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Applications of generative models such as Generative Adversarial Networks (GANs) have made their way to social media platforms that
children frequently interact with. While GANs are associated with ethical implications pertaining to children, such as the generation
of Deepfakes, there are negligible efforts to educate middle school children about generative AL In this work, we present a generative
models learning trajectory (LT), educational materials, and interactive activities for young learners with a focus on GANs, creation
and application of machine-generated media, and its ethical implications. The activities were deployed in four online workshops with
72 students (grades 5-9). We found that these materials enabled children to gain an understanding of what generative models are, their
technical components and potential applications, and benefits and harms, while reflecting on their ethical implications. Learning from

our findings, we propose an improved learning trajectory for complex socio-technical systems.
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1 INTRODUCTION

In July of 2019, it seemed as if everyone’s social media timelines were fast forwarded 50 years in the future. Celebrities,
from Drake to the Jonas Brothers, were using FaceApp [9], a photo filtering app, to make themselves look older (Figure
1). These filtered images, often realistic to the point of uneasiness, began spreading through timelines, branded as the
#AgeChallenge. The widespread use of this FaceApp, especially by children on social media, ignited discussions about
the implications of high fidelity fake images and data collection by the companies that create these technologies [39].

To create these realistic photos, FaceApp used a generative machine learning model to style one’s face in the style of an
older adult. Applications of popular generative modeling techniques such as Generative Adversarial Networks (or GANs)
have become commonplace on social media. Introduced in 2014, GANSs are a novel application of machine learning
that create new data instances that resemble the training data [15]. While largely used for experimental generation of
art and entertainment [12], GANs have applications in science such as improving astronomical images [36] or detect

glaucomatous images that help with early diagnosis of blindness [5]. Concerns have also been raised about the use of
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Fig. 1. A picture of the Jonas Brothers (left) was altered by FaceApp (right)

GANSs to generate hyper-realistic images and videos of humans, also known as Deepfakes, for sinister purposes, such as
to produce fake, possibly incriminating, photographs and videos [30].

Middle school students are both creators and consumers of generative machine learning. Due to the speed and
accuracy of generative Al, doctored images can be created with little to no effort. Students are using face filtering apps
such as FaceApp and FaceTune to alter their own photos [9, 10]. Commercial applications that make use of Deepfakes,
such as "Reface: Swap your faces now", use GANs to swap faces in popular media with users’ faces, are also being
advertised on social networking applications such as TikTok, which is frequented by middle schoolers[26, 41]. This
media gets posted on students’ feeds and timelines, making it impossible to know which images are real and which
have been doctored.

At the same time, generative machine learning poses exciting advancements for the future. For example, GANs can
be used to create new types of art [43] as well as advancements in medical imaging [22]. If GANs are to enter these
various fields, it is important that students learn to identify and work with these tools. By designing activities where
students can practice creating with generative Al models, we can make collaboration with AI more accessible to the
future workforce. Right now, there is little awareness about the existence and functioning of these networks outside of
computer science and artificial intelligence professionals, and there exist no published frameworks, in our knowledge,
to teach children about how GANs work and how they are used in the real world. If we make these tools accessible to
students, we can prepare them for opportunities in the future workforce that involve collaborating with Al

Questions arise as to what elements to teach for different age groups and how to teach it. In order to make these
concepts accessible, we must consider how much we can teach about generative models before we introduce the
underlying mathematics behind them, or how far do analogies or related context go in teaching the composition and
applications of generative modeling techniques, and what learning goals are applicable for different age groups.

In this work we developed a generative models LT for middle school students with no technical knowledge of
machine learning. We developed interactive learning activities to introduce to children: (1) the concept of generation,
(2) how GANs work, (3) applications of GANS, their benefits, and harms (4) creation tools that leverage generative
models, and (5) ethical implications of GANs with a focus on Deepfakes.

2
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This paper aims to answer the following research question: To what extent does our design of a learning trajectory
support middle school students’ development of understandings of technical composition, applications and ethical implications
of generative models?

In order to explore this question, the paper presents the following contributions:

o The design of a generative models learning trajectory (LT) with a focus on GANSs, with learning goals accessible
for middle school students.

o Descriptions of interactive learning activities that explore the technical composition, applications and ethical
implications generative modeling techniques, with a focus on GANS, aimed at broad non-technical audiences, to
be used in middle school classrooms.

e Findings on students’ learning gains, artifacts generated, and perspectives relevant to generative modeling.

This paper is organized as follows. We present the theoretical frameworks that guided the developments of our
learning trajectory and learning activities, followed by the background in Section 3, materials design in Section 4,

followed by the methods and results. We conclude in Section 9.

2 THEORETICAL FRAMING

Battista (2011) defines a Learning Trajectory (LT) as "a detailed description of the sequence of thoughts, ways of
reasoning, and strategies that a student employs while involved in learning a topic" [4]. Hypothetical LTs, developed
prior to the learning process, consist of learning goals, learning activities, and predict a hypothetical learning process
of how the students’ thinking and understanding will evolve in the context of the learning activities [37]. In contrast,
actual LTs are developed when the student has actually progressed through the learning path. In this work, we develop
a hypothetical LT for generative models aimed at middle school students. LTs consist of nodes representing learning
goals connected by arrows that depict potential orderings between these learning goals. Earlier nodes in an LT are ideas
that are easier to comprehend for students, and they process to more complex novel concepts. LTs have been extensively
used for building curricula in mathematics [6], and more recently in Computer Science [11]. LTs are especially helpful
when taking a constructivist approach to curriculum development, wherein students learn new materials by connecting
new knowledge to existing knowledge [35]. However, in the case of knowledge about socio-technical systems, technical
components, applications of the technology, and ethical implications are interconnected and inform each other. Thus,
the knowledge space cuts across social, technological, and ethical domains and the learning is not expected to be
linear. In particular, the design of a learning trajectory for generative models is predicated on the need for making
these connections between social, technical, and ethical domains. While learning trajectories are not the only learning
framework for curriculum development, we chose to use this framework since the technical components of generative
modeling are novel to young children, though the concept of generation and the applications of generative modeling
are already accessible to them.

Learning trajectories must also be cognizant of students’ cognitive development. In terms of thinking and learning,
middle school students are able to think more abstractly than younger students [2, 7] and they can incorporate new
knowledge into existing schemas [19, 20]. We made use of game-based learning approaches to make abstract concepts

concrete since games have shown to enhance content engagement [13, 14, 23].

3
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3 BACKGROUND

In this work, we develop a middle-school AI Education curriculum focusing on the theory, practice and ethical

implications of generative models with a focus on GANs.

3.1 Generative models

Generative models describe a class of statistical models that create new data instances that resemble an existing set of
training data. They are often seen in contract with discriminative models, that tell apart two different data instances. A
generative model could generate new photos of cats that look like real cats, while a discriminative model could tell a dog
from a cat. There are several different kinds of generative models such as Generative Adversarial Networks (GANs) [15],
Variational Autoencoders (VAEs) [8], and Autoregressive models such as PixelRNN [31]. Amongst other generative
models, recent developments in GANs have demonstrated especially high accuracy in synthetic media generation
[https://openai.com/blog/generative-models/], and have been prevalent in popular media. In this work, we explore the

applications of different kinds of generative models, with a special focus on GANG.

3.2 Generative Adversarial Networks (or GANs)

First introduced by Ian Goodfellow in 2014, Generative adversarial networks (or GANSs) are a new kind of generative
machine learning model [15] that are used to generate different kinds of media, such as visual art, photographs,
music, videos, and text. GANs are able to produce realistic new data by pairing a generator, that learns to produce the
target output, with a discriminator, that learns to distinguish existing training data from the output of the generator.
The generator tries to fool the discriminator that it’s image is “real”, while the discriminator tries to get better at
distinguishing the “real” vs the “fake” image. The generator and the discriminator work together to help the generate
new data that replicates patterns in the training data. The existence and use of GANs raises some ethical concerns such
as “Should it be legal to produce and circulate fake media? “, “Who owns GANs generated works of art?”, “Who is
responsible when fake media produces, whether directly or indirectly, harm to individuals?” and “Are the environmental

impacts of training big Al models used in GANs proportional to the benefits produced?”

3.3 GANs and middle school Al

The impetus for educating middle school students about GANS is driven by their increasing contact with GANs in
daily life. First, since many students acquire their first mobile device during middle school, they start consuming
data on social media websites such as Twitter and Instagram where they are exposed to GANs-generated content [3].
Second, middle school students are already creators of media generated with GANS. Through social media apps such as
Snapchat and Instagram, they view and create content with tools such as photo filters that integrate generative modeling
techniques. Thus middle school students may be using GANs-enabled technology without realizing it. Third, children
upload personal data, such as images, videos and text, on social media sites and may unwittingly be contributing data
to datasets used to train GANs models. Finally, students are witness to and could be targeted by fake media that are
generated by applications of GANs such as Deepfakes, like in the case of FaceApp.

This exposure to GANs, whether direct or indirect, can impact students. While some impacts can be relatively
harmless, such as entertainment or art, other exposure could be harmful. Students may unwittingly be persuaded to
think that a fake event, image, or text is real, and act accordingly. Because students are vulnerable to these manipulations,
they need to be knowledgeable about GANS. Their awareness of manipulated media has ramifications for democracy,

4
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trust, security, and privacy. While some synthetic media are difficult to discern even for adults, the knowledge of the
existence of GAN-generated media would empower children to take information that they witness online with essential
skepticism. Thus, Al literacy focusing on generative machine learning techniques such as GANs and media generated
by GANSs is imperative for students to be informed citizens and critical consumers of online media. This curriculum
addresses the need for students to be critical consumers, creators and detectors of GANs created media by introducing
students to GANs, how they work, what kind of data they use, and applications of GANs. Through the curriculum,
students are engaged in detecting and thinking critically about the benefits and harms of these applications of GANS.

Several new Al curricula and frameworks have been developed for k12 learners [27, 42]. The most common topics
included were neural networks, machine learning, and perception [32]. Noticeably, no K-12 curriculum were found that
address the development r applications of generative models. While educators have developed courses focusing on
generative machine learning aimed at post-secondary students and adult learners exist including a few that focus on
generative art [16, 25, 28, 34], most of these courses and activities require prior programming experience, mathematical
knowledge or a sophisticated computing set-up, often requiring cloud computing or GPU capabilities. To our knowledge,
there are no Generative Machine Learning curricula or tools for K-12 students, that are suited for low technical

requirements.

4 DESIGN CONSIDERATIONS

In this section we describe the design considerations that informed the development of the learning trajectory (Figure

2) and the activities aligned to the progression.

4.1 Design of the Learning Trajectory

The design of a learning trajectory for generative models is predicated on the need for making connections between
social, technical, and ethical domains evident. Importantly, instead of treating ethical implications as an independent
learning goal, we take an integrated ethics approach, where we explicitly discuss ethical implications connected with
applications of generative models and with creating with generative models. The resulting LT is multi-layered instead of
linear. While existing approaches to generative models take either a mathematical or a programming-driven approach,
our challenge was to create a learning trajectory for learners with no prerequisite knowledge in these fields. In designing
the overall progression, we order our learning goals depending on the perceived accessibility to the concept, as well as
our prior work in the field. In order to begin with lower "anchor points", or ideas that students already have experience
with, we begin by introducing generative models through examples with which students are already familiar. Once
students were aware of the existence of these models, we delved deeper into what GANs are, and how they work.
Students applied their procedural knowledge about how GANs work to applications of GANSs that they interacted with.
Students discussed the possible benefits and harms of applications of GANs. We also discussed strategies to recognize
Deepfakes. Finally, students used two generative tools to create generative stories. In this section, we define the four

learning goals of this LT, followed by the learning activities that address these goals.

4.2 Design of the activities

The design of activities was informed by the following design principles and considerations about the learners, their

environments, and learning goals.
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288 e No CS and advanced math prerequisites. The generative models curriculum and tools were intentionally
jzz designed for use in K-12 environments with middle school students. The design took into consideration students’
291 lack of exposure to computer science and advanced mathematics. Our workshop and lessons were designed for
292 middle school students with no prior knowledge of artificial intelligence, machine learning, or neural networks.
293 Since middle school students do not have the advanced mathematical or statistical skills, we chose a conceptual
j:: approach to teaching GANs that drew inspiration from other middle school CS and Al curricula that utilize
206 unplugged activities.

297 e Make activities accessible to those with limited bandwidth and/or older devices. Specifically, the GANs
298 activity was designed as a low-tech web-based activity that minimized prerequisite knowledge and technical
ji: knowledge to set up. The activities were designed for synchronous remote learning making it accessible to most
301 students through a browser.

302 e Support students’ abstraction capabilities. We take students’ cognitive development into account when
303 introducing abstract concepts and processes. We provide concrete representations to teach the complex processes
jgj in GANSs in a simpler understandable manner. For example, the process of generating synthetic data were
306 simplified to picking tiles to compose an image.

307 e Use a game based learning approach. In the case of the generator-discriminator game, the learners take
08 the role of generator or discriminator, and follow steps or rules that are analogous to processes that each
?;Z neural network performs. Since the rules mimic the processes used by the discriminator and generator, the
311 increased exposure to these rules may lead to better recall and understanding of the processes themselves. Further,
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competitive game play between players acting as the generator and the discriminator also accurately depicts the
roles of a generator and a discriminator in GANs which work in opposition to produce synthetic data.

o Reduce cognitive load. Efforts were made to decrease cognitive load [38] and reduce the space of possibilities
during game play. A small 8 by 8 tiled grid was chosen to represent the image being reproduced thereby reducing
the complexity of the game by limiting the number of possible guesses. Additionally, rather than having the
discriminator provide weights or probabilities as feedback, tiles were colored in green (indicating a correct guess)
or red (indicating an incorrect guess) thus simplifying the feedback to a binary response and minimizing the

interpretation of the feedback.

5 THE LEARNING TRAJECTORY

5.0.1 Introduction to generative models. In Activity 1, students get introduced to generative models using examples of

media generated by generative machine learning models. At the end of the activity, students will be able to:

e Be introduced to the concept of generative models.
e Understand the breadth of what can be created with generative models.

e Learn that Al-generated media are sometimes difficult to discern from human-created media

5.0.2  Structural components of GANs. The learning goal is for students to gain a conceptual framework for how a
Generative Adversarial Network (GAN) works. In Activity 2, students learn about the generator and discriminator, the
two neural networks that work against one another to generate something new through a simulation game. At the end

of the activity, students will be able to:

e Understand the relationship between the generator and the discriminator, the two neural networks that make up
a GAN.

5.0.3 Applications of GANs. In Activity 3, Students are given examples of deployed GANs and are asked to look at
them through the lens of a generator and discriminator. Students also discuss the potential benefits and harms of each
application that they explore. In Activity 4, students look at examples of Deepfakes, and instructors discuss strategies

of identifying Deepfakes. At the end of the activity, students will be able to:

o Get acquainted with applications of GANSs for creating different kinds of media: images, drawings, music, and

videos.

For a specific GAN, identify what the generator is trying to create.

o For a specific GAN, identify the dataset used by the discriminator to make its decisions.
e For a specific GAN, identify what the potential benefits are.

e For a specific GAN, identify what the potential harms are.

o Get acquainted with the concept of Deepfakes.

e Learn some strategies to identify Deepfakes

Learn that Deepfakes are difficult to discern from real data.
5.0.4 Create with generative models. In Activity 5, students use two generative models that make use of style transfer
to generate stories with generative visual and textual elements. At the end of this activity, students will be able to:

e Partner with generative models to create stories.

o Experience style transfer in text and images.
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6 ACTIVITY DESCRIPTIONS
6.1 Activity 1. Introduction to generative models

We begin the course by introducing students to the concept of generation. Students learn that Al can be used to generate
synthetic media such as images, text, music, colors, paintings, digits or videos. We begin the activity by playing a
game called "Created by GANs or Not". In the game, they are given various works of art (i.e. visual, audio, text) and
are given three options to choose from: "Created by AI", "Not created by AI", or "I am not sure". Examples of media
can be found in Figure 3. After completing the activity, students discuss which artwork they thought was created by
AT and gave their reasoning. Students are then told that all of the artwork, in fact, was created using a kind of Al
model called generative models. We then discuss whether students found this surprising, and which artworks being
machine-generated were especially surprising for students. Learning is facilitated by eliciting an emotional response
from students through cognitive dissonance, or contradicting their concept of "what is real". Through these examples
of media created by generative models, students are introduced to the concept of generative models with a range of
instances that students could be familiar with, for example, a photograph altered using a popular filter application

Prisma [33], or a joke generated in the knock-knock joke style, or a generative "Happy Birthday" song.
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Fig. 3. Students see examples of media created by generative models and try to guess if they are created by Al or not. Left to right: a.
Image style transfer photo filter. b. Generated colors. c. Generated digits

6.2 Activity 2. How do GANs Work?

Generator/Discriminator Simulation Game

After students understand that GANs are used to generate media and explore some examples of GANSs, they are
introduced to how GANs work. Students learn that a GAN is made up of two neural networks, one called the generator,
and one called the discriminator. They are told that the generator and discriminator have two different goals that are
in competition with one another (1) The goal of the generator is to create something new that the discriminator will
classify as “real”, and (2) The goal of the discriminator is to detect if what the generator creates is “fake”.

Then, the students break up into a “generator” group and a “discriminator” group. The generators are given a 6x6
grid and told that they need to insert 7-9 squares into the grid to create an arrangement of blocks that passes by the
discriminator. The discriminators are given a dataset of images (Figure 4), and told that they must accept images that
look like the images they were given. For this dataset, we chose pixelated faces, because they could be configured in
many different ways and were common enough that students would recognize them.

The game begins when the generators send over a configuration of 7-9 blocks to the discriminator. The discriminator

team then has to decide whether or not the configuration should “pass”. If it does not pass, then they must give the
8
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Fig. 4. Dataset presented to the discriminators

I 1

generator team feedback by giving them one block that is correct (marked in green) and one block that is incorrect
(marked in red). The generator then gets another chance to produce a configuration of squares that will pass through
the discriminator. The process continues until the generator produces a configuration that the discriminator determines
fits with the rest of the data. An example of the back and forth from this game can be found in Figure 5. After the
activity, students are told that a GAN goes through this process, but many more times to create much more detailed

pieces of media.

6.3 Activity 3. Applications of GANs

After students understand how GANs work, they are asked to explore some interactive web-based tools that use GANs

to create media.

o Al Duet: Built by Yotam Mann and Google, this web tool utilizes generative piano music to let users play a duet
with the computer [29]. Users press keys to play a music note, and Al Duet adds some notes to form a duet. The
tool utilizes Tensorflow and Tone.js and has been trained on many MIDI examples and it learns about musical
concepts, building a map of notes and timings.

Sketch RNN: Built by Google Creative Lab, Sketch RNN is an interactive web experiment that lets you draw

together with a recurrent neural network model [18]. The neural net has learned to draw by training it on millions
of doodles collected from the Quick, Draw! Dataset [17]. Once the user starts drawing an object, Sketch-RNN
will come up with many possible ways to continue drawing this object based on where they left off.

e AI News Anchor: Developed by Xinhua and the Chinese search engine, these Al-powered news anchors
were developed through machine learning to simulate the voice, facial movements, and gestures of real-life
broadcasters, to present “a lifelike image” of a human news anchor [24].

o This Person Does Not Exist: This tool utilizes StyleGan2 [21] and has been trained on human faces to generate
fake human faces using GANs [40].
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a. Generator b. Discriminator - correct ¢. Discriminator - incorrect

e. Generator f. Final image

d. Generator (feedback)

Fig. 5. Activity 2. Gameplay of the generator/discriminator simulation game. a. Generator creates an initial guess; b. Discriminator
shows 2 pixels that are correct; c. Discriminator shows 2 pixels that are incorrect; d. Generator receives feedback; e. Generator guesses
again, (subsequent rounds occur but are not shown); f. Generator generates an image that the disciminator passes as "Correct”

After exploration, they were asked the following questions:

e What do you think the generator in this GAN is trying to generate? What dataset is the discriminator basing its
decisions on?

e How could this technology do the most good? How could this technology do the most harm?

6.4 Activity 4. Deepfakes

Students were already familiar with Deepfake-generated media from previous examples like AI News Anchor and
This Person Does Not Exist. To make a connection with prior knowledge, we begin this lesson by redefining what
Deepfakes are, by recollecting previous examples of Deepfakes that the students witnessed in Activity 3. Students are
then presented a questionnaire with 10 videos (5 real and 5 Deepfakes) and are asked to identify the Deepfakes. The
videos were taken from the public dataset released by the Kaggle Deepfake Detection Challenge [1]. This activity was
followed by a classroom viewing of another series of video clips featuring stimulating examples of Deepfakes, during
which students were encouraged to articulate why they thought a particular clip was a Deepfake, emphasizing what
particular features of the video made it seem "less real" or "unconvincing". We showed a range of videos including
Mona Lisa-styled Deepfakes and fake recordings of opinions voiced by political figures.

As a class, we then had an open discussion around how to spot Deepfakes on social media feeds or news sources.
Having an open-ended conversation allowed us to present this topic as an ongoing discussion and a collaborative
sharing of ideas - the structure with which we presented the material suggested to students that a list for identifying

GANSs is not set in stone or comprehensive, and that their voices were just as important in forming the list.
10
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As Deepfakes are synthetic media replacing an existing person with someone else’s likeness, the cues that help
distinguish Deepfakes from real media were often items that detracted from the naturalness of a person’s face. We
shared with students some tips for identifying Deepfakes such as blurry backgrounds or asymmetry in faces. Examples
of other components that can help identify Deepfakes can be found in Figure 6. Given this list of 7 telltale signs of
spotting Deepfakes, students were asked to complete a follow-up activity where they could put their new knowledge to
the test; for a given video, students were asked to guess whether a video was real or fake and write down the reasoning
behind their guess. In this way, we provided a framework with which they could think about the validity of media and

gave them the opportunity to practice observing these components in real life examples.

Fig. 6. Examples of how to recognize Deepfake photos

This exercise both prepares them to spot synthetic media in the future as they continue to be exposed to Deepfakes
online and helps them build general intuition around what GANs can change in a given image or video. By breaking
down the flaws and gaps in GAN-produced media, students can gain a deeper understanding of why they should be
questioning what they see on social media as well as what it is that they should look for when questioning that online
content. Beyond developing strategies to recognize Deepfakes, an important learning goal of this lesson was also to

understand that Deepfakes are very realistic and sometimes difficult to recognize even after knowing these strategies.

6.5 Activity 5. Create with generative models

Through the activities mentioned above, students experienced creating with many different types of generative models.

Students were asked to create generative stories using the following two tools that leverage generative models:

¢ Image Generation: Students used previously introduced tools such as Sketch RNN (doodles completed by a
recurrent neural network), GANimals (machine "breeded" animals created by GANSs), This Person Does Not Exist
(fake human faces using GANSs), and pix2pix (translates doodles to pictures with style transfer). These images
were used as machine-generated illustrations for the story.

o Text Generation: We introduced a Long Short Term Memory (LSTM) text-generation tool that outputs a string

of text given human-inputted seed text and a selected training corpus with a particular storytelling style. Students
11
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Workshop 1 Workshop 2 Workshop 3 Workshop 4

n 22 12 16 22

Gender F=13, M=9 F=5, M=7 F=5, M=11 F=13, M=9

Grade sth(y), 6th(s), 7th(s), | 5th(5), 6(7) 7th(10), 8t(3), 9th(1), | 6™ (5), 7R(2), 8™(12),
gth(g), oth(3) 10th(1), 11th(1) gth(3)

Table 1. A breakdown of student demographics across the four online workshops

could choose from a variety of styles such as Dr. Seuss, Harry Potter, and Zora Neale Hurston. Upon selecting a
style for the corpus, students could choose the seed text that started the generation of text, the length of the
output text, and its temperature (randomness). Outputted sentences and phrases were used as machine-generated

text for the story.

Students put together slides to showcase their stories, made up of a title slide and content slides that followed the
trajectory of the story using GAN-created text and GAN-created illustrations to complement the text, much like a
picture book. After writing their stories, students had the chance to reflect individually about the process of story
creation and storytelling. In the reflections, we asked students to document observations on the generated text and

evaluate the creativity demonstrated in their Al co-created stories. Some of the reflection questions include:

e What features did you notice from the writing style of text you chose?
e Could you have expected the ending you created with the text generator? If not, what was surprising about it?
o If you asked another person to create an alternate ending to your story intro, do you think their story would be

more or less creative than the Al-generated story?

Students were also given the opportunity to share out their stories with the rest of the class, discussing the experience

of storytelling as well as reading out the created narratives.

7 METHODS
7.1 Methods

This activity was piloted in four synchronous online summer workshops. All workshops were held virtually over
Zoom, and the activities were made available to students on Google classroom. All courses were taught by a team of
researchers and educators. The first three workshops were a part of a larger Introduction to Al curriculum, and the
second 2 workshops were a part of a workshop just focused on GANs. Timing varied depending on the workshop, but

most workshops met daily for 2-3 hours for anywhere between one and three weeks.

7.2 Participants

72 students (grade 5 — 9) participated in this IRB-approved study. The participants were spread across four different
online summer programs for middle schoolers. A breakdown of student demographics can be found in Table 1. The
workshops were led by two teachers, and were assisted by 2-3 teaching staff. All participants and their parents and

teachers signed the assent and consent forms respectively to participate in these programs.

7.3 Assessment

Data were collected before and after the workshop as well as within each lesson.
12
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Concept Inventory Students completed a questionnaire before the workshop, and again after the workshop. The
pre and post test questionnaire was given as part of a larger Concept Inventory around Al Two questions specifically
focused on how GANs work. One question focused on the roles of the generator and discriminator. This question was
made up of the following three sub-statements and students were asked to mark each one independently as “True” or

“False”.

e Q1.1 A generator and discriminator are both Neural Networks (True)
e Q1.2 The generator and discriminator are working in competition with one another (True)

® Q1.3 The discriminator gives feedback to the generator (True)

Each sub-statement answered correctly was given 1 point, for a possible score of up to 4 points. Scores pre and post
were averaged and a Wilcoxon Signed-Rank test was completed for statistical significance. Each sub-statement was
marked as correct or not and individual tested for significance with a McNemar’s Test.

The second question tested students’ ability to understand the back and forth nature of a GAN:

Q2. A GAN is being trained to generate images of clouds. The generator creates an image and sends it over to the

discriminator. The discriminator does not classify the image as a cloud. What happens next?

e The GAN stops running
o The generator and the discriminator switch roles
o The generator generates a new image (Correct Answer)

o The discriminator generates a new image

Answers for this question were scored for correctness and a McNemar’s Test was performed to test for significance.

Embedded Assessment In the "GANs or Not" activity, students responses were recorded on Google slides. Results
were then aggregated and average scores were calculated.

During the "How do GANs Work?" activity, data was collected during gameplay. Each round was documented and
conversations were transcribed. During the "Exploring GANs" activity, students recorded their responses in a Google
form. The responses were coded by researchers for accuracy and theme with a percent agreement of 82.15%.

For the Deepfakes activity, each test was scored for correctly identifying if a video was a deepfake or not, as well as

the correct reasoning. These results were compared pre to post activity through a t-test.

8 RESULTS
8.1 How do students understand the technical concepts of generative machine learning?

Students were asked two assessment questions before and after the workshop. The first question contained four
statements about GANs that students had to mark independently as “True” or “False”. If they marked all correctly, they
obtained 4 points. Forty-three students completed this question pre-post. Individual statements within this item were

analyzed during the pre and post test, and are shown in Table 2.

13
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Question Statement Correct an- | # correct (pre- | # correct | p (McNemar
swer test) (post-test) test) (n=43)

01.1 True 21 31 0.024

Q1.2 True 16 12 0.502

Q1.3 True 30 36 0.181

Table 2. A McNemar test showed there was a statistically significant gain between pre- and post- for Q1.1. while there was no
statistically significant change in Q1.2, & 1.3

The second question gave students an option of four answers and students had to pick the one that most accurately
described how a GAN works. Thirty-two students answered this question at the beginning and end of the workshop.
More students got the question correct at the end of the workshop (83.87%) versus the A McNemar’s test shows that
this was a significant change, y2(1) = 7.56, p=0.006.

8.2 How do students understand the applications of generative machine learning?

In Activity 1, students determined whether or not a piece of media was created by a generative model. The answer to
all questions was "Yes, the media was made by a generative tool" A full breakdown of student responses can be found
in Figure 7. More students thought that the Style Transfer image, generated colors and generated digits (Figure 3) were
created by a GAN, relative to those who did not think it was created by a GAN.

W Generated by Al [l Not Generated by Al I am not sure

Number of responses

Music-  Music-
ppy  Bachbot
y

Image Style Image Style Generative Imagestyle Deepfake Deepfake Deepfake Generated Generated Handwritng  Text
inting  transfer-  image video imag colors i Ha
Birthday

Text
Transfer - transfer - digits  generator generation - generation -
Van Gogh  portrait photo fiter Jokes Poem

Media

Fig. 7. Results of the GANs or Not activity. All pieces of media were created by a GAN

In the Exploring GANs activity, students tried out up to four different web tools that utilize generative machine
learning. After they explored these tools, they were asked to identify 1) what the generator in the GAN was trying
to generate, and 2) what dataset the discriminator in the GAN was basing its decisions on. Students were allowed to
answer questions for one to four tools. We received 99 completed responses from 72 students. Overall, 88% of student
responses were able to identify what the generator was trying to generate, and 60% of student responses were able to

identify the dataset that the discriminator used.
14
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Generative Generator Discriminat R Discrimi-
Model Responses | Cor- iseriminaton Reasons DISCIUMI | poeontia]l Benefits Potential Harms
Correct% nator Incorrect
Tool rect%
This Per- Helping Artist(4), Protecting
son Does | 23 100 783 Don’t know(4), Incor- | Identity(3), War Decoy(1), | Deception(15),  Policing(3),
Not Exist : rect(1) Crime(2), Entertainment(3), | Other(4), None(2)
Other(6), None(3)
No dataset(3), Con- | Automation(5), AI  Inno-
Al News 9 100 556 fused with input | vation(1), Accessibility(2), | Deception(1), Remove Jobs(4),
Anchor : data(2), Don’t | Unbiased(1), Preservation(0), | Lying(3), Other(1)
know(1) None(1)
. . Deception(1), Policing(1),
No dataset(9), Con- Create(7), Helping Artist(12), Inappropriate(10),  Collect-
X . Automation(1), Al Innova- | . -
Sketch 39 87.2 641 fused with input tion(1), Crime(3), Learn(10) ing Data(2), Copyright(3),
RNN : : data(7), Don’t . ’ .| Bias(3), Malfunction(4), Confu-
Accessibility(2),  Entertain- . X N
know(5) ment(1), Other(7), None(4) sion(3), Miscommunication(1),
> ? Other(3), None(13)
No dataset(9), Con- | Create(6), Helping Artist(6), | Copyright(5), Malfunction(3),
fused with input | Learn(3), Accessibility(3), | Remove  Jobs(3), Human
Al Duet 2 786 429 data(8), Don’t | Entertainment(4), Preserva- | Creativity(4), Bad Music(4),
know(6) tion(1), Other(5), None(1) Other(4), None(6)

Table 3. Students report the role of the generator, the discriminator, the potential benefits and harms of the generative models in the
Exploring GANs activity

Results were broken down further by media tool assessed. For the generator question, students were able to identify
what "This Person Does Not Exist" and "Al News Anchor" were trying to generate with 100% accuracy, followed by
Sketch-RNN with 87.2% accuracy, and Al Duet with 78.6% accuracy. Incorrect answers for Sketch-RNN were commonly
associated with user input. For example, students thought that the generator was trying to copy the user input or trying
to predict what the user would do next. A full breakdown of responses by tool can be found in Table 3.

Students were asked to identify whether something was a Deepfake or not, learned strategies for spotting Deepfakes,
and then took the same Deepfake quiz. There was no significant change between the pre-quiz (M=51.25, sd=13.78) and
post-quiz (M=54.89, sd=16.04), t(44)= -1.18, p = 0.12.

8.3 How do students understand the ethics around generative machine learning?

Students reported the potential benefits and harms of the tools they interacted with using in descriptive answers in
a form. Some students filled the form for multiple tools. We collected a total of 99 responses from 72 students. The
responses were first coded for 1-2 word themes of benefits and harms independently by two coders. For instance,
responses for potential benefits of Sketch-RNN such as “teach kids how to draw” and “It could help beginner drawers
know how to draw” would both be coded as “learning”. Some responses were coded with two themes, for example, the

"

potential harm of "This Person Does Not Exist" “This technology could lead to identity theft and blaming incidents
on a different person.” was coded as “Deception” and “Policing”. After the first round of coding, coders discussed
dissimilarities in codes, created a new combined coding system, re-allotted codes using the new coding scheme. Students
that responded that there were no potential benefits of harms were coded as “None” and responses that did not fall
under any code categories were coded as “Other”. The following codes were generated for the benefits and harms of
GAN tools:

Students reported a total of more benefits (100) as compared to harms (85), however, this differed by the tools.
Students were able to report harms and benefits of all the tools, and hence, we can infer that students could think about
the potential uses and societal implications of these technologies.
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We observed that, amongst the students who interacted with the tools, a higher percentage could identify the benefits
of purely artistic tools such as Sketch RNN and AI Duet and a higher percentage could identify the harms of GAN tools
that generated human faces or videos such as Al News anchor or "This Person Does Not Exist". Students associate
potential harms such as deception or policing only with tools that generated anthropomorphic media. Further, we also
observed that there was wider distribution in potential harms of the artistic tools, however for the tools generating
faces and news anchors, there was a greater consensus over what the potential harm can be. For instance, for "This
Person Does Not Exist", 88% students reported deception as a potential harm, however, for Al duet, potential harms
were spread across 10 different themes. We also observed that for more interactive tools (Sketch-RNN and AI Duet),
where the output changes based on user interactions (drawings or music notes), students identified several learning
benefits, such as “Create” or “Helping artists” or “Learning” or “Al innovation”. However, for the less interactive tools
which simply displayed a pre-generated output and did not take user input, students identified other benefits such as
“Automation” or “War Decoy” or “Crime”. A full breakdown of benefits and harms is shown in Table 3.

In the "Spotting Deepfakes" Activity, many students mentioned how difficult it was to tell if something was a

Deepfake or not, even when they became aware of common techniques to detect them:

Today, the main thing I learned is how to see if a video or picture is a deepfake/made by Al I also learned
how AI can generate things like pictures and stories using data... I found the Deepfake exercise really

hard, this is because Al videos can be very convincing.
Students explain that difficulties came from the fact that they were required to "pay attention" to "small details":

The activity if we had to identify if it was a Deepfake or not was hard. It was very hard to tell if it was.

There are so many miniature details that you have to look at, and that makes it really tricky.

That same activity about determining if the videos were real or fake was also challenging as some of the

videos had really small differences.

8.4 Final Project

All students created a generative story using the text generator and image generator tool. Students added their stories
to a master Google Slide document where they could view other students’ stories. Consider the example of Maria!,
who first used the image generation tool and drew a snake. She then chose a lollipop style for her drawing to transfer a
lollipop style to her snake drawing, and took a screenshot of the generated image. She then used the text generation
tool, and used the seed text "It’s sunny out today”, and chose the text style of the novel "Life of Pi". She adjusted the
temperature and length variables of the text generator tool until she was happy with the outcome. She then combined

the generated text with the generated image on a Google Slide to form a generative story (Figure 8).

'name changed
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Name:

Text Model Chosen: Life of Pi

StOI’Y: It's sunny out today is a ball of the boat. |
was a little each of the tiger. | pulled my head and not
about the lifeboat in the continued to the morning
that it would have the sun a many and the way the
same of the sea was feet and done to the raft with a
ship. | was hope. It was a small manning and true in
the sun to his hovered. | was at the tarpaulin and a
dead the sky was quite me. At the hipped out in the
more and hook as | saw him on the contriety

Fig. 8. Generative story created by a student using the image and text generation tools

After completion of the activity, Maria was asked to reflect upon what she learned and which activities she enjoyed
in the day. Maria reflected on image generation and said, "I liked the picture activity. I liked this because it was fun to
see how something look like if it were the other thing. Like a lollipop as a snake!".

Students reflected on their experiences creating projects with text generators. When asked "What did you notice
about the story generated by AI?", 23 responded that the story did not make sense, 6 responded that the story was
random, 3 referred to the dataset that the generator was trained on, and 4 shared miscellaneous thoughts. When asked
"Could you have expected the ending you created with the text generator? If not, what was surprising about it?", 30 students
said that they were surprised with the ended, and 5 said that they were not. Of those 30 students, the most common
reason for not expecting the ending was 10 students who reported that it "did not make sense". When asked to rank "If
you asked another person to create an alternate ending to your story intro, do you think their story would be more or less
creative than the Al-generated story?" from 1 (1 = Person’s story would be less creative than Al) to 5 = Person’s story would

be more creative than Al), the mean response was 4.15, sd=0.83.

9 DISCUSSION

We designed a learning trajectory for generative models then revised it based on testing it with students. Activities
were aligned to the LT and sequenced to build off of one another, Below we discuss each learning goal and what we

evidenced about middle school students’ learning and perspectives on generative models.

9.1 Learning Goals

How, and to what extent, do students understand the technical concepts of generative machine learning? We
found that students were able to identify the iterative process that happens between the generator and the discriminator
in a GAN. Knowledge of the relationship between the generator and the discriminator was demonstrated (Concept
Inventory Q2). However, students did not think that the generator and discriminator were working in opposition to
one another (Concept inventory Q1.3). This confusion may arise because in the generator-discriminator game, the
two teams were giving each other clues to get to one final answer, which could be viewed as collaborative instead
of competitive. Students did not understand the role of the discriminator as well as they understood the role of the
generator. The misunderstanding of the discriminator’s role was evidenced in students’ use of interactive tools that
17
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required user input (Sketch-RNN and AI Duet). In these activities, User input was conflated with the discriminator’s
training dataset.

How do students understand the applications of generative machine learning? At the beginning of the
workshop, students had a limited understanding of what might be generated by Al Students tended to view the more
artistic applications as GANs and the more photo-realistic applications as not computer generated. After students
learned the breadth of what GANs can create, how they work, and student had the opportunity to use various generative
Al tools, we found that more students showed interest in creative applications of GANs that allowed them to input
their own information into the system to create something new. In the activities in which students applied generative
modeling tools to their own projects such as generating stories and illustrations, we saw that students did not feel that
the GAN produced "realistic enough" text. Most students noted that the generated text was "random" or "did not make
sense", whereas only a couple of students said that the generated text resembled the style of the text in the dataset.

How do students understand the ethics around generative machine learning? Finally, we were interested in
understanding students’ perspectives on how these generative Al tools may be used in the future. We asked students to
provide potential benefits and potential harms for each of the four GANs tools they played with. Overall, students were
able to identify more benefits than harms for tools that gave them greater agency (Sketch RNN and AI Duet), and more
harms than benefits for tools that did not give them agency ("AI News Anchor" and "This Person Does Not Exist"). In
the tools that provided more agency, students were able to select and input media then "collaborate” with the GAN to
finish creating an artifact. The most common benefit students described for these tools were "helping artists create new
things", and the most common harms were around "inappropriate drawings" or "copyright infringement." The tools that
provided less agency ("AI News Anchor" and "This Person Does Not Exist") showed fake humans that were completely
generated by AL Students perceived "This Person Does Not Exist" as a way to create something new, yet deceptive.
"AI News Anchor" was seen as automation that took away jobs from current news anchors. From these findings, we
conjecture that students can understand ethical issues in generative models and see the benefits in the creative aspects
of GANS, but they are simultaneously concerned about generative AlI’s ability to deceive users and take away jobs.

We saw that students were able to categorize Deepfakes as a type of generative Al and were aware of the consequences
they may have on the spread of misinformation. Though students were exposed to indicators of manipulated media and
Deepfakes, they did not improve in their ability to identify Deepfakes. This is not surprising as the technology has

become so sophisticated that even experts can be fooled.

9.2 Implications

We designed a generative models LT for middle school students, followed by learning activities that address these
learning goals. The LT was successful in helping students understand the technical components of generative models,
their applications and ethical implications, and we have no evidence to indicate that the ordering of learning goals was
erroneous. However, results highlight that this LT misses out on some key learning goals associated with generative

models.

9.2.1  Neural Networks. While discussing the technical components of GANs, we do not discuss neural networks
beyond mentioning that they are a "kind of AI algorithm." While students understand that the role of the generator
and the discriminator, we do not focus enough on the fact that they are both neural networks. In Activity 3, we found
that students have difficulty in recognizing what dataset discriminators are trained on. Further, students have very
little understanding on what mechanisms the discriminator uses in providing its feedback to the generator. Gaining an
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understanding of the feed-forward, evaluation, and backpropagation processes of a Neural Network will help students
gain a better understanding of how the discriminator uses training dataset to classify the samples generated by the

generator, and penalizes the generator for producing fake samples.

9.2.2 Dataset. While creating generative stories using the text generator tool in Activity 5, several students were
confused about why the network was generating a certain kind of text. Students also have difficulty in recognizing
what input datasets these models are trained on. While we focus on how the generator and discriminator work, we do
not lay enough emphasis on the training datasets used to train these GANs. An essential learning goal, datasets should

be a part of the learning trajectory while discussing the technical components of GANS.

9.2.3 Style Transfer. In our learning activities, we introduce the concept of GANs by simulating a simple GAN
attempting to create a graphic after being given feedback (Activity 2). However, when we have students explore GANSs,
several applications such as sketch-RNN, or Al Duet, involve an essential component of style transfer involved. These
applications learn the style of an input dataset and not only generate a synthetic instance, but also transfer this generated
style on a target media. We learned that, for these applications, it was difficult for students to comprehend the role of
the discriminator. Also, applications of GANSs that students interact with in their daily lives such as photo filters, or
Deepfakes, all make use of style transfer. Hence, we recommend that in the technical components learning goals, we
must also add "How Style Transfer GANs work" as an addition to "How GANs work."

9.2.4 Transfer of Learning from Technical Components to Applications. In the Exploring GANs Activity, we asked
students to apply what they learned about how GANs work to real generative Al tools. Students who explored "This
Person Does Not Exist" were able to most accurately answer the questions about both the generator and discriminator.
"This Person Does Not Exist" was the tool that most closely resembled the generator/discriminator game, by using a
visual generation as well as no user input. The generative tool that was the least similar to the game, AI duet, had both
audio generation and user input. This was the tool that students were least able to answer, often confusing the audio
generation with the audio that they inputted. Future tools would expand from visual generation to other types of media
and teach students about the role of user input in GANS.

We designed a modified LT (Figure 9) to begin with Neural Networks as a learning goal preceding generative models.
While understanding the technical components of a GAN, we added Style Transfer models as an additional learning
goal. In order to make clear the role of training datasets, when students learn about the applications of generative
models, we lay an extra emphasis to expose to students that datasets were used to train these generative models. Finally,
when students create with generative models, they are asked to reflect upon how their creations can be used, and
identify the potential benefits and harms of their creation. This allows students to bridge their technical, applied, and

ethical understandings of generative Al into practice.

10 CONCLUSION

In this work, we use a learning trajectory approach to teach a highly technical topic, generative models, to middle
school students. We acknowledge that to teach students about generative models is to teach them about the entire
socio-technical system: a combination of technical, applied, and ethical concepts. We integrate these three different
domains into our learning trajectory, guiding students along a path of learning technical concepts, understanding the
applications of them, and then understanding how these applications are integrated into society in good and bad ways.
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As technology, such as generative models, becomes more complex and its applications more accessible, we hope that

future learning designers will use the same integrated approach.
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