitting.

Therefore, all calculations in this work were performed within the frozen core (FC) scheme. If all-electron (AE)
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dispersion and exchange dispersion energies are required, one can combine the FC values of E
(20)
disp -F12 and E

(20)
exch−disp-

F12 with the conventional (non-F12) contributions of pair correlation energies involving one or two core orbitals.
Alternatively, the F12 pair correlation energies for core orbitals could be computed using the fixed-amplitude Ansatz
from Ref. 44, which is more approximate than ODA but avoids the instability of Eq. (14). While we have never observed

such instabilities in frozen-core DF-E
(20)
disp -F12(ODA) calculations anywhere close to the van der Waals minimum

separation, they do show up for some pair correlation energies at large distances so that the fixed-amplitude Ansatz

might be preferable in this case. Fortunately, conventional E
(20)
disp is already quite accurate at these distances, and

E
(20)
exch−disp is essentially zero. The FC approximation is the main reason for small discrepancies between the results

presented below and the corresponding AE data of Ref. 44. The secondary reason for the discrepancies in E
(20)
exch−disp-

F12 are the small errors in our original implementation of this correction44 that led to minor differences (up to about
0.005 kcal/mol) with respect to the correct results – see the Erratum to Ref. 44 for more details.

The first class of systems tested are five small complexes in the same geometries as in our previous study44: He–He,
Ne–Ne, Ar–Ar, H2O–H2O, and CH4–CH4. Subsequently, we performed a comprehensive analysis of DF-SAPT-
F12 on the entire A24 benchmark database62 with basis sets up to a5Z, comparing the results of the conventional
and explicitly correlated dispersion and exchange dispersion energies. The SAPT0 calculations were carried out by
means of the Psi460,71 quantum chemistry package with basis sets up to a6Z, with and without midbond functions,

and utilized density fitting with the aXZ-MP2FIT auxiliary basis. The reference non-DF E
(20)
disp -F12(ODA) and

E
(20)
exch−disp-F12(ODA) energies were computed using the FC scheme with all technical details presented in Ref. 44.

In this work, we increased the benchmark quality relative to Ref. 44. The CBS limits of E
(20)
disp and E

(20)
exch−disp were

now obtained by the standard X−3 extrapolation technique7,72. Specifically, the conventional E
(20)
disp and E

(20)
exch−disp

SAPT corrections were extrapolated from the a5Z atom-centered orbital basis augmented by a hydrogenic a5Z set of
midbond functions, and the a6Z atom-centered orbital basis augmented by a hydrogenic a6Z set of midbond functions
(such an extrapolation will be denoted as (a5Z+(a5Z),a6Z+(a6Z)). The uncertainty of the benchmark result was
assumed as the absolute difference between the reference extrapolated value and the one computed in the larger of
the two bases, that is, a6Z+(a6Z). In addition, to test the quality of the benchmark, we selected the water dimer
and obtained an improved reference value by performing even larger calculations (also including midbond functions)
using the aug-cc-pV7Z and aug-mcc-pV7Z73 bases for the oxygen and hydrogen atoms, respectively. The reference
value for this system employed in this large-basis convergence test (Figs. 1 and 2) was estimated by extrapolating the
a6Z+(a6Z) and a7Z+(a7Z) results. However, whenever the water dimer is investigated as a part of the entire A24
dataset, we will continue using the (a5Z+(a5Z),a6Z+(a6Z)) benchmark for consistency: the improved septuple-zeta
reference will only be employed when explicitly stated.

In addition to using midbond functions for benchmark calculations, their benefits for the convergence rate of

DF-E
(20)
disp -F12 and DF-E

(20)
exch−disp-F12 were investigated for the five test case dimers and for all systems from the

A24 database. In this work, we considered the constant (3s3p2d2f) set of midbond functions as well as a set of
hydrogenic aXZ midbond functions with the cardinal number X that varies in accordance with the atomic basis
set. Herein, the shorthand notation of aXZ+(3322) is utilized for the aXZ atom-centered basis set augmented with
the (3s3p2d2f) bond functions, while the variable-midbond calculations are denoted by aXZ+(aXZ). The midbond
function exponents for the (3s3p2d2f) set were (0.9, 0.3, 0.1) for sp and (0.6, 0.2) for df. The corresponding auxiliary
basis, used in both the CABS and DF contexts, contains (1.8, 1.2, 0.6, 0.4, 0.2) exponents for spd functions, (1.5, 0.9,
0.5, 0.3) exponents for f, and (1.5, 0.9, 0.3) exponents for g74. The location of the midbond center was chosen as75

rbond =

∑
a∈A

∑
b∈B wab

ra+rb
2∑

a∈A
∑
b∈B wab

wab = |ra − rb|−6 (40)

where the summations run over all atoms a (located at ra) in molecule A and all atoms b (located at rb) in molecule
B. Such an approach of placing midbonds has been recommended to avoid issues when one monomer is much longer
than the other and the midpoint between the molecular centers of mass is still within one of the monomers76.

After examining the CBS convergence of the individual E
(20)
disp and E

(20)
exch−disp terms, in the last part of this

manuscript, we illustrate how the inclusion of E
(20)
disp -F12 and E

(20)
exch−disp-F12 in place of standard E

(20)
disp and E

(20)
exch−disp

affects the accuracy of total SAPT interaction energies. For this purpose, we build on the study of Ref. 54, which exam-
ined the errors of interaction energies computed using various levels of SAPT with respect to reference CCSD(T)/CBS
data. Specifically, Ref. 54 investigated, in addition to SAPT0, the higher-level SAPT2, SAPT2+, SAPT2+(3), and
SAPT2+3 variants including, to a various degree, the effects of intramolecular electron correlation. In addition, these
higher-level SAPT treatments can be combined with a coupled cluster doubles (CCD) account of dispersion26,77 in
place of the conventional one based on double perturbation theory, and/or with a “δMP2” correction accounting for,
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FIG. 1. Convergence of the frozen-core non-DF and DF E
(20)
disp -F12 results as a function of basis set for the H2O–H2O com-

plex from the A24 database. The hydrogenic functions from the same aXZ orbital basis set or the constant (3s3p2d2f)
set of functions are chosen for midbond functions. The reference value marked by a black dashed line was obtained at the

E
(20)
disp/(a6Z+(a6Z),a7Z+(a7Z)) extrapolated level. The yellow dashed lines indicate the benchmark uncertainty.

in particular, some higher-order couplings between induction and dispersion. The accuracy of all resulting variants
of SAPT has been investigated in Ref. 54 using a benchmark dataset which is the union of the S2256,78, HBC679,
NBC1080, and HSG81 databases. One should note that the datasets containing potential energy curves (that is, HBC6
and NBC10) were truncated in Ref. 54 to at most five points per system (the van der Waals minimum, two shorter sep-
arations, and two longer separations), and we impose exactly the same truncation. Moreover, the exchange-dispersion
energies in Ref. 54 are scaled to approximately account for the effects missing in the single exchange approximation:

E
(20)
exch−disp(scaled) = E

(20)
exch−disp(S2) ·

(
E

(10)
exch(full)

E
(10)
exch(S2)

)α
(41)

with α = 1.0, and we will employ the same scaling for consistency. In this work, we consider an F12 version of each

of the SAPT variants from Ref. 54, obtained from the parent method by replacing the sum E
(20)
disp +E

(20)
exch−disp(scaled)

by the E
(20)
disp -F12+E

(20)
exch−disp-F12(scaled) value computed in the same orbital basis (aDZ or aTZ). To enable direct

comparison with the error statistics of non-F12 SAPT levels presented in Ref. 54, we utilize exactly the same set
of four benchmark databases. In fact, we did not even have to recalculate the non-F12 SAPT data ourselves, but
imported the values obtained in Ref. 54 from the BFDb database82 and added the corresponding F12 corrections
computed by us. As a result, the mean absolute error (MAE) values for total SAPT interaction energies, presented
in the next section, are directly comparable to the MAE presented in Ref. 54.

IV. RESULTS

A. Convergence with the density-fitting basis set

A crucial step in the DF-SAPT-F12 development is ensuring that the density-fitting approximation does not in-
troduce any significant errors. Following our previous study44, the set of five complexes: He–He, Ne–Ne, Ar–Ar,



13

FIG. 2. Convergence of the frozen-core non-DF and DF E
(20)
exch−disp-F12 results as a function of basis set for the H2O–H2O

complex from the A24 database. The hydrogenic functions from the same aXZ orbital basis set or the constant (3s3p2d2f)
set of functions are chosen for midbond functions. The reference value marked by a black dashed line was obtained at the

E
(20)
exch−disp/(a6Z+(a6Z),a7Z+(a7Z)) extrapolated level. The yellow dashed lines indicate the benchmark uncertainty.

H2O–H2O, and CH4–CH4 at their van der Waals minimum geometries was the subject of our preliminary tests. For

these systems, we carried out the frozen-core DF-E
(20)
disp -F12(ODA) and DF-E

(20)
exch−disp-F12(ODA) calculations using

the aXZ/aXZ-RIFIT (X=D,T,Q,5) basis sets for orbital/CABS in conjunction with the increasing cardinal number
of the aY Z-MP2FIT (Y=D,T,Q,5) set for density fitting, with Y ≥ X. In the case of the helium dimer, basis sets

up to a6Z, a6Z-RIFIT, and a6Z-MP2FIT were used. The resulting DF and non-DF explicitly correlated E
(20)
disp and

E
(20)
exch−disp energies are presented in Tables II and III for the water and methane dimers, respectively; the correspond-

ing results for the rare gas dimers are given in the Supporting Information, which also contains tables displaying the

convergence of the E
(20)
disp +E

(20)
exch−disp sum. We have also considered an alternative choice of auxiliary basis set for DF,

in which the aY Z-MP2FIT set is used for the DF of all integrals except for those occurring in the Fock and exchange
operators present in Eqs. (36) and (38), in which case the aY Z-JKFIT basis is used instead. The resulting explicitly
correlated SAPT corrections are presented in the Supporting Information.

The convergence of the non-DF E
(20)
disp -F12 and E

(20)
exch−disp-F12 calculations for the same set of complexes has been

thoroughly investigated in Ref. 44. In particular, it was found that while for the water and methane dimers the results
are insensitive to the choice of CABS, the small CABS sets (especially aDZ-RIFIT) are not adequate for the noble
gas dimers, leading to approximate dispersion energies below the variational limit. While in this work we focus on the
errors introduced by density fitting rather than those arising from an incomplete RI space, to complement the findings

of Ref. 44, we performed E
(20)
disp -F12 and E

(20)
exch−disp-F12 calculations for the same five complexes using another popular

CABS choice, the aXZ-OPTRI sets designed specifically to decribe the orthogonal complement of the aXZ orbital
basis with the same X83. The resulting DF-SAPT-F12 corrections (with the aY Z-MP2FIT sets, Y ≥ X, used for

DF) are presented in Tables SXVI–SXXX in the Supporting Information. Overall, the E
(20)
disp -F12 and E

(20)
exch−disp-F12

accuracy afforded by the two kinds of CABS bases is quite similar: while the E
(20)
disp -F12/aXZ/aXZ-MP2FIT results

are more accurate than the E
(20)
disp -F12/aXZ/aXZ-OPTRI ones for the neon dimer, the opposite is true for the methane

dimer. Thus, it appears that the smaller aXZ-OPTRI basis sets are also a sensible choice for CABS in SAPT-F12
calculations, however, a more extensive assessment of the performance of both auxiliary bases is required to make
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TABLE II. Frozen-core non-DF and DF E
(20)
disp -F12(ODA) and E

(20)
exch−disp-F12(ODA) values (in kcal/mol) for the water dimer

for different combinations of the orbital and MP2FIT auxiliary basis. The benchmark values given below the F12 data were

computed as conventional DF-E
(20)
disp/DF-E

(20)
exch−disp at the (a6Z+(a6Z),a7Z+(a7Z)) extrapolated level.

Basis CABS Set DF-E
(20)
disp DF-E

(20)
disp -F12

DF Set: aDZ-MP2FIT aTZ-MP2FIT aQZ-MP2FIT a5Z-MP2FIT non-DF

aDZ aDZ-RIFIT -2.1504 -2.5652 -2.5656 -2.5658 -2.5657 -2.5657

aTZ aTZ-RIFIT -2.4601 -2.5924 -2.5924 -2.5924 -2.5924

aQZ aQZ-RIFIT -2.5484 -2.6054 -2.6054 -2.6054

a5Z a5Z-RIFIT -2.5776 -2.6086 -2.6086

CBS(a6Z+(a6Z),a7Z+(a7Z)) -2.6126 ± 0.0069

Basis CABS Set DF-E
(20)
exch−disp DF-E

(20)
exch−disp-F12

DF Set: aDZ-MP2FIT aTZ-MP2FIT aQZ-MP2FIT a5Z-MP2FIT non-DF

aDZ aDZ-RIFIT 0.3837 0.4530 0.4542 0.4543 0.4543 0.4543

aTZ aTZ-RIFIT 0.4407 0.4737 0.4740 0.4740 0.4740

aQZ aQZ-RIFIT 0.4655 0.4830 0.4831 0.4831

a5Z a5Z-RIFIT 0.4753 0.4863 0.4864

CBS(a6Z+(a6Z),a7Z+(a7Z)) 0.4885 ± 0.0024

TABLE III. Frozen-core non-DF and DF E
(20)
disp -F12(ODA) and E

(20)
exch−disp-F12(ODA) values (in kcal/mol) for the methane

dimer for different combinations of the orbital and MP2FIT auxiliary basis. The benchmark values given below the F12 data

were computed as conventional DF-E
(20)
disp/DF-E

(20)
exch−disp at the (a5Z+(a5Z),a6Z+(a6Z)) extrapolated level.

Basis CABS Set DF-E
(20)
disp DF-E

(20)
disp -F12

DF Set: aDZ-MP2FIT aTZ-MP2FIT aQZ-MP2FIT a5Z-MP2FIT non-DF

aDZ aDZ-RIFIT -1.0086 -1.1367 -1.1379 -1.1380 -1.1380 -1.1380

aTZ aTZ-RIFIT -1.1084 -1.1471 -1.1472 -1.1471 -1.1471

aQZ aQZ-RIFIT -1.1331 -1.1498 -1.1498 -1.1498

a5Z a5Z-RIFIT -1.1420 -1.1506

CBS(a5Z+(a5Z),a6Z+(a6Z)) -1.1513 ± 0.0024

Basis CABS Set DF-E
(20)
exch−disp DF-E

(20)
exch−disp-F12

DF Set: aDZ-MP2FIT aTZ-MP2FIT aQZ-MP2FIT a5Z-MP2FIT non-DF

aDZ aDZ-RIFIT 0.0690 0.0822 0.0829 0.0830 0.0830 0.0830

aTZ aTZ-RIFIT 0.0787 0.0851 0.0852 0.0852 0.0852

aQZ aQZ-RIFIT 0.0831 0.0868 0.0868 0.0869

a5Z a5Z-RIFIT 0.0851 0.0876

CBS(a5Z+(a5Z),a6Z+(a6Z)) 0.0882 ± 0.0008

definite recommendations.

Out of the multitude of aXZ/aY Z-RIFIT orbital and CABS set combinations investigated in Ref. 44, we have
selected only the “diagonal” aXZ/aXZ-RIFIT ones in Tables II–III, focusing on the convergence of results with the

DF basis. For all considered dimers, the DF-E
(20)
disp -F12 calculations in the aDZ/aDZ-RIFIT/aDZ-MP2FIT combination

of orbital, CABS, and DF bases lead to errors in the range of 0.0005-0.0013 kcal/mol compared to the non-DF value,
with an exception of He–He, for which the error amounts to 0.03 kcal/mol. This error is consistently reduced down
to 0.0001 kcal/mol (0.0012 kcal/mol for the helium dimer) when one utilizes the aDZ/aDZ-RIFIT sets combined
with the aTZ-MP2FIT set for DF. This observation confirms that the aDZ/aDZ-RIFIT/aDZ-MP2FIT combination is
somewhat inaccurate for DF-SAPT-F12 calculations, which is in agreement with our earlier study44 (albeit sometimes,
an error cancellation may occur). For the triple-zeta and larger bases, the default aXZ-MP2FIT choice for the DF

basis, with X the same as for the orbital set, is always adequate, with the DF-E
(20)
disp -F12 errors not exceeding 0.0002

kcal/mol (0.0008 kcal/mol for the helium dimer).

Based on the DF-E
(20)
exch−disp-F12 energies presented in Tables II–III and in the Supporting Information, we again

observe that the aDZ/aDZ-RIFIT/aDZ-MP2FIT combination is the source of the largest DF error (0.0003–0.0036
kcal/mol). The error is reduced to just 0.0001–0.0002 kcal/mol (0.0015 kcal/mol for Ar–Ar) when the aDZ/aDZ-

RIFIT/aTZ-MP2FIT basis sets are employed. Analyzing the bases with higher cardinal numbers, the DF-E
(20)
exch−disp-

F12 energies are virtually converged to their non-DF counterparts when utilizing the default aXZ-MP2FIT DF sets,
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with X the same as for the orbital basis, except for the argon dimer (where the aTZ/aTZ-RIFIT/aTZ-MP2FIT
combination produces the largest error of 0.0011 kcal/mol).

The results in Tables II–III demonstrate that the DF error is negligible and well-controlled in the DF-E
(20)
disp -F12 and

DF-E
(20)
exch−disp-F12 calculations. Moreover, the choice of the auxiliary basis set family does not affect the accuracy of

energies, and both MP2FIT and JKFIT sets (the results for the latter are presented in the Supporting Information)
are adequate for fitting the Fock and exchange matrices in the DF-SAPT-F12 context. Since the MP2FIT basis set
is usually smaller than JKFIT, and at the same time does not compromise the quality of results, it was selected for
fitting all four-index quantities in all remaining calculations.

B. Performance of DF-E
(20)
disp-F12 and DF-E

(20)
exch−disp-F12 on the A24 database

In order to investigate the performance of DF-SAPT-F12 on a broader sample of complexes, further tests were
carried out on the A24 database62. In contrast to our previous work44 where we were only able to run A24 calculations
in basis sets up to aTZ, the current DF implementation allows us to obtain all energies in bases up to a5Z with and
without midbond functions. The basis set convergence of dispersion and exchange dispersion corrections, and of the

corresponding sum E
(20)
disp + E

(20)
exch−disp, for individual A24 systems is presented in Figs. 1–4 and S1–S6 (Supporting

Information). Analyzing Figs. S1 and S2, it is clear that our newly proposed DF-SAPT-F12 method shows the same
fast convergence rate as its non-DF counterpart: in fact, the non-DF and DF results are indistinguishable on the

scale of these figures. We further see that the DF-E
(20)
disp -F12/aTZ and DF-E

(20)
exch−disp-F12/aQZ energies are either

converged or almost converged to the reference CBS value. It turns out that the most challenging systems observed
in our previous study44, namely Ar–CH4 (Figure 3) and Ar–C2H4 (Figure S2), require a basis set with one cardinal

number larger (aQZ) to reach the benchmark level for the DF-E
(20)
disp -F12 calculations. Although the DF-E

(20)
exch−disp-

F12/a5Z energies are still not fully converged to the reference value for these two systems, we definitely observe a

substantial improvement. Another way to improve the DF-E
(20)
disp -F12 and DF-E

(20)
exch−disp-F12 performance for these

challenging systems is to include additional compact basis functions centered on the argon atom, such as the functions
from a polarized core and valence basis sets, aug-cc-pwCVXZ84. Such sets are normally used for calculations with
all electrons correlated, but can provide additional flexibility to our frozen-core calculations as well. As illustrated
in Figs. S7–S10 in the Supporting Information, enlarging the argon basis set from aXZ to aug-cc-pwCVXZ (and
using aug-cc-pwCVXZ-MP2FIT as the CABS and DF set for argon), while keeping the aXZ basis set on all other

atoms, leads to a noticeable improvement in the accuracy of DF-E
(20)
disp -F12 and a small improvement in the accuracy

of DF-E
(20)
exch−disp-F12. Thus, it appears that the standard aXZ sets for argon might not contain sufficiently tight

functions to maximize the benefits of the F12 approach.

It is worth emphasizing that the DF-E
(20)
disp -F12 results are consistently converged to the CBS limit in the aQZ basis,

whereas that precision level is still not reproduced by the non-F12 approach even in a very large orbital basis such

as a6Z+(a6Z). To further illustrate the superior convergence of the DF-E
(20)
disp -F12 and DF-E

(20)
exch−disp-F12 values over

their non-F12 counterparts (even those computed with midbonds), we selected the water dimer and compared both
approaches against benchmark data of increased quality. For this purpose, we performed standard SAPT calculations
(augmented with hydrogenic midbond functions) utilizing the aug-cc-pV7Z and aug-mcc-pV7Z bases for the oxygen
and hydrogen atoms, respectively, and extrapolated the results from the a6Z+(a6Z) and a7Z+(a7Z) data. Figure 1

displays the convergence of DF-E
(20)
disp -F12 H2O–H2O values to this new improved CBS reference, and it demonstrates

that the DF-E
(20)
disp -F12 numbers are very well converged to the extra-precise CBS value. We therefore conclude that

DF-E
(20)
disp -F12 converges to the actual CBS limit, which is still not reproduced to that precision by a very large orbital

basis such as a7Z+(a7Z). The corresponding behavior of the exchange-dispersion energies relative to the H2O–H2O
benchmark value of increased precision is illustrated in Figure 2, once again confirming superior convergence of the
F12 data.

Another way of alleviating the slow basis set convergence of dispersion energy is the utilization of midbond functions.
It has been demonstrated that this technique in conjunction with explicitly correlated methods works very well
for supermolecular CCSD(T)-F12 interaction energies18. Thus, we decided to investigate the influence of midbond
functions on the SAPT and SAPT-F12 convergence using the A24 dataset as an example. It is worth emphasizing
that the midbond and F12 approaches to dispersion are complementary, not competitive.

The combination of DF-E
(20)
disp -F12 with the +(aXZ) midbond set leads to a moderate improvement of the accuracy

in the aDZ and aTZ bases. On the other hand, the DF-E
(20)
disp -F12 values obtained with the +(3322) midbond set show
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FIG. 3. Convergence of the frozen-core non-DF and DF E
(20)
disp -F12 results as a function of basis set for the Ar–CH4 com-

plex from the A24 database. The hydrogenic functions from the same aXZ orbital basis set or the constant (3s3p2d2f)
set of functions are chosen for midbond functions. The reference value marked by a black dashed line was obtained at the

E
(20)
disp/(a5Z+(a5Z),a6Z+(a6Z)) extrapolated level. The yellow dashed lines indicate the benchmark uncertainty.

results converged to the a6Z+(a6Z) level, or even to the reference value, already in the aDZ basis with an exception of
Ar–CH4 and Ar–C2H4. While the superior performance of the aDZ+(3322) results might be to some extent fortuitous,
it is encouraging that the accuracy is consistent, similar to the consistently high accuracy (in particular, on the same
A24 database) provided by the properly selected supermolecular CCSD(T)-F12/aDZ+(3322) variants18.

The effect of hydrogenic midbond functions is more pronounced for the DF-E
(20)
exch−disp-F12 correction. In Figs. 2,

4, S3, and S4 we observe a significantly improved recovery of the CBS values in aDZ+(aDZ), aTZ+(aTZ), and

aQZ+(aQZ) relative to the corresponding midbondless bases. Overall, the E
(20)
exch−disp-F12/aTZ+(aTZ) energies are

converged as well, or better, than standard E
(20)
exch−disp in the a5Z+(a5Z) basis. Considering the aQZ+(aQZ) basis set,

the F12 energies are consistently converged above the conventional a6Z+(a6Z) level (or to that level in the case of
Ar–CH4 and Ar–C2H4, Figure 4 and S4) and some further enhancement is attained in the a5Z+(a5Z) basis.

When evaluating DF-E
(20)
exch−disp-F12 with the constant +(3322) set of midbond functions, we observe superior

convergence at the aDZ and aTZ levels compared to DF-E
(20)
exch−disp-F12 with and without the hydrogenic midbond. In

a few cases (e.g., for the NH3–C2H4 complex), the addition of constant midbonds provides results nearly converged to

the reference value already in the aDZ+(3322) basis. The E
(20)
exch−disp-F12/aTZ+(3322) results attain the conventional

E
(20)
exch−disp/a6Z+(a6Z)-level accuracy across nearly the entire A24 database. The challenging systems containing the

argon atom require basis sets with one cardinal number higher to reproduce the same precision.

The relative errors with respect to the benchmark for the DF-E
(20)
disp -F12 and DF-E

(20)
exch−disp-F12 results in a range

of basis sets with and without midbond functions are illustrated in Figures 5–12. The corresponding relative errors

for the sum E
(20)
disp + E

(20)
exch−disp are presented in the Supporting Information (Figs. S11–S14). One clearly sees that

the DF-E
(20)
disp -F12 and DF-E

(20)
exch−disp-F12 energies computed in aDZ and aTZ show the same performance as their

non-DF counterparts. The only systems which exhibit a visible, though still tiny, DF error for E
(20)
exch−disp-F12/aDZ

are Ar–CH4 and Ar–C2H4, indicating that the DF basis is not entirely converged in these cases.

Thanks to the DF algorithm, we can now investigate how well the explicitly correlated dispersion and exchange-
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FIG. 4. Convergence of the frozen-core non-DF and DF E
(20)
exch−disp-F12 results as a function of basis set for the Ar–CH4

complex from the A24 database. The hydrogenic functions from the same aXZ orbital basis set or the constant (3s3p2d2f)
set of functions are chosen for midbond functions. The reference value marked by a black dashed line was obtained at the

E
(20)
exch−disp/(a5Z+(a5Z),a6Z+(a6Z)) extrapolated level. The yellow dashed lines indicate the benchmark uncertainty.

dispersion corrections work in the aQZ and a5Z basis sets (our non-DF implementation44 could not handle some of

the A24 systems in such large bases). Generally, the DF-E
(20)
disp -F12/aQZ results closely reproduce the benchmark

level, leading to the mean absolute percent error (MA%E) value of 0.23%. This error is reduced down to 0.04% in
the a5Z basis. It needs to be stressed that the systems containing the argon atom are the source of largest errors.

Pursuing the same analysis for DF-E
(20)
exch−disp-F12/aQZ (Fig. 11), we observe the enhanced performance compared

to the aTZ level, leading to the MA%E value of 1.33%. A further improvement is obtained in the a5Z basis set (See

Fig. 12), showing a small MA%E value of 0.25%. Examining the sum of DF-E
(20)
disp -F12 and DF-E

(20)
exch−disp-F12 at

the aQZ and a5Z level (Figs. S13 and S14, respectively, in the Supporting Information), we notice that the energies
phenomenally reproduce the CBS limit, leading to MA%E values of 0.08% and 0.02%, respectively.

For the last test on the A24 database, we looked at the accuracy of the explicitly correlated calculations augmented
with the variable (hydrogenic) and constant (3s3p2d2f) sets of midbond functions. Figures 5 and 9 indicate that the
improvement brought about by the +(3322) midbond set for the DF-SAPT-F12/aDZ calculations is nothing short of
impressive. This level of theory faithfully reproduces the benchmark data with MA%E of 0.41%, 1.7%, and 0.27% for

DF-E
(20)
disp -F12, DF-E

(20)
exch−disp-F12, and DF-E

(20)
disp -F12 + DF-E

(20)
exch−disp-F12, respectively. The hydrogenic midbond

functions bring minimal (but still noticeable) accuracy gain for aDZ, leading to MA%E values of 1.5%, 4.3%, and 1.1%

for DF-E
(20)
disp -F12, DF-E

(20)
exch−disp-F12, and DF-E

(20)
disp -F12 + DF-E

(20)
exch−disp-F12, respectively. These values should be

contrasted with the respective MA%E for the midbondless aDZ data, amounting to 1.9%, 6.3%, and 1.3% for these
three quantities. Moving on to the aTZ basis, an additional enhancement is observed for the explicitly correlated
dispersion and exchange-dispersion corrections, as well as for their sum, when either midbond type is applied. The

DF-E
(20)
exch−disp-F12/aTZ+(3322) approach exhibits superior performance (a MA%E of 1.1% was found for this level)

with respect to DF-E
(20)
exch−disp-F12/aTZ+(aTZ) (a MA%E of 1.5%) and plain DF-E

(20)
exch−disp-F12/aTZ (a MA%E of

3.0%). The DF-E
(20)
disp -F12/aTZ variant performs better with the +(3322) midbond than with the hydrogenic ones,

providing respective MA%E values of 0.18%. and 0.30%. This behavior is very much expected: since the (3s3p2d2f)
set is larger than the hydrogenic set for the aDZ and aTZ orbital basis sets, it results in more accurate values.
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FIG. 5. Relative errors on the A24 database for frozen-core E
(20)
disp -F12 and DF-E

(20)
disp -F12 computed with the aDZ orbital basis

set, the aTZ-RIFIT CABS set, and the aTZ-MP2FIT DF set. The notation +(aXZ) and +(3322) signifies that the hydrogenic
aXZ and the constant (3s3p2d2f) set of midbond functions has been added to the aXZ atom-centered basis, respectively. The

reference values were obtained at the E
(20)
disp/(a5Z+(a5Z),a6Z+(a6Z)) extrapolated level.

The inclusion of midbond functions still brings improvement over the midbondless approach for the DF-E
(20)
disp -F12

values in aQZ and a5Z, even though the energies are already well converged to the CBS limit. The improvement is
even more pronounced for the exchange dispersion energy. For the A24 systems other than Ar–CH4 and Ar–C2H4,
converging the results to within the (very tight) uncertainty of the benchmark requires going up to either aQZ or

aTZ+(midbond) for DF-E
(20)
disp -F12 and either a5Z or aQZ+(midbond) for DF-E

(20)
exch−disp-F12. For the two complexes

containing argon, one needs to go all the way to a5Z+(midbond) to converge either correction to within the benchmark
uncertainty. At the aQZ level, the +(aQZ) and +(3322) midbonds perform nearly identically, which is expected given
the similar composition of the two sets of bond functions. When one goes up to a5Z, the +(a5Z) midbond set becomes
larger than the +(3322) one, leading to a slightly larger improvement in accuracy. Last but not least, Figs. 8 and
12 show that the deviations between the (a5Z+(a5Z),a6Z+(a6Z)) extrapolated benchmarks and the largest-basis F12
results are significantly smaller than the benchmark uncertainties. This level of consistency is really gratifying, as it
validates both the X−3 extrapolation and the F12 data, and even indicates that the error estimates for the former
approach are quite conservative.

C. Total SAPT-F12 interaction energies

One of the significant advantages of energy decomposition methods such as SAPT is that various perturbation
corrections can be studied separately in different basis sets. This allows us to reach a CBS limit of a particular

correction independently from others. Specifically, the small-basis E
(20)
disp and E

(20)
exch−disp energies can be substituted by

their F12 counterparts in all wave function-based SAPT levels defined in Ref. 54, giving rise to new SAPT variants
that will be denoted below as SAPT0-F12, SAPT2-F12, SAPT2+-F12, SAPT2+(3)-F12, and SAPT2+3-F12. Such
a procedure is valid (no double counting occurs) and can be considered as a “focal point” approach similar to
MP2/CBS+δCCSD(T), where the lower-level estimate, converged to CBS (or at least much closer to CBS thanks to
the F12 approach), is improved by a higher-level estimate in a moderate basis. To illustrate the effect of this F12
modification on the accuracy of total SAPT interaction energies, Figure 13 displays the mean absolute errors (MAE)
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FIG. 6. Relative errors on the A24 database for frozen-core E
(20)
disp -F12 and DF-E

(20)
disp -F12 computed with the aTZ orbital basis

set, the aTZ-RIFIT CABS set, and the aTZ-MP2FIT DF set. The notation +(aXZ) and +(3322) signifies that the hydrogenic
aXZ and the constant (3s3p2d2f) set of midbond functions has been added to the aXZ atom-centered basis, respectively. The

reference values were obtained at the E
(20)
disp/(a5Z+(a5Z),a6Z+(a6Z)) extrapolated level. The error bars indicate the benchmark

uncertainty.

of interaction energy, relative to the CCSD(T)/CBS benchmarks, averaged over the S2256,78, HBC679, NBC1080, and
HSG81 databases for standard and explicitly correlated SAPT methods, with and without the CCD dispersion and
the “δMP2” correction. All MAE values reported below refer to this database combination and are fully compatible
with the errors obtained and displayed, on the very same dataset, in Ref. 54; see Sec. III for some technical details

(truncation of the HBC6 and NBC10 databases, scaling of the E
(20)
exch−disp and E

(20)
exch−disp-F12 corrections) that are

essential for maintaining this compatibility. The MAE data tend to emphasize the performance on the database(s) with
the largest magnitude of interaction energies (in this case, the HBC6 dataset of doubly hydrogen bonded complexes);
to provide a more balanced view, Fig. 14 complements Fig. 13 by showing the respective mean absolute percent errors
(MA%E). The corresponding statistical errors (MAE and MA%E) for the four individual databases are presented in
Figures S15–S22 in the Supporting Information.

At first, one could think that the F12 dispersion aims to improve the SAPT0 interaction energies. However, it
is just the opposite: it makes them less accurate, leading to the MAE values of 2.46 kcal/mol and 2.58 kcal/mol
in aDZ and aTZ, respectively, as compared to 1.74 and 2.34 kcal/mol for conventional SAPT0. This behavior was

foreseeable since the E
(20)
disp correction tends to overestimate the dispersion binding and it becomes even more negative

when approaching the CBS limit. It has been demonstrated that the success of SAPT0 relies on error cancellation

between the overestimation of dispersion by its leading E
(20)
disp term and the underestimation of dispersion by a small

“calendar” basis set, such as jun-cc-pVDZ54. Therefore, the simplest SAPT0 approach is not recommended to be
combined with the F12 dispersion, and it is excluded from further studies.

The SAPT2 variant, which extends SAPT0 by including intramolecular electron correlation up to second order for
electrostatic, exchange, and induction interactions, was the subject of the first tests with the F12 treatment. The poor
performance of SAPT2-F12 can be assigned to the lack of intramolecular correlation in the dispersion corrections. At
this level, the F12 treatment has a negative effect on the accuracy of SAPT2, increasing the average errors in aDZ
and aTZ by 0.02 kcal/mol and 0.28 kcal/mol, respectively.

When the F12 dispersion and exchange dispersion is added to SAPT2+/aDZ, the first SAPT level which includes

intramolecular electron correlation for dispersion up to second order (E
(21)
disp and E

(22)
disp), the errors increase quite
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FIG. 7. Relative errors on the A24 database for frozen-core E
(20)
disp -F12 and DF-E

(20)
disp -F12 computed with the aQZ orbital basis

set, the aQZ-RIFIT CABS set, and the aQZ-MP2FIT DF set. The notation +(aXZ) and +(3322) signifies that the hydrogenic
aXZ and the constant (3s3p2d2f) set of midbond functions has been added to the aXZ atom-centered basis, respectively. The

reference values were obtained at the E
(20)
disp/(a5Z+(a5Z),a6Z+(a6Z)) extrapolated level. The error bars indicate the benchmark

uncertainty.

dramatically. It is worth noting that SAPT2+/aDZ was established in Ref. 54 as the silver standard of SAPT with
a MAE of 0.30 kcal/mol. Such an attractive accuracy is linked to a fortuitous error cancellation between the method
error and basis set incompleteness, which no longer happens for SAPT2+-F12. Interestingly, the SAPT2+-F12/aTZ
approach produces the MAE value of 1.27 kcal/mol, which is the largest error across all considered SAPT-F12 options.

The SAPT2+(3)-F12 method exhibits better performance than SAPT2+-F12 in both aDZ and aTZ, affording errors
of 0.62 kcal/mol and 0.88 kcal/mol, respectively. However, the F12 treatment still worsens the accuracy of standard
SAPT2+(3) with MAEs of 0.39 kcal/mol and 0.54 kcal/mol in the same bases. The approach with the complete
third-order correction, SAPT2+3-F12, does not outperform SAPT2+(3)-F12 either in aDZ or aTZ, leading to the
MAE values of 0.86 kcal/mol and 1.22 kcal/mol, respectively. It follows that the higher accuracy of SAPT2+(3)-
F12, just like for the non-F12 approach, is based on an error cancellation that occurs when the third-order mixed
induction-dispersion effects are neglected.

It has been shown that the CCD-based construction of dispersion amplitudes in SAPT, even though not as remark-
ably accurate as the full CCSD treatment of dispersion27,85, usually provides an improved description of noncovalent

interactions26,54,77. In this spirit, the amplitudes in the second-order dispersion energy terms (E
(20)
disp +E

(21)
disp +E

(22)
disp)

are replaced by the converged CCD amplitudes26, giving rise to SAPT(CCD) (this dispersion algorithm was origi-
nally denoted, more precisely, as CCD+ST(CCD) as it also includes a perturbative estimate of the singles and triples

contributions to E
(22)
disp using converged doubles amplitudes). Another route to enhance the accuracy of the SAPT

calculations, especially for hydrogen-bonded systems, is to include the “δMP2” correction. This term is computed as
a difference between the counterpoise (CP) corrected MP2 interaction energy and the SAPT2 interaction energy:

δMP2 = EMP2
int − ESAPT2

int (42)

and it accounts for third- as well as higher-order coupling between induction and dispersion21,54. Both improvements,
(CCD) and “δMP2”, can be employed within SAPT2+, SAPT2+(3), and SAPT2+3 together or separately. For all

these SAPT variants, the effect of replacing standard E
(20)
disp and E

(20)
exch−disp by our nearly converged E

(20)
disp -F12 and

E
(20)
exch−disp-F12 values was also tested.
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FIG. 8. Relative errors on the A24 database for frozen-core E
(20)
disp -F12 and DF-E

(20)
disp -F12 computed with the a5Z orbital basis

set, the a5Z-RIFIT CABS set, and the a5Z-MP2FIT DF set. The notation +(aXZ) and +(3322) signifies that the hydrogenic
aXZ and the constant (3s3p2d2f) set of midbond functions has been added to the aXZ atom-centered basis, respectively. The

reference values were obtained at the E
(20)
disp/(a5Z+(a5Z),a6Z+(a6Z)) extrapolated level. The error bars indicate the benchmark

uncertainty.

Figure 13 reveals that the more robust treatment of dispersion achieved by the CCD amplitudes reduces the overall
errors at all high levels of SAPT. We again observe that SAPT2+(CCD)-F12 and SAPT2+3(CCD)-F12 perform
nearly equivalent in both basis sets, and worsen results relative to SAPT2+(3)(CCD)-F12. The latter flavor leads to
an enhancement in aDZ with respect to the standard counterpart, showing a MAE value of 0.45 kcal/mol, albeit the
performance is deteriorated in aTZ, producing an average error of 0.69 kcal/mol.

Once the δMP2 term is added to the SAPT calculations, we observe that SAPT2+-F12δMP2 still slightly un-
derperforms SAPT2+δMP2 in aDZ, giving rise to an error of 0.54 kcal/mol, while SAPT2+(3)-F12δMP2/aDZ and
SAPT2+3-F12δMP2/aDZ substantially improve the accuracy of their non-F12 counterparts, yielding the MAE values
of 0.41 kcal/mol and 0.43 kcal/mol, respectively. These values should be compared with the MAE of 0.48 kcal/mol,
0.71 kcal/mol, and 0.64 kcal/mol obtained for SAPT2+δMP2, SAPT2+(3)δMP2, and SAPT2+3δMP2, respectively.
The inclusion of the F12 terms spoils the excellent accuracy of SAPT2+δMP2, SAPT2+(3)δMP2, and SAPT2+3δMP2
in aTZ, increasing the errors by 0.36 kcal/mol, 0.24 kcal/mol, and 0.33 kcal/mol, respectively. The F12 treatment
combined with both CCD dispersion and the δMP2 correction has a highly positive influence on the accuracy in
the aDZ basis, reducing the non-F12 errors from 0.66 to 0.38 kcal/mol for SAPT2+(CCD)-F12δMP2, from 0.97
to 0.40 kcal/mol for SAPT2+(3)(CCD)-F12δMP2, and from 0.89 to 0.36 kcal/mol for SAPT2+3(CCD)-F12δMP2.
Once the basis set size is enlarged, we observe that SAPT2+(CCD)-F12δMP2/aTZ is not nearly as accurate as
SAPT2+(CCD)δMP2/aTZ (the error increases from 0.12 kcal/mol to 0.47 kcal/mol). At the highest levels of theory,
the F12 treatment still increases the MAE, but only by a small amount: from 0.36 kcal/mol to 0.38 kcal/mol for
SAPT2+(3)(CCD)δMP2/aTZ and from 0.24 kcal/mol to 0.34 kcal/mol for SAPT2+3(CCD)δMP2/aTZ.

A closer examination of the SAPT and SAPT-F12 errors on the individual databases (presented in the Supporting
Information) reveals that the overall MAE trends follow closely the behavior observed for the dataset exhibiting the
strongest binding, that is, HBC6. This happens to be the subset of the overall database for which including the
F12 correction in a high-level SAPT treatment such as SAPT2+3(CCD)δMP2 performs particularly poorly (note
that, at this level of SAPT, the F12 inclusion is uniformly beneficial in both aDZ and aTZ for the S22, NBC10, and
HSG databases). To alleviate the dominance of the HBC6 set over the overall error statistics, Fig. 14 presents the
relative errors (MA%E values) computed on the entire dataset. For this statistical metric, F12 still does not provide
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FIG. 9. Relative errors on the A24 database for frozen-core E
(20)
exch−disp-F12 and DF-E

(20)
exch−disp-F12 computed with the aDZ

orbital basis set, the aTZ-RIFIT CABS set, and the aTZ-MP2FIT DF set. The notation +(aXZ) and +(3322) signifies that
the hydrogenic aXZ and the constant (3s3p2d2f) set of midbond functions has been added to the aXZ atom-centered basis,

respectively. The reference values were obtained at the E
(20)
exch−disp/(a5Z+(a5Z),a6Z+(a6Z)) extrapolated level.

uniform improvement of the lower theory levels of SAPT. However, at the highest levels, SAPT2+(3)(CCD)δMP2
and SAPT2+3(CCD)δMP2, the inclusion of the F12 term reduces the average relative errors in both aDZ and aTZ,
and the lowest MA%E value for all approaches (albeit by a very small margin) is obtained for the formally highest-
level treatment, SAPT2+3(CCD)-F12δMP2/aTZ. The origins of the relatively poor performance of the highest-level
SAPT-F12 variants on the strongly hydrogen bonded HBC6 set warrant further investigation, however, it is likely
that a better basis set convergence of dispersion and exchange dispersion impedes a cancellation of errors coming from
some non-dispersion SAPT terms.

Overall, the performance of different SAPT variants in the aDZ basis is a net result of the basis set incompleteness
errors and the intrinsic errors of a given theory level. Only when the latter errors are sufficiently reduced (most
importantly, by including the δMP2 correction), the basis set incompleteness effects on SAPT in general, and on the
dispersion and exchange-dispersion energy in particular, become the single dominant factor limiting the accuracy of
the aDZ-based treatment. In such a case, the improvement of SAPT-F12/aDZ over the corresponding SAPT/aDZ
variant, observed in Fig. 13, is quite remarkable. When the basis set is enlarged to aTZ, the incompleteness errors
are reduced to a magnitude similar to the remaining intrinsic errors of the method. In such a case, the F12 approach,
while significantly limiting one source of errors, does not provide an improvement in the accuracy of total interaction
energies (it actually somewhat worsens the MAE by disturbing the error cancellation). In particular, the accuracy of
SAPT2+(3)δMP2/aTZ, which was established as the “gold standard” of SAPT thanks to a very favorable accuracy-to-
cost ratio (the accuracy is similar but the computational cost is ∼50% less than that of SAPT2+(CCD)δMP2/aTZ54),
cannot be beaten by the SAPT-F12 treatment at this stage. However, it is likely that further enhancements, in partic-
ular, an extension of the F12 formalism to higher-order dispersion corrections including the effects of intramolecular
correlation, will provide additional improvement to the SAPT-F12 accuracy by strongly reducing another source of
residual errors. Such an advancement is the subject of ongoing research in our group.
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FIG. 10. Relative errors on the A24 database for frozen-core E
(20)
exch−disp-F12 and DF-E

(20)
exch−disp-F12 computed with the aTZ

orbital basis set, the aTZ-RIFIT CABS set, and the aTZ-MP2FIT DF set. The notation +(aXZ) and +(3322) signifies that
the hydrogenic aXZ and the constant (3s3p2d2f) set of midbond functions has been added to the aXZ atom-centered basis,

respectively. The reference values were obtained at the E
(20)
exch−disp/(a5Z+(a5Z),a6Z+(a6Z)) extrapolated level.

D. Computational cost of DF-SAPT0-F12

To conclude this section, we provide some evidence that, even though our current implementation is certainly not a
fully optimized production code, a DF-SAPT0-F12 calculation is already more efficient than a standard DF-SAPT0

one in a larger orbital basis required to attain the same accuracy of E
(20)
disp and E

(20)
exch−disp. To this end, Fig. 15 compares

the wall timings of DF-SAPT0 (with the highly efficient Psi4 code61) and DF-SAPT0-F12 (using our Psi4NumPy59

code for the F12 part in addition to a complete Psi4 DF-SAPT0 calculation), obtained for the benzene dimer (from
the S22 database78) on a single core of a 2.4 GHz Intel Xeon E5-2680 v4 machine. The aDZ timings in Fig. 15 include
both calculations with the recommended set of auxiliary bases (aTZ-MP2FIT for DF-SAPT0 and aTZ-RIFIT/aTZ-
MP2FIT for DF-SAPT0-F12) and the ones utilizing reduced aDZ-RIFIT/aDZ-MP2FIT sets for CABS and DF. We
see that a DF-SAPT0-F12 calculation currently takes a few times longer than a conventional DF-SAPT0 one in the
same basis, with DF-SAPT0-F12/aXZ/aXZ-RIFIT slightly less expensive than DF-SAPT0/a(X+1)Z. This indicates
that the F12 approach is already a viable alternative to conventional SAPT0 as far as performance is concerned. It
should be stressed that our implementation, while completely density fitted, is quite preliminary, and the performance
will still be improved when our code is merged into the new release of Psi4 that features a new F12 integral library61.

Moreover, the overhead associated with calculating E
(20)
disp -F12 and E

(20)
exch−disp-F12 is minor compared to the cost of

computing correlated SAPT corrections in case the F12 effects are meant to augment a higher-level SAPT result such
as SAPT2+3.

V. SUMMARY

In this work, we have transformed the explicitly correlated SAPT0 corrections E
(20)
disp -F12 and E

(20)
exch−disp-F12,

proposed recently in Ref. 44 (and, in part, earlier in Ref. 42), into a practical closed-shell SAPT enhancement,

significantly improving the basis set convergence relative to conventional E
(20)
disp and E

(20)
exch−disp. While the proof-of-
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FIG. 11. Relative errors on the A24 database for frozen-core E
(20)
exch−disp-F12 and DF-E

(20)
exch−disp-F12 computed with the aQZ

orbital basis set, the aQZ-RIFIT CABS set, and the aQZ-MP2FIT DF set. The notation +(aXZ) and +(3322) signifies that
the hydrogenic aXZ and the constant (3s3p2d2f) set of midbond functions has been added to the aXZ atom-centered basis,

respectively. The reference values were obtained at the E
(20)
exch−disp/(a5Z+(a5Z),a6Z+(a6Z)) extrapolated level. The error bars

indicate the benchmark uncertainty.

concept SAPT0-F12 implementation of Ref. 44 employed resolution of identity to avoid three-electron integrals, it
was not competitive to the conventional SAPT0 approach due to the need to explicitly consider many different two-
electron integrals over a combination of orbital and complementary auxiliary basis indices. In the present work, all the
two-electron integrals have been decomposed into three-index quantities by means of a robust density fitting, in which
the error in the fitted integral decays quadratically with the errors in the fitted densities48. Thus, our development of

DF-E
(20)
disp -F12 bears many similarities to the DF-MP2-F12 formalism, and we employ the so-called approximation 3C

in the calculation of the F12 intermediates in exactly the same way as in the MP2-F12 formulation of Ref. 10. Out of
several Ansätze proposed for the explicitly correlated dispersion amplitudes in Ref. 44, we employ the ODA variant
which has been shown to provide an excellent approximation to the results obtained using fully optimized amplitudes,
but without the steep scaling and numerical instabilities of the latter.

Numerical tests for several small complexes indicate that the DF approximation to E
(20)
disp -F12 and E

(20)
exch−disp-F12

works very well, with virtually no loss in accuracy as long as the frozen-core approximation is applied. For an aXZ
orbital basis, the standard aXZ-MP2FIT choice for the DF basis is very appropriate, except that the aDZ/aTZ-
MP2FIT combination is slightly superior to aDZ/aDZ-MP2FIT. Similar to explicitly correlated electronic structure
methods such as MP2-F12 and CCSD(T)-F12, a separate DF basis (from the aXZ-JKFIT family) can be used for the
fitting of the Fock and exchange matrices appearing in some F12 intermediates, however, the results are of exactly
the same quality as when the aXZ-MP2FIT set is used in all DF contexts.

Further tests on the entire A24 database of small noncovalent complexes62 confirm that the errors introduced by the
DF approximation are insignificant in all cases. However, thanks to the vastly superior computational performance
of DF-SAPT0-F12 over the non-DF version, we were able to extend the aDZ and aTZ calculations of Ref. 44 to basis

sets as large as a5Z+(a5Z), that is, a5Z augmented by a set of midbond functions. The resulting E
(20)
disp -F12 and

E
(20)
exch−disp-F12 values are so well converged to the CBS limit that better reference values than those in Ref. 44 became

necessary. Thus, we compared the E
(20)
disp -F12 and E

(20)
exch−disp-F12 data for the A24 complexes with conventional E

(20)
disp

and E
(20)
exch−disp values obtained by the (a5Z+(a5Z),a6Z+(a6Z)) extrapolation, or even (a6Z+(a6Z),a7Z+(a7Z)) for the
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FIG. 12. Relative errors on the A24 database for frozen-core E
(20)
exch−disp-F12 and DF-E

(20)
exch−disp-F12 computed with the a5Z

orbital basis set, the a5Z-RIFIT CABS set, and the a5Z-MP2FIT DF set. The notation +(aXZ) and +(3322) signifies that
the hydrogenic aXZ and the constant (3s3p2d2f) set of midbond functions has been added to the aXZ atom-centered basis,

respectively. The reference values were obtained at the E
(20)
exch−disp/(a5Z+(a5Z),a6Z+(a6Z)) extrapolated level. The error bars

indicate the benchmark uncertainty.

water dimer. However, the CBS convergence of the SAPT-F12 corrections is so fast that nearly all E
(20)
disp -F12/aQZ

values are within the tight error bars of the benchmark, and the E
(20)
exch−disp-F12/aQZ data are not far outside the

benchmark range. The only exception are the two complexes containing an argon atom for which the convergence
is somewhat slower. The CBS convergence of the SAPT-F12 corrections can be further enhanced by the addition of

midbond functions. In particular, the +(3322) set of bond functions makes even the E
(20)
disp -F12/aDZ values highly

accurate, very often (perhaps fortuitously) within the error bars of the benchmark.

Having established that the F12 approach significantly speeds up the basis set convergence of the individual E
(20)
disp

and E
(20)
exch−disp corrections, we turned our attention to the total SAPT interaction energies. In this case, a replacement

of the conventional E
(20)
disp +E

(20)
exch−disp value by its F12 counterpart corresponds to combining nearly converged E

(20)
disp

and E
(20)
exch−disp data with the remaining SAPT corrections computed in a moderate basis, in the spirit of the focal-

point MP2/CBS+δCCSD(T) approach. In this way, we constructed F12-enhanced variants of all standard SAPT
levels from SAPT0 to SAPT2+3(CCD)δMP254 and examined the SAPT accuracy, relative to the CCSD(T)/CBS
benchmark data, on the same set of complexes as in Ref. 54. We found that low levels of SAPT do not exhibit

improvement when E
(20)
disp -F12 and E

(20)
exch−disp-F12 are used in place of E

(20)
disp and E

(20)
exch−disp: in particular, the per-

formance of SAPT0 deteriorates due to a breakdown of the error cancellation between the theory level and basis set
incompleteness. Only when the method errors are minimized (which happens at high levels such as SAPT2+(3) or
SAPT2+3 including the δMP2 correction), the basis set incompleteness effects determine the overall accuracy. Under
those circumstances, SAPT-F12/aDZ is much more accurate than the corresponding SAPT/aDZ approach. In the
aTZ basis, incompleteness errors no longer dominate the picture and the F12 and non-F12 variants of SAPT exhibit
similar average deviations from the benchmark CCSD(T)/CBS data.
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FIG. 13. Mean absolute errors (MAE) (kcal/mol) of the interaction energy averaged over the S22, HBC6, NBC10, and HSG
databases for SAPT and SAPT-F12 in aDZ and aTZ basis sets.

FIG. 14. Mean absolute percent errors (MA%E) of the interaction energy averaged over the S22, HBC6, NBC10, and HSG
databases for SAPT and SAPT-F12 in aDZ and aTZ basis sets.
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FIG. 15. The comparison of DF-SAPT0 and DF-SAPT0-F12 calculation times (in hours) for the benzene dimer (from the S22
database78) on a single core of a 2.4 GHz Intel Xeon E5-2680 v4 machine using the Psi4 quantum chemistry program and our
Psi4NumPy implementation. The consecutive basis sets listed for each bar pertain to the AO and DF sets for DF-SAPT0 and
to the AO, CABS, and DF sets for DF-SAPT0-F12.
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24 Cha lasiński, G.; Szczȩśniak, M. M. On the connection between the supermolecular Møller-Plesset treatment of the interaction

energy and the perturbation theory of intermolecular forces. Mol. Phys. 1988, 63, 205–224.
25 Rybak, S.; Jeziorski, B.; Szalewicz, K. Many-body symmetry-adapted perturbation theory of intermolecular interactions -

H2O and HF dimers. J. Chem. Phys. 1991, 95, 6579–6601.
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