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Abstract. Neuron reconstruction from anisotropic 3D Electron Mi-
croscopy (EM) images is a challenging problem. One often considers
an input image as a stack of 2D image slices, and consider both intra
and inter slice segments information. In this paper, we present a new
segmentation algorithm which builds a unified energy function and jointly
optimize the per-slice segmentation and the inter-slice consistency. To
find an optimal solution from the huge solution space, we propose a novel
diverse multiple prediction method which also encourages diversity in
partial solutions. We demonstrate the strength of our method in several
public datasets.

1 Introduction

Thanks to recent technology breakthrough, the new serial-section Electron Mi-
croscope is able to collect high resolution neuron images from insects or animals’
nerve tissue. Such neuron images contain detailed geometric information of the
densely packed neuronal structures, e.g., dendrites and axons. Reconstructing
these 3D neuronal structures helps neuroscientists characterizing different types
of neurons and analyzing how they collaborate to achieve different functionalities.

A majority of publicly available neuron images are anisotropic, i.e., having
fine resolution in two spatial dimensions, but a coarse resolution in the third
dimension, e.g., 4× 4× 50 nm3 [1] or 3× 3× 30 nm3 resolution [2]. An automatic
reconstruction algorithm often considers such an anisotropic image as a stack
of high-resolution 2D slices, and takes a two-stage approach. First, it partitions,
or say segments, each 2D slice into regions corresponding to different neuronal
structures. Second, regions of consecutive slices are linked to each other based on
their geometric consistency to form 3D structures. See Figure 1 for an illustration.

To segment each 2D slice into neuronal regions, one needs to identify the
boundaries of the neurons, i.e., membranes. Different classifiers, such as random
forests or Convolutional Neural Networks (CNNs), have been trained to classify
each pixel as either belonging to the membranes or not [4,5,11]. While for 3D
linking, one predicts the links between regions of consecutive slices based on their
geometric information. Various methods have been proposed to solve this 3D
linking problem effectively [8, 9, 13].



Fig. 1. From Left to right, raw images, likelihood map, segmentation of each slices,
linked segmented images, reconstructed neurons.

A common issue of these existing approaches is the loose coupling of the
two stages. Algorithms for the first stage only use the limited 2D observations,
and thus fail to fully leverage the 3D information. In this paper, we propose a
new method to jointly segment all 2D slices while considering their geometric
consistency. We formulate the problem as a simple chain graphical model problem
with huge state-space, i.e., all possible segmentations for each slice. To solve the
problem, we progressively find segmentation candidates of each slice conditioned
on those of previous slices.

At each slice, we maintain top B candidate segmentations to increase the
chance of finding a better solution. The huge state-space makes it challenging
to find high quality solution even with top B solutions per slice. We propose a
novel diverse multiple prediction method to explore the top B diverse solutions
as candidates. Underlying the algorithm is another graphical model so that the
prediction of top B diverse solutions is tractable.

Instead of complicated geometric constraints [8, 9, 13], we use a computation
friendly surrogate scoring function, namely, the Rand Index (RI), to model
the geometric consistency between segmentations of consecutive slices. The RI
effectively penalizes topological changes such as merge/split, while being robust
to shifting. Thanks to the decomposability of RI, we turn each prediction step,
i.e., finding the top B diverse segmentations of each slice, into another Markov
random field problem and thus can solve it efficiently.

In summary, our contribution is twofold.
– Propose a simple chain graphical model for the reconstruction problem. The

unified principled framework is easier to tune and to generalize.
– Propose a diverse multiple prediction algorithm to solve the inference problem.

It efficiently searches the solution space and finds a high-quality solution.
Experiments on several public datasets prove the advantage of our method.
Further ablation studies show the benefits of different technical contributions.

2 Method

We create a unified chain graphical model to take both 2D slice information and 3D
geometric consistency into consideration. Given an anisotropic neuron image with
M slices, we treat each slice as a node and each pair of adjacent slices as an edge.
Denote by S the space of all possible segmentations and sj ∈ S a segmentation



of slice j. We search for a joint segmentation of the whole image stack s =
(s1, s2, · · · , sM−1, sM ) ∈ SM given the observation x = (x1, x2, · · · , xM−1, xM ).
Using the chain conditional random field (CRF) formulation, we can find the
best segmentation sequence by computing the maximum a posteriori (MAP):

argmaxs∈SM P (s|x) = argmins∈SM exp(−E(s;x))/Z(x), (2.1)

E(s;x) =
∑M

j=1
Ej(s

j ;xj) +
∑M−1

j=1
Ej,j+1(sj , sj+1), (2.2)

where Z(x) =
∑

s∈SM exp(−E(s;x)) is the partition function. The energy E(s;x)
is a sum of unary and binary energy terms: Ej(s

j ;xj) measures how likely slice j
has segmentation sj given xj . Ej,j+1(sj , sj+1) measures the geometric similarity
between segmentations of slices j and j + 1. Note that there is no observation
term in binary term since the geometric similarity is independent to observation
x. For convenience, we drop the observation term x or xj when referring to
energy term Ej(s

j ;xj) for the rest of the paper.

Energy terms. We adapt the tree-structured CRF [12] to express the unary
term in Equation (2.2): Ej(s

j) = Ej(y
j) =

∑
(u,v)∈E θu,v(yju, y

j
v) +

∑
u∈V θu(yju).

Here V and E are the node set and edge set of a hierarchical merging tree, i.e.,
a tree constructed by running a watershed region merging algorithm over the
likelihood map trained on CNNs [5]. Nodes of the tree correspond to regions in
the image. Edges decide how different regions are merged into larger ones during
the watershed merging process. We use θ to express the energy term of each node
u or edge(u, v) while the value of y indicates whether the corresponding node
is a correct segment. See Figure 2 for an illustration. Note each tree-structured
CRF is constructed based on a given likelihood of slice j, while the parameters
in the model is trained over all training slices. The tree-structured CRF provides
an energy for each segmentation sj and is treated as the unary energy term of
our overall chain CRF (Equation (2.2)).

We use RI to represent binary term: Ej,j+1(sj , sj+1) = −ηRI(sj , sj+1). The
RI can explicitly enforce geometric consistency between two consecutive segmen-
tations and it can be calculated very efficiently. Here the η is the weight of the
binary term (inter-slice weight) that indicates how strong the model seeks to
enforce inter-slice geometry similarity.

Inference. Equation (2.1) has a huge solution space, SM ; it is exponential to
the number of slices, M , and the space of segmentations S is exponential to the
size of each slice. Finding the global optimal solution from such huge solution
space is infeasible. Instead, we propose an efficient prediction algorithm to find a
high quality solution. We first propose to use a multiple prediction method to
solve the problem (Section 2.1). However, during the multiple prediction, only
a limited number of partial solutions are maintained. To further improve the
quality of these partial solutions, and thus the final prediction, we propose a
novel diverse multiple prediction method (Section 2.2). In each prediction step,
the diverse multiple prediction finds the top solutions that are not only high in
scores, but also diverse.



Fig. 2. (a) Raw image patch. (b) Membrane prob-
ability map. (c) Merging tree which black nodes
are undersegment and blue nodes are oversegment.
(d) Nine segments corresponded to leaf nodes. (e)
Final segmentation.
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Fig. 3. A search tree for a 3-node
chain graph, with each node having
two possible values (0 and 1). An
example beam search with B = 2
is highlighted with red.

2.1 Prediction Algorithms

We iteratively determine the values s1, s2, · · · , sM . At each step, we find preferred
sj given solutions of previous nodes s1, · · · , sj−1. To introduce our final algorithm
in the next section, we first propose a few baseline multiple prediction methods.

Rewrite Equation (2.2) as E(s) = E1(s1) +
∑M

j=2 Ψj−1,j(s
j−1, sj ;xj), where

Ψj−1,j(s
j−1, sj ;xj) = Ej−1,j(s

j−1, sj) + Ej(s
j ;xj). To compute the optimal seg-

mentation ŝ = (ŝ1, · · · , ŝM ), a straightforward algorithm, called the greedy search
(GRE), starts by finding the s1 optimizing E1, i.e., ŝ1 = argmins1 E1(s1;x1).
Next, it iteratively finds the optimal sj conditioned on ŝj−1 that has already
been determined, i.e., ŝj = argminsj Ψj−1,j(ŝ

j−1, sj ;xj). Figure 3 shows a search
tree in which each internal search node corresponds to a partial solution and each
leaf search node corresponds to a complete solution. The greedy algorithm finds
a leaf search node using a greedy method: starts from the root. At each internal
search node, it finds the best child and continues, until a leaf is reached.

Multiple prediction. The idea of multiple prediction is to keep track of B > 1
many top partial solutions until the last level. Note this is the same as the well-
known beam search method. We start by finding the top B solutions of E1(s1;x1).
At the j-th iteration, using partial solutions from the (j − 1)-th iteration, we
find the top B partial solutions with length j. For each partial solution of length
j−1, (ŝ1, · · · , ŝj−1), we extend it to B different partial solutions with length j. In
particular, we compute the top B candidate segmentations for slice j conditioned
on the previous ones, namely,

ŝj1, · · · , ŝ
j
B = argminsj1,··· ,s

j
B :sjb 6=sj

b′ ,∀b 6=b′

∑B

b=1
Ψj−1,j(ŝ

j−1, sjb;x
j). (2.3)

We then get B partial solutions by appending each of them to the end of
the existing partial solution, namely, {(ŝ1, · · · , ŝj−1, ŝjb) | b = 1, · · · , B}. We
compare all of them and keep the B with the minimal energy evaluated on



E1, Ψ1,2, · · · , Ψj−1,j . At the last iteration, when j = M , we select the best
solution. Figure 3 illustrates the beam search with B = 2 on the search tree.

2.2 Diverse Multiple Prediction

Although efficient, aforementioned prediction algorithms are not necessarily
optimal. As we could only keep B partial solutions at each step, the multiple
prediction algorithm may end up with a suboptimal solution. To address this
issue, we propose to enforce that the partial solutions are not only low in energy,
but also high in diversity. By enforcing diversity, the partial solutions have a
better chance to include a high-quality one.

We propose a new method: diverse multiple prediction. At each iteration,
instead of the top B solution, we compute the top B solution that are sufficiently
diverse. We adapt the m-diverse best formulation by Batra et al . [3]. First,
we find the best solution, then the second best which is at least δ away from
the best. The b-th solution is the best with at least δ dissimilarity from the
previously b− 1 chosen solutions. Using the Hamming distance measure between
two segmentations dist(·, ·), the b-th solution is:

ŝjb = argminsj∈S cost(sj) s.t. dist(sj , ŝjb′) ≥ δ, ∀b
′ ∈ {1, · · · , b−1} (2.4)

Here the cost function cost(sj) is E1(s1) when j = 1 and Ψj−1,j(ŝ
j−1, sj) other-

wise. The problem can be reduced into a sequence of B many MAP inference
tasks [3]. A hyperparameter λ tunes the weights of diversity.

It is essential that the cost function can be written as a tractable graphical
model, so that its MAP inference can be computed efficiently. Using Rand Index as
binary term, we can rewrite the cost function Ψj−1,j as a tree-structured graphical
model energy. Therefore, the m-diverse-best solutions can be solved efficiently.
For convenience, we denote by the top B diverse solution as mdiv(E1;xj) or
mdiv(Ψj−1,j ;x

j , ŝj−1) depending on the relevant energy term. The pseudocode
of our diverse multiple prediction algorithm is given in Algorithm 1.

3 Experiments

In this section, we validate our proposed method using public datasets. We also
use ablation study to closely inspect the behavior of our prediction method.

Datasets. We use two public datasets: the Drosophila first instar larva ventral
nerve cord (VNC) [1] and mouse cortex (MOU) [2]. Both datasets were used
as public challenges. So their test sets do not have ground truth annotation.
We use their training sets for evaluation. VNC contains 30 consecutive slices
for training, each of size 512x512. The resolution is 4x4x50 nm3. We use a a
three-fold cross validation and report the mean performance over the validation
sets. Due to the nature of the problem, the validation set needs to be consecutive
slices rather than random slices. For fold 1, we use slices 1-10 for validation and
11-30 for training. Similarly, for folds 2 and 3, we use 11-20 and 21-30 to validate,



Algorithm 1 Diverse Multiple Prediction

Require: Input image x
Ensure: Segmentation s
1: (ŝ11, · · · , ŝ1B)← mdiv(E1;xj) . The top B diverse solutions for slice # 1.
2: S ← {(ŝ11), · · · , (ŝ1B)} . The top B partial solutions with length 1.
3: for j = 2 to M do
4: S ′ ← ∅
5: for (ŝ1, · · · , ŝj−1) ∈ S do
6: (ŝj1, · · · , ŝ

j
B)← mdiv(Ψj−1,j ;x

j , ŝj−1) . For each length j − 1 partial
solution in S, compute the top B diverse solution conditioned on ŝj−1 and xj .

7: for b = 1 to B do
8: S ′ ← S ′ ∪ {(ŝ1, · · · , ŝj−1, ŝjb)} . Add B length j partial solutions into S ′.
9: end for

10: end for
11: Resize S ′. Only keep top B partial solutions in S ′ with the minimal partial

energy E1(ŝ1;x1) +
∑j

j′=2 Ψ(ŝj
′−1, ŝj

′
;xj

′
).

12: S ← S ′
13: end for
14: return The solution ŝ ∈ S with the minimal energy E(s;x).

respectively. MOU has 100 consecutive training slices, each with size 1024x1024
(resolution 3x3x30 nm3). We use a three-fold cross validation and report the mean
performance, using slices 1-33, 34-66, and 67-100 as validation sets, respectively.

Table 1. ARE of all methods on the two datasets.

DMP MP GRE CRF LIU

VNC 0.0172 0.0191 0.0197 0.0235 0.0244

MOU 0.0271 0.0275 0.0279 0.037 0.0375

MOU-3D 0.0863 0.0894 0.090 0.1147 0.1151

Baselines. We compare our method, diverse multiple prediction (DMP), with
two state-of-the-arts. LIU [10] prunes the hierarchical merging tree in a greedy
manner. CRF [12] constructs and trains tree-structured CRF on hierarchical
merging trees, but ignores inter-slice geometric constraints. We also compare
with two baselines that have been introduced in this paper: greedy search (GRE)
and multiple prediction (MP). Note we focus on the segmentation task, so we
do not compare with various methods on computing better boundary likelihood
maps [4–7]. Instead, we assume a same boundary likelihood map for all methods.
We use the boundary likelihood map from [4] for VNC, and the one from [5] for
MOU. The hyperparameters of all methods are fine-tuned to ensure fairness.



For our own method, we choose the inter-slice weight η = 600 and set the
upper bound of solution candidate B = 6. For diverse multiple prediction method,
we set the diversity weight λ = 0.1.

Experiment setting. All compared methods output joint segmentations of all
slices. We directly evaluate the performance by comparing the 2D segmentation
with ground truth annotation over all slices and aggregate. The goal is to show
that using inter-slice geometric consistency and advanced search strategy, we
can improve the per-slice segmentation quality. We report the results on both
VNC and MOU. Furthermore, since the segmentations can be linked together
to reconstruct the 3D neurons (Figure 1), we may evaluate all the methods by
applying a common 3D linking tool [9] and compare the 3D reconstruction results.
We report the results only on MOU (called MOU-3D), as such 3D reconstruction
ground truth annotation is not available for VNC.

We measure the performance using the standard Adaptive Rand Error (ARE)
score, which ranges between 0 and 1 (the smaller the better). 3 The results of
all methods over VNC, MOU, and MOU 3D linking are reported in Table 1. A
qualitative example is also shown in Figure 4. Highlighted areas are where the
difference occurs. We observe that MP improves upon GRE, while DMP achieves
even better results.

Fig. 4. (a)Raw image. (b) Membrane probability map. (c) Ground truth. (d) GRE. (e)
MP. (f) DMP.

Ablation study. To further investigate the behavior of our method, we carry
out the ablation study on three hyperparameters: number of partial solutions
to memorize B, inter-slice energy weight η, and diversity weight λ on VNC
dataset [1]. Figure 5(a) shows the ARE scores of three proposed methods with
regard to the B values. Note that all three methods are equivalent when B = 1.
DMP converges to the best score even with a small B. MP needs a larger B = 6.

3 ARE is closely related to Rand index but is the corrected-for-chance version, and
thus is not decomposable like RI.



The second parameter we study is the inter-slice weight η. Figure 5(b) shows
those three ARE scores with η ranged from 0 to 1200. Note that all three methods
are equivalent to CRF when η = 0 since inter-slice consistency is no longer in
effect and three methods eventually generate local best solution in each slice.

The last parameter is λ which measures the diversity in our diverse multiple
prediction method. Figure 5(c) shows the performance of our method (DMP)
with regard to λ.

(a) (b) (c)

Fig. 5. Ablation study on three parameters: B, η and λ.
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