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Characterization and performance of cement-based thermoelectric materials
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ABSTRACT: Thermoelectric materials enable direct conversion of thermal energy to electricity. Ambient heat energy harvesting
could be an effective route to convert buildings from being energy consumers to energy harvesters, thus making them more
sustainable. There exists a relatively stable temperature gradient (storing energy) between the internal and external walls of
buildings which can be utilized to generate meaningful energy (that is, electricity) using the thermoelectric principle. This could
ultimately help reduce the surface temperatures and energy consumption of buildings, especially in urban areas. In this paper,
ongoing work on developing and characterizing a cement-based thermoelectric material is presented. Samples are fabricated using
cement as a base material and different metal oxides (Bi-Os and Fe:0s) are added to enhance their thermoelectric properties. A
series of characterization tests are undertaken on the prepared samples to determine their Seebeck coefficient, electrical and
thermal conductivity. The study shows that cement paste with additives possesses physical properties in the range of
semiconductors whereby, initially, the resistivity values are low but with time, they increase gradually, thus resulting in lower
electrical conductivity. The thermal conductivity of the cement paste with additives is lower than the control sample. Seebeck
coefficient values were found to be relatively unstable during the initial set of measurements because the internal and external
environment needed fo be kept in a thermally stable condition to achieve steady results. The detailed analysis helped determine
and eliminate the source of errors in the characterization process and obtain repeatable results. Parameters such as moisture
content, temperature and age were found to have a significant impact on the properties of cement based thermoelectric materials.
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1 INTRODUCTION

harvest the waste heat stored in buildings by converting it into

Urbanization is increasing rapidly all over the world and so a useful form of energy, thus making them more sustainable.

is the impact of anthropogenic activities. According to an 2
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estimate by UN urbanization projections, as of 2018, 55% of

the world’s population now resides in urban areas [1].
Pavements, roads and buildings absorb incident solar radiation
leading to a 10-20°C rise in their surface temperatures as
compared to their swrroundings in summer [2], causing the
Urban Heat Island (UHI) effect [3]. 60 % of urban surface area
is now covered by low albedo and heat absorbing materials [4].
On average, the electricity consumption in meeting cooling
needs in summer was 13% higher in urban areas compared to
rural areas [7]. Mitigation measures applied for alleviating the
UHI effect helped reduce the surface temperature of buildings
but had limited influence on reducing its overall impact [8].
Heat harvesting is a promising route to generate electrical
energy from ambient heat which in turn helps reduce the
surface temperature of buildings and pavements. Several
technologies like photovoltaics, thermoelectrics, periodic
kinetic, EM wave, airflow, etc have been studied for this
purpose. The miniscule amount of power available from them
and the complexities involved in their operation has restricted
their application [9]. There exists a relatively stable thermal
gradient between indoor and outdoor air in buildings [11].
Thermal energies from these gradients could be captured and
converted into electricity using the thermoelectric (TE)
phenomenon. Cement-based thermoelectric materials can be a
useful route to harness absorbed thermal energy in buildings.
This paper describes the use of cement based TE materials to

The thermoelectric effect is a phenomenon where heat energy
is directly converted info electric energy. The performance of
TE materials can be assessed using a dimensionless parameter
known as the figure of merit (ZT), which is mathematically
represented by Equation 1. In this equation S, o, k and T stand
for Seebeck Coefficient, Electrical Conductivity (EC), Thermal
Conductivity (TC) and Absolute Temperature respectively. A
TE material can be used for practical applications if its ZT
value is greater than or equal to 1 [12].
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A superior TE material should have a high electrical
conductivity to minimize joule heating, a large Seebeck
coefficient for maximum conversion of thermal to electrical
energy and a low thermal conductivity so that thermal shorting
could be prevented [13]. The percolation phenomenon in
cement was first observed in 1998 by Sun et al. in a carbon fibre
reinforced cement (CFRC) composite, where a Seebeck
coefficient of 17 V/°C was obtained for a 1% concentration of
carbon fibres [14]. Since then, cement-based TE materials have
garnered substantial interest from researchers worldwide.

Addition of Bismuth Telluride in a CFRC mix led to a
Seebeck coefficient of 35.5uV/°C [16]. Adding micro sized
Fe,03 and Bi,0; were found to have a Seebeck coefficient of
92.6 and 100.3 pV/°C respectively for a 5 wt. % concentration
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in the cement matrix [17)]. However, the electrical and thermal
conductivity of the resulting samples were not studied [17]. The
use of nano sized metal oxide powders resulted in higher
Seebeck coefficients as compared to micro sized additives [18].

Enhancing TE performance by introducing metal oxide
powders helped improve the Seebeck coefficient but the EC
values of the composite showed limited improvement. Other
compounds such as carbon and steel fibres, graphite, carbon-
based nano materials have also been used to improve the
thermoelectric performance of cement. The biggest challenge
in this endeavour is that high EC and Seebeck coefficient
values could be obtained separately for samples but not
simultaneously in the same specimen under similar operating
conditions [19]. Maintaming a low TC value is essential to
improve conversion efficiency of a TE cement composite.

Thermal and electrical conductivity are properties which are
dependent on each other, increasing one will lead to an increase
in the other and vice-versa. Hence, increasing EC whilst
limiting the value of TC for a material is a difficult task to
achieve. Characterising TE materials in general has its own
share of problems, particularly at elevated temperatures which
can cause inaccuracies as high as 50% in the measurement [20].
Even a small degree of inhomogeneity within the sample can
result in large variations in TE properties [21]. This fact causes
difficulty in achieving repeatable and reliable results for TE
materials especially when electrochemical reactions and phase
transitions are taking place within the sample [20]. It is still
difficult to determine for how long was the TE phenomenon
observed in enhanced cement-based TE materials, was it
obtained from a dry or saturated sample or did curing time and
changing degree of hydration taking place within its internal
structure with age have any influence on it.

So far, just one study by Wei et al. has investigated the impact
of moisture on the Seebeck coefficient and electrical
conductivity of enhanced cement composites [22]. They found
that the observed TE phenomenon can be attributed to a high
moisture content in the sample. In this work, an attempt has
been made to study the main thermoelectric properties of
cement paste enhanced with micro sized Fe,Os; and Bi,Os
particles. Several challenges and errors were encountered while
measuring the Seebeck coefficient and electrical conductivities
for them. The methods adopted to solve the errors to produce
stable results are highlighted and the intricate factors having an
impact on the characterization process from the material and
the measurement point of view are identified.

3 EXPERIMENTAL WORK

3.1 Material Specification

Cement samples were prepared using a 42,5 R CEM I cement
from Irish Cement Ltd (described in Table 1) of particle size of
about 15 microns and Bismuth trioxide powder with a purity of
99.5 % and maximum particle size of 50 microns. The Ferrous
oxide powder used had 95% of its particles of size less than 53
microns. No aggregates were used.
3.2 Sample Preparation and Curing
Three set of samples were prepared; one was the control sample
which consisted of only cement and water mixed with a water
to cement (w/c) ratio of 0.45. The other two sets of samples
were made of 5% Bi;Os; and 5% Fe,Os; weight by mass of
cement respectively.

Table 1. CEM I chemical composition

Contents Percentage (%)

Si0- 18.29 % * Here the
Al0s 5.08 % Chloride
Fe-0s 2.78 % content of the
CaO 63.89 % cement is not
SOs 2.64% included as it
F. Cao 1.57 % Was_ not

LOI 2.79 9% available from
Na:O Eq. 0.59 % the reports

The dry contents were blended thoroughly in a container and
thereafter the required amount of water was added to form a
wet paste mix using an automatic mortar mixer. The prepared
mixture was poured into a stainless-steel mould of size 160 x
40 x 40 mm?. The mould containing the mix was compacted
using a vibrating table to remove air bubbles. The samples for
thermal conductivity tests were of cylindrical shape (100mm
diameter x 200mm long). The prepared mix was allowed to set
for 24 hours and was then demoulded. Samples were later
subjected to water curing in a tank for a period of 7 days. The
curing tank temperature was maintained at 20 + 1°C. Once the
samples were removed from the curing tank, it took up to 6
hours for the surfaces to become dry and thereafter the
measurements were made. In between the tests, they were
allowed to rest in the laboratory environment under ambient
temperature and humidity conditions.

3.3 TE Characterization methods

3.3.1

The experimental setup used for measuring the Seebeck
coefficient was assembled in the laboratory and could measure
the voltage difference generated as a result of subjecting the
prepared cement sample to a fixed temperature gradient. A 3-D
schematic of the insulated sample and the schematic of the
setup are shown in Figure 1. It consisted of a silicone mat heater
connected to a DC power supply powered by the mains. One of
the square end (40mm x 40 mm) of the sample was heated by
the silicone mat heater while it was enclosed on the four
longitudinal sides using an insulating material having a thermal
conductivity of 0.022 W/m-K. K-Type thermocouples were
embedded into the samples during casting to monitor the
temperature distribution across the sample length while
subjecting it to a temperature gradient. The opposite end of the
heated side was exposed to ambient temperature. Temperature
sensors (K-Type) were also attached to the sample at both ends.
Weights were applied to ensure adequate thermal contact
existed between the sample and the heater. The sample was
surrounded by insulation to minimise heat losses.

The samples had woven meshes of 300um diameter copper
wire embedded into them during the casting procedure for
connecting them to the data acquisition unit for measuring
voltage difference and resistance. The Seebeck coefficient tests
were carried out by measuring the voltage difference between
the two copper meshes in the sample. The temperature
difference while measuring the Seebeck coefficient was
recorded at the same point as the voltage difference. The data
acquisition was carried out by connecting the electrical wires

Seebeck Coefficient Tests
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and temperature sensors to a Digital Multimeter combined with
a Data Logging and Acquisition Unit.

Cement Sample

Insulation Sheet
Insulation Sheet

!: Silicone Mat Heater

Figure 1. Schematic of the experimental set up
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The electrical resistance of the sample was determined
using the 2 Wire DC method. The samples were connected to a
Digital Multimeter and Data Acquisition unit (Figure 2.) using
the copper meshes embedded in the cement samples. The
electrical connections were made by soldering tinned copper
wires (high temperature resistant) to the copper meshes. The
tinned copper wires were connected to the data logging unit.
Electrical conductivity was derived by measuring the electrical
resistance of the sample and obtaining its resistivity by
considering its geometric factor (length and cross-sectional
area).

3.3.3  Themmal Conductivity Tests

The thermal conductivity (TC) tests followed the transient
line source (TLS) method [23]. A cylindrical sleeve (100 mm
long and 2mm diameter) was inserted into the sample to house
the THERMTEST TLS-100 probe (see Figure 3). The
measurements were carried out at room temperature and
repeated 10 times with the average reading taken as the final
TC value.

Electrical Conductivity Tests

Digital i
Multimeter §
with Data

Logging Unit I_._

Figure 2. 2W DC resistance measurement method

Figure 3. Thermal Conductivity test set-up

4 RESULTS AND DISCUSSIONS

4.1  Seebeck Coefficient Tests

The initial set of Seebeck coefficient tests were carried out
on plain cement samples in saturated conditions. It was
observed that despite not subjecting the sample to any
temperature gradient, a small DC voltage was generated. The
Seebeck coefficient values for the control sample, when a
constant temperature gradient (80°C) was maintained across
the sample, is shown in Figure 4 and were found be in the range
of -1x 107 to -1x10% pV/°C. However, despite similar
conditions throughout, a significantly higher Seebeck voltage
was obtained from the same sample as shown in Figure 4. The
sample was kept in a similar condition (insulated) throughout
the testing period and moisture escape was not allowed. This
could be a result of the moisture present in the sample as it was
in a saturated condition.
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Figure 4. Seebeck Coefficient of control sample at fixed AT

The Seebeck coefficient tests were also carried out for the
Bi;0; and Fe;O; cement composites with all saturated samples
yielding a small DC voltage (less than 100mV) despite not
being subjected to a temperature gradient. When a constant
temperature gradient was established across the sample, the
Seebeck voltage showed an unusual sinusoidal pattern which
shifted from positive to negative upon a change in temperature,
as shown in Figure 5 and Figure 6 respectively. This pattern
was observed when specimens were subjected to heating, so it
was difficult to arrive at a particular value or range of values
for Seebeck coefficient thus measured for metal oxide
containing samples. Hence, a thorough analysis was carried out
to find the sources of error and mitigate them as described in
detail in Section 4.4.

4.2 Electrical Conductivity Tests

The initial set of EC tests were carried out on the control
sample at room temperature, without a temperature gradient.
The EC value observed for a saturated control sample was
found to be 0.07 S/m while after drying (for 24 hours at 105°C),
it reduced dmstically to 2 x 10* S/m. Tests were
simultaneously carried out for three different samples made and
cured at the conditions described in Section 3.2. After curing
samples in a water tank for 7 days, they were subjected to
ambient temperature and humidity conditions for 14. 60 and 90
days with conductivities measured over a 24hr period. As
expected, the EC value for the 14-day old sample was the
highest at 0.06 S/m, while the conductivity decreased to 0.016
and 4 x 10* S/m for 60- and 90-days old samples respectively.
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Similarly, EC tests for saturated Bi;O; and Fe,Os; cement
composites were carried out at room temperature. The Bi,Os
sample displayed a higher conductivity value of 0.09 S/m while
the control and Fe,Os cement composite samples had EC values
of 0.07 and 0.06 S/m respectively. Conductivity values were
found to decrease gradually with time for all measurements
carried out (Figure 7). It was clear from the results that initially
due to a high moisture content (with conducting ions present in
the sample), the electrical conductivity is comparatively higher.
With time as the sample approaches equilibrium with the
relative humidity of the environment and the internal changes
in its structure due to the continuous changes in degree of
hydration taking place, the conductivity reduces gradually. The
electrical conductivity values were still found to be falling in
the range of conductivity found in semiconductors [24].
Cementitious materials enhanced with composite materials
have two ways of electrical conduction, namely electronic and
electrolytic [25]. The former is the result of the motion of free
charge carriers in the conductive path formed by the additives.
The latter is the result of motion of ions present in their porous
structure. Electronic conduction plays the essential role of
imparting electrically conductive properties to cement-based
TE materials. To measure its effect, electrolytic conduction
needs to be eliminated by drying the sample but doing so leads

to a significant drop in conductivity values [26].
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Figure 5. Voltage readings from 5% wt. BiOs sample
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Figure 6. Voltage readings from 5 wt.% Fe,Os sample

During DC resistance measurements at room temperature, a
polarization effect as a result of using DC curent in the form
of a low voltage was detected in the sample (100-500mV) that

interfered with the resistance measurements. This voltage
reduced during the natural transition of the sample from
saturated to a dry state.

* 5% Bi;03 * 5% Fe;03
0.1
E 0.08
)
};? | N—
= 0.06 —=
8
5
2 o004
2
&
w 0.02
o
0 5 10 15
Time(hours)

Figure 7. Electrical conductivity of 5 wt.% Bi,O; and 5
wt.%Fe,0; saturated sample

4.3 Thermal Conductivity Measurements

During the TC measurements, it was ensured that the
instrument used was in thermal equilibrium with the sample
before each test was carried out. The TCs of the control, Bi,Os
and Fe;Os; cement samples were found to be 1.15, 1.044 and
1.022 W/m-K respectively, in the saturated condition. The
coefficient of variation observed for the measurements were
found to be 1.6 %. 1.9 % and 1.5 % respectively which was
acceptable. The BiO; and Fe,Os; cement composite
respectively saw a reduction of 9.2 % and 11.1 %, in their
thermal conductivity values as compared to the TC of the
control sample.

4.4 Troubleshooting the measurement process

The Seebeck coefficient is not a conventional property of a
cementitious material. The Seebeck voltage is usually found to
have a linear relationship with the applied temperature gradient
for semi-conductors. However, while measuring the same for
enhanced cement composites, the results obtained were highly
inconsistent and it wasn’t possible to get steady values of the
quantity at fixed temperature gradients. Since low level voltage
measurement (V) were involved in the measurement process
and knowing the extent to which multiple connections and the
thermal gradient could influence them [27] . a thorough
analysis was carried out to find the source of errors. The first
possible source of error studied was instrumental. The
instrument is specified to be capable of measuring voltage on
the microvolts scale with an accuracy of 100 nV but it is still
subject to offset and temperature drift. In order to determine its
offset voltage, the instrument was disconnected from all
circuits and the test lead wires were shorted together to find if
the meter showed a true zero volts.

The procedure was carried out four times and the voltage
obtained was in the range of 1x10 and 1x107 V for each. To
avoid external electrical interference, additional components
were added to the experimental setup. Firstly, a 3mm thick
aluminium sheet covered with a neoprene rubber sheet was
placed at the bottom which ‘grounded’ the instrument.
Furthermore, the instrument required a warmup time of 30
minutes before taking any measurements. However, despite
following these measures, the results continued to show
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unsteadiness due to thermal drift. It was, therefore, decided to
warm up the instrument until a steady temperature was
established providing constant DC voltages at thermal
equilibrium.

The DC voltage measured for a Fe.O; sample with no
temperature gradient is shown in Figure 8. A steady voltage of
60-65mV was obtained for a significant amount of time. Later,
the sample was subjected to a 45°C temperature difference and,
having switched the instrument on in advance, the
measurements were taken after the gradient was established.
The Seebeck coefficient was measured from the cold to hot end
(negative) for a 30-minute time interval and was found to
follow a steady pattern, as shown in Figure 9. This procedure
and assessments were carried out for a 10-day period while
maintaining a constant temperature gradient of 45°C without
disturbing the system. The resulting voltage obtained ranged
from 130-170 mV where it reduced gradually day by day. In
order to cancel out offset, the voltage obtained was measured
in both directions, i.e. from hot to cold end and vice-versa and
the magnitude from both the directions was found to be same,
but of opposite sign. Another set of results is shown in Figure
10.

These measurements were carried out first by using the
automatic feature of the data logger. Later the values were
confirmed to be in a similar range by using the manual function
of the instrument and with two other Multimeter’s (Fluke and
Iso-tech). These tests helped achieve stable results for the
Seebeck coefficient and eliminated source of errors from the
instrument in the measurement process.
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Figure 8. Potential difference obtained from a Fe,Os; cement
composite at zero temperature gradient
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Figure 9 Seebeck Coefficient for saturated Fe,Os; cement
composite over a 30 minute interval
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Figure 10 Seebeck Coefficient at fixed temperature difference
over 1-day time period for 5% Fe,O; cement composite

Seebeck tests were repeated for the saturated Fe,O; samples
with different temperature gradients. They were obtained by
manually adjusting the voltage supplied to the heating plate.
For the 30-50°C range (with a 5°C step), the observed Seebeck
voltage had a proportional response. Thereafter, both Bi>.O; and
Fe,0; cement composites were dried in an oven for 24 hours at
105°C. The Seebeck tests were repeated for those samples and
the values obtained for a dry sample were significantly lower.
They were found to be in a similar range (in terms of
magnitude) to the Seebeck coefficient reported for other metal
oxide-based cement composites.

There was still a transition observed from positive to negative
values in the measurements. However, this phenomenon could
be deemed temporary as it wasn’t possible to maintain the
sample in a dried state beyond a point in time. When it was
subjected to ambient conditions, its moisture content increased.
The Seebeck Coefficient obtained from a dried Bi,Os cement
composite is shown in Figure 11 where the values fell from +80
to -80puV/°C, mostly remaining in the negative range after
steady state was achieved. Similarly, the Seebeck coefficient
for the cement composite with Fe,Os showed values of -20uV
during the temperature rise taking place up to +30uV when it
stabilised, as shown in Figure 12. When continuing the tests,
the coefficient varied from +20 to -60uV/'C over a 68-hour
time period. Thus, it can be observed that the Seebeck
coefficient fluctuated between positive and negative in dried
samples, unlike the saturated samples. The reason for the
transition is not known yet and needs to be investigated further.
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Figure 11. Seebeck Coefficient obtained from dried Bi>O;
sample
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Figure 12. Seebeck coefficient values after drying the Fe,0s
sample in oven in 24 hours

5 CONCLUSIONS

In this work, an attempt to develop and characterize a cement-
based TE material was made by adding micro sized metal oxide
powders to the cement matrix. The following conclusions were
drawn from the experimental work carried out:

e The Seebeck Coefficient of the metal oxide enhanced
cement samples were high in saturated states but decreased
significantly when dried;

o The electrical conductivity observed was high for those
samples with a high moisture content but decreased
gradually with time. The conductivity values dropped
drastically in the dry state as compared to saturated.

e The DC resistance method is deemed umfit for
measurements due to polarization effects generated by DC
current in the sample during resistance measurement;

o Thermal conductivity of the enhanced cement composites
was found to be lower than the control sample;

e There is a crucial impact of age and moisture content of the
enhanced cement composite on the thermoelectric
properties it possesses, and detail investigation of its
influence is required to be carried out;

o A defailed analysis is also required to determine the
properties of enhanced TE materials in a controlled
manner. Future work will consist of undertaking
measurements using an automatically controlled system to
subject the sample to varying temperature gradients (20°C
-80°C).
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