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—— Abstract

Persistent homology is a common tool of topological data analysis, whose main descriptor, the
persistence diagram, aims at computing and encoding the geometry and topology of given datasets.
In this article, we present a novel application of persistent homology to characterize the spatial
arrangement of immune and epithelial (tumor) cells within the breast cancer immune microenviron-
ment. More specifically, quantitative and robust characterizations are built by computing persistence
diagrams out of a staining technique (quantitative multiplex immunofluorescence) which allows us
to obtain spatial coordinates and stain intensities on individual cells. The resulting persistence
diagrams are evaluated as characteristic biomarkers of cancer subtype and prognostic biomarker
of overall survival. For a cohort of approximately 700 breast cancer patients with median 8.5-year
clinical follow-up, we show that these persistence diagrams outperform and complement the usual
descriptors which capture spatial relationships with nearest neighbor analysis. This provides new
insights and possibilities on the general problem of building (topology-based) biomarkers that are
characteristic and predictive of cancer subtype, overall survival and response to therapy.
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1 Introduction

Descriptors computed with topological data analysis (TDA), such as persistence diagrams
[21, 60] and Mapper [56], have shown strong analytical power in many real world biological
data. Examples include (but are not limited to) neuronal structures [41, 33|, cardiac trabeculae
[24, 59], brain images [46, 39] and genomics data [44, 12, 51]. These methods capture multi-
scale geometric and structural patterns of the data with guaranteed robustness against
potential noise introduced in measurement [17, 18] and in upstream preprocessing steps [7].
As such, they provide a systematic way to quantify complex biomedical systems. Furthermore,
state-of-the-art discriminative models (i.e., classifiers) [11, 30, 34] and unsupervised models
(i.e., clustering methods) [36] have been recently introduced, and are able to effectively
connect topological features and clinical/biological outcomes of interest.

In this paper, we present a new application of topological data analysis, namely, the
characterization of breast cancer immune microenvironment using persistence diagrams.
Despite tremendous advancements in cancer screening, diagnostic methods and treatment,
breast cancer remains the second leading cause of cancer death in women with projections of
270,000 new cases and approximately 42,000 deaths from invasive breast cancer in 2019 [53].
Therefore, identifying descriptors that indicate potential therapeutic targets and predict
outcome is a critical yet unmet need in breast cancer [20]. The goal of this article is to show
how persistence diagrams can help in fulfilling this task.

Cancer research and characterization of spatial cell arrangement. In the past decade, a
major focus of cancer research has been on the interplay between the tumor and the immune
environment, referred to as the tumor immune microenvironment [8]. By characterizing
host-specific functional anti-tumor immune responses and their correlation to cancer subtype
and overall survival, patient specific immunotherapeutic targets can be identified [49] with
higher precision. To achieve the goal, it is necessary to characterize the complex spatial
arrangement between cancer cells and a mixture of different immune cells, e.g., T-cells and
macrophages, both of which play a versatile biological role and are believed to be crucially
relevant to initiation and regulation of the immune response. This task involves two important
steps: cell detection and characterization.

Thanks to the rapid development of imaging technology and deep learning methods, we
are able to detect not only locations, but also types of different cells within a slide of tumor
biopsy sample from a cancer patient. By staining the slide using immunohistochemical (IHC)
markers, we are able to tag different types of cells with different stains, i.e., colors bounded
with different protein biomarkers. Using a brightfield image scanner, we convert the stained
slide into a whole slide image in which various cells can be identified by their respective stains
[47, 32]. The identification of cells is referred to as phenotyping. Advanced deep learning
methods [23, 1] have been developed to unmix the stains and to detect cells and their types.
This approach, called multiplex THC, is scalable but less precise as noise is introduced due to
the additional deep learning cell detector. Alternatively, we may use quantitative multiplex
immunofluorescence (qmlIF'), which stains different cells with different fluorescent stains and
detect them using lenses with specific filters. The qmIF approach is highly reliable, albeit
costly in material and in time.

Once cells of different types are detected, we need to quantitatively characterize their
spatial arrangements in order to evaluate correlations with various outcomes of interest.
There are two major challenges. First, the spatial arrangement is highly heterogeneous
across different patients and even within a single tissue sample. Second, stain intensity is



A. Aukerman, M. Carriére, C. Chen, K. Gardner, R. Rabadan, and R. Vanguri

relative, and phenotype thresholds must be manually determined. Discerning true signal
from background isn’t always clear, and currently is done in relation to other tissue samples.
Nonetheless, qmIF imaging provides rich data for study; see Figure 1 for an example of the
raw image data.

Figure 1 An example input data. Left: The raw microscopic image of a stained tissue sample.
The sample is approximately 1x1 mm? large. The image is 2,000x2,000 pixels, 0.5x0.5 micron?
per pixel. A sample usually contains 3,000 to 5,000 cells. Right: The processed results. Cells are
identified by localizing their nuclei with a special stain (shown as white regions). The phenotype of
each cell can be identified by the stain intensity of its cytoplasm and nucleus: T cells are tagged with
CD8 (blue), macrophages are tagged with CD68 (green), tumor cells are tagged with pancytokeratin
(cyan). Any cell may additionally be tagged with PD-L1 (red). The cells are abstracted into point
clouds with different stain intensities, as shown in Figure 3.

Related work. Previous methods [25, 54] focus on using nearest neighbor distances from
cells of one type (obtained by thresholding the stain intensities) to cells of a second type.
Unfortunately, this approach is sensitive to noise and lacks the ability to model stain
concentration variations due to the thresholding. Moreover, it can only characterize fixed
neighborhoods around the cells and is oblivious to larger cell arrangements.

Persistent homology has recently been used to characterize cellular architecture in patho-
logy images in [37], where these descriptors were shown to successfully detect and quantify
circular cell structures corresponding to glands. In contrast, our work operates on coordinates
of phenotyped cells and deals with the global characterization of complex interactions between
these cellular phenotypes.

Contributions. In this article, we propose the first topological analysis of tumor immune

microenvironment. More specifically, we provide empirical evidence that persistence diagrams

are suitable descriptors by experimentally demonstrating the following points:
First, stain concentration levels, or stain intensities, that are usually used by practitioners
to filter cells, are natural candidates for defining filtrations (in the TDA vocabulary)
from which persistence diagrams can be computed. This way, the whole range of stain
intensities is taken into account instead of thresholding. We hypothesize that the stain
intensity is biologically meaningful and the resulting persistence diagrams will be more
predictive than just using cell coordinates from thresholding.
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Second, persistence diagrams are able to capture topological and structural features
that are characteristic of the arrangement of the cells. This is because the structures
encoded by persistence diagrams are robust to spatial deformation and other types of noise
introduced in detection, which prevents the analysis from being biased by measurement
errors, contrarily to other descriptors used in the literature.

Our study, although preliminary, demonstrates the potential of persistence homology being
a novel tool to characterize the tumor immune microenvironment. With rich computation
and learning tools available for persistence-derived features, we are confident that topological
characterization will lead to powerful diagnostic and prognostic cancer biomarkers.

Plan of the article. We introduce our biological data, and briefly recall the basics of
topological data analysis in Section 2. Then, we explain our methods for computing and
running statistical tests on persistence diagrams in Section 3. Finally, we conclude and
summarize future investigations and open questions in Section 4.

2 Data and Background

In this section, we introduce our biological data (Section 2.1), and briefly recall the rationale
for nearest neighbor analysis (Section 2.2) and topological data analysis (Section 2.3).

2.1 Biological Data

We analyze a large cohort of patients with extensive 8.5 years of follow-up. For each tissue
sample, qmlIF imaging was obtained with a panel of immune markers for phenotyping
the tumor immune microenvironment, including: CD8 (T-cells), CD68 (macrophages) and
pancytokeratin (cancer cells). Then, a commercial software package (HALO, Indica Labs)
was used to perform nuclear segmentation, cytoplasmic definition, and stain quantification.
Cell phenotypes, based on a threshold applied to the stain intensity, were defined manually.
See Figures 1 for the conventional threshold-based phenotype analysis. Let us now provide
details on the important steps that were necessary to collect our data.

Patient Cohort. Our raw data is comprised of high-throughput tissue microarrays (TMA)
consisting of lmm x lmm cores of tissue. The TMA were assembled with tissues from a
cohort of 900 patients that underwent tumor resection following a diagnosis of breast cancer
at Pitt County Memorial Hospital (now Vidant Hospital) in Greenville, North Carolina.
Patient samples and clinicopathological data were collected under an IRB approved protocol
at the Brody School of Medicine, East Carolina University [9]. The cohort is uniquely
valuable for research as there is median 8.5 year follow-up data which allows for in depth
evaluation for topological biomarkers with patient attributes and clinical outcomes.

Quantitative Multiplex Immunofluorescence. Unlike traditional immunohistochemistry,
gmlF enables simultaneous staining of multiple markers in a single piece of tissue. We use
the Ultivue UltiMapper I/O PD-L1 assay consisting of the following markers: CD8 (cytotoxic
T-cells), CD68 (macrophages), PD-L1 (an immune suppressive protein), pancytokeratin (epi-
thelial cells), and DAPT (DNA marker) for identification of cell nuclei. In our data, positively
stained epithelial cells via pancytokeratin are considered to be tumor cells. Every cell in the
tissue is designated with a PD-L1 status being either positive or negative corresponding to
above or below threshold stain intensity. All staining thresholds are adaptively determined to
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enhance signal (consistent with a positive staining pattern assessed visually) to background.
The result of the phenotyping analysis is a text file for each tissue sample consisting of entries
listing information about each cell location, including the manual phenotyping result and
raw stain intensities. Each tissue sample consists of 3,000-5,000 cells.

2.2 Nearest Neighbor Analysis

Nearest neighbor analysis is commonly performed with qmIF data [25]. We perform a nearest
neighbor search between combinations of phenotypes for all possible phenotype pairs. More
specifically, for a given pair of phenotypes Pi, P», each composed of cells (detected with
thresholds on their stain intensities) with two coordinates, we compute, for a given cell
C; belonging to P;, the Euclidean distances to all cells belonging to P, excluding those
whose distance is less than 0.05 microns to prevent cell-overlap. We keep the minimum
distance value among those, which we call the nearest neighbor distance, and repeat this
process for each cell in P; to form a distribution of nearest neighbor distances, d;. The mean
and standard deviation of d; are then derived. We apply the same process for all pairs of
phenotypes and used the corresponding means and deviations as features of biomarkers,
potentially predictive of triple-negative status and prognostic of overall survival. This can
also be written as a function of matrix operations involving the similarity matrix of cell
coordinates between P, and Ps:

qir = {C1x, Cop, oo, Cit}, trj = {C1k, Copy ooy Cii} T, k= 1,2
Ny = (a7)i + (t7); — 2dints;

di = \/HliIleij (N” Z 005)

2.3 Topological Data Analysis

In this article, we aim at characterizing the spatial arrangement of phenotypes using per-
sistence diagrams, which are common descriptors of topological data analysis. Thus, we
briefly recall, in this section, the basics of persistent homology and persistence diagrams.
The interested reader can find a thorough treatment of persistence in several computational
topology and algebraic topology textbooks such as [22, 14, 45].

Persistent homology. The aim of persistent homology is to encode the topological inform-
ation contained in a dataset X through the lens of a filter function f : X — R. This is
achieved by considering the sublevel sets of f: F, = {z € X : f(z) < a}. The family of
sublevel sets F = {F, }ocr defines a filtration, i.e., a family of subsets of X that are nested
with respect to the inclusion: F,, C Fp if < . The idea of persistence is to track the
topological changes occurring in the filtration as the sublevel set threshold « increases from
—00 to +oo. For instance, each time a topological structure such as a connected component,
a handle or a void, appears in the sublevel set, we use the corresponding threshold as the
so-called birth time for this structure. Similarly, each time a structure disappears in the
sublevel set (think for instance of a handle being filled in after data points inside the handle
were added to the sublevel set), we use the corresponding threshold as the death time. This
tracking is eventually encoded in a persistence diagram, that we denote by D(f), which is a
set of dots in the Euclidean plane R?, each dot representing a topological structure whose
birth and death times can be retrieved from the coordinates of the dot.
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Persistence on images. In Figure 2, we provide an example of persistent homology compu-
tation performed on an image taken from the MNIST [38] dataset using the opposite of the
pixel stain intensity as the filter function, so that it increases from white to black. Given a
specific filter function value, the black pixels displayed in the top row of Figure 2 are those
constituting the sublevel sets. One can see that at values b and d, handles are created in the
union of black pixels, and they are eventually filled in at value e, for which the corresponding
sublevel set includes all pixels. Other examples on our biological data are also displayed in

:
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Figure 2 Example of a persistence diagram (lower right) computed on an image taken from the
MNIST [38] dataset (lower left) using the opposite of the pixel stain intensity whose sublevel sets
are displayed in the top row. Green squares represent connected components while the blue and
orange circles represent handles, whose representative cycles are displayed on the original image.

Stability of persistence diagrams. One of the most useful properties of persistence diagrams
is their stability: persistence diagrams computed from similar images must be similar
themselves, w.r.t. the so-called Wasserstein distances between them.

» Definition 1 ([14, 17]). The p-Wasserstein distance d,, between two persistence diagrams
D, D' is defined as:

dp(D, D' =inf, > [Ipt —y(pt)|%,
pteDUA

where A is made of an infinite number of copies of the diagonal {(z,z) : x € R} and
ranges over all matchings between D U A and D' U A.

When the sum in Definition 1 is replaced by a maximum, the Wasserstein distance becomes
the so-called bottleneck distance do.. Using this distance, one can state the stability property
of persistence diagrams, which shows that the Wasserstein distance between persistence
diagrams is upper bounded by the distance (in the || - || norm) between filter functions.
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» Theorem 2 ([13, 17]). Given a topological space X and two continuous functions f,g :
X — R, the following inequality is true:

doo(D(f), D(9)) < If = 9llo (1)

Note that similar stability results can be obtained with p-Wasserstein distances, with
different upper bounds [45].

3 Methods and Results

In this section, we detail our methods to compute and analyze persistence diagrams from
point clouds representing cells with different stain intensities. More specifically, we show how
to discretize the cell domain into an image with stain intensity-valued pixels, from which we
calculate the corresponding persistence diagrams (in homological dimension zero and one)
in Section 3.1. Then, we show how to run statistical tests on persistence diagrams between
different populations using Hilbert space embeddings with the Sliced Wasserstein kernel [11]
in Section 3.2. Finally, we provide and discuss results for different patient groups (patients
with different molecular subtypes, patients that survived after 8.5 years vs. deceased) in
Section 3.3.

3.1 Persistence Diagrams of Cells with Stain Intensity values
In this section, we explain how persistence diagrams were computed on our point clouds

representing cells so as to make use of the associated stain intensities.

Point clouds. As mentioned above, the image data for each patient is summarized in
a point cloud, where the points represent cells, and have four associated stain intensities,

corresponding to the CD8, CD68, PD-L1, and pancytokeratin (tumor) stains (see Section 2.1).

Each patient also has two binary labels corresponding to overall survival and whether the
cancer subtype is triple-negative. After removing samples with bad quality or missing labels,
our final dataset is comprised of 671 point clouds. See Figure 3 for an example of such
point clouds, where we only kept the cells with stain intensities above a certain threshold to
ease visualization. One can see from these point clouds that different topological structures
seem to emerge depending on the stain being considered: structures can be either isolated
connected components corresponding to the scattered spots of cells exhibiting large stain
intensity values (such as pancytokeratin (tumor) in Figure 3) or small cycles corresponding
to regions where there are no cells with large stain intensity (such as CD8 in Figure 3). The
lack of any discernible structure is also a possible feature if the stain intensity is diffuse
across the whole tissue (such as PD-L1 in Figure 3).

Persistence Diagrams. It is common in topological data analysis to use Rips, Cech or
Alpha filtrations [13] when dealing with point clouds. However, this would leave the stain
intensity values aside and only provide information about the shape of the whole point cloud,
which might not be sufficient to successfully encode the spatial and geometrical relationships
between phenotypes.

Hence, in order to take the stain intensities into account when computing topological
descriptors, we first discretized the plane into a grid of 40 x 40 pixels. Next, we binned
the stain intensity values on this grid, so as to obtain an image. Note that the choice of
resolution (i.e. the number of pixels) has to be carefully done: if the number of pixels is too
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Figure 3 Illustration of the point clouds corresponding to the different stains (cell color and
size is proportional to stain intensity to ease visualization). One can see that the different stain
intensities induce different geometric patterns.

Intensity of Pancytokeratin

2500 1400 ] -

2000

1200 @

1500

1000

04 1000
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Image of Pancytokeratin

Figure 4 Discretization process turning a point cloud with stain intensity values into an image.
We start with the full point cloud with the corresponding stain intensity values (upper left). Note
that we only show cells above a certain stain intensity threshold to ease visualization. The cells are
then placed into pixels of a grid drawn on top of the plane (upper right). These pixels with the
corresponding stain intensity values are then turned into an image (down right and left).
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small, one might not be able to see and compute the topological structures, but in the other
hand, a resolution that is too large would induce artifacts, in the sense that all cells would
be isolated, and no interesting topology could be computed. Our resolution of 40 x 40 pixels
was manually chosen and seemed to be the best tradeoff on our data. See Figure 4 for an
illustration of this process. Note also that it would be interesting to use Nadaraya-Watson
kernel-based estimators (see Chapter 6 in [29]) to smooth the stain intensities of the pixels,
but we left this possibility for future work.

Finally, we used persistent homology (see Section 2.3) to produce persistence diagrams
out of our stain intensity-based images, by filtering the pixels with the opposite of the
stain intensity (so that pixels with large stain intensity appear first). Note that points with
ordinate 0 corresponds to topological structures that disappeared when adding the pixels
with stain intensity 0, i.e., the pixels corresponding either to the cells not belonging to the
corresponding phenotype or to pixels with no associated cells. These points should thus
not be considered characteristic of the corresponding phenotype. See Figure 5 for examples
of such persistence diagrams. One can see from these images that some patterns in the
persistence diagrams, such as the distance-to-the-diagonal of points in homological dimension
0, or the number of points in homological dimension 1, seem to be correlated with how diffuse
the cells with large stain intensity values are within the image.

Pairs of phenotypes. As mentioned in Section 1, characterizing the interactions, or co-
localizations, between pairs of phenotypes might be as important, if not more, as characterizing
them alone. Hence, we also computed persistence diagrams out of images with pixels colored
by the average of pairs of phenotypes. This can be thought of as a similar but quite more
general measure of co-localization than the one given by nearest neighbors (see Section 2.2).
Indeed, the standard nearest neighbors analysis basically ranks the cells with respect to the
distance to their closest neighbor. In terms of persistence, this ranking can be retrieved from
the pixel filtration values: the lower they are, the more the corresponding pixels are likely
to contain cells that co-localize from the two phenotypes. However, persistence diagrams
also encode the interactions between the topological structures that are born from these
co-localization spots. See Figure 6 for examples of such persistence diagrams. One can see
from these images that the topological structures that are present in the image of a pair
of phenotypes roughly include those of each phenotype alone, and that the structures that
co-localize are emphasized.

Robustness. From a theoretical point of view, the stability property that persistence
diagrams enjoy (see Section 2.3 and Proposition 2) is very advantageous. Indeed, it is well-
known that any nearest neighbors analysis is sensitive to measurement errors: even a slight
mistake in the measurement of stain intensity can induce different phenotype assignments
for the cells, and thus different outputs from a nearest neighbor analysis. Since we do not
depend on thresholding to compute persistence diagrams, we avoid this issue. On the other
hand, the stability theorem for persistence diagrams ensures that any measurement error
only has a small effect, provided that the error is small itself.

3.2 Statistics on Persistence Diagrams

In this section, we provide details about the statistical methods we used to assess the efficiency
of persistence diagrams as characteristic and predictive biological descriptors.
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Figure 5 Examples of images with stain intensity-based pixels computed from point clouds
(left) and their corresponding persistence diagrams (right). Points in homological dimension 0 are
displayed in red and points in homological dimension 1 are displayed in green. From top to bottom:
stains of CD8, CD68, PD-L1 and pancytokeratin.



A. Aukerman, M. Carriére, C. Chen, K. Gardner, R. Rabadan, and R. Vanguri

Image of CDB and Pancytokeratin Persistence diagram of CDB and Pancytokeratin Image of CDGS and PDLL Persistence diagram of CD68 and PDL1

Image of CDS8 and Pancytokeratin persis a Image of PDLI and Pancytokeratin Persistence diagram of PDLL and Pancytokeratin

Figure 6 Examples of images and associated persistence diagrams computed from pairs of
phenotypes/stains. Points in homological dimension 0 are displayed in red and points in homological
dimension 1 are displayed in green.

Kernel-based Statistical Tests. In order to formally assess the statistical power of per-
sistence diagrams with respect to the groups of interest, such as survived vs. not-survived,
or triple-negative cancer subtype vs. other subtype, we need to be able to run statistical
tests on distributions of persistence diagrams. Several recent works have looked at this
question from a theoretical point of view [35, 52, 58]. In this article, we focus on Kernel Mean
Embeddings [26], that is, we characterize a sample of a distribution D of persistence diagrams
D, = {D;,---,D,} by embedding the diagrams in a Hilbert space H with a continuous map
®, and by taking the mean (1}1 the Hilbert space) of this sample: ®(D,,) := LN ®(Dy).
Now, given two samples D,, and D/, one can compute the statistic:

MMD(Dy,, D;,) := [|®(Dn) — (D)) |,

also called the maximum mean discrepancy, and use it to perform statistical tests in order to
check whether D and D’ are the same. This statistic has been shown to be a good proxy,
with quantified approximation bounds, to its continuous version ||®(D) — ®(D’)||x in [26],
where ®(D) is defined as Ep.p[®(D)].

Choice of the embedding function. It might not be totally clear how to choose such a
map P for embedding persistence diagrams. This can actually be done quite easily with the
use of kernels:

» Definition 3. Let Dy 1, be the space of persistence diagrams with at most N points included
in [—L,L]*>. A kernel is a pairwise function k : Dy, x Dy,;, — R such that the matriz
K = ((k(D;, Dj)))1<i,j<n is positive semi-definite for any family of persistence diagrams
D1,~'~ ,Dn S DN,L-

A useful result of kernel methods actually relates kernels to embeddings in Hilbert spaces:

» Proposition 4. Let k be a kernel on Dy 1. Then, there exists a Hilbert space Hy and a
map Py, such that, for any D, D’ € Dy 1, one has k(D,D’) = (®(D), ®(D")),,-

11:11
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In other words, any kernel matrix can be interpreted as a Gram matrix in an implicit
(and potentially infinite-dimensional) Hilbert space. Moreover, the statistic MMD can be
easily computed from & with:

hmmmﬂfzﬁfﬁw %fj ii@m—;iwmﬁ
i=1 Jj=1 Hi

i=1 j=1

) D ILCILLRMEETS 3 DLCAR A
i=1 u=1 j=1v=1

i=1 j=1

1 1 2
— K|+ — || K[| — — || K
SIEl A+ S I = KL

where K, K’ and K are the kernel matrices computed on D x D, D’ x D', and D x D’
respectively. Note however that it has been shown in [26] that MMD is a biased statistic —
in practice, we compute the unbiased MMD, defined as:

MMD,,(D,,, D},)? = e Z Du))ag, + Z D;,)),

2i

gs
IS

Z

S

n

S S (D), B(D)),

=1 j=1

Now it only remains to pick a kernel for persistence diagrams. Several choices have
been proposed in recent works [2, 6, 11, 34, 50], and we will focus on one called the Sliced
Wasserstein kernel ksw [11] in this work, since it has been shown to be one of the most
efficient approach in different statistical tasks [11]. Its definition is based on the Sliced
Wasserstein distance SW between persistence diagrams, which is defined (informally) as
the integral over all possible lines of the 1-Wasserstein distance (see Section 2.3) computed
between projections of these diagrams onto a line going through the origin. In practice, one
does not compute this integral exactly but rather samples a fixed number of lines, finding the
average Wasserstein distance between the corresponding projections. We refer the interested
reader to [11] for a precise definition of this distance, and we merely recall the definition of
the associated kernel:

» Definition 5 ([11]). Let D,D’ € Dy, and o > 0. The Sliced Wasserstein kernel is:

SW(D,D’)

k‘sw(D, D/) =e o2 s
where SW denotes the Sliced Wasserstein distance between persistence diagrams.

One can easily see that ksw can be interpreted as a Gaussian kernel, with its only
parameter ¢ being the corresponding bandwidth.

Characteristic kernels. There is a specific class of kernels in the literature that is of
particular interest when it comes to statistical tests: the so-called characteristic kernels [57,
55].
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» Definition 6. A kernel k is called characteristic if its corresponding map Py, is injective
on distributions, i.e., for any pair of distributions D and D’, one has:

12(D) = ®(D)ll, =0=D =7

Obviously, any statistical test based on a kernel requires it to be characteristic in order
to be theoretically backed-up. Even though it is not clear whether the Sliced Wasserstein
kernel is characteristic or not, there exists a strategy to build a characteristic kernel out of
another one, that was first presented in [35], and that we use again in this work:

» Theorem 7 ([35]). Let k be a kernel on Dy, whose associated map ®y, is continuous and
injective and whose associated Hilbert space Hy, is separable. Then the kernel k := e* is a
characteristic kernel.

Theorem 7 is actually a consequence of a more general theorem that is valid on any
compact metric space (the fact that Dy 1 is compact, with respect to the first Wasserstein
distance between persistence diagrams, was proved in [35]). Moreover, it has been shown
in [11] that the map ®y,,, associated to kgw is continuous and injective. Finally, since it is
also known that Dy, is separable [43], it follows that the Hilbert space associated to kgw is
separable as well, as the completion of the span of a separable space. Hence the following
result:

» Proposition 8. The kernel l%sw = efswW s characteristic.

All of the statistical analysis presented in the following section has been performed with
the kernel ksw, that we call the characteristic Sliced Wasserstein kernel.

Comparison with NN features. Concerning the features given by nearest neighbors analysis,
i.e., the means and variances of the distribution of Euclidean distances to the closest neighbors
(see Section 2.2), we use kernel-based statistical tests based on the MMD computed with a
standard Gaussian kernel (which is known to be characteristic). Moreover, we also test the
independence between persistence diagrams and nearest neighbors features in order to check
whether these two types of features are complementary or not. Again, kernel methods can
be used to define the correlation between features living in different spaces. The so-called
constrained covariance (COCO for short) [27] is defined as:

o 1 /= =
COCO(DX,DY) = - | KxKyl|2,

where DX (resp. DY) is a sample from a distribution in a space X (resp. Y), Kx (resp.
Ky) is the centered (i.e., multiplied with I — 1 117) version of the kernel matrix Kx (resp.

Ky) computed on DX (resp. DY), and || - |2 is the largest singular value. It has been
shown in [27] that the COCO can be used as a general measure of correlation (for random
variables that are not directly comparable), since having a null COCO is equivalent to being
independent (see Theorem 6 in [27]) for characteristic kernels!.

1 The cited result is actually proved for the so-called universal kernels but we leave this subtlety aside in
the context of this work since it has no effect on our analysis
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3.3 Results

We focus on statistical significance between populations of patients instead of building a
classifier. This is due to the lack of tissue area and access to tissue heterogeneity typically
available in whole-slide images which are typically used for diagnosis. In an ongoing analysis,
we are expanding the analysis for the same patients to whole slide imaging, where the point
clouds will be ~ 400x larger. In this section, we provide the experimental results obtained
on our data using the characteristic Sliced Wasserstein kernel ksw presented in Section 3.2
for persistence diagrams and a standard Gaussian kernel for the NN features. For both types
of descriptors, the kernel bandwidth was selected manually as the median of all pairwise
distances (the distances used being the Sliced Wasserstein distance for persistence diagrams
and the Euclidean distance for NN features). Moreover, the p-values were computed with
2 - 103 random permutations. The individual sample labels were shuffled and p-values were
calculated from the rank of the true labels.

Triple-negative subtype. In this first experiment, we separate the patients with respect to
their cancer subtypes. More specifically, we aim at distinguishing between patients diagnosed
with triple-negative breast cancer and those with other subtypes. Triple-negative breast
cancer is especially interesting due to its high ability to provoke an immune response, or
immunogenecity, among subtypes. However, triple-negative breast cancer patients typically
have poor prognosis due to the lack of response to hormonal or receptor-status therapy. By
better understanding the immune profiles associated with triple-negative breast cancers and
the association with treatment response (i.e. overall survival), it could be possible to design
targeted immunotherapies [42].

We show in Figure 7 (left) the p-values obtained with persistence diagrams, and the
ones computed with NN features, for each (pair of) phenotypes. It can be seen from this
plot that the p-values obtained with persistence diagrams are most of the time comparable
to those given by NN features, with the exception of CD8 and the CD8-pancytokeratin
pair. We find that the NN metrics are not significant, and this was further verified with
the full NN distribution shapes. On the other hand, persistence diagrams demonstrated
consistency of the p-values including CD8-involved pairs, indicating they reveal topology
beyond that quantified by the NN algorithm. Moreover, 1-dimensional persistence diagrams,
which encode higher-order interactions between the phenotypes (that cannot be retrieved
from NN analysis), also seem to be statistically more efficient than their 0-dimensional
counterparts.

Survival. In this second experiment, we now aim at distinguishing between patients that
were alive at the latest follow-up after diagnosis. Although this includes causes unrelated to
the breast cancer morbidity and associated treatment, such as dying of natural causes or
other disease, this is still a good measure of overall disease-free survival. The corresponding
p-values are displayed in Figure 7 (right). It can be seen that the p-values corresponding to
persistence diagrams are in general much lower than those corresponding of NN features,
especially in PD-L1 involved pairs. PD-L1 combinations are relatively rare and, as explained
at the end of Section 3.1, NN features are sensitive to noise and the counting statistics on
the number of phenotype pairs. Characterizing the spatial interactions of PD-L1 expression,
however, would provide valuable insight into the possible immuno-repressive patterns in the
tumor immune microenvironment.
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We see, on the other hand, stability of persistence diagrams providing statistically
significant measures. This makes diagrams a more robust descriptor than NN alone at the
same statistical power. Similarly, it is clear from the distribution of values that persistence
diagrams are more stable descriptors than NN features, picking up topology relating to

P-values of kernel test P-values of kernel test
0.40 4 14 -®- NN features -®- NN features
i \
"" —-®- PH dimension 0 0.6 ,'\. —@- PH dimension 0
0.35 4 H -@- PH dimension 1 1 -@- PH dimension 1
v
1o 0.5 P
0.30 4 I HER N
[ [ [N
i 1 ! \ i N,
0.25 1 \ 0.4 i | K .
! \ H \ ! [}
1 \
4 ] \ 1 i
020 i | 03 ! 4 ’
] \ ° ! 4 ,\\ 7
0.15 ' \ S ' ' ;o /
LN \ 0.2 AN / ! sON
o104 ' S oA i v N
! R ! ’ g
N \ 014 _.7" A ‘ Vo ® -~
0054 1 ™ \ K o« e ! v -
o w .. / / R T SV .
el Tne ool S / [P S S =@l---
000] & T~e--rreeetiE e ttgeceagn 00 $---@--—Tgeing=Tllg iz g---—g--==0""-e
2 @ & ~ ® * & a & (3 2 & % & . *
© < & ' < & & o~ & o < o N < & N < e &
¢ (9 ¢ (@
& <@ o bxq R A & €@ o bxq R
° © 3 Q9 2 b © © B Q % b
S A C S S A

Figure 7 P-values computed by kernel-based statistical tests for NN features (red), 0-dimensional
persistence diagrams (green) and 1-dimensional persistence diagrams (blue), for different (pairs of)

phenotypes. “Pancytokeratin” has been abbreviated to “Pctk”.

Correlation. Finally, we check the correlation values, as mea

sured with COCO, between the

NN features and persistence diagrams. We show the computed values in Figure 8. One can
see that the correlation is always less than 0.1, which indicates that these features are almost
statistically completely independent, and thus complementary. Moreover, these correlations
seem to be oblivious to homological dimension since the shape of the curves for 0- and

1-dimensional persistence diagrams is roughly the same.
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Figure 8 Correlation coefficients, measured with COCO, between NN features and 0-dimensional

persistence diagrams (green), and 1-dimensional persistence diagrams (blue).

SoCG 2020



11:16

PH Based Characterization of the Breast Cancer Immune Microenvironment

4 Open Questions and Future Work

We presented a novel approach for cancer research through the analysis of qmIF data using
persistent homology, evaluated our method on a unique cohort of 671 patients using high-
throughput tumor microarrays with a median 8.5 year follow-up. Our preliminary analyses
show that features derived from persistent homology between groups of patients stratified
by survival and triple negative status are statistically significant and are complementary to
the state-of-the-art nearest neighbor approach. This indicates that the persistent homology
features can be used as a complementary biomarker. Although the features do not separate
the groups well enough to form a viable classifier, our results indicate feasibility of strong
classification results in future work using more tissue area and larger associated point clouds.
We are actively pursuing this by performing qmIF on tissue sections that contain 400 x
more area. If a successful classifier can be built, it could be possible to characterize patient
immune profiles to build specific treatments. It could also be possible to use features derived
from persistent homology to study functional breast cancer dynamics. For example, the
relationship between persistence diagrams and other biological data such as proteomics or
genomic sequencing could reveal factors that play a role in cancer initiation or progression.

Open questions. Our preliminary study is by no means comprehensive, and many questions

remain open. Here is a list of the future investigations that we plan to work on:
We only considered single phenotypes and pairs of phenotypes. However, one might be
interested in the interactions between more than two phenotypes, although this would
greatly increase the number of persistence diagrams computed for each patient. Moreover,
there is no single solution on how to combine the different stain intensities. In this work,
we merely took the average between normalized stain intensities, even though it would be
interesting to weight the filtrations given by stain intensities in order to take the range
of stain intensity values into account. The weight coefficients could even be learned so
as to avoid a brute force search, using for instance recent works on differentiability of
persistence diagrams for learning [5, 15, 31, 48].
More generally, the question of turning a point cloud with different stain intensity values
into one (or more) persistence diagram has many different solutions, the most natural one
being to use Alpha or Rips filtrations, even though it would not be satisfactory since stain
intensity values would be left aside. In this work, we built images with fixed resolution,
that is, number of pixels, on top of the point clouds and used these images to compute
persistence. However, other choices of filtrations are possible. For instance, one could
think of constructing a graph on top of the point cloud, such as a §-neighborhood graph,
and then filter this graph with the stain intensity values on the nodes. Note that the ¢§
parameter actually plays the role of the resolution of the image.
Multiple stain intensities actually fits into the multiparameter persistence framework [10,
28], where data is filtered by several filtrations at the same time. Our approach of
taking linear combinations of stain intensities actually amounts to draw lines in this
multiparameter space and compute usual persistence along this line, which is the approach
that is also advocated in recent works [19, 40]. However, multiparameter persistence is
a current area of research, and invariants have been obtained in recent works, at least
for bifiltrations, that is, filtrations with two parameters [3, 4, 16]. Even though they are
harder to encode than persistence diagrams, it might be interesting to apply these results
in our context.
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