
Leveraging SONiC Functionalities in Disaggregated
Network Switches

Ali AlSabeh∗, Elie Kfoury∗, Jorge Crichigno∗, Elias Bou-Harb†
∗ Integrated Information Technology Dept., University of South Carolina (USC), Columbia, South Carolina, USA

†The Cyber Center For Security and Analytics, Information Systems and Cyber Security Dept.
University of Texas at San Antonio (UTSA), San Antonio, Texas, USA

Email: ∗aalsabeh@email.sc.edu, ∗ekfoury@email.sc.edu, ∗jcrichigno@cec.sc.edu, †elias.bouharb@utsa.edu

Abstract—Ever since the inception of the networking industry,
routing and switching devices have been limited to tightly-coupled
hardware and software components. Vendors provide closed
source proprietary stacks, restraining network operators from
utilizing customized features, and hence hindering innovation.
This aggregated model is costly, time consuming, and unscalable
as changes in the devices require vendor’s intervention. As a
result, the industry started manufacturing white-box switches
and developing Network Operating Systems (NOSs) that support
multiple vendors and Application Specific Integrated Circuits
(ASICs). This model is referred to as ”disaggregated” as the
software and hardware are decoupled; essentially, vendors’
switching silicons (e.g., Broadcom) are compatible with different
NOS (e.g., SONiC). In this paper, we discuss the lessons learned
while designing and implementing a testbed that consists of
disaggregated network devices. We iterate over several open
source Internet Protocol (IP) routing suites and NOSs that
are vendor-agnostic. Additionally, we highlight a novel type of
forwarding data planes that are programmable and explore
their features. The testbed consists of two white-box switches
provided by Edgecore that use programmable switching silicon
(Tofino) manufactured by Barefoot Networks, an Intel Company.
We installed SONiC NOS on top of the switches and tested static
and BGP routing protocols. We report the configuration process
and the prerequisites needed to deploy a working disaggregated
environment. Finally, we discuss how open source NOSs and
programmable switches can be extended to support campus
networks, rather than being data center-oriented only.

Keywords—Network operating system, SONiC, white-box
switches, programmable ASICs, routing protocols.

I. INTRODUCTION

Network switches were introduced as hardware devices that
connect multiple computers in a Local Area Network (LAN)
and forward frames using the physical address. The network
layer operates on top of the data-link layer and connects com-
puters over the Internet. Typically, routers perform network
layer functionalities, where they run routing protocols such as
Open Shortest Path First (OSPF) and Border Gateway Protocol
(BGP) [1].
The functionality of conventional switches has been limited to
data plane forwarding since they run closed source, proprietary

This work was supported by the U.S. National Science Foundation (NSF),
Office of Advanced Cyberinfrastructure (OAC), award #1925484.

Network Operating Systems (NOSs), which are conceptual-
ized, designed, developed, and sold by a specific company. The
vendor provides the locked-in hardware with a pre-installed
NOS, preventing the user from tampering it or installing third-
party software. This behavior is beneficial among traditional
networks where vendors have extensively tested their software
before distributing it among clients. However, when it comes
to adopting new technologies and scaling the network, vendors
become cautious and reluctant due to security concerns, finan-
cial costs, and downtime drawbacks that might follow [2].
Bare-metal/white-box switches provide network engineers the
capability of installing an operating system independent from
the hardware. Thus, they give users the flexibility to customize
switches based on their needs. Customization has attracted the
interest of network engineers and large manufacturers such as
Dell and HP [3]. As a result, open source NOSs are being
developed and their popularity is increasing due to their role
in leveraging switches functionalities. However, they still need
extensive experimentation and documentation, especially if
companies are aiming to replace their current closed source
networks by open source technologies.
In this paper, we set up a testbed consisting of two pro-
grammable switches with SONiC, a pioneering open source
NOS that supports a full-suite of network functionality [4]. We
perform experiments in the context of programmable white-
box switches and open source NOS. The main goal is to build
a testbed in a lab environment prior to incrementally deploy
this technology in the campus enterprise network and Science
Demilitarized Zone (DMZ) [5] at the University of South
Carolina (UofSC). This effort is aligned with the development
of custom protocols to enhance TCP performance [6] and
relay services for media traffic [7] on campus. The rest of
the paper is organized as follows. In Section 2, we present
background information about open source routing stacks and
NOSs, specifically Free Range Routing (FRR) [8] and SONiC
[4]. In addition, we introduce programmable switches and
present a number of powerful features they possess. In Section
3, we demonstrate the preparatory phase to deploy our testbed
and the experiments that were performed. In Section 4, we
discuss how a campus network can benefit from open source
NOSs and programmable white-box switches. We conclude
this work in Section 5 and provide a road map for future
work.



II. BACKGROUND

A. Open source Internet routing protocol suites

FRR [8] is an IP routing protocol suite for Linux and
Unix platforms that implements protocol daemons for BGP,
OSPF, and other protocols. In addition to supporting the full
range of L3 configuration, FRR supports a number of L2
functionalities such as Layer Distribution Protocol (LDP).
Each protocol in FRR is implemented as a daemon, and all the
daemons communicate with an orchestration daemon called
zebra, which coordinates routing decisions and communicates
with the data plane. The modular architecture of FRR and
the separation of daemons make it highly resilient, flexible,
and extensible.
Other open source software solutions that implement Internet
routing protocols are listed as follows. BIRD [9] supports
multiple routing protocols, such as BGP and OSPF. It is
tested on Linux and ported to FreeBSD, NetBSD, and
OpenBSD. OpenBGPD [10] fairly provides a complete BGP
implementation and it is regularly tested on OpenBSD, Linux,
and FreeBSD. eXtensible Open Router Platform (XORP) [11]
supports a wide variety of routing protocols such as Internet
Group Management Protocol (IGMP), OSPF, BGP. Mac OS
X, Linux, and Windows are among the platforms supported
by XORP.

B. Open source NOSs

Disagreggating the hardware from the software in white-
box switches has pushed open source NOS to be developed
and maintained constantly. SONiC [4] is a Linux-based open
source NOS developed by Microsoft. It offers a full-suite of
network functionality, like BGP and Remote Direct Memory
Access (RDMA) and runs on switches from multiple vendors
and ASICs. SONiC consists of several modules that exist
either in docker containers or in the Linux-host system itself.
A container is a lightweight, standalone, executable package of
software that contains the code, runtime, system tools, system
libraries, and settings needed to execute the application [12].
The high-level architecture of SONiC is shown in Figure 1,
where it operates in the user space. Each component in
SONiC handles a specific job, such as relaying the DHCP
requests, handling Link Layer Discovery Protocol (LLDP)
functionalities, providing Command Line Interface (CLI) and
system configuration capabilities, and running FRR or Quagga
routing stacks.
Facebook has developed its own NOS for its data centers
called FBOSS [13]. Contrary to SONiC, FBOSS is not a sepa-
rate Linux distribution, and its design is specific to Facebook’s
data center infrastructure. Thus, FBOSS may not generalize to
any data center. Open Network Linux (ONL) [14] is a Linux
distribution for bare-metal switches that was developed by big
switch networks. Additionally, they incorporated SONiC with
ONL to create an open source NOS stack for collaborative
development in networking. Figure 2 summarizes the high-

dhcp-relay 
container

pmon 
container

snmp 
container

lldp 
container

bgp 
container

teamd 
container

redis-server

Database container

swss 
container

syncd 
container

CLI
 sonic-cfggen

user space

kernel space

Fig. 1. High-level architecture of SONiC.

level design of the aforementioned NOSs and compares them
to legacy switches.

C. Enterprise Networks Migrating to SONiC

Apart from Microsoft, which has acquired SONiC since
2016 and outsourced it to the community, Linkedin is working
on OpenFabric [15], a web-scale protocol for data center
fabric. Alibaba [16], a multinational Chinese company special-
izing in e-commerce, retail, Internet, and technology, has de-
ployed SONiC as its NOS and become a major contributor in
the open source community of SONiC. Alibaba added features
like Virtual Local Area Network (VLAN) Trunk, Terminal
Access Controller Access Control System Plus (TACACS),
Link Aggregation Control Protocol (LACP) fallback, and
Maximum Transmission Unit (MTU) setting. Other data center
enterprises with large-scale networks such as Tencent and
Baidu are providing resources to test, build, and deploy SONiC
in their infrastructure [17].

D. Programmable forwarding plane

Traditionally, switches implement fast path forwarding, i.e.,
the forwarding of the packets at high speeds, using switching
ASICs that contain one or more forwarding tables. These
ASICs have enabled the transfer of terabits of aggregate
traffic every second. However, they are designed with fixed
functionalities that allow a limited number of network
protocols. As a result, in order to adopt new protocols, the
emergence of new ASIC generation is needed, such that
the performance capabilities are not sacrificed to keep up
with the ever growing network services. Barefoot networks
countered this problem by introducing Tofino, the world’s

ONL

Forwarding 
stack

FBOSS FRR
SONiC

SAI

Open networking 
switch

ONIE ONIE

ONL

Monolithic 
Network 

Operating System 
(NOS)

Proprietary 
networking 

switch

---------------------------------
-----

------------------------------------------------

FBOSS Big Switch

Open networking 
switch

ONIE

SONiC

SONiC

Legacy switch

Open networking 
switch

Fig. 2. Open and closed source NOS design.



first end-user fully-programmable Ethernet switch. The Tofino
chip is loaded with a P4 program that provides the logic for
handling all supported protocols. Thus, making the Tofino
switch protocol independent, and whenever a new protocol is
required, the only entity that needs to be updated is the P4
program.
The programmable switches support a set of powerful features
that allow network operators to drive and control their network
with more freedom. Among these features is enabling network
administrators to have more visibility by exporting metadata
through various channels. For example, using In-band
Network Telemetry (INT) to query switch-internal state, such
as queue size, link utilization, and queuing latency [18].
A noteworthy breakthrough is that the additional features
of the programmable switch do not come on the expense
of performance, nor on the power consumption and price [19].

III. EXPERIMENTATION

In this section, we discuss the preparatory stage to acquire
the switches. Then, we present our testbed and the steps
followed to build the environment. Furthermore, we test the
routing protocols that are supported by SONiC while providing
technical details regarding the configuration done.

A. Preparatory Phase

Before acquiring any networking devices, the specifications
of the device and its role in the network should be clear. We
adopt programmable switches due to their power in reshaping
the network.
Programmable switches are gaining more attraction, and ven-
dors are competing in this field. We chose Barefoot Networks,
an Intel Company, that are the initiators of programmable
ASIC switches. Barefoot manufactures these programmable
circuits, and they are now supported by multiple vendors,
such as Edgecore, Inventec, Stordis, and WNC. Our white-box
switches are manufactured by Edgecore, and they are equipped
with Barefoot Tofino 3.3T ASIC. To acquire these switches, a
Non-disclosure agreement (NDA) had to be signed.
Initially, these switches are loaded with Open Network Install
Environment (ONIE), which defines an open install environ-
ment and enables an open networking hardware ecosystem
where users can choose and deploy a variety of NOSs [20].

B. Building the Testbed

Figure 3 shows our testbed which consists of two Wedge
100BF-32X switches. On top of ONIE, we installed the
required files to build the Software Development Environment
(SDE) 9.1 and the P4 profiles. Barefoot’s SDE was also used
to build the baseline switch.p4 program on the device. This
program implements various networking features needed for
typical cloud data centers, including Layer 2/3 functionalities,
Access Control List (ACL), Quality of Service (QoS), etc.
After building the SDE, SONiC was installed and the two
switches were connected through a fiber optic cable of 100 GB
bandwidth. SONiC is built on the Switch Abstraction Interface

Wedge 100BF-32X

SAI

ONIE

SONiC

SAI

ONIE

SONiC

100 GB Fiber Optic Cable

Wedge 100BF-32X

Fig. 3. Our testbed consisting of two Wedge 100BF-32X switches through
100 GB fiber optic cable.

(SAI), which defines the API to provide a vendor-independent
way of controlling forwarding elements, such as a switching
ASIC [21].

C. SONiC supported IP routing protocols

Figure 4 shows our topology that consists of two switches
directly connected through a fiber optic cable on interface
Ethernet124 of both switches. Additionally, both switches
have their interface Ethernet120 up and configured with
an IP address that will be advertised to the switch on the other
end. The interfaces Ethernet120 and Ethernet124
have logical numbers, and they map to the physical interfaces
Ethernet31 and Ethernet32, respectively.
The two routing protocols that are supported by SONiC are
static and BGP routing protocols. For BGP configuration,
switch 1 and switch 2 are in autonomous systems 65000 and
65100, respectively.

SONiC manages its configuration using a single source
of truth, referred to as ConfigDB. This file is located
in /etc/sonic/config_db.json and it consists of
multiple tables that SONiC uses in its configuration. For
example, the table INTERFACE contains the IP addresses of
the interfaces. To change the IP addresses, we modified the
INTERFACE table manually and configured the IP addresses
of interfaces Ethernet120 and Ethernet124 according to our
architecture. Figure 5 shows the modified tables in ConfigDB
file. For the modification to take effect, the configuration
must be loaded using the command sudo config load
-y, and the switch must be rebooted using the reboot
command. We were able to configure and run static routing
successfully using the command line interface vtysh that
provides a combined frontend to all FRR daemons in a single
combined session [8].
For BGP, SONiC uses the loopback address configured in the
config_db.json file as the router ID in BGP sessions.
Thus, we changed the IP address of the loopback interface on
both switches so that the routers do not have the same ID in a
BGP session. The configuration of the loopback interface lies
in LOOPBACK_INTERFACE table. BGP was also configured
using the command line interface vtysh, and the ping was
successful between the the advertised networks.



AS 65000 AS 65100

Ethernet124 Ethernet124

Switch 1 Switch 2192.168.124.2/30

Ethernet120 Ethernet120

192.168.120.10/31

192.168.124.1/30

Lo: 10.1.0.10/32 Lo: 10.1.0.20/32

192.168.120.20/31

Fig. 4. Our network topology to test SONiC supported routing protocols.

"INTERFACE": {

"Ethernet120|192.168.120.10/31": {},

"Ethernet124|192.168.124.1/30": {}, 

},

"LOOPBACK_INTERFACE": {

"Loopback0|10.1.0.10/32": {},

},

"INTERFACE": {

"Ethernet120|192.168.120.20/31": {},

"Ethernet124|192.168.124.2/30": {}, 

},

"LOOPBACK_INTERFACE": {

"Loopback0|10.1.0.20/32": {},

},

Switch 1 config_db.json file Switch 2 config_db.json file 

Fig. 5. Modified tables in the configuration file of switches 1 and 2.

IV. DISCUSSION

Although most of the open source NOSs are mainly targeted
to data centers, the features that they support allow them to
be deployed on campus networks. Campus network contains
multiple LANs that reside within a geographic area. It has a
hierarchical design that is divided into layers. The access layer
performs layer 2 functionalities. On top of it, the distribution
layer resides to perform layer 3 functionalities.
In a proprietary closed-source network design, the access layer
has limited capabilities, and the best actions that network
operators can do is to replace the current layer 2 switches
with layer 3 switches. However, layer 3 switches are costly
and their features are limited and closed to the vendor [22].
With open source NOS, the aforementioned limitations would
not exist, and the access layer capabilities will be boosted
based on the requirements of the campus network, without
being limited to the vendor.
Furthermore, P4 switches allow the implementation of a new
class of high performance data-plane applications, such as
INT, layer 4 load balancing, and in-network DDoS detection.
Therefore, combining an open-source NOS with powerful
hardware is promising for a new era of network designs.

V. CONCLUSION

In this paper, we surveyed a number of open source net-
working software systems that are reshaping the network by
disaggregating its components and making it vendor-agonistic.
The architecture of the open source network, in a bottom-up
view, starts from the white-box forwarding hardware, in which
the operating system is not limited to the vendor. Instead,
network administrators choose which open source NOS to
deploy based on the needs of their network. Furthermore, open

source IP routing stacks are being integrated with NOSs, thus,
transforming a switch from a layer 2 hardware, to layer 3 hard-
ware. In our experiments, we had two programmable switches
running SONiC as a NOS, where we tested static and BGP
routing protocols and validated their correctness. Although
open source NOSs and white-box switches are mainly targeted
to large data centers, they have strong potentials to replace
closed source proprietary switches used in campus networks.
For future work, we plan to deploy our programmable switches
that run SONiC in our campus network and closely observe
their effects on the network behavior.

REFERENCES

[1] J. Kurose and K. Ross, Computer Networking: A Top-Down Approach.
Pearson, 6 ed., 2017.

[2] X. Yang, Z. Sun, J. Li, J. Yan, T. Li, W. Quan, D. Xu, and G. Antichi,
“Fast: enabling fast software/hardware prototype for network experi-
mentation,” in Proceedings of the International Symposium on Quality
of Service, pp. 1–10, 2019.

[3] E. Puijk, “Open-source network operating systems: feature evaluation of
sonic.” https://esc.fnwi.uva.nl/thesis/centraal/files/f1729148638.pdf. Ac-
cessed: 2020-01-03.

[4] “Software for open networking in the cloud - sonic.”
https://azure.github.io/SONiC/. Accessed: 2019-11-15.

[5] J. Crichigno, E. Bou-Harb, and N. Ghani, “A comprehensive tutorial
on science dmz,” IEEE Communications Surveys & Tutorials, vol. 21,
no. 2, pp. 2041–2078, 2019.

[6] E. Kfoury, J. Crichigno, E. Bou-Harb, D. Khoury, and G. Srivastava,
“Enabling tcp pacing using programmable data plane switches,” in
2019 42nd International Conference on Telecommunications and Signal
Processing (TSP), pp. 273–277, IEEE, 2019.

[7] E. Kfoury, J. Crichigno, and E. Bou-Harb, “Offloading media traffic to
programmable data plane switches,” in IEEE International Conference
on Communications (ICC), IEEE, June 2020.

[8] “Free range routing - frr.” https://frrouting.org/. Accessed: 2020-01-10.
[9] “Bird internet routing daemon.” https://bird.network.cz/?getdocv =

20f = bird− 1.htmlss1.1.Accessed : 2020− 02− 05.
[10] “Openbgpd.” http://www.openbgpd.org/. Accessed: 2020-02-05.
[11] “extensible open router platform.” http://www.xorp.org/. Accessed:

2020-02-05.
[12] D. Merkel, “Docker: lightweight linux containers for consistent devel-

opment and deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.
[13] S. Choi, B. Burkov, A. Eckert, T. Fang, S. Kazemkhani, R. Sherwood,

Y. Zhang, and H. Zeng, “Fboss: building switch software at scale,” in
Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication, pp. 342–356, 2018.

[14] “Big switch networks.” https://www.bigswitch.com/. Accessed: 2020-
02-06.

[15] R. White, S. Hedge, and S. Zandi, “Is-is optimal distributed flooding
for dense topologies draft-white-distoptflood-03,” April, 2020.

[16] H. Wang, “Sonic development and deployment at alibaba.”
https://www.opencompute.org/files/Alibaba-NOS-Development.pdf.
Accessed: 2020-01-17.

[17] A. Raveh, “Sonic is making open ethernet a dream come true.”
https://blog.mellanox.com/2018/10/sonic-open-ethernet-dream-come-
true/. Accessed: 2020-01-15.

[18] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker,
“In-band network telemetry via programmable dataplanes,” in ACM
SIGCOMM, 2015.

[19] Barefoot Networks, an Intel company, “World’s
fastest p4-programmable ethernet switch asics.”
https://www.barefootnetworks.com/products/brief-tofino/, 2020.

[20] “Open network install environment (onie).”
https://opencomputeproject.github.io/onie/. Accessed: 2019-11-15.

[21] “Open network install environment (onie).”
https://github.com/opencomputeproject/SAI. Accessed: 2019-11-20.

[22] “Campus lan and wireless lan design guide.”
https://www.cisco.com/c/dam/en/us/td/docs/solutions/CVD/Campus/CVD-
Campus-LAN-WLAN-Design-Guide-2018JAN.pdf. Accessed: 2020-
02-08.




