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Abstract

Cellular differentiation is a tightly regulated process under the control of intricate signaling
and transcription factors interaction network working in coordination. These interactions
make the systems dynamic, robust and stable but also difficult to dissect. In the spinal cord,
recent work has shown that a network of FGF, WNT and Retinoic Acid (RA) signaling factors
regulate neural maturation by directing the activity of a transcription factor network that con-
tains CDX at its core. Here we have used partial and ordinary (Hill) differential equation
based models to understand the spatiotemporal dynamics of the FGF/WNT/RA and the
CDX/transcription factor networks, alone and in combination. We show that in both net-
works, the strength of interaction among network partners impacts the dynamics, behavior
and output of the system. In the signaling network, interaction strength determine the posi-
tion and size of discrete regions of cell differentiation and small changes in the strength of
the interactions among networking partners can result in a signal overriding, balancing or
oscillating with another signal. We also show that the spatiotemporal information generated
by the signaling network can be conveyed to the CDX/transcription network to produces a
transition zone that separates regions of high cell potency from regions of cell differentiation,
in agreement with most in vivo observations. Importantly, one emerging property of the net-
works is their robustness to extrinsic disturbances, which allows the system to retain or can-
alize NP cells in developmental trajectories. This analysis provides a model for the
interaction conditions underlying spinal cord cell maturation during embryonic axial
elongation.

Introduction

Cells sequentially differentiate from high to low potency states, under the guidance of extracel-
lular signals working in coordination with intracellular transcription factors. Signals regulate
the individual and network activity of the transcription factors by providing spatial and tempo-
ral information [1-4]. In turn, transcriptional network dictates a cell’s competence and
response to extracellular signals [5-7]. Because signaling information changes the composition
of a cell’s transcriptional components, this creates an intricate and dynamic cross-regulatory
system for guiding cell differentiation that has been challenging to untangle and comprehend
[1, 3, 4]. Understanding the cross-regulatory interactions between signal and transcription
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factor sub-networks will be important for understanding to how cell trajectories are retained
during development in the face of genetic or environmental perturbations (canalization; [8])

Vertebrate spinal cord provides an advantageous model to study the cross-regulatory dynam-
ics involved in central nervous system development in particular, and differentiation in general.
The head (rostral) to tail (caudal) development of spinal cord during vertebrate body extension
results into a characteristic spatial separation of temporal differentiation events [9-11], facilitat-
ing the study of their regulation. Experimental data obtained from mouse, chick and zebrafish
embryos support a model in which spinal cord neural progenitors (NPs) are derived from a
bipotent population of cells located at the caudal most end of the embryo, the neuro-mesodermal
progenitors (NMPs) cells [9, 10]. In the early embryo, the region where NMPs reside is known
as the caudal lateral epiblast and node streak border, and once the tailbud has formed in the late
embryo (in chick between 16-22 somite stage; [12, 13]), the caudal neural hinge [9-11]. During
development, NP cells exit the NMP domain rostrally and then, sequentially, transit through dif-
ferent maturation states as they become part of the spinal cord [9, 14, 15].

NP cell maturation is driven by synergistic and antagonistic interactions between the sig-
naling factors FGF, WNT and Retinoic Acid (RA), turning on and off key transcription factors
required for caudal-to-rostral maturation events (Fig 1A). In the chick trunk region of the spi-
nal cord (somites 6-18), two opposite signaling gradients are proposed to regulate spinal cord
cell maturation [16]: from caudal/high to rostral/low, FGF and WNT gradients prevent cell
differentiation by promoting high potency cell states caudally; whereas an opposite rostral/
high to caudal/low gradient of RA secreted from somites promotes cell differentiation ros-
trally. Importantly, FGF and WNT activity gradient counteract RA activity gradient. In this
way, NMP cells located caudally experience high levels of FGF/WNT and no RA, which drives
expression of bipotency markers T/Bra, Sox2, and NkxI.2 (SaxI) [16-18]. T/BRA and SOX2
are transcription factors that repress each other and promote different cell fates, with T/BRA
promoting mesoderm and SOX2 promoting neural fates [17-19], a phenomenon extensively
documented in mouse [20-23]. In addition, both T/BRA and SOX2 can downregulate FGF
and WNT pathway activity, initiating the early differentiation of mesoderm or neural tissues
[20]. NMPs that continue to transcribe Sox2 but not T/Bra assume NP identity and become
part of the growing neural plate. As NPs transit through the maturing neural plate, they experi-
ence a further gradual loss in FGF and WNT, and a gradual increase in RA signaling. This new
environment lead to the caudal-to-rostral downregulation of a third bipotency marker,
Nkx1.2, and upregulation of the early differentiation gene Pax6 [24]. Subsequently, under RA
regulation, PAXG6 activates late differentiation genes such as Ngn2 (Fig 1B) [25, 26]. Recently,
we have experimentally mapped the interactions between T/Bra, Sox2, Nkx1.2, Cdx4, Pax6 and
Ngn2 into a gene regulatory network (GRN) that we placed it in the context of the FGF/
WNT-RA signaling network (Fig 1C) [15]. This work identified the transcription factor CDX4
as a core system component essential for the sequential maturation of NPs into mature neuro-
nal precursors (Fig 1C).

Here we use partial and ordinary (Hill) differential equations to dynamically analyze the
GRN driving NP cell maturation during early chick spinal cord development (10-18 somite
stage). As the transcription factor network depends upon inputs form the FGF-WNT-RA sig-
naling network, we first analyzed the postulated effectiveness of the signaling network to work
as a signaling switch [27]. We then used the resulting signaling dynamics as input to evaluate
the performance of the underlying transcription GRN in its ability to generate cell state pat-
terns similar to those observed in experimental models. Our results show that signaling inter-
action can give rise to various developmentally observed phenotypes based on a limited subset
of interaction parameters, and these behaviors are robust and stable to perturbations. Network
robustness is a property emerging from strong cross-regulation interactions between
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Fig 1. Expression domains and network interactions of key signaling and transcription factors involved in caudal spinal cord
maturation. (A) Schematic representation of the caudal end of a stage HH10-11 chick embryo (dorsal view). Expression domains of
Fgf8 (red) and Wnt8c (magenta) signaling factors, and the Retinoic Acid synthesizing enzyme Raldh2 (blue), are superimposed on the
diagram (based on [27]). Expression domain of relevant transcription factors are indicated on the left (based on [15]). (B) Expression
domains of key transcription factors involved in caudal spinal cord maturation. Embryos are stage HH10-11. Scale bar is 200um.
Arrowheads indicates the anterior boundary of the last formed somite. Transcription of the T/Bra gene along the embryo’s midline is
in the notochord underlying the neural tissue, where it is absent. (C) Postulated gene regulatory network showing interaction between

signaling and transcription factors (based on [15, 20, 25, 27]).

https://doi.org/10.1371/journal.pone.0244219.9001

individual system components whose function we propose is to canalize the cells in their NP
trajectories. Our results suggests that the dominant predictor of the GRN response is the inter-
action strength among network partners. By outlining the conditions that permit the operation
of the GRN during NP maturation i silico, the model predicts and informs on cellular behav-
iors of the system in vivo.

Materials and methods

Chick embryos, gene expression analysis and ethics statement

Fertile broiler chicken eggs (Morris Hatchery, Inc.; Miami, FL) were incubated to the
10-somite stage of development before embryos were processed for expression analysis (about
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35 hours at 38°C in a humid chamber). Expression analysis of relevant genes was done as pre-
viously reported (see S1 File; [15]). Chick embryos younger than three days, such as the ones
used in this study, are considered by The American Association for Laboratory Animal Sci-
ences (AALAS) and the American Veterinary Medical Association (AVMA), incapable of feel-
ing pain. Therefore, this study is exempt of Institutional Animal Care and Use Committees
(IACUQC) review.

Model outline

Our model aims to describe the maturation of NP cells in the pre-neural tube region of chick
embryos between 10-18 somite stage using previously published empirical data [15]. This time
period was selected for several reasons. First, the average velocity of axial elongation (2.5-
3um/min) and the size pre-neural tube region (2500 microns) are relatively consistent (mea-
sured from the caudal lateral epiblast where the NMPs reside to where the neural tube closes at
the anterior boundary of the last formed somite) [28]. Second, most parametric values
required by the model are available for the chick embryo, and the few missing ones can be
extrapolated from mouse or cell culture data (described in detail below). Third, the only Cdx
family member transcribed in the chick embryo between 10-18 somite stage is Cdx4 [29].
Finally, we could overlook GDF11 activity in terminating axial elongation, as this activity in
mouse is associated with the relocation of NMP from the caudal primitive streak epiblast to
the tail bud [30, 31], which in chicks occurs after the stages our simulation models (16-22
somite stage; [13]). In addition, our model assumes that NP production to occur at a steady
rate, independently of any network components. This is not the case in vivo, were experimen-
tal evidence suggests an involvement of NOTCH signaling pathway in this process [32, 33].
This assumption was made due to paucity of evidence connecting NOTCH regulation to Cdx4
and many of the transcription factors in the GRN.

Hill equation based interaction model

Signal and transcription factor networks were modeled using ordinary and partial differential
Hill equations. Ordinary differential Hill equations were used to model molecules whose rate
of change is not influenced by diffusion (e.g., mRNA and intracellular proteins), and partial
differential Hill equations for molecules whose rate of change in a field is contingent on their
diffusion (e.g., extracellular factors) [34-36]. We first modeled the signal interactions network,
using the resulting output as the input for the transcription factor network. To solve the equa-
tions numerically and plot the simulations we used MATLAB (MathWorks, Natick, MA) with
solvers ode45 for ordinary and pdepe for partial differential equations. Within each Hill equa-
tion, a number of Hill constants were used to vary the strength of interaction between a mole-
cule and its target (e. g., transcription factor and its target gene; S1 Fig). These equations
follow the general form;

Ordinary differential equation to model mRNA dynamics:

oM
E =a,H, — ﬁmMHz

Ordinary differential equation to model intracellular protein dynamics (e.g., transcription
factors):
opP

o7 = %MH; — f,PH,
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Partial differential equations to model dynamics of extracellular factors (e.g., signaling mol-
ecules):

opP oP
E = O(PMH3 — ﬁPPH‘l — ,u%

where,

a,, = Transcription rate constant ¢, = Translation rate constant

B, = mRNA decay rate constant 3, = protein decay rate constant

M = mRNA concentration P = protein concentration

u = diffusivity coefficient x = spatial dimension

H,, H,, H;, H, are independent Hill functions. For each factor being modeled, we replaced
H,, H,, H;, and H, with one of four general types of functions representing regulatory interac-
tion observed in vivo (see S1 File): (1) inductive interactions from one or multiple activators,
(2) repressive interactions from one or multiple repressors, (3) coordinated interactions
between activators and repressors binding to separate regulatory sites and (4) competitive
interactions between activators or repressors binding to the same regulatory sites.

Equations modeling the signaling interactions network

Partial differential Hill equations that take diffusion into consideration were used to model
FGF8, WNT8C and RA network of interactions (Fig 2A). These interactions were modeled
within a spatial maturation domain restricted to a 2500 microns extending from the NMP
zone to the anterior boundary of the last formed somite (stage HH10-11 embryos; Figs 1B and
2B). This spatial maturation domain moves caudally and in synchrony with the NMP zone
during axial elongation (constant velocity), thus appearing stationary with respect to the NMP
zone (Fig 2B). When available, we used parameter values that have been determined experi-
mentally, within reported ranges. For parameters that have not been determined experimen-
tally (e.g., rates constants for mRNA and protein synthesis and degradation), we used
parameters values comparable to those used in other models [28, 37, 38]. We set the Hill coeffi-
cients value for FGF and Wnt at 2, as empirically established in somitogenesis network model
[37]. For RA, the value of the Hill coefficient factor was set at 2, as RA’s receptor is a transcrip-
tion factor that operates as a dimer [39].

FGFS8 production. Fgf8 transcription is restricted to the NMP zone through positive auto-
regulatory loops and inhibitory signals [40]. FGF8 indirectly stimulates its own transcription
by inducing transcription of Nkx1.2, Cdx, and WNT/3-catenin pathway components [40]. RA
secreted from somites restricts Fgf8 to the NMP zone in a concentration-dependent manner
[16]. RA inhibition is excluded from NMP zone by CYP26A, an RA-catabolizing enzyme
whose gene is activated by FGF8 [18]. We simulated Fgf8 positive autoregulatory loop by
assuming a basal exponential level of gene transcription, and its restriction to the caudal end of
the spatial maturation domain by allowing RA to decrease Fgf8 transcription down to zero in a
concentration-dependent manner.

Fgf8 mRNA transcripts have a long half-life of around 2 hours, persisting in cells long after
transcription has stopped [37, 41]. This long decay results in a graded distribution of transcript in
the spatial maturation domain, with cells proximal to the NMP zone retaining more transcripts
that more distal cells. This 2 hour half-life sets the rate constant of degradation to around 0.006
min™' (In2/2h = 0.693/120min). As the average speed of axis elongation is 2.5-3um/min (from
somite 5 to 18; [28]), the decay constant in the spatial maturation domain is about 0.002 um™.

FGF8 protein synthesis is dependent on the concentration of the Fgf8 transcript within
each cell. As FGFS8 is synthesized, it diffuses from producing cells at a rate that has been
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Fig 2. Signaling network output is determined by the strength of interactions between FGF, WNT, and RA pathway components. (A) FGF8, WNT8C and

RA signaling pathway interaction netwo!

rk based on [27]. Names in lower case indicate mRNA and upper case proteins (FGF8 and WNT8C) or metabolites

(RA). (B) The spatial maturation domain where the signaling network operates extends from the NMP cells to the anterior boundary of the last formed somite

(vertical dashed lines; x-axes on graphs).

The domain in the simulation has a constant length maintained by a caudal movement that is equivalent to the rate of

NMP cell proliferation. Initially undifferentiated cells differentiate at a rate defined by the simulation (red to green transition). (C-E) Representative FGF8
dominant (C), FGF-RA balance (D), and FGF-RA switch (E) simulation profiles obtained using parameters shown in Table 1. Left graphs shows the levels of
the signaling molecules FGF8 (red), WNT8C (magenta) and RA (blue) across the maturation domain at the end of the simulation (t = 6000 min; arbitrary units

AU). Center and right graphs show heat
FGF (maroon gradient) and RA (blue gr

maps of FGF8 (center) and RA (right) accumulation in the maturation domain (x-axis) over time (y-axis). AU scale for
adient) are shown at right of graphs.

https://doi.org/10.1371/journal.pone.0244219.9002

determined experimentally to be around 2 um®/sec [42]. Due to this diffusion, the domain of
FGF protein signaling expands beyond the domain of Fgf8 transcription.
Constant input: Fy(x)

F, = 0.06e " (1)
Fgf8 mRNA transcription: F,,()
OF 1
m— g F(————— ) —B. F 2
) (e o) R @
FGFS8 translation: F(x, t)
OF O°F
ot = anFm - BFpF - DF@ (3)

where,

Fgf8 mRNA transcription rate constant [37, 38] ag,, = 1/min

Fgf8 mRNA half-life [37] B, = 0.006/min.

FGFS8 translation rate constant [37] g, = 0.3/min

FGF8 degradation rate constant [37] g, = 0.005/min

FGF8 diffusion constant [42] Dr = 120 pmz/min

Hill constant, Fgf8 inhibition by RA Ry (see Table 1)

WNTS8C production. Wnt8c transcription is stimulated by FGF pathway activity and is
indirectly blocked by RA inhibiting Fgf8 transcription [27]. In chick embryos, Wnt8c

Table 1. Examples of Hill constants combinations tested to investigate signaling dynamics behavior.

Hill constants I II III v \ VI VII VIII

Frw 10 10 10 10 10 10 10 10

FGF dependent activation of Wnt8c transcription

Frry 1 1 5 10 10 10 2 20

FGF dependent repression of Raldh2 transcription

Frro 2 10 15 10 10 10 20 20

FGF dependent activation of RA degradation (via CYP26A enzymes)

Wwr 1 1 0.2 0.5 0.2 0.5 1 1

WNT dependent activation of Raldh2 transcription

Rre 10 1 0.2 0.1 0.3 0.45 1 20

RA dependent repression of Fgf8 transcription

Rrr 50 50 50 50 50 50 300 300

RA dependent activation of Raldh2 transcription

Outcome (t = 6000 min) FGF dominant FGF-RA balance FGF-RA switch RA aberrant/
oscillatory

https://doi.org/10.1371/journal.pone.0244219.t001
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expression domain significantly overlaps and extends far beyond Fgf8 mRNA domain up to
the last formed somite (Fig 1A; [27, 43]), suggesting that very low levels of FGF8 can activate
Wnt8¢ [27, 43]. By contrast, in the NMP zone, Wnt8c mRNA level are one-third of the Fgf8
mRNA level [44], which suggest that transcription rate constant of Wnt8c are low and saturate
quickly [44]. Once synthesized, WNT8C diffuse from its site of synthesis throughout the spa-
tial maturation domain at a low diffusion rate [45].

Wnt8¢ mRNA transcription: W,,(f)

ow, (F/Fn)
ot ‘“W’”((H(F/FFW)“)) P ®

WNTS8C translation: W(x, t)

ow FPwW
W:aWPwmfﬁprwaW (5)
, where,

Wnt8¢ mRNA transcription rate constant [27, 43] ayy,,, = 0.1/min

Wnt8c mRNA half-life constant [27, 43] Bw,,, = 0.03/min

WNTSC translation rates constant [37] ay;, = 0.3/min

WNTS8C degradation rates constant [37] By, = 0.01/min

WNTSC diffusion rate rates [45] Dy, = 10 um?*/min

Hill constant, Wnt8c activation by FGF8 Fpyy (see Table 1)

RA production. RA is synthesized in somites by the enzyme RALDH2 [46]. Raldh2 tran-
scription is restricted to somites as this is the only region where activation by the WNT8C
pathway can overcome FGF8-dependent repression [27]. Parameters for RALDH2 production
and degradation were equivalent to those in other models [47]. We assumed that once
RALDH?2 is produced, RA synthesis initiates without delay. Once produced, RA diffuses into
undifferentiated neural and mesodermal tissues at an estimated rate of 18 um?/sec or about
1080 um*/min [47]. At the caudal end of the embryo, RA is degraded by the enzyme CYP26A,
whose transcription is under FGF8 regulation [25].

Raldh2 mRNA transcription: R,,(f)

oR, (W/ W) + (R/Ryy)" |
o e ((1 W W (R/RRRY)) ((1 T (F/Fmr)) = PR ©)

RA production (as modeled by RALDH2 translation): R(x,t)

(F) g’ 'R
i+ (F/FFm)“)) ~Dige @)

% = og,R,, — lBRpR (1 + Brx
, where,

Raldh2 mRNA transcription rate constant [37] ag,, = 1/min

Raldh2 mRNA half-life constant [37] Sg,, = 0.03/min

RALDH2 translation rates constant [37] ag, = 0.3/min

RALDH2 degradation rates constant [37] Bg, = 0.025/min

RA estimated diffusion rate D = 1200 um*/min

FGF dependent RALDH2 degradation constant g = 6/min

Hill constant, Raldh2 induction by WNT8C Wy (see Table 1)

Hill constant, Raldh2 induction by RA (autoregulation) Rgp (see Table 1)

Hill constant, Raldh2 repression by FGF8 Frg; (see Table 1)

Hill constant, RA degradation by FGF8-induced CYP26A Fpry, (see Table 1)
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Equations modeling the transcription factors interactions network

We used differential equations to simulate the transcription factor network (Fig 1C), as tran-
scription factors do not diffuse outside the cell. As inputs, we used FGF8, WNT8C and RA out-
put levels obtained in the signaling simulation (represented in the equations with the letters F,
W and R, respectively). For transcription factors binding as dimers, the Hill coefficient was set
to a value of 2 (T/BRA, SOX2, CDX4, PAX6 and NGN2; [48-52]), following other model’s
practices [37]. For simplicity, we also assumed a Hill coefficient value of 2 for transcription fac-
tors with no binding information (NKX1.2, X and Y). Network interactions described in the
result section are supported by experimental evidence (reviewed in [15]).

T/Bra mRNA: T, (1)

(Synthesis activated by FGF8 and inhibited by SOX2.)

or, (F/Ey)’
o ((1 T+ <S/SST>’>> =P ®)

T/BRA protein: T(¢)

oT

E = anTm - ﬁTpT (9)

Sox2 mRNA: S,,,(t)
(Synthesis activated by FGF8 and RA and inhibited by T/BRA.)

2s, (F/Ey)" + (R/Ry)’ )
o ((1 T EF) + RRy) + <T/TTS>'>> P (10)

SOX2 protein: S(¢)

oS
E - OCSpsm - ﬁSpS (11)
Nkx1.2 mRNA: NK,,,(t)

(Nkx1.2 is activated by WNT8C and inhibited by a CDX4-dependent factor X and by

NKX1.2 protein.)

ONK,, (W/Wipne)”

—_— = " a T
ot e ((1 + (W/WWNK) + (NK/NKNKNK) + (X/XXNK

>r)> - .BNKmNKm (12)

NKX1.2 protein: NK(¢)

dNK

“dr = O‘NKpNKm - ﬁNKpNK (13)

Cdx4 mRNA: C,,(t)
(Cdx4 is induced by FGF8 and WNTS8C and inhibited by a PAX6-dependent factor Y.)

OCs — o L (U )
or = o\ (T4 (F/Ee) + (W/ Wy + (V/%,0))

) ~ Be,C, (14)

CDX4 protein: C(t)

ocC

E = anCm - ﬁCpC (15)

Factor X mRNA: X,,,(t)
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(Factor X is induced CDX4. We have assumed that X is inhibited by high FGF8 levels since
repression of Nkx1.2 by CDX4-dependent Factor X is not effective in NMP zone.)

_ (C/Cer)’

0X
o ((1 +(C/Cox)" + (F/F))

) ~ B, (16)

X protein: X(¢)

0X

E = (xXpXm - ﬁXpX (17)

Pax6 mRNA: P,,(t)
(Pax6 is induced by CDX4 and RA working cooperatively, and is inhibited by NKX1.2)

op, (C/Co)’ (R/Ry) \
o (1 T (/) T <N1</NI<NKP>’>) (<1 T (R/RRP>“>) P (18)
PAXG6 protein: P(t)
(2_1: = OCPme - ﬁPpP (19)

Factor Y mRNA: Y, (t)
(Synthesis activated by PAX6, and inhibited by FGF8.)

L
or = " \(L+ (2P + (F/En))

) ~ B, (20)

Y protein: Y(#)

oY

E = O(Yme - ﬂYpY (21)

Ngn2 mRNA: N,,,(t)
(Synthesis activated by PAX6 and inhibited by factor X.)

oN, (P/Py)"
o “N’"((l TP <X/XXN>'>) = ProuNo 22)

Name definition and values for the Hill constants used in the transcription factor network

are found in Table 2. For all these transcription factors, the rate constants of mRNA and pro-
tein synthesis and degradation have not been determined experimentally. Hence, all the values
are kept similar based on values used in published models [37, 38]. The only exception was
CDX4, as CDX proteins are known to have increased stability [53].

Constant for mRNA synthesis/degradation: a;,,, = 1/ min f3;,, = 0.03/ min

Constant for protein synthesis/degradation: a;, = 1/ min f;, = 0.2/ min

CDX4 constant for protein synthesis/degradation: ac, = 1/ min ¢, = 0.05/ min

Results
FGF-WNT-RA signaling interaction network can drive signaling switch

In order to model the transcription factor network responsible for spinal cord cell maturation
(Fig 1C), we first simulated the signaling dynamics between FGF, WNT and RA driving the
system in the chick caudal neural tube [16, 27]. Although several partially redundant FGF and
WNT factors are transcribed within and around the caudal neural plate [27, 54], in chick, the
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Table 2. Hill constant for correct spatiotemporal distribution of cellular states.

Hill constants Description Value*
Frr FGF8 dependent activation of T 10
Frs FGF8 dependent activation of Sox2 50
Fre FGF8 dependent activation of Cdx4 5
Frx FGF8 dependent repression of X 1
Fry FGF8 dependent repression of Y 1
Wwn WNT8C dependent activation of Nkx1.2 10
Wwe WNT8C dependent activation of Cdx4 10
Sst SOX2 dependent repression of T' 2
Trs T dependent repression of Sox2 20
Nnn NKX1.2 dependent repression of Nkx1.2 100
Nnp NKX1.2 dependent repression of Pax6 20
Ccx CDX4 dependent activation of X 10
Ccp CDX4-RA complex dependent activation of Pax6 10
Rgs RA dependent activation of Sox2 1
Rgp RA dependent activation of Pax6 10
Xxn X dependent repression of Nkx1.2 1
Xxn2 X dependent repression of Ngn2 1
Ppy PAX6 dependent activation of Y 5
Ppn» PAX6 dependent activation of Ngn2 20
Yye Y dependent repression of Cdx4 5

*Correct spatiotemporal distribution of cellular states was also obtained when individual values are increased or
decreased by 30%.

https://doi.org/10.1371/journal.pone.0244219.t1002

most relevant factors are FGF8 and WNTS8C [27]. Fgf8 is transcribed in the caudal stem zone
(Fig 1A), where it activates Wnt8c transcription [27] and represses RA by inhibiting transcrip-
tion of the RA synthesis enzyme Raldh2 and by activating transcription of the RA degradation
enzyme Cyp26a [25]. FGF8 inhibition of RA production is circumvented rostrally by Fgf8
mRNA decay [41] and by WNT8C, which stimulates RA production by outcompeting
FGF8-mediated Raldh2 repression [27]. Once Raldh2 induction has occurred in nascent
somites, its expression is maintained through unknown mechanisms, even in the absence of
WNT activity [27]. For simplification, our model assumes that RA maintains Raldh2 transcrip-
tion through positive autoregulation [55]. RA produced by somites then diffuses caudally and
inhibit Fgf8 transcription [25, 56]. These interactions give rise to an extended negative feed-
back loop between FGF and RA (Fig 2A).

At the stages examined, cell proliferation in the stem zone extend the vertebrate body axis
caudally by producing the cells that, upon maturation, will give rise to the embryo’s trunk [9].
To simulate the tissue’s caudal ward movement, the signaling interactions were confined to a
caudally moving spatial maturation domain of constant length extending rostrally from the
stem cell zone to the anterior boundary of the most recently formed somite (Fig 2B; [28]).
Thus, from the perspective of the caudal end, the moving spatial maturation domains appears
stationary. To simulate the interactions between signaling factors, we used partial differential
equations that integrated synthesis, degradation, and diffusion constant through interaction
parameters or Hill constants. The Hill constant of a given reaction is defined as the concentra-
tion of a factor at which the rate of reaction regulated by the factor is half of the maximum pos-
sible rate. Hence, Hill constants are inversely related to the affinity of a factor for its target and
can act as a measure of the factor’s interaction strength (S1 Fig).
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To understand the possible behaviors that could originate from the extended
FGF-WNT-RA network, we analyzed the system’s output after systematically changing the sig-
naling inputs and the strength of interaction between components (strong Hill constant = 0.1
to weak Hill constant = 100). By varying the interaction strength between FGF, WNT and RA
components we obtained various temporal signaling information profiles that we grouped
into four broad behaviors: FGF-dominance, FGF-RA balance, FGF-RA switch, and RA aber-
rant/oscillatory.

FGF8 dominance. In a system where FGF8 repression of Raldh2 transcription outweighs
RA repression of Fgf8 transcription, the interactions do not result in appreciable RA produc-
tion (e. g., Table 1-I; Fig 2C, S2A Fig). Such a system would lead to maintenance of pluripotent
stem progenitor cells without differentiation.

FGF8-RA balance. FGF8, WNT8C and RA signaling domains balance each other and set-
tle on a stable steady state profile (Table 1-II; Fig 2D, S2A and S2B Fig). Such steady state is
achieved when the activating and repressive interactions of the system reach an equilibrium.
In these conditions, the regions of FGF8 and RA activities are restricted to domains that main-
tain the same distance from one. This equilibrium could be broken at the onset of tail bud
stages of development (18-21 somite stage) by the activation of signals that terminate axial
elongation such as GDF11 [30, 31].

FGF-RA switch. One of the most interesting behavior obtained from the simulation is
where the system starts with an Fgf8 mRNA gradient and ends with RA activity gradient over
the entire spatial domain (Table 1-III; Fig 2E, S2A Fig). This behavior simulates a system that
starts with a caudally located stem cell zone and a field of undifferentiated cells that is gradually
converted, in a rostral to caudal direction, to a field of differentiate cells. Significantly, this dif-
ferentiation process is one of the mechanism by which axial elongation is thought to cease in
embryos [18, 57]. The rate at which the FGF8-to-RA transition occurs, and hence differentia-
tion, is modulated by the strength of mutually repressive FGF-RA interactions (Table 1-IV
through VT; Fig 3). Factors that change FGF activity levels (e.g., GDF11; [30, 31]) could effec-
tively changing the strength of repressive interactions between FGF and RA and, therefore, the
timing of axial growth termination.

RA aberrant/oscillatory. Some parameters in the FGF-WNT-RA interaction system lead
to an oscillation in RA levels that did not match the behavior of the system in vivo. These oscil-
lations occurred when Hill constants for RA inputs were weak, particularly for the RA-depen-
dent autoregulation of Raldh2 production (Table 1-VII, VIII; S3 Fig). In some cases, the
system produced a discrete burst of RA at the position where the FGF-RA switch was observed,
to then return to produce FGF (Table 1-VII; S3A Fig). In other cases, the burst of RA separated
the caudal area of FGF production from a rostral area where FGF and RA production alter-
nated in an oscillatory manner (Table 1-VIII; S3B Fig).

Altogether, our results show that the FGF8-WNT8C-RA interaction network postulated by
Olivera-Martinez and colleagues [27] can indeed give rise to a signaling switch that travels cau-
dally during the elongation of the embryonic axis. The model also leaves open the possibility
for additional factors to terminate axial elongation (e.g., GDF11; [30, 31]). The behavior of the
switch depends on several interaction parameters that, in coordination, regulate the position
and size of the region of cell differentiation.

FGF-WNT-RA signaling switch and transcription factor network establish
areas of pluripotency, early and late differentiation

To simulate the dynamics of the transcription factor network, we integrated the transcription
(Fig 1C) and signaling (Fig 2A) networks into a single supra-network (Fig 4A). We then used
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https://doi.org/10.1371/journal.pone.0244219.g003

the FGF-RA balance profile output as the input for the system (Figs 2D and 4B), as it most
closely resembles the distribution of signaling activity and NP cell behaviors during the steady
state period of embryo growth (10-18 somite stage; Fig 1A). In this simulation, we followed
the transcriptional profile of cells as they are born caudally at t = 0 and at subsequent times are
displaced rostrally by the appearance of new cells. During their rostral displacement, cells
move away from the stem cell zone and the source of FGF and WNT production (Fig 4C). As
FGF/WNT level decrease, RA levels increase following the FGF-RA balance profile simulation
(Figs 2D and 4B). These changes in spatial signal information are the drivers for transcription
factor expression. Since the cells are arranged spatially from caudal to rostral in order of birth,
the temporal changes in transcription factors give rise to spatial changes in profiles.

The transcription output of the system depends on signaling inputs and transcription factor
interactions. Signals regulate the transcription factor network at two distinct key points. The
first point of regulation is towards the caudal end of the chick embryo, where FGF8 and
WNTSC, alone or in combination, are required for T (Bra), Sox2, Nkx1.2 and Cdx4
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https://doi.org/10.1371/journal.pone.0244219.g004

transcription [17, 58-60]. Independently of signaling inputs, NkxI.2 transcription is negatively
regulated by CDX4 and its own protein product [15, 61]. The second point of regulation is
towards the rostral end of the neural plate, where RA cooperates with CDX4 to activate the
early differentiation gene Pax6 [15, 62]. Pax6 is also negatively regulated by NKX1.2 [15, 63].
In contrast, transcription of late differentiation gene Ngn2 is activated by PAX6 and repressed
by CDX4 [15, 26]. Given that CDX4 is an activator [64], our model invokes two putative
CDX4-regulated transcriptional repressors X and Y to indirectly repress Nkx1.2 and Ngn2

[15]. These hypothetical repressors are assumed to be inhibited by FGF8 [15].

Together, the signal and transcription factor network were able to generate correct gene
transcription profile in many but not all instances (Fig 4D-4F), indicating that only under cer-
tain parameter restrictions could the network recapitulates embryonic events. In principle, the
spatial dynamics of the signal interactions network should be sufficient to activate transcrip-
tion factor network components in the correct spatiotemporal sequence: high FGF caudally
would promote pluripotency while high RA rostrally would promote differentiation, with
cross-repressive interaction between pathways maintaining the domains separate at opposite
ends of the tissue. However, if all the interactions in the network are equally moderate (Hill
constants = 20, Fig 4D) or equally strong (Hill constants = 2, Fig 4E), then the network does
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not result in the proper spatial resolution of temporal states. In both cases, transcription of the
mesoderm marker T/Bra is not restricted to the caudal end, but instead, it is detected throughout
the caudal two thirds of the tissue, partially overlapping with Pax6 and Ngn2 gene transcripts
(Fig 4D, 4E). Only a subset of interaction strengths give rise to correct spatial order of identities
(Table 2; Fig 4F). The values of the interactions strengths that generate proper spatial distribution
of transcripts could be increased or decreased by 30%. These values define a parametric space
where the model is operational and highlights its robustness (S4 Fig). These results suggest that
signaling inputs encodes the information required for specifying different cell maturation states,
but that it is the transcription factor network what determines the spatial distribution and orga-
nization of maturation states cell along the caudal-to-rostral length of the tissue.

The transcription network executes the spatiotemporal information
provided by the signaling factor network

To further evaluate the contribution of signaling and transcription factors networks on cell
maturation events, we tested the effect of disrupting individual network nodes on transcription
readouts. First, we tested the response of the transcription network to signaling noise. In simu-
lations, both periodic disturbance (Fig 5A) and random noise (Fig 5B) were well tolerated by
the transcription network without any distortions in the spatiotemporal resolution of the cellu-
lar states. Unexpectedly, introduction of random noise resulted in better separation of early
maturation (Cdx4*, Pax6*, Ngn2") and late differentiation (Cdx4", Pax6", Ngn2") states (Figs
4F, 5B). This phenomenon, the system’s ability to withstand perturbations by retaining NP
cells in developmental trajectories, suggests that canalization is an emerging property of the
signal-transcription factor supra network.

Next, we evaluated the role of signaling gradients in determining the spatiotemporal resolu-
tion of downstream targets’ transcriptional domains. Replacing the exponential gradient of the
signaling factors with a Boolean switch (Fig 5C) or a linear gradients (Fig 5D), resulted in loss
of proper resolution of transition zones. Thus, changes in the spatial information contained in
the signaling network changes the transcription network readouts. This confirms that the spa-
tial information is encoded in the signal and not in the transcription factor network.

We previously proposed a central role of CDX4 in regulating maturation of NPs in the
chick pre-neural tube. To theoretically test CDX4 role in transcription network regulation, we
removed, increased or introduced noise to Cdx4 transcription and evaluated the network’s
transcription profile output (Fig 6). When Cdx4 was removed from the simulation, Nkx1.2
transcription expanded rostrally, overlapping significantly with the expression of differentia-
tion markers Pax6 and Ngn2 (Fig 6A). This phenomenon is opposite to what is observed
experimentally, were downregulation of CDX4 activity using an ENRCDX4 repression con-
struct results in downregulation of Nkx1.2 [15] (discussed below). Conversely, when the levels
of Cdx4 were increased in the simulation, NkxI.2 expression domain shifted caudally and
away from Pax6 expression domain, and rostral cells did not activate the late differentiation
gene Ngn2 (Fig 6B), in agreement with experimental results [15]. Thus, removing or increasing
Cdx4 transcription affects the spatial relationship between early specification gene Nkx1.2 and
neural differentiation gene Ngn2. This result suggests that CDX4 functions in the network to
establish a transition zone between pluripotency and differentiation states. CDX4 function is
robust and integral to the canalization properties of the system, as introduction of transcrip-
tional noise produces the expected gene expression profile with only minute changes in the
position of boundary transitions (<+/-30um; Fig 6C). Excluding the effect of removing CDX4
on Nkx1.2 (discussed below), our simulations agrees with in vivo observations [15], and sup-
port a role of CDX4 in driving NP maturation during early spinal cord development.
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Fig 5. Transcription factor network is resilient to small and moderate alterations in signaling information. (A, B)
Transcription factor output is not affected by oscillatory (A) or random noise (B) in signaling inputs, as outputs are
comparable to those obtained in conditions without noise (Fig 4F). (C, D) Large changes in signaling input such as
discreet Boolean (C) and linear gradient (D) changes transcription factor expression domains.

https://doi.org/10.1371/journal.pone.0244219.9005

Discussion

Signaling factor simulation recapitulates signaling dynamics observed in
natural systems

Our simulations describe the possible behaviors the FGF8-WNT8C-RA system can exhibit
under various interaction conditions (Fig 2). With small variations in interactions’ strength,
the system can model behaviors associated with different stages of axial tissue development. In
a system where the FGF’s activity dominates over RA’s activity, the simulation most closely
resembles the neural tissue at early stages of axial extension (in chick, before 6 somite stages),
whereas in a system where FGF activity balances that of RA, the simulation resembles the mat-
uration of spinal cord cell that occurs during axial elongation before the formation of the tail
bud (in chick, 6-18 somite stages). In contrast, a switch in the system from FGF to RA most
closely resembles the processes occurring during termination of body axis extension [10, 28],
with or without the aid of additional factors (e.g., GDF11; [30, 31]). Significantly, when the
interactions between FGF and RA components are weak, the system oscillates, resembling the
oscillations observed between FGF/WNT and the NOTCH signaling pathway during the pro-
cess of paraxial mesoderm segmentation [65]. Thus, with small modifications in signal compo-
nents interaction, one can observe large changes in the behavior of the system equivalent to
the changes normally observed in the tissues emerging from the caudal lateral epiblast during
axial elongation, the paraxial mesoderm and spinal cord.

We propose a model of vertebrate body extension where modulation of interaction strength
between different components of the system (e.g., transcriptionally, post-transcriptionally or
epigenetically), could regulate the spatiotemporal dynamics involved in vertebrate body exten-
sion. In this model, the time at which the system transitions from FGF dominant, to FGF-RA
balance, to RA switch respectively determine the time of tissue induction, elongation and ter-
mination. For example, a long period in which the FGF8-RA balance system is operational
could explain the elongated axis of vertebrates such as snakes; as long as the FGF8-RA balance
system remains operational, the caudal progenitor/stem cell pool will continue to generate tis-
sue and extend the axis. In this scenario, the time at which RA takes over the system to initiate
progenitor cell differentiation will determine the axial body length. This last process can be
accelerated by other factors that dampen FGF and Wnt signaling activity such as GDF11 [30,
31]. A second mechanism for terminating axial elongation is the activation of Hox13 genes
[66], whose activation in mouse is under the control of CDX factors as well as GDF11 [31, 66].

Transcription network simulations recapitulate the cell state transitions
observed in the caudal neural plate

Results from simulations support a role for CDX in coordinating upstream signaling factors
with downstream transcription network components involved in spinal cord neural matura-
tion. In the present model, CDX4 functions to separate caudal stem cell populations (Nkx1.2*
Pax6™ Ngn2') from rostral differentiating cells (Nkx1.2" Pax6" Ngn2") by establishing a transi-
tion zone. This is achieved by CDX4 repressing the bipotency gene Nkx1.2 and the late differ-
entiation gene Ngn2, and by activating the early differentiation gene Pax6. In simulations, high
levels of Cdx4 transcription resulted in downregulation of CDX4 repressed genes (Fig 6B):
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Fig 6. CDX4 is necessary for proper interpretation of signaling inputs by the transcription factor network. (A)
Compared to control simulation (Fig 4F), loss of Cdx4 expression causes a large rostral expansion of Nkx1.2 domain, a
small reduction in Pax6 domain and a large caudal expansion in Ngn2 domain. These changes results in the overlap of
stem and differentiation gene expression domains. (B) Overexpression of Cdx4 reduces Nkx1.2 and eliminates Ngn2
expression domains, effectively expanding the early and eliminating the late differentiation zones. (C) Introduction of
random noise in Cdx4 transcriptional noise has insignificant effects on the system’s spatial expression profiles. In the
expression profile bars at the bottom of the graphs, white and black rectangles indicate loss and gain of gene
transcription, respectively.

https://doi.org/10.1371/journal.pone.0244219.9006

Nkx1.2 transcription domain shifted caudally and Ngn2 transcription was lost. In these condi-
tions, only the caudal expression of Nkx1.2 was retained due to its high dependence on WNT
stimulation [61]. Increasing Cdx4 transcription did not affect the expression domain of Pax6,
as transcription of this gene is also dependent on RA secreted from somites [15, 62]. Together,
the changes in Nkx1.2 and Ngn2 transcription induced by CDX4 overexpression effectively
increase the size of the transition zone. The same way that premature activation of differentia-
tion signals has been predicted to cause shortening of the embryonic axis [18], a greater sepa-
ration of stem cell and differentiation signals is predicted to cause axial lengthening. These
predictions would need to be tested experimentally.

Significantly, results obtained by simulating loss of Cdx4 activity (Fig 6A) did not fully
match experiments done in vivo. With respect to differentiation genes, the network recapitu-
lates the in vivo results: Pax6 transcription was not affected due to dependence of this gene on
RA [15, 62], whereas Ngn2 transcription was upregulated because this gene is normally
repressed by CDX4 [15]. In contrast, with respect to the NMP marker Nkx1.2, loss of Cdx4
caused an anterior expansion of Nkx1.2 expression domain that was not observed experimen-
tally. This discrepancy can be attributed to the use of a dominant negative form of CDX4
instead to knockout allele to downregulate the activity of this gene in vivo (ENRCDX4; [15]).
Dominant-negative ENRCDX4 works by outcompeting endogenous CDX4 from binding to
its target genes and repressing their transcription [67]. This approach is different than not hav-
ing CDX4 protein altogether (e. g, through deletion of the gene). Given that our model simu-
lates the loss of CDX4 function and not the active repression of its downstream target genes,
this providing a possible explanation for the observed discrepancies between experimental sys-
tems. It is also possible that our current understanding of the transcription factor network is
incomplete. For example, NOTCH signaling pathway is involved in NP cell proliferation [32,
33], but was omitted from our system due to lack of information related to its interaction with
Cdx4 and Nkx1.2. It is possible, however, that NOTCH is a positive regulator of NkxI.2in a
manner similar to its regulation of Nkx6.1, a close family member involved in ventral spinal
cord cell specification [68]. These two possible explanations are not mutually exclusive, and
could be resolved with additional experiments. While additional experiments will be required
to fully understand CDX4 function in the NMP zone, even with its limitations, the proposed
transcription factor network supports a key role for CDX4 in the segregation of cell states in
the nascent spinal cord.

Noise is an intrinsic property of biological systems [69]. To explain the resilience of devel-
opmental systems to genetic or environmental noise and perturbations, Waddington intro-
duced the concept of canalization [8]. In our simulation, the introduction of random noise
produced a more accurate representation of the cell maturation states observed in vivo than
those produced without any type of noise (e.g., separation of late maturation and differentia-
tion states; Figs 4F, 5B). In addition, deviation of up to 30% in the system’s parametric values
(Table 2) did not change the spatial distribution of cell maturation states. This exceptional
robustness was an unexpected emerging property of the system that was not obvious from
experimental data [15]. We propose that the network’s resiliency to intrinsic (random noise)
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and extrinsic (artificial variation in parameters) variations could function to canalize NPs to
their mature state, and that the source of the system’s canalization capacity is the network’s
organization itself [70].

Future perspectives

The findings uncovered in our chick embryo model are generalizable to other vertebrates,
despite embryonic differences in tissue size, geometry and heterochrony. In all species exam-
ined so far, similar but not identical signal and transcription factors control spinal cord cell
specification and maturation [9, 10, 25, 71]. Similar to chick, mouse and zebrafish NMP bipo-
tent state is driven by FGF/WNT pathways regulating T/Bra and Sox2 transcription, with dif-
ferences residing in the specific FGF or WNT regulating each pathway [19-21, 71, 72]. For
example, WNT8c¢ in chick and WNT3a in mouse control axial elongation and NMP cell fate
decisions (reviewed in [10]). Different WNT proteins are post-translationally modified in a
number of ways, and these variations can change their extracellular transport and diffusion
(reviewed in [73]), which would directly affect the shape of their gradient. While this idea need
to be tested experimentally, it is possible that differences in individual network components
help adapting an otherwise conserved network to tissues with different morphologies and
rates of development.

Although the integrated signaling and transcription factor network model presented here
provides key information on the transition state drivers underlying neuronal cell maturation,
it is clear from experimental and modelling data that the model is far from complete. For
example, several signaling and transcription factors were omitted from the system due to
either lack of information regarding their interactions with other network members (e.g.,
NOTCH; [32, 33]), or reports that those factors are not operational during the developmental
stages that the system analyses (chick 10-18 somite stage; e.g., other CDX family members,
[29]; GDF11, [30, 31]; Hox13 genes, [31, 66]). Another missing component are the feedback
controls that transcription factors have over the signaling network. In mouse, chromatin
immunoprecipitation studies using epiblast stem cells derived from wild type or CDX2-defi-
cient primitive streaks have shown that CDX transcription factors can regulate several WNT
and FGF pathway components (Wnt5a, Rspo3, Fgf4 and Fgf8; [74]), indicating feedback regu-
lation between transcription and signaling networks. Similarly, CDX binding sites present in
Radh?2 intronic enhancer are sufficient to drive reporter gene expression in the caudal end of
embryos [75]. Currently, however, lack of quantitative data precluded the incorporation of
feedback activities into an integrated network model.

Our modeling results also highlights the importance of signaling factor regulation by com-
ponents external to the signaling pathways. For example, our model shows that maintenance
of RA production is critical for the behavior of the system, as weakening of the Hill constant
regulating RA-dependent autoregulation of Raldh2 production causes the system to transition
from balanced to oscillatory (Table 1-VII, 1-VIII; S3 Fig). While, for simplification purposes
we assumed that Raldh2 maintenance is dependent on RA, it is likely to be dependent on tran-
scription factors, some of which are part of our transcription network (e.g. CDX; [75]). Under-
standing the effect that transcription factor network components have over the signaling
network will be important for understanding the later stages in neural cell maturation and
their subsequent differentiation.

Supporting information

S1 File.
(DOCX)
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S1 Fig. Hill constant determine the strength of response of targets to activators and repres-
sors. Temporal response of targets with different Hill constants to activators and repressors.
Inputs are shown in blue and targets with different Hill constants are color coded: H1 =1,
orange; H2 = 10, yellow; H3 = 20, purple; and H4 = 100, green. (A-B) For activators, constant
(A) and graded (B) inputs induce targets with smaller Hill constants to higher levels than tar-
gets with larger Hill constants. (C-D) For repressors, constant (C) and graded (D) inputs
reduce targets with smaller Hill constants to lower levels than targets with larger Hill constants.
With graded inputs (B, D), larger Hill constants also cause temporal delays in response.

(TIF)

$2 Fig. Changes in FGF-WNT-RA signaling interactions results in mRNA profiles parallel
protein accumulation and are stable over time. (A) Profiles of mRNA transcripts at t = 6000
min associated with production of signaling molecules. Transcript and protein profiles are
similar (Fig 2C left panels). (B) Signaling molecule profiles are stable over longer simulation
times. An FGF-RA balance simulation that was run for t = 30,000 min produced the same pro-
file than a simulation that was run for t = 6000 min (Fig 2C middle row).

(TIF)

S3 Fig. RA positive autoregulation is required for bistability. Reducing RA’s positive effect
on Raldh2 transcription (H = 300 instead of 50) results in aberrant RA, but not FGF, distribu-
tion. (A) Under these conditions, when FGF affinity to repress Raldh2 is strong (H = 2 instead
of 10), a peak of RA production forms at a position in the field where the FGF-RA switch
would have occurred (1500-2000 pm). (B) When RA repression of Fgf8 transcription is weak-
ened (H = 20 instead of 1), RA production oscillates in the region of cell differentiation
(>1500 pm).

(TIF)

$4 Fig. Stability of the transcription profile in the parameter space. Changes in the strength
of interactions between transcriptional factors does not drastically affect the transcriptional
domain profile. (A) Original transcription profile as shown in Fig 4F. (B, C) Reducing (B) or
increasing (C) all the Hill constants in the interaction network by 30% does not significantly
change the spatial profile of gene transcription.

(TIF)

S1 Appendix. SIGNET.m: MATLAB code for simulating signaling dynamics.
M)
S$2 Appendix. TRANSNET.m: MATLAB code for simulating transcriptional factor dynam-

ics.
M)
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