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Abstract: In a recent paper (Chen et al. in The generalized TAP free energy, to appear
in Comm. Pure Appl. Math.), we developed the generalized TAP approach for mixed
p-spin models with Ising spins at positive temperature. Here we extend these results
in two directions. We find a simplified representation for the energy of the generalized
TAP states in terms of the Parisi measure of the model and, in particular, show that the
energy of all states at a given distance from the origin is the same. Furthermore, we prove
the analogues of the positive temperature results at zero temperature, which concern the
ground-state energy and the organization of ground-state configurations in space.

1. Introduction and Main Results

The TAP approach, named after Thouless, Anderson and Palmer, was originally intro-
duced in [31], where their famous equations for the magnetization and representation for
the free energy of the SK model were derived. In a recent paper [14], adopting ideas from
[28], we defined the generalized TAP free energy using a geometric approach for mixed
p-spin models with Ising spins, at any positive temperature. Our first goal here will be
to compute the energy of all generalized TAP states in terms of their distance to the
origin. The main focus, however, will be on the zero temperature analogue of the analy-
sis in [14]. Of course, as the temperature tends to zero the Gibbs measure concentrates
on near maximal energies, hence this analysis deals with the ground state energy and
configurations. In particular, the corresponding TAP representation at zero temperature
expresses the ground state energy, and the location and structure of TAP states contain
information about the organization of ground state configurations in space.

The first rigorous mathematical results concerning the TAP approach were derived by
Talagrand [30] who established the TAP equations for the SK model at high temperature;
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see also the works of Chatterjee [10] and Bolthausen [8,9]. Much more recently, an
analogue of the TAP equations within pure states was proved for generic mixed p-spin
models at low temperature by Auffinger and Jagannath [5]. Moreover, in [13], the TAP
representation for the free energy was proved for general mixed models by the first two
authors. In the setting of the spherical models, the representation for the free energy was
proved for the 2-spin model by Belius and Kistler [6], and at very low temperature, for
the p-spin model with p > 3 by the third author [27] and for mixed models close to
pure by Ben Arous, Zeitouni and the third author [7].

In all of those works, the analysis was done at the level of pure states. As the temper-
ature tends to zero, they degenerate to a single point and the TAP correction converges to
zero, leaving only the energy term in the representation for the free energy. As a result,
the TAP approach at the level of pure states trivializes at zero temperature. In [14,28]
the generalized TAP free energy was defined based on geometric principles, inspired
by structural properties of the Gibbs measure, consequent to the famous ultrametricity
property [17-19] proved by the second author in [21] (see also [22]). In contrast to
the above, in addition to the pure states, this approach also treats ancestral states and
generalizes to zero temperature in a natural way, as we shall see below.

1.1. Previous results at positive temperature. Let us introduce the model and recall the
results from our previous paper [14]. Since these results will be used to pass to the zero
temperature limit, here we will also introduce an inverse temperature parameter 8 > 0.
The pure p-spin Hamiltonian indexed by ¢ € Xy := {—1, 1}" is defined by

N
1
Hy.p©) = ~ops D Sinendp i Oy (LD

i1,...,ip:1

where g;, i, are i.i.d. standard Gaussian random variables. Given a sequence (8p) p>1

,,,,,

that decreases fast enough, for example, p>1 2P /312, < 00,
Hy(o) =) BpHy, (o) (12)
p=1

is called a mixed p-spin Hamiltonian. Here the processes Hy_p are independent of each
other for p > 1. The covariance of the Gaussian process Hy (¢) equals

EHy(¢")Hy(6%) = N&(R(o', 0?)), (1.3)

where R(al, 02) = % Z,N=1 01.1 al.z is called the overlap of o! and o2, and where

Es) =) Bps”. (1.4)

p=1

Let us recall the Parisi formula [25,26] for the free energy

Fy(B) = IBLNlog Z ePHN @) (1.5)

ogeXy
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If My,1 is the space of probability measures on [0, 1], for ¢ € My 1, let <I>’{3 (t, x) be
the solution on [0, 1] x R of the Parisi PDE

B2E" (1)
2

0,f = — (axxcbf + ;(t)(axd>'§)2> (1.6)

with the boundary condition ®, (1, x) = log2 cosh x, where ¢ () := ¢([0, t]). Let

2
Pp(&) - —CDﬁ(O 0) - r /S%”(S)C(S)ds (1.7)
Then, the limit of the free energy is given by the Parisi formula [25,26],
1 1
lim EF, =— inf P = —Pp(&3), 1.8
im N (B) i o 5(5) 5 8(Lg) (1.8)

which was first proved by Talagrand in [29] (building on a breakthrough by Guerra [15]),
and later generalized to models with odd spin interactions in [24]. The minimizer ¢ g is
unique [1] (see also [16]) and is called the Parisi measure.

Next, we recall the generalized TAP free energy at inverse-temperature § > 0. For
m € [—1, 11" and ¢ > 0, let us consider a narrow band of configurations ¢ € Xy close
to the hyperplane perpendicular to m,

B(m,a):{aeEN IR(o, m) — R(m,m)|=%|m-(a—m)|<s}. (1.9)

Given§ > Qandn > 1, letus consider a set consisting of n configurations in this narrow
banda!,...,0" € B(m, ¢) such that all &' = ¢' — m are almost orthogonal to each
other,

Bu(m, &, 8) = {(al,...,a") € B(m,e)" : Vi # |,

R(a', /) — Rom,m)| < 5}.
(1.10)
For real numbers ¢, § > 0 and an integer number n > 1, let
TAPY, ,(m, &, 8) i= — log > of izt [Hn @H—Hnom], (1.11)
B, (m,e,5)

The motivation for this functional was given in [14], so we will not repeat it here.

We will denote the concave conjugate of the Parisi functional of (q x) defined in
(1.6) by

AP (g, a) = inf (CDﬂ(q,x) —ax), ael—1,1]. (1.12)
¢ xeR ¢
Fora € (—1, 1), the minimizer on the right-hand side exists and is denoted byaﬂ (g,a,?2).
Let M, denote the space of probability measures
M, =Pr([—1, 1]). (1.13)
For j € M, such that [a?du(a) = q € [0, 1], we define
’32

TAPP (i, ¢) := /A"(q a)dp(a) = =

/ sE"(s)¢(s) ds. (1.14)
q
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Notice that this functional depends only on the values of ¢(s) on the interval [g, 1], so
we can view it as a functional on the space M, | of all cumulative distribution functions
on [gq, 1]. Finally, define the TAP functional

TAPP () := inf TAPP(u,¢) = inf TAPP(w,?). (1.15)
ceMo, ¢eMg.i

We will denote the minimizer to the right-hand side by ¢g ;.. It was proved in [14] that

the minimizer is unique and that TAPP (1) is a continuous functional on M,. Let us
denote

1
Swig) = {m e 1=1. 11" s ml? = q}.
Form € [—1, 1]V, define the empirical measure

1
= ;:Vam,.. (1.16)
1=

The following were the main results in [14].

Theorem 1. (TAP correction) Foranyc,t > 0, ife, § > 0 are small enough andn > 1
is large enough then, for large N,

]P’(Vm e (-1, 11V : | TAPE  (m, e, 8) — TAPP ()| < t) ~1—eN. (1.17)

Theorem 2. (TAP representation) For any q € supp ¢ ;3“ and any t > 0,

NliinooIP( ‘FN(,B) _m?si’?q)<HNTm + %TAP’S(;Lm)N < z) =1 (L18)

Theorem 3. (TAP states are ancestral) For any g € supp ¢ ; and any t > 0,

i 2 ([ (207

1
— TAPP (u,,, ¢ t)=1. (1.19
max + 5 TAPP )| <) (1.19)

Theorem 4. (Generalized TAP equations) For any m € (—1, DY NSy @),

1/ 1
B _ . p2el
VTAPP () = = (Vs @ mi. Gpn) + miBE" () /q Gponds)_ . (1.20)

where {g m = (g, u,, IS the minimizer to (1.15) with pn = .
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1.2. The energy of generalized TAP states. Our first main result computes the energy
and TAP correction for all generalized TAP states at positive temperature in terms of
their distance from the origin. Given 8 > 0, let us denote the TAP free energy functional
by

Sm(B) = W +TAPP (), Vm e [—1, 11V, (1.21)
and, given ¢ > 0, let
Mg(e) = {m € Sw(@) : fu(B) 2 max fu(B)~ e} (1.22)

be the set of e-maximizers of f, (8). For simplicity of notation, we keep the dependence
of fu(B) and Mg 4(¢) on N implicit. The elements of the set Mg ,(ey) with ey — 0
and g € supp ¢ ;; are called the generalized TAP states.

Theorem 5. (The energy of generalized TAP states) For any q € supp g“g and any
sequence ey > 0 going to zero, almost surely,

lim max HN(m)—Eﬂ(q)‘:o (1.23)
N—o00 Mg 4(en)
and
li ‘TAP/S _ 5 _ BE ‘:o,
Jim | max (m) — (Pp(¢5) — BEp(q)) (1.24)
where

q 1 1 q
Eso) =5 [ €0 [ Goiis=pe@ [ Gorass [ Eogeds
N q
(1.25)

Remark 6. (Classical case)By definition, TAP? (1) < TAPP (1, ;E) and therefore, by

Theorems 2 and 3, we must have TAP? (11,,) =~ TAP? (1., {g) for all the generalized
TAP states. Classical TAP states correspond to ¢ = gga, which is the largest point in
the support of {E, in which case the TAP correction simplifies to (see [14, Proposition

11])

N
1
TAP (1) = -5 Zl 1(m;) + B*C(gra), (1.26)
1=
where
@) 1+a1 l+a+l—a1 1—a
= 0 (0)
a ) 2 BT

1
Clg) = E(é(l) —&(@) — (@0 ).

In particular, (1.24) implies that the entropy of the classical TAP states is given by

1 N
= 2 1 0m) = P () — BE (qra) (1 — gia)
i=1
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, [ )
—p /0 E'(9)¢5(s)ds — B~C(qra), (1.27)

so both energy and entropy of classical TAP states are constant. O

There exists an asymptotic description of measures u,, corresponding to ancestor
states m in the Parisi ansatz, and we will derive an asymptotic analogue of (1.24) directly
from this description. Such description first appeared in the physics literature in [20].
Rigorously, an asymptotic distribution of spins (from which a description of 1, can be
extracted) in terms of the Parisi measure was derived in Chapter 4 in [22] under certain
regularizing perturbations that were introduced in [23], and it was observed in [5] that
for generic models the same proof works without perturbations. The results in [22] were
written in terms of the discrete Ruelle probability cascades, whose overlap distribution
approximates the Parisi measure ¢, but one can write them directly in terms of the Parisi
measure (without discretization) in terms of the solution of the SDE

dX(s) = ﬂs”(s)ax@fg (s, X(s))ds + £"(s)!2dw,, X (0) = 0, (1.28)

as was done, for example, in [4] and [5]. We will not describe all these results precisely
here, but simply mention that, for ¢ € supp¢ ; , asymptotically the coordinates of an

ancestor state m with % lm||*> = g look like i.i.d. random variables with the distribution

o) = B(0,00, (¢. X(@) € - ). (1.29)

In other words, 1, is an asymptotic analogue of r,,,. We will show the following.

Theorem 7. For any q € supp {E and g defined in (1.29),

TAPP (1) = Ps(¢}) — BEs(@)- (1.30)
Moreover, for any q € [0, 1),
TAPP (1) < Pp(s5) — BEg(q). (1.31)

The first equation is an asymptotic analogue of (1.24), and the second equation states
that, in general, Pg(¢ }’3“ ) — BEg(q) is an upper bound on the TAP correction for such
measures.

1.3. TAP approach at zero temperature. Next, we will describe the analogue of the
above results at zero temperature. Let us define

1
TAPY 1 (m. &) = & (Hy(o) — Hy(m)), (1.32)

n

1 .
TAPj’V‘fn(m, £,0) = N s 1(13121?8) (HN(G’) - HN(m)). (1.33)
T =

ax
B(m,e)

Then we can write

. Hy (o) - Hpy (m)

Hy (m)
ma
geXy N

+TAPY  (m, ¢) > +TAPY, (m, £, 8). (1.34)
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We will be interested in points m € [—1, 11V where the above inequalities become

approximate equalities, for large N. In other words, we are interested to characterize
points m that have many near ground states orthogonal to each other relative to m.
Let NVp.1 be the family of c.d.f.s induced by all measures y on [0, 1) with

1 1
f y(s)ds = / y ([0, s])ds < o0. (1.35)
0 0
Fory € No, 1, consider the solution ®,, to the following PDE,

0, = —?(%@V + y(r)(ax@)y)z) (1.36)

on [0, 1] x R with the boundary condition ®,, (1, x) = |x|. It was shown in [1, Corollary
2] (see also [12, Section 2]) how such solution ®,, (¢, x) can be defined for all (¢, x) €
[0, 1] x R under the condition (1.35). For a € [—1, 1], we define

AP(q,a) = i2£<®y(q,x) — ax). (1.37)

We will see that, for a € (-1, 1), the minimizer is unique and finite (see Remark 19
below). We will denote this minimizer by W(q, a, y), so that

AP(q,a) :=0,(q,¥(g,a,y)) —a¥(q,a,y), a € (=1,1). (1.38)

Moreover, for a = +1, this infimum is well-defined and (see Remark 15 below)
1 1
AF(g £ =5 / £"(s)y (s) ds. (1.39)
q

If u € M, with g = [a®du(a), we define

1 1
AP y) = [ AF @ @ du@) ~ 5 [ s Gyrds 140)
q

Again, notice that this functional depends only on the values of y(s) on the interval
[¢, 1], so we can view it as a functional on the space /\/'q,l of measures on [¢, 1) such
that

1 1
/ y(s)ds =/ y([g,s])ds < oo.
q q

Finally, we let

TAP™ (1) :yei?\; TAP® (i, y) :yei?\; TAP® (i, y). (1.41)
0,1 q.1

We are now ready to state our main results on the generalized TAP free energy at zero
temperature. The first is a uniform concentration result for the TAP free energy defined
in (1.33) around the (non-random) functional we have just defined (1.41), applied to the
empirical measure i, = % D i<n Om;-
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Theorem 8. (TAP correction at zero temperature) For any c,t > 0, ife, § > 0 are small
enough and n is large enough then, for large N,

P(vim € [=1, 11V ¢ [TAPY, (m, &.8) = TAP® ()| < 1) > 1—e™N. (142)

Recall that the Parisi formula for the ground state energy of the mixed p-spin model
derived in [3] states that

. Hy (o) . 1 ! "
1 = inf (€ - = 1.4
Mm max =g y;nNO‘](Oy(O, 0) 2/0 s& (s)y(s)ds), (1.43)

and this variational formula has a unique minimizer, denoted y*. The next result is the
TAP representation for the ground state energy, which is the zero-temperature analogue
of the TAP representation for the free energy in Theorem 2 above.

Theorem 9. (TAP representation at zero temperature) For any g € supp y™* and any
t >0,

Hy (o) (HN(m)
max — max —_—
oexy N meSy(q) N

lim IP(

N—o0

+TAP°°(/,Lm))‘ < t) =1. (144

Note that by combining the two theorems above, if m is an approximate maximizer
in (1.44), then the inequalities of (1.34) become approximate equalities. Namely,

Hy(o) _ Hn(m) Hy (m)
max ~
gEXN N N

+TAPY | (m, €) ~ +TAPY, (m, £, 8), (1.45)

provided that ¢ and § are small enough, and 7 is large enough. In other words, any
generalized TAP state contains many samples ¢’ € B(m, £) which approximately max-
imize the energy, and such that the centered samples 6' = o' — m are approximately
orthogonal.

Recall that the functional TAP® () was defined in (1.41) as an infimum over the
space of c.d.f.s Ny 1. The following theorem shows that the minimizer is unique.

Theorem 10. For any i € M, with q = fa2 du(a), y — TAP*®(u, y) has a unique
minimizer y,, € Ny 1.

We think of the minimizer as the order parameter associated to a generalized TAP
state with p,, = p. It is related the order parameter of the original model through the
following theorem.

Theorem 11. (Ancestral property of zero-temperature TAP states) For any g € supp y*
and anyt > 0,

Hy (o) (HN(m)
max —  max
ocxy N meSn(q) N

lim JP(

N—o00

+ TAP™ (11, y*))‘ < t) — 1.(1.46)

Note that if m is an approximate maximizer in (1.44), then it must also be an approximate
maximizer of (1.46) and

TAP™ () ~ TAP™ (1m, y™). (1.47)
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Next, in order to describe the critical point equations for the TAP states,

1
NVHN(m) = —V TAP* (m), (1.48)
we need to compute the gradient of TAP® (u,,). The statement is somewhat more in-
volved than what one would expect from the direct analogue of Theorem 4 above. Denote
Ym ‘= Yy, and let

A(m) :

1 1
= ———(TAP® (um) — ey — &/ . (s)ds). 1.49
5’(1>—sf(q>( (tm) /q(s ) = €' @)yn(s)ds).  (149)

Theorem 12. (Gradient of TAP correction) For any m € (—1, )N with % |m|? = q,if
we denote

1
C(m) = E//(q)f Ym(s)ds +&"(q) A(m), (1.50)
q
then
00 l—
VTAP® () = = (Vg mi yin) + Clmym ) . (1.51)

If we combine (1.48) and (1.51), we can write
(VHy(m))i — Cmym; = W(q, mi, V).

If we plug both sides into 8,0, (¢, -) and recall the definition of W, we get

0.0y, (. (VHym); = Comm; ) = m. (1.52)

These are the TAP equations at zero temperature.

2. Passing to Zero Temperature

Some of the zero temperature results above can be proved by adapting the proofs from
[14] to the zero-temperature setting. This, however, entails a rather involved and long
analysis. Instead, the approach we shall take here is to relate the zero-temperature variants
to the results proved for positive temperature in [14], and use those as much as possible.
The main result of this section is Lemma 14 below, that bounds, for a given empirical
measure , the difference between the functional TAPA( ) (see (1.15)) ata given positive
temperature and the zero-temperature functional TAP*° (1) (see (1.41)). It will allow us
to reduce zero-temperature results to the positive temperature results in the previous
section. We first prove the following simple consequence of Theorem 1, that bounds the
difference of the functional TAP? (w) at two different temperatures.

Lemma 13. For any 0 < 81 < o and n € M,

L TAPA (1) — —TAPP ()] <
Bi B2 -

log?2

2.1
5, 2.1)
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Proof. For a fixed t > 0, by (1.17) and Gaussian concentration,

[ETAPY! (m. ¢, 8) — TAPPI ()| < 2t
for j = 1, 2, for large enough N. On the other hand,

log2
Bi

1 .
ETAPY, (m, &, 8) < ﬂ—]ETAP’,S\,’n(m, £,8) < ETAPY, (m, ¢, 8) +
; : :

and, therefore,

log?2

! B ! B2
| ETAPY (. 2,8) — —ETAPR (m.e,8)| <
B ’ B2 ’ B1

This implies that

log?2 + 4t

1 1
— TAPP! (i) — — TAPP2 (1,
[, TAP ) — - TAPP )| = =5

Choosing m = m" so that u,, — u and using continuity of TAP? proves the same

inequality for arbitrary u € M,. Since ¢ is arbitrary, we get (2.1). O

Let us denote an L!-distance on N1 by

di(y.y') = /q e - o)1 ds
It was proved in [1, Corollary 2] and [12, Proposition 2] that
)G)y(t, x) — O, (1, X)) < 28"(Ddi(y, ¥". (22)
Since
(A7 @)~ A 0)| < sup|0, (1.) — O, 0.0)| < 26" Wi v, 23)
we get that

‘TAPOO(M, y) — TAP® (i, y")| < 38" (D)di (v, ¥). (2.4)

Hence, y — TAP®°(u, y) is Lipschitz on (Nq,l , d1), which will be useful in the proof
of our next result.

Lemma 14. For any B > 0 and u € M., we have that

log2

2.5
5 2.5

TAP™ (1) — %TAP/‘J’ ] <
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Proof. Withg = faz du(a),let ¢ € M, 1. If we make the change of variables

ﬂ( ’ N ﬂ [¢ ’ ’

at®'§; - 20 (axx®ﬂ§+ﬂ§(t)(3x®§;)2)

with the boundary condition

©h, (1,x) = %logZCosh(ﬂx).

Standard properties of the Parisi functional CD? extend to ®f . For example, it is well-
known that changing the boundary condition in the definition of d>’§3 by at most a constant

changes the solution by at most this constant, so the same holds for @? . Observe that

1 lo g2
x| < Elochosh(ﬁx) < xl+—=

Since @2 ¢ and ©g, in (1.36) only differ in the boundary conditions, which differ by at
most log2/p, we get

B log2
Opc(4: %) = O (4:) = Ope(g. 1)+ — = (2.6)
Using this together with
1
mf( g(q x) — ax) = i2£(3¢§(q, Bx) — ax)

= E;Q]{Q((DC (q,x) —ax) = EAg (g,a)

implies that

o I g o log2
AR @) = AL@.@) = AT @)+ = 2.7)
Note also that
1[32 1 1 1
E;/q sE"($)¢(s)ds = E/q s&"(s)(BL(s)) ds

Combining the last two displays, we get

log?2

2.8
5 (2.8)

TAP™ (1. B2) < %TAPW, £) < TAP® (11, B¢) +
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If we denote by N (ﬁ | the set of all measures on [g, 1] of total mass at most B, taking
infimum over all £ € M, ;| gives

1 log?2
inf  TAP®(i.y) < ETAP‘B(M) < inf TAPX (. y)+ B2

ye./\/'%1 ye/\fq‘l p

As B 1 o0, by (2.4), the infimum over y € N/ ﬁ | converges to the infimum over all
y € Ny,1, and using (2.1) finishes the proof. O

Remark 15. It was shown in the proof of Theorem 10 (7) in [14] that

:32 1
AP(g, £ =2 | &(s)¢(s)ds,
¢ 2 p
which together with (2.7) implies that
o 1 /! Y log2
AR (g, £1) — 5/ §"(5)(BL(5)) ds| = 5
q

By (2.3), it follows that

oo —
AF(q. £1) =

N =

1
/ ")y (s)ds 2.9)
q

forally e Nj 1. O

3. TAP Correction and Representation

In this section we combine Lemma 14 from the previous section and Theorems 1 and 2,
which concern the positive temperature case, to prove their zero-temperature analogues,
Theorems 8 and 9.

3.1. Proof of Theorem 8. Note that

log 2
p

1
TAPY ,(m, &, 8) < ETAP’,?,’n(m,s, 5) < TAPSY,(m, &, 8) +

Together with Lemma 14 this implies that

00 8 2log?2
ITAPS, (m, &, 8) — TAP®(11,,)] < —‘TAP (m. £, 8) — TAP (um)) .

This implies that the probability on the left-hand side of (1.42) is bounded from below
by

P(Vm e [-1, 11V : [TAPE  (m, e, 8) — TAPP (1) <ﬂt—210g2>.

If we take B large enough so that ¢ > 2log 2 then our claim follows from Theorem 1.
i
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3.2. Proof of Theorem 9. Recall that it was proved in [1] that if we denote by ¢ g e Mo,
the minimizer of the Parisi formula for the free energy Fy (8) of the original model, then
B¢ ; — y* vaguely, i.e., for any continuous function f with compact support in [0, 1),

hm / F(s)dpeg(s) = / F)dy*(s).

Fix ¢ in the support of y*. Then there exists gg in the support of CE such that gg — ¢
as B — oo. Note that

[Fu(p) - max T 82
el

geXy

and, from (2.5),

‘—TAPﬂ(u) TAP™ (1 )( 10g2'
From these,
(= s (0 L) N
_ (062);V Hf‘;\;") _mg?ﬁ‘fi,ﬂ)(HN(m) + TAP™ (11 m)))‘ zlj;gz. .

To handle the second big bracket, observe that since TAP? is continuous, it follows from
(2.5) that TAP®® is uniformly continuous on M,, since M, is compact. Hence, for any
& > 0, there exists 0 < § < min(e, (I — ¢)/2) such that | TAP* (i) — TAP®(u')| < ¢
whenever 1, ' € M, satisfy dy(u, ') < 8. From now on, we fix 8 large enough so
that gg € [g — 8, g + 6]. Note that for any m € [—1, 11V with ||m|?/N = ¢, we can
find m’ with ||m’||?/N = gp such that |m —m'|| < 8+/N. Furthermore, we can choose
m’ so that the absolute values of the coordinates of m and m’ are arranged in the same
order,

/

Imiy| < Imiy| < --- < |miy| = |mj | < |mj,| <--- < |mj |
If i) 2= 3 2 i< S| then
m —m'|
di(im)s ') = — ImI—|m|<— mi —mj| £ ——=— <.
[m] [m| Z| | Z’ ! l \/N
Hence, from the above uniform continuity,
|TAP* (1tm) — TAP™ (tt)| = [TAP™ (i) — TAP™ ()| < e. (32)

In a similar manner, for any m € [—1, 1]V with |m|?/N = qp, we can find m’ €
[—1, 11V with ||m’||2/N = g so that |m —m’| < §~/N and

[ TAP* (1) — TAP* (i)

= | TAP® (1) — TAP™ ()| < e. (3.3)
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On the other hand, from the Dudley entropy integral formula, there exists a constant
C > 0 depending only on & such that

Hy(m)  Hy(m')

< Cé,
N N

E max ‘
lm—m'||<8~/N

which, combined with the Gaussian concentration inequality, implies that

Hy(m)  Hy(m")

max ’ <2C$
Im—m'|<sVN' N
with probability at least 1 — C’ e~ €N where C’ is a constant depending only on &.

Hence, from this inequality and (3.2),

Hy (m) Hy (m)

+ TAP® (/Lm)> - + TAP® (/Lm)> ’ < e(1+2C)

max ( (
meSy(q) meSn(qp)

with probability at least 1 — 2C"e=C'ON, Thus, from (3.1),

((F (8) — max (HN('”) + Lraps )))
N meSy(gp)\ N B Hom
H H 2log2
- (max N@) ax (M +TAPOO(//Lm)))) < o8 +e(1+20C).
sesy N meSy(@\ N B
Our result then follows by using Theorem 2. O

4. Ancestral Property of TAP States

This section is dedicated to the proof of Theorem 11. Unlike in the previous sec-
tion, here we work at zero-temperature directly. First, note that since TAP®(u,,) <
TAP® (i, v*), using Theorem 9 and Gaussian concentration, our proof will be com-
plete if we can show that, whenever ¢ lies in the support of y*,

(HN(m)

limsupE max + TAP® (i, y*)) < P®(").

N—o0 meSy(q)

Let Np,4 be the space of all cumulative distribution functions y induced by positive
measures on [0, ¢g] satisfying foq y(s)ds < oo. From Guerra’s RSB bound for the
ground state energy,

lim E max
N—oo meSy(q)

(HNAEm) + TAP™ (i, y*))

Hy (m)
N

= lim E max (
N—oo meSy(q)

1 A o0 ] ! 4 *
+ﬁ§Ay*<q,mi)—§/q s&"()7*(5) ds )

1 1
<Pyr,y) — 5/ sE"(s)y*(s)ds

q
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for any y € Np 4, where
1[4
Py y) == 0(0,0) — 5/ sE"(s)y (s)ds,
0

and where @;; is the solution to

8,0 = —%(a“@; +7(0(0:0})°)

on [0, g] x R with the boundary condition
@;‘,(q, x) = aer{l_alx’l]<ax +Aa—q)+ A;’,‘i(q, a)).

If now we take A = 0 and y = y*ljo4, then from the conjugation, @i‘, (g,x) =
©,+(g, x) and thus, ®)k, (0,0) = ©,+(0, 0). As a consequence,

1 1
PEGy) =5 [ 50 e ds = P4,
q

This finishes our proof. O

5. Continuity of the Parisi Functional

In this section we will prove that the Parisi functional is continuous when defined on an
extension of AV | to measures that charge the point 1. Namely, we set /'y 1 to be the
collection of all measures on [0, 1] of the form

v(A) =/y(s)ds+A81(A), 5.D
A

where y ([0, 9)) =0, vlj4,1) € /\/'q’l, and A € [0, 00). We equip/T/'q‘l with the topology
of vague convergence.

Remark 16. Note thatifv, € UqE[o,“./\_f 4,1 converges vaguely to certain vy € UqE[o,”./\_f q.1>
then y,, converges to yyp a.e. on [0, 1), where (y;,,, A,) for n > 0 are the pairs associ-
ated to v, on [0, 1). Indeed, this can be seen by noting that v, ([0, -]) for n > 0 are
convex functions on [0, 1) and that lim,,_, o, v, ([0, s]) = vo([0, s]) for all s € [0, 1)
due to the vague convergence of v, and the fact that vy ([0, -]) is continuous on [0, 1).
Since v, ([0, -]) for n > 0 are almost surely differentiable, we see that at the points of
simultaneous differentiability of v, ([0, s]) for n > 0, the Griffith lemma (see, e.g., [30])
implies

d d
lim y,(s) = lim o vo([0, s1) = —vo([0, s1) = yo(s).
n—o00 n—>oo ds ds

We also mention that it is not necessarily true that A, — Ay, instead the following
limit is valid

1
Ao = lim v, ([0, 1])—/ yo(s)ds.
n—oo 0
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Foreach v € JT/'qyl, if (y, A) is the pair associated with v, we define

AE" (1
Ou(q. x) = O, (q. ) + '52( )

In addition, we also define, fora € [—1, 1],

Aé”(l).

AF(g @) = inf (0,(g.3) — ax) = AF(q. @) + =

The main result of this section is the following proposition, which establishes the con-
tinuity of ®,,(g, -). It will be used in the proof of Theorems 10 and 12.

Proposition 17. For any g € [0, 1], if v, — vo vaguely in Nq,l then

lim sup‘@,,n (g, x) — Oy(g.x)| =0 (5.2)
and
lim  sup [AYS(g.a) — A (q.a)| =0. (5.3)

=00 gel—1,1]
We also prove the following corollary, which will be used in the proof of Theorem 12.

Corollary 18. If g, € [0, 1) forn > 0, lim, 00 gy = g € [0, 1), and v, € N, 1 =
Vg € ./\_/(1,1 vaguely on [0, 1], then

lim sup|®,, (gn, x) — Oyy(g, x)| =0 (5.4)
n—>oox€R
and
lim  sup |AYS(gn.a) — A (q.a)| = 0. (5.5)
n—=>00 ey "

The proof of Proposition 17 utilizes the stochastic optimal control representation for
©, (¢, x) from [1, Corollary 2], which we now recall. For any ¢ < a < b < 1, let
D, be the collection of all progressively measurable processes u = (u(s))q<s<p With
respect to the filtration generated by the standard Brownian motion W = (Wy),<s<p
and with supp, 1 lu(s)| < 1. Then we can express

®,(a,x) = sup E[@ b x+f E”yuds+f s/“/des / £ yu? ds
uE'Day},
(5.6)
In particular, for any y € N 1,
1 1 1 1
®,(q,x) = sup [E’“/ g“yuds+/ s”l/zdwg’—-/ g”yEuzds]. (5.7)
ueDy 1 q q 2 q

Remark 19. Notice that the representation (5.7) shows thatlimy . +o0 ©, (¢, x)/|x| = 1,
which means that, fora € (—1, 1), the minimizer in the definition of A;O (g,a)in(1.37)
is unique and finite.
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For any ¢’ € [g, 1], denote

1
I,(q") 1=/ ")y (s)ds.
q/

We will need the following estimate on ©,, (¢’, x).

Lemma 20. Forany y € Ny 1, q' € [q, 1], and x € R, we have

Iy(q/) y(q/)

5 < 0,(@ 0 <l + 2

x| +

+ (&) —€'(q)) (5.8)

Proof. Recall (5.6) for @V(q’, x) with (a, b) = (¢’, 1). Let u = sgn(x). Then, by (5.6)
and Jensen’s inequality,

1

1
@y(q’,x)>1EU /Eyuds+/ g”l/zdw( /E”yuzds]

q

> x+/ S/’yuds ——/ £"yu’ ds

I /
=|x|+/ E”yds——/ £y ds = x| + 19
q’ 2 )y 2

To establish the upper bound, for any u € D, |, write

1/1 )
—= | &'yuds
2 Jy
1/1 " 2
sl — = E'vu“ds
2 Jy

1 1
)x +/ " yuds +/ S”lﬂdws
q' q'

1 1
§|x|+‘/,§/’yuds‘+)/‘/é
q q

and, using 2|u| < u? + 1, bound the second term by

/E”yuds /S”y|u|ds<—/ ' yutds + - /“g‘”yds

By (5.6), this implies that

1 1 1 1
©,(q'.x) = sup EHH/ é”yuds+/ S”I/ZdW‘—E/ E”yuzds]
’ ’ q/

uqu/.l q q
I / 1
2 q'
I ( )

+(EM) =)'

< x|+

Taking the supremum over u gives the desired upper bound. O
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5.1. Proof of Proposition 17. By the definition of A°, the assertion (5.3) evidently
follows from (5.2), so we only focus on proving (5.2). Obviously this assertion holds if
g = 1. From now on, assume that ¢ € [0, 1).

Let y,,, A, and yp, Ag be the pairs associated with v, and vy respectively. From
the vague convergence, ¥, (s) — v (s) almost surely on [0, 1). Therefore, for any ¢’ €

[g. D,

sup sup ¥,(s) < oo,
n>1s€lq,q']

which yields, by the bounded convergence theorem,

q/
Tim. /O ya(s) = yo(s)| ds = . (5.9)

(However, of course, it is not necessarily true that A, — Ag.)
Next, fix ¢’ € [¢, 1). For any u € D,y and y € Nq,l, set

1/q’ 5
- E"yu ds],
2 q

where d B := £ (s)!/2d Wy. Using (5.6) for 0,, (g, x) with (a, b) = (¢, ¢') and Lemma
20,

q’ q’
Iy (g u) = JEHx+/ s”yuds+f dB,
q q

1
0@ = 31,@) = swp @ 0| < (EMH-§@)" 610

ME’Dq,q/

In addition, by the triangle inequality,

3 (7
‘Fyn(q/’ u) — Ty (q’, M)‘ < 5/ £"|yn — yolds. (5.11)
q

For any v € Dy 1, if we write u = vl[q,q/] then

1

q q 1
Iy (1, v) :IEHx+/ %J/]/()MdS'l'/ dBS+/ é"yovds+/ d B
q q q’ q’

1 [ 1!
_z/(; S//VOMZdS—E//S//VOUZdS],

q

which, by the triangle inequality and E(qu,st)z =&'(1) — €/(¢’) implies that

1/2
Ty (1, ) = Ty (g, ) ”

3 1
= f Eyods + (') — £'@q))
q/

From this inequality, (5.10) and (5.11), we see that by taking maximum over v € Dy |
and using (5.6) for ®,, (¢, x) with (a, b) = (g, 1), it follows that
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|
(€0 = 51, (6) = O (g )|
3 ! 3[4 12
< 5/ %’”VodS+§/ €'y — yolds +2(&'(1) — £'(g)) .
q q
Taking a limit and using (5.9) gives

lim sup sup
n—o0 xelR

<3 [(emas 2 g™
q

®Vn (q )C) IVn (q ) VO (q’ )C)‘
(5.12)

Note that, since

1 q
L, (q") = / ")y (s)ds = / "dv, —&" (DA — / £"yuds
q q
we can rewrite the expression on the left-hand side of the above inequality as

1
®Vn(q x) _I)/n (CI ) ®)/0(q’x)

q

— 1 " i
—®v,,(q,x)—®y0(q,x)—§ &"dv, — & Vnds

q /
§"ynds — (1) Ag).

J
J

= 04,00~ Oulg. ) — 3 ([ £, -
From the vague convergence v, — v and (5.9), the last term converges to
3([ 5w - / £yods — (1) Ag) = / €'y ds
and, therefore, (5.12) implies

lim sup sup
n—>oo0 xelR

O4,@. %)~ Ouy (4. x)\<2/ &yds +2(5'() —£'g) "

The right-hand side vanishes as ¢’ 1 1, which completes the proof. O

5.2. Proof of Corollary 18. Let y, := 14,11 and v, (A) := v,([¢g, 11N A). Then v,
converges to vy vaguely and from Proposition 17,

lim sup]@v;1 (q.x) — ©y,(g.x)| =0,

(5.13)
lim  sup |Av/ (q,a) — 33(6]»61)| =0.

=0 ge[—1,1]
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On the other hand, by using the representation (5.6) for @1,’; (g, x) with (a, b) = (¢, 1)
and ©,, (g, x) with (a, b) = (gn, 1), we see that
-3 / S//Vnuz ds]a

0y, (gn, x) = sup E[‘x + S”J/,,u ds + é”l/de ‘ - S”J/nu2 ds].
MEan,l 4qn 4n qn

©y;(g,x) = sup IE x+/ g’ y,,uds+/ "2qw,
ueD, q,1

From these, we see that

xeR 2

3 " 1 qnVq
<X -l max e+ [ e aw
Ve g

qn NG =S=(gn

3 anV4q p qnNVq iy
Sup|®y,;(q7x)_®yn(q”,x)| =3 § Vnds"'E‘ 3 dWs)
an\q dn\q

Note that from the vague convergence of v, to vy, ¥, converges to yy a.s. Using the fact
that y,, are nondecreasing, we see that

sup max Yn(s) < 00.
n>1 An NG =S=gnVq

Consequently,

lim sup|®y,;(q,x) — 0y, (@n. )| =0,

n—o0

lim sup |A (. a) — ;j(qn,a)|=0.

=00 4e[—1,1]

This together with (5.13) completes our proof. O

6. Uniqueness of the Minimizer

This section is devoted to the proof of Theorem 10. We begin with the following two
lemmas which will be needed in the proof. For any fixed measure u € M, with g =
fazdu(a), it was proved in [14] that the functional £ — TAP? (u, ¢) has a minimizer
g, in Mo, 1 and the restriction of this minimizer to [g, 1] (which can be viewed as an
element of M, 1) is unique.

Recall the stochastic optimal control representation for of , which states that for any
¢ € Myg,1, one can express

1 1
@f(q, x) = sup[Elochosh(x +/ B2E"cuds +/ Be"/? dWs)
! q

q
2 1
2 [eremia)
q

where the supremum is taken over all progressively measurable processes u on [q, 1]
with respect to the standard Brownian motion W. In particular, the supremum here is
attained by

uf () = 0L (q. X0 (5)), (6.1)
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where X f ¢ is the strong solution of
dx? () = BPE" ()8 ()0, (5. X7 () ds + BE" ()2 W, (6.2)

with the initial condition X () = x.

Lemma 21. For any { € M, 1 and x € R, we have that

1
90 (g0 = (£ @) - / (') — &' @B (572 (5)).
q

Proof. Let o be any nondecreasing function on [a, b] with right-continuity for some
0 < a < b < 1. For any f, g continuously differentiable functions on [a, b], the
following integration by parts is valid,

b
/ g f)a(s)ds = gb) f(b)a(b) — g(a) f(@)a(a)
“ (6.3)

b b
—/ g(s) f(s)da(s) —/ g() f()a(s)ds,

where the first integral on the right-hand side should be understood as the Riemann-
Stieltjes integral. Note that a direct differentiation of the Parisi PDE in B gives

211
asaﬁcpf — —%(axxaﬂepf + 2¢(axq>§)(axaﬂq>f)) - ﬂg”(axx@f + g(axcbf)z).

From the Feynman-Kac formula,
1
2
9597 (q.x) = / Be" B[ 0@ s, X0 L (5)) + ¢ (00 5, X1 L (5)))? s
q

For convenience, from now on, we denote u(s) = axcbf (s, Xf’ g(s)) and v(s) =

dex ®f (5. X1 (5)). Using the usual integration by part gives
/ql £"(s)Ev(s)ds = & (DEv(1) — §'(¢)Ev(q) + p* /ql £'(s)€" (s)¢ (s)Ev(s)*ds

=& ()1 = Eu(1)*) — &' (9)Ev(q) + B /q 1 E'(9)E" ()¢ (9)Bv(s)*ds,
where the second equality used the fact that v(1) =1 — u(1)2. In addition, from (6.3),
/q l E"(s)¢(9)Bu(s)*ds = £'(DEu(1)* — £'(q)Eu(q)*

1 1
— / £'()Eu(s)?d¢ (s) — B2 / £'(5)E" ()¢ (5)Eu(s)ds.
q q

These imply that

1
9900 4.5) = ~BE (@) (Evia) + C@)Bu@?) + (£ D) — [ € 0BG des)).
q
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Finally, our proof is completed by plugging the following equation (see [14, Lemma
37]) into this equation,

1
Ev(q) + £ (@)Eu(q)? = 1 — / Eu(s)?dz (s).
q

]

Lemma 22. For any B > 0 and u € M., we have that

1
ﬁ/ (') = &'@)p.u(s)ds < TAP® (). (6.4)
q

Furthermore, if |4 is supported on [—1 + n, 1 — n] for some n € (0, 1), then

d 1
a5 AP =8 / (8'6) — €' @) 2pu(s) ds — TAP®(u). as f— co. (6.5)
q

Proof of Lemma 22. If u = &1, the inequality (6.4), obviously, holds. From now on, we
assume that u # 81, S0 g = fazdu(a) < 1. First, let us explain that it is enough to
prove the assertion (6.4) for measures o with the support in (—1, 1). On the one hand,
we noted in the proof of Theorem 9 that TAP® () is continuous in @ and, moreover,
we can approximate any p by measures with the support in (—1, 1) while keeping
q= f a%d wu(a) fixed. On the other hand, it was shown in the proof of Theorem 10 (ii)
in [14] that TAP? (e, ¢) is continuous in p for any fixed { € My, 1 and, by the properties
of the Parisi functional ®, it is L'-Lipschitz in ¢ uniformly over s, which implies that

(u, £) — TAPP(u, ¢) is continuous. By the uniqueness of the minimizer restricted

to [g, 1], this implies that £g , is also continuous in y restricted by ¢ = [ a’du(a).

These observations imply that it is enough to prove Lemma 22 for ¢ with the support in

(—1, 1). From now on, we suppose that supp(u) < [—(1 — ), 1 — 5] for some 1 > 0.
Fix g > 0. Forany h > 0,

TAPﬁ(M) — TAPﬁfh(M) > TAPﬂ(/L, o) — TAPﬂfh(M’ Cpp)
- Z_B-mn* [, (6.6)
=/(Afﬁ,p(61»a) —Afﬁ,:’(q,a))du(a) - W/q s&"tp u ds

and

TAPP* (1) — TAPP (n) < TAPP* (11, ¢5 1) — TAPP (i1, ¢5.,0)
; B+h?—p> (1, (6.7)
= [ (a0 - 8, 0 ))na) - FEZE /q & ¢ ds.

Note that, for any a € (—1, 1),

—h —h
A (g.a)— AP g a) = ©F (g, x(a)) — " (q, x(a)),
lym lym ;M [ (6 8)
B+h B B+h B .
ANy @ a) = Dy (q,a) < @ (g, x(a) = @, (g, x(a)),

where x(a) is the minimizer of

B _ B _
AQ‘B.;L (g,a) = 1I;f(d>gm (g, x) xa).
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It was proved in Section 12.2 in [14] that x (a) is continuous and bounded on [0, 1 — n].
Recall from Proposition 4 in [2] (with y = B2 there) that

d o8 _ ’ ’ / / 2
FaD=pEO @ [ €0~ @En ).

where uf ¢ (s) was defined in (6.1). If we denote

fPa.s)=Eul, . 7

then

[ 550, @ x @@
1

=pem-¢@- [ €©-5@) [ 7@ an@dss, o)
q

To handle this equation, for any { € M, 1 and 6 € [0, 1], set &y = (1 — 0)¢p, ;0 + 6¢.
By a standard calculation (see e.g. [11]), one can compute the directional derivative of
TAP?,

d . g _B p
STAPP )| / £'5)¢) = Gl [ F@.9) duata) s ds,

which must be non-negative by the minimality of {g ,. Again, in a standard way one
can readily see (by varying ¢) that this forces [ f P(a,s)du(a) = s forany s > g in the
support of g ,,. This implies that

1
[ 5594 x@dn@ = (0 - @ - [ €6 - £ @nsdgs)
dap q

Here, note that from (6.3),
1 1
/ £ (5)stpu(s)ds = /(1) — &'(g) — / (E'(5) — & (@))5dLpu(5)
q q

1
—f (E'(s) — £"(@)¢p,u(s)ds.
q

Plugging these two equations into the previous display leads to

d
/ ap ;ﬂ (g x(@)du(a) = ﬂ/ £"(s)s¢p, ,L(S)d5+ﬁf '(5) = £'(@))5p.u(5)ds.

From this, (6.6), (6.7), and (6.8) (together with our assumption that supp(u) C (—1, 1))
it follows that the left and right derivatives of TAP? (1) (which exist from convexity in

B) satisfy

1
Dy TAPP () > ﬁ/ (') — €' (@) ¢p.u(s)ds,

q
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1
D} TAPP (u) < B / (£'5) — €' (@) S (s)ds.
q
Now, since TAP? (u) is a convex function in B, this implies that

d 1
— TAPP (1) = B / (&'(s) — €'(@))¢p.p(s)ds.
q

apg
From this and the convexity of TAPA (w) in B, the assertion (6.4) follows by noting that
d TAP?
— TAPP(p) < lim TAP" (W) _ TAP® (1),

while the assertion (6.5) is validated by using the above inequality and

TAP? (1) — TAP? d
TAP® () = lim () W _ im L TAPA ().
B—o00 ﬂ B—00 dﬂ

This finishes the proof. 0O

Proof of Theorem 10. Let yu be fixed and setg = [ a’du(a). In the case that ¢ = 1, the
space N 1 is a singleton and the theorem follows trivially. From now on, assume that

g < 1. Denote by ¢g , the minimizer associated to TAP? (11). Note that, by Lemma 22
above,

1
/3/ (&'(s) — &' (@)t u(s)ds < TAP® (), VB > 0. (6.9)
q
Denote yg ;. := B¢, and, for all measurable sets A C [g, 1], set
vg,u(A) = /;y,g,u(s) ds.

Since ¢g,;, is nondecreasing, (6.9) implies that

TAP* ()
vp.u(s) < E(D) —E(s) —&(g)(1 — )

, Vs elg, D).

On the other hand, from this inequality and (6.9), we also see that supg. fql Vauds <
00. Because of these, we can choose a subsequence of B 1 oo so that yg ;, converges to

some y,, vaguely on [¢, 1) and | ql vg, ds is convergent. For notational clarity, we will

assume that yg, , converges to y, vaguely on [g, 1) and [ ql vg,. ds converges without
going to a subsequence. Note that since yg,; (s) — ¥, (s) almost surely on [g, 1], by

Fatou’s lemma, fql Yuds < oo, which means that y, € ./\/'q,1 . Furthermore, if we denote

1
A = lim Vﬁ,M([q,l])—/ Yuds,
ﬁ—)OO q
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and define v by

V(A) 1= /mdﬂAsl(A)
A

then vg ;, converges to v vaguely on [g, 1]. Indeed, for any continuous function ¢ on
(g, 1] with sup,e, 1 ¢ ()] < 1,

[ o —9] = [ b= vids | [ 6 - vt (/ A~ )
q q

q'

ql
Ef lvg.u —vlds+ sup |¢(s)—1I/ (vput+y)ds
q selq’,1] q

1
+ V d(vg., — v)‘
q/

and, passing to the limit,

1 1
lim sup lim sup‘/ dd(vg,, — v)‘ < lim sup lim sup / d(g, —v)| =0,
q'tl  p—oo Jg g1t p—oo g

where the right-hand side vanishes because, for any ¢’ € [g, 1),

1 1 1
/d(v,g,ﬂ—v)zf yﬁ,uds—/ Yuds — A
q’ q q
q/
+/ (Vgu —Ywds — 0 as g — oo.
q

Next we prove that y,, is a minimizer to TAP®(u). From Proposition 17,

Ag"(1)
2

lim  sup )A (q,a)—A;iZ(q,a)—

B—=>0 ge[—1,1]

= lim sup ‘A (q,a)—A?(q,a)‘:O.

ﬁ”ooae

Also, note that from the vague convergence of vg , to v,

1 1 1 1 A " 1
f &"syp ds =/ g"sdvg —>/ £'sdv =/ E"sy ds + 5 ( ).
q q q q 2

Together these lead to

ﬂlim TAP™ (1, v,.) = TAP® (1, y,0). (6.10)
— 00

Since, from (2.8),

log?2
TAP™ (i, Yp.1) — ETAP (s G| = =5~ 6.11)
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and, from Lemma 14,

%TAPﬁ (w) = %TAPﬂ (1, L) — TAP® (), (6.12)

we conclude that TAP® (1) > TAP*(u, y,.). Hence, y,, is a minimizer to TAP*(u).

Finally, we show that the minimizer to TAP®° (1) is unique. To see this, we recall from
Lemma 5 in [12] that ®,, (g, x) is a strictly convex functional in (y, x) € N 1 x R. This
implies that foranya € (—1, 1), A;io(q, a) is strictly convex in y and so is TAP® (i, y).
Hence, TAP*° (1) has a unique minimizer, y,,. O

Remark 23. Recall the measures vg , and v in the above proof. From (6.5), we see that
1 1
TAP™ (u) = ﬁlimoof (&'(s) = E'(@))dvg . (s) = f (&'(s) — €' (g))dv(s)
—xJq q

1
= / &) = &' @) ds + E'(1) - E'(@)A.
q

Moreover, we showed that yg ,(s) = B¢g,.(s) converges to y,(s) almost surely on
[g, 1) as B — oo.

7. Energy of TAP States
In this section, we will prove Theorem 5.

Proof of Theorem 5. Let us denote

H
= s fu = s (P orap).

meSn(q) meSn(q)

Recall from Theorem 2 that for any ¢ in the support of the Parisi measure {E, the
following limits exist almost surely (using Borell’s inequality and the concentration of
the free energy),

PB) = ngnoo Sn@B) = ]Jgnw(ﬂFN(ﬁ)) = BPp(s) (7.2)
and, by [2, Remark 1], P(B) is differentiable with
, d P
mm=£¢%WM@h¢Asm%mw. (7.3)

Since TAPﬂN,n(m, €, 8) is convex in B and, by Theorem 1, it converges to TAPA (m)
uniformly in m € [—1, l]N , it follows that, for any u € M,, TAPA (w) is convex in
B > 0, which implies that f,,(8) and fy(B) are convex in 8. Since
INBEh)= max fu(B+h)> max f,(BEh),
meSn(q) )

meMﬁ,q(eN
forany m € Mg 4(en) and A > 0, we can write

InB+h) = fnB) _ fm(BHR) — fn(B) —en
h - h

zﬂ%—%,
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INB) = INB—h) _ fn(B) = fm(B—h) +en
h - h

’ EN
< fm(ﬂ)+7,

using convexity in the last inequality in each line, where the existence of f,, (8) is
guaranteed by (6.5). Taking the supremum in the first line and infimum in the second
line over m € Mg 4(en) and taking limits,

PO ZPEZR _yiint inf f1(p)

h N—oo Mg ,(en)

<limsup sup f,(B) < w
N—o00 Mﬂ,q(EN) h

Letting 2 | 0 and using that P is differentiable implies that

lim  sup
N—)OOMﬁ (en)

InB) =P (B)| =0.

By (6.5), denoting as before (g ,» := ¢, u,,, for any m € (-1, Dy,

Hy (m)

1
InB) = +ﬂf E'(s) = &' (@)¢pm(s) ds.
q

By continuity of TAPP (1, ¢) in both p and ¢ and uniqueness of the minimizer, the order
parameter {g , is continuous in m, so the same formula holds for all m € [—1, V.
Together with (7.3) this gives

lim  sup | ﬁf '(5) — £'@))Zpn(s) ds — /3/ /(5)¢(5) ds| = 0.
N—o0 Mg 4 (en)
(7.4)
To finish the proof of (1.23), it remains to show that
1
lim sup / [Zg,m(s) — ;';;(s)l ds = 0. (7.5)
N_”)OmeM/gq(sN)

Also, (1.24) will follow simply by using (7.2) and the equality in (1.25) is valid directly
from integration by parts. Note that, for any mo € Mg 4(en),

B —ey <t N( FHNGO) | tApA (1100)

BHy (mo)
== TAP'3 (tmo» £4) + TAPP (1) — TAP (g, )

(ﬁHN(m)

< sup

+ TAPP (11, £)) + TAP? (1) — TAPP iy, £5)
meSy(q)
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and TAPP (it,n,) < TAPP (s, ¢4). These imply that

sup [ TAP? (1,1, £) — TAP )|

meMg 4(en)

BHy (m)
(&N

< sup

< +TAP (. ) = fu(B) +en — 0.
Sn(q)

where the a.s. convergence follows from Theorems 2 and 3 above, the concentration of
the free energy, and the Borell inequality. Now, assume on the contrary that (7.5) is not
true. From this and the above limit, we can choose m" € M ,q(en) so that (by passing
to a subsequence if necessary) pu,,v» — o and SgmN = &0 for some g € M, and

;0 S Mq,
1 1
[ 10w - ggoids = im_ [ ieyne) - giolds 0. @6)
q —Jg

and, from the continuity of TAP? on M, x M,

[TAP? (1o, £5) = TAP (1o, &)

- lim )TAPﬁ(MmN,g;) — TAPP (11, £ )
N—o0 ’

= lim )TAPﬁ(MmN,g;) — TAPA (i, x)
N—o0

=0. (1.7)
The optimality of ¢g v,
TAP? (11,,v) = TAPP (v, £ ,v) < TAPP (v, £), VG € My,
yields that
TAPP (10, o) = lim TAP? (11,,v, &g 1)
N—o00

< lim TAPP (v, €) = TAPP (o, ©), ¥ € My,
— 00

This means that ¢p is a minimizer of TAP# (i0, -). Recall that the minimizer is unique
[14, Theorem 10], so, by (7.7), gg = ¢pon [g, 1]. This contradicts (7.6) and finishes the
proof of (7.5). O

8. Energy of Ancestor Measure
In this section, we will prove Theorem 7.

Proof of Theorem 7. Recall (6.2) and let X (s) = X g o (s) for s € [0, 1]. Denote

u(s) = 8X¢>fﬂ’ﬂ(s, X(s)) and v(s) = E)xxcbfﬂyu(s, X(s)).
Let u be the distribution function of the random variable u(g). Note that

AL (g.a) = @ (q. x(@)) — ax(a).
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where x(a) satisfies axcpf* (g, x(a)) = a. Since 8XCI>§* (g, -) is strictly increasing, it
B B
follows that if a = u(q), then x(a) = X(q) and hence,

| A0 wduta) = B (0. X (@) - EX@u(o)
B :32 4 " 2
=Ed.(q, X(9)) — —/ £"(s)¢5(5)Eu(s) ds
B 2 0
:32 1 " 2
—EX(q)u(q) + 7/0 £"()¢5(s)Eu(s)ds
B :82 7 " 2
= ¢>§*(0, 0) —EX(q)u(g) + —/ 13 (s);'g(s)]Eu(s) ds.
B 2 0
Here, the middle term can be computed through
q q
EX()u(q) = E(p? fo £ ()55 (Du(s)ds + B /0 VET©AW, )utq)
q q
= /0 £ ()65 (B ()ds + BE( fo VE()aw, )
q
< ([ VEwaw)
q
= /32/0. 5”(s)(IEv(s) +§§(S)Eu2(s))ds.

To handle this equation, note that dEu()> = B2£”(t1)Ev(r)?dt and v(1) = 1 — u(1)?.
These and (6.3) imply that

1
1 — Eu(1)? — Ev(s) = Ev(1) — Ev(s) = —ﬂZ/ (15 (OEv(1)dt
1
=~ (B - Butsg0) ~ [ BuwPagin),

s

which together with (6.3) leads to

1 1
Ev(s) + £ (5)Bu(s)* = 1 —/ Eu(t)zdg“g(t)zl—/ tdgj (1)

1
= scg(s) +/ {E(t)dt.
Since

1 ! !
— E — " * d d ,
p'Es@) /0 ; (”(fs ¢ (1)t )ds

it follows that

q 1
EX(q)u(q) = p* /O §"@)(s¢5 )+ / ¢t ds
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2 4 /
=B /O £"(s)s¢g(s)ds + BEg(q).
Consequently,
q
TAP (1) = .5(0,0) — p° [0 £"(s)s¢5(s)ds — BEg(q)
2 q 2 1
+ %f S”(s){,}‘(s)IEu(s)zds - %/ £"(s)sL5(s)ds
0 q

2 rq
=Pp(ts) — BEg(q) + % /0 E"(5)¢j () (Bu(s)® — s)ds.

Note that by the minimality of {E, forany ¢ € Mo 1,

d * 132 ! 1 *
Pl —org5+00)| == fo E"(9)(C () — £5 () (Bu(s)? — s)ds = 0.

If, for s € [0, 1], we take
£(s) =275 () 1j0.q) () + Cj () 11g.11 (),
then this inequality implies that
! 2
£"(5)25 () (Bu(s)” — s)ds < 0.
0 B
Hence,

TAP (1) < Pp(¢3) — BEp(q).

Finally, if ¢ is in the support of ¢ /;" , then from [13, Equation (46)],
1 2
/ £"(5)85(5)(Eu(s)? — 5)ds = 0,
0

which gives

TAPP (1) = Pp(¢}) — BEp(q).

This finishes the proof. O
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9. Gradient of TAP®

In this section we establish the proof of Theorem 12. Recall that by Lemma 14, 8~ TAP? (1)
converges to TAP® (), uniformly in u € M, as B — oo. Let N > 1 be fixed. Let B
be any compact subset of (—1, V. For any m € (—1, DV, define

1

1 /—
Fm) = = (TG i, yi) +mis" (@) [y ds +mi€" (@) AG))

b
| <
q})‘l liN

where g, == Y| m?/N and

1
Am) = TAP® () — [ (€(5) = € G5 ds).

ol
§'(1) —&'(gm) .

In the following, we will verify that

lim sup
B—0 mep

1
— wm) — fm)|| =0. .
\ﬂVTAPﬂ( )= £, =0 ©.1)

If this is valid, this means that the gradient of TAP™ (1,,,) exists for all m € (—1, )
and is equal to f(m), which finishes our proof. We now establish the above limit by
three steps.

Step 1. Let 8, > 0 and m,, € B be two sequences with 8, — oo and m,, — mgy € B
so that

= lim sup sup
2 B—oo0 meB

im H ﬁiv TAPP: (1) — f(my)

n—oo

(%v TAP® () — f(m)Hz.

If ¢g, m, 1s the minimizer in the definition of TAP#» (ttm, ). let us denote
Cn = gﬂn,mn» Vi 1= Pnln = ﬁn{ﬂn,m,f 9.2)

By the definition of N w1 (8€€ (5.1)), if we define a measure v, on [0, 1] by

Vn(A):/ vu(s)ds,
A

then from (6.4), it satisfies that
1
_/ (&'(s) — &'(gm,))dva(ds) < sup TAP™(u). 9-3)
0 neM,

From this upper bound, we can pass to a subsequence along which v,, converges to some
vo € Ng,,.1 vaguely on [0, 1], where

vo(A) = / Yi(8) ds + Ay81(A)
A

for some y, € qu 1 and A, > 0. For notational clarity, we will assume throughout
the rest of the proofQ that these hold without passing to a subsequence of §,. We claim
that
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where we recall (1.49) and that y,, := y,,,, is the minimizer as in Theorem 10. Indeed,
by the uniform convergence of ~! TAP? (1) to TAP® (1) and continuity of TAP®,

. 1
lim — TAP?" (t11,) = TAP™ (ttg) = TAP™ (g Ying)- 9.5)

n—00 ,Bn

On the other hand, by (2.8),

1 1
lim — TAP? (u,) = lim — TAPP" (un,., &) = 1lim TAP™ (i, ).
n— 00 ,8 n—00

n—o00 ,Bn ”
Forg € [0, 1) and h € RY, set

1 1!
TAP®(n, y, 1) 1= > (O (G, hi) —mihi) - 5/ SE"(s)y(s)ds  (9.6)
dm

i=1
so that

TAP™ (m,,, Yn) = hiIgN TAP™ (my, Yn, h). .7)
€

Ifmge (—1+n,1—n)", thenm, € (=1 +n,1—n)" for large n. It is clear from the
representation (5.7) and the uniform control in (9.3) that the minimizer /4, belongs to
some cube [—L, L]V, where L depends only on 7 and the upper bound in (9.3). Let us
choose further subsequence along which %, — h,. Then, using Proposition 17 exactly
as in the argument leading to (6.10), we get

lim TAP™ (i, , ¥n) = lim TAP™(my, yu, hn) = TAP™ (mo, vx, hx).
n—00 n—00

By (9.5), this also equals to

TAP™ (W Ving) = TAP™ (Mo, Yig» himg) 9.8)
for some h,,, € [-L, L1V By the strict convexity of the functional (9.6), we must have
that Y4 = Vi, and hy = hy,.

Note that for any m € [—1+1n, 1 — 5], TAP? (i, ¢) is strictly convex in ¢ € M,
and that TAP? (m, ) iscontinuousin [—1+7, 1 — n]N x M, 1. From these, we see that
{8, 1,y 18 continuous in (B, m). As a result, from Lemma 22, # TAP () is continuous
onm € [—1+n, 1 —n]" forall 8 > 0. Furthermore, this derivative is nondecreasing in 8
and, as B — o0, itconverges to TAP*® (u,,,), which is a continuous function. Hence, from
Dini’s theorem, % TAP# () converges to TAP® () uniformly inm € [—1+n, 1 —
n1V . From this, Remark 23, and the definition of vy, the limit fol (&'(s) —&(gm,))dvn(s)
can be written in two ways,

1 d
/ (&'(5) — &'(qmp)) v« () ds + ('(1) — &'(qmy)) Ax = nlirgo 4 TAPP" (11,

amg

1
= TAP™ (im,) = / (8'(5) = &' (@m)) Yo () ds + (§'(1) — &' (qmy)) A(mo).

g
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Since we showed that y, = y,,, this implies that A, = A(mg) and finishes the proof
of (9.4).

Step 2. Next, we handle the limit of the gradient of g ~1TAPA (i,,). Recall that from
Theorem 4,

1 1_ 4 !
5V TAP () = = (5% @ i G + i BE () f Gpnds) - 99

Here, the second term on the right-hand side can be handled by using the fact that
my, — mo, the vague convergence of v,, and (9.4), to obtain that

1 1
Bnln(s)ds = vu([0, 1]) — wo([0, 1]) = f Ymo(s)ds + A(mo).  (9.10)

qmp dm 0

Next, we treat the first term on the right-hand side of (9.9). Recall that for any ¢ € Nq‘l ,
a € [—1,1],and 8 > 0, we have that

L a0 = (L0005 o).

Denote by

1 .

Xni = ——Vg,(Gm,, Mn,is &n), V1 <i < N.
IBH

Let us again assume without loss of generality that the following limits exist on the

extended real line, x; := lim, o x,; forall 1 < i < N. Then from (2.6), (2.7), and

Corollary 18,

. 1
®vo (Qmov Xi) — mo,;XxX; = nll)rr;o ®V11 (an , xn,t) My, iXp,i = nhn;o ,B_Aﬁ” (an , Mp, i)
E" (1) A

A% (CImo» mO,i) +

- nli)néo AVn (qm"’ mn’l) - AVO (qmov mO,l) - Ymg

>
which means that x; = W(qmo, mo,i, Ym,). Combining this with (9.4), (9.9), and (9.10),

we arrive at

lim iVTAP%“H(M ) = f(mo). ©.11)

n—00 ,3

Step 3. Finally, we show that lim,,_, o f (m,) = f(mo) in a similar manner as the first
and second steps. Once this is verified, this and (9.11) together imply the desired uniform
convergence and hence finish our proof. Recall from Remark 23 that for each n, if we
define the measure v), on [0, 1] by

v, (A) = / Yim, (8) ds + A(mp)d1(A),
A

then

1 1
/0 (5'(5) = &'(gm,))dv, () = / (8'() = &' (m,)) Ym, (5) ds

mn

+ (&' (1) = &' (gm,)) AGmn) = TAP™ (i, ).

9.12)
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Note that v), € Ny, . As in Step 1, we can assume without loss of generality that v,

vaguely converges to some v, € N, gme,1 defined as

me»

vo(A) = /;‘ Ya(s)ds + Ayd1(A)

for some y, € N,

g1 and Ay > 0. We claim that

(Vi A0) = (Vimg» Almo)). (9.13)
By the argument in Step 1 above,

TAP™ (g, ¥3) = Jlim TAP™ (1, Yim,) = 1im TAPY (i, ) = TAP™ (s, )-

Hence, the uniqueness of the minimizer forces y, = y,. On the other hand, the vague
convergence of v, to v and (9.12) imply that

/ (') = E"(@m)) Ymo () ds + ('(1) — §'(qmy)) Ag
dmg

1
0

1
= f (5(5) = '(@my))vo(s) = lim_ /0 (8(5) = /(@) vy (5) = TAP™ (1),

which means that A6 = A(mg). These complete the proof of (9.13). Now, from (9.13),

1
lim mn,if”(qm,,)/ Vi d$ + 1 i & (G, ) A(my) = Tim my ;&" (gm, ) v, (0, 11)
n—00 q777n n—00

1

=mo,i§" (qmy)vo([0, 11) = mo ;" (Gmq) Yo ds +mo & (qmy) A(mo).
Gmg

Furthermore, following a similar argument as we handled the first term on the right-hand
side of (9.9) in the second step, it can also be obtained that

lim U (G, Mnis Yiny) = Y (@mgs M0.i5 Yimg)-

n—oo

This together with the above limit gives thatlim,,_, o, f (m,) = f(mg) and this completes
our proof. 0O
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