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Abstract: In a recent paper (Chen et al. in The generalized TAP free energy, to appear
in Comm. Pure Appl. Math.), we developed the generalized TAP approach for mixed
p-spin models with Ising spins at positive temperature. Here we extend these results
in two directions. We find a simplified representation for the energy of the generalized
TAP states in terms of the Parisi measure of the model and, in particular, show that the
energy of all states at a given distance from the origin is the same. Furthermore, we prove
the analogues of the positive temperature results at zero temperature, which concern the
ground-state energy and the organization of ground-state configurations in space.

1. Introduction and Main Results

The TAP approach, named after Thouless, Anderson and Palmer, was originally intro-
duced in [31], where their famous equations for the magnetization and representation for
the free energy of the SKmodel were derived. In a recent paper [14], adopting ideas from
[28], we defined the generalized TAP free energy using a geometric approach for mixed
p-spin models with Ising spins, at any positive temperature. Our first goal here will be
to compute the energy of all generalized TAP states in terms of their distance to the
origin. The main focus, however, will be on the zero temperature analogue of the analy-
sis in [14]. Of course, as the temperature tends to zero the Gibbs measure concentrates
on near maximal energies, hence this analysis deals with the ground state energy and
configurations. In particular, the corresponding TAP representation at zero temperature
expresses the ground state energy, and the location and structure of TAP states contain
information about the organization of ground state configurations in space.

The first rigorousmathematical results concerning the TAP approachwere derived by
Talagrand [30] who established the TAP equations for the SKmodel at high temperature;
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see also the works of Chatterjee [10] and Bolthausen [8,9]. Much more recently, an
analogue of the TAP equations within pure states was proved for generic mixed p-spin
models at low temperature by Auffinger and Jagannath [5]. Moreover, in [13], the TAP
representation for the free energy was proved for general mixed models by the first two
authors. In the setting of the spherical models, the representation for the free energy was
proved for the 2-spin model by Belius and Kistler [6], and at very low temperature, for
the p-spin model with p ≥ 3 by the third author [27] and for mixed models close to
pure by Ben Arous, Zeitouni and the third author [7].

In all of those works, the analysis was done at the level of pure states. As the temper-
ature tends to zero, they degenerate to a single point and the TAP correction converges to
zero, leaving only the energy term in the representation for the free energy. As a result,
the TAP approach at the level of pure states trivializes at zero temperature. In [14,28]
the generalized TAP free energy was defined based on geometric principles, inspired
by structural properties of the Gibbs measure, consequent to the famous ultrametricity
property [17–19] proved by the second author in [21] (see also [22]). In contrast to
the above, in addition to the pure states, this approach also treats ancestral states and
generalizes to zero temperature in a natural way, as we shall see below.

1.1. Previous results at positive temperature. Let us introduce the model and recall the
results from our previous paper [14]. Since these results will be used to pass to the zero
temperature limit, here we will also introduce an inverse temperature parameter β > 0.
The pure p-spin Hamiltonian indexed by σ ∈ �N := {−1, 1}N is defined by

HN ,p(σ ) = 1

N (p−1)/2

N∑

i1,...,i p=1

gi1,...,i pσi1 · · · σi p , (1.1)

where gi1,...,i p are i.i.d. standard Gaussian random variables. Given a sequence (βp)p≥1

that decreases fast enough, for example,
∑

p≥1 2
pβ2

p < ∞,

HN (σ ) =
∑

p≥1

βpHN ,p(σ ) (1.2)

is called a mixed p-spin Hamiltonian. Here the processes HN ,p are independent of each
other for p ≥ 1. The covariance of the Gaussian process HN (σ ) equals

EHN (σ 1)HN (σ 2) = Nξ
(
R(σ 1, σ 2)

)
, (1.3)

where R(σ 1, σ 2) = 1
N

∑N
i=1 σ 1

i σ 2
i is called the overlap of σ 1 and σ 2, and where

ξ(s) =
∑

p≥1

β2
ps

p. (1.4)

Let us recall the Parisi formula [25,26] for the free energy

FN (β) = 1

βN
log

∑

σ∈�N

eβHN (σ ). (1.5)
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If M0,1 is the space of probability measures on [0, 1], for ζ ∈ M0,1, let �
β
ζ (t, x) be

the solution on [0, 1] × R of the Parisi PDE

∂t�
β
ζ = −β2ξ ′′(t)

2

(
∂xx�

β
ζ + ζ(t)

(
∂x�

β
ζ

)2) (1.6)

with the boundary condition �ζ (1, x) = log 2 cosh x, where ζ(t) := ζ([0, t]). Let

Pβ(ζ ) := �
β
ζ (0, 0) − β2

2

∫ 1

0
sξ ′′(s)ζ(s) ds. (1.7)

Then, the limit of the free energy is given by the Parisi formula [25,26],

lim
N→∞EFN (β) = 1

β
inf

ζ∈M0,1

Pβ(ζ ) = 1

β
Pβ(ζ ∗

β ), (1.8)

which was first proved by Talagrand in [29] (building on a breakthrough byGuerra [15]),
and later generalized to models with odd spin interactions in [24]. The minimizer ζ ∗

β is
unique [1] (see also [16]) and is called the Parisi measure.

Next, we recall the generalized TAP free energy at inverse-temperature β > 0. For
m ∈ [−1, 1]N and ε > 0, let us consider a narrow band of configurations σ ∈ �N close
to the hyperplane perpendicular to m,

B(m, ε) =
{
σ ∈ �N : |R(σ ,m) − R(m,m)| = 1

N
|m · (σ − m)| < ε

}
. (1.9)

Given δ > 0 and n ≥ 1, let us consider a set consisting of n configurations in this narrow
band σ 1, . . . , σ n ∈ B(m, ε) such that all σ̃ i = σ i − m are almost orthogonal to each
other,

Bn(m, ε, δ) =
{
(σ 1, . . . , σ n) ∈ B(m, ε)n : ∀i 	= j,

∣∣R(σ i , σ j ) − R(m,m)
∣∣ < δ

}
.

(1.10)

For real numbers ε, δ > 0 and an integer number n ≥ 1, let

TAPβ
N ,n(m, ε, δ) := 1

nN
log

∑

Bn(m,ε,δ)

eβ
∑n

i=1

[
HN (σ i )−HN (m)

]
. (1.11)

The motivation for this functional was given in [14], so we will not repeat it here.
We will denote the concave conjugate of the Parisi functional �

β
ζ (q, x) defined in

(1.6) by

�
β
ζ (q, a) := inf

x∈R

(
�

β
ζ (q, x) − ax

)
, a ∈ [−1, 1]. (1.12)

Fora ∈ (−1, 1), theminimizer on the right-hand side exists and is denotedby�β(q, a, ζ ).

Let M∗ denote the space of probability measures

M∗ = Pr([−1, 1]). (1.13)

For μ ∈ M∗ such that
∫
a2 dμ(a) = q ∈ [0, 1], we define

TAPβ(μ, ζ ) :=
∫

�
β
ζ (q, a) dμ(a) − β2

2

∫ 1

q
sξ ′′(s)ζ(s) ds. (1.14)
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Notice that this functional depends only on the values of ζ(s) on the interval [q, 1], so
we can view it as a functional on the spaceMq,1 of all cumulative distribution functions
on [q, 1]. Finally, define the TAP functional

TAPβ(μ) := inf
ζ∈M0,1

TAPβ(μ, ζ ) = inf
ζ∈Mq,1

TAPβ(μ, ζ ). (1.15)

We will denote the minimizer to the right-hand side by ζβ,μ. It was proved in [14] that
the minimizer is unique and that TAPβ(μ) is a continuous functional on M∗. Let us
denote

SN (q) =
{
m ∈ [−1, 1]N : 1

N
‖m‖2 = q

}
.

For m ∈ [−1, 1]N , define the empirical measure

μm = 1

N

∑

i≤N

δmi . (1.16)

The following were the main results in [14].

Theorem 1. (TAP correction) For any c, t > 0, if ε, δ > 0 are small enough and n ≥ 1
is large enough then, for large N,

P

(
∀m ∈ [−1, 1]N : ∣∣TAPβ

N ,n(m, ε, δ) − TAPβ(μm)
∣∣ < t

)
> 1 − e−cN . (1.17)

Theorem 2. (TAP representation) For any q ∈ supp ζ ∗
β and any t > 0,

lim
N→∞P

( ∣∣∣FN (β) − max
m∈SN (q)

(HN (m)

N
+
1

β
TAPβ(μm)

)∣∣∣ < t
)

= 1. (1.18)

Theorem 3. (TAP states are ancestral) For any q ∈ supp ζ ∗
β and any t > 0,

lim
N→∞P

( ∣∣∣FN (β) − max
m∈SN (q)

(HN (m)

N
+
1

β
TAPβ(μm, ζ ∗

β )
)∣∣∣ < t

)
= 1. (1.19)

Theorem 4. (Generalized TAP equations) For any m ∈ (−1, 1)N ∩ SN (q),

∇ TAPβ(μm) = − 1

N

(
�β(q,mi , ζβ,m) + miβ

2ξ ′′(q)

∫ 1

q
ζβ,mds

)

i≤N
, (1.20)

where ζβ,m := ζβ,μm is the minimizer to (1.15) with μ = μm .
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1.2. The energy of generalized TAP states. Our first main result computes the energy
and TAP correction for all generalized TAP states at positive temperature in terms of
their distance from the origin. Given β > 0, let us denote the TAP free energy functional
by

fm(β) := βHN (m)

N
+ TAPβ(μm), ∀m ∈ [−1, 1]N , (1.21)

and, given ε > 0, let

Mβ,q(ε) :=
{
m ∈ SN (q) : fm(β) ≥ max

m∈SN (q)
fm(β) − ε

}
(1.22)

be the set of ε-maximizers of fm(β). For simplicity of notation, we keep the dependence
of fm(β) and Mβ,q(ε) on N implicit. The elements of the set Mβ,q(εN ) with εN → 0
and q ∈ supp ζ ∗

β are called the generalized TAP states.

Theorem 5. (The energy of generalized TAP states) For any q ∈ supp ζ ∗
β and any

sequence εN ≥ 0 going to zero, almost surely,

lim
N→∞ max

Mβ,q (εN )

∣∣∣
HN (m)

N
− Eβ(q)

∣∣∣ = 0 (1.23)

and

lim
N→∞ max

Mβ,q (εN )

∣∣∣TAPβ(μm) − (Pβ(ζ ∗
β ) − βEβ(q)

)∣∣∣ = 0, (1.24)

where

Eβ(q) := β

∫ q

0
ξ ′′(s)

(∫ 1

s
ζ ∗
β (t)dt

)
ds = βξ ′(q)

∫ 1

q
ζ ∗
β (s) ds + β

∫ q

0
ξ ′(s)ζ ∗

β (s) ds.

(1.25)

Remark 6. (Classical case)By definition, TAPβ(μm) ≤ TAPβ(μm, ζ ∗
β ) and therefore, by

Theorems 2 and 3, we must have TAPβ(μm) ≈ TAPβ(μm, ζ ∗
β ) for all the generalized

TAP states. Classical TAP states correspond to q = qEA, which is the largest point in
the support of ζ ∗

β , in which case the TAP correction simplifies to (see [14, Proposition
11])

TAPβ(μm) = − 1

N

N∑

i=1

I (mi ) + β2C(qEA), (1.26)

where

I (a) = 1 + a

2
log

1 + a

2
+
1 − a

2
log

1 − a

2
,

C(q) = 1

2

(
ξ(1) − ξ(q) − ξ ′(q)(1 − q)

)
.

In particular, (1.24) implies that the entropy of the classical TAP states is given by

− 1

N

N∑

i=1

I (mi ) ≈ Pβ(ζ ∗
β ) − βξ ′(qEA)(1 − qEA)
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−β2
∫ qEA

0
ξ ′(s)ζ ∗

β (s) ds − β2C(qEA), (1.27)

so both energy and entropy of classical TAP states are constant. ��
There exists an asymptotic description of measures μm corresponding to ancestor

statesm in the Parisi ansatz, and we will derive an asymptotic analogue of (1.24) directly
from this description. Such description first appeared in the physics literature in [20].
Rigorously, an asymptotic distribution of spins (from which a description of μm can be
extracted) in terms of the Parisi measure was derived in Chapter 4 in [22] under certain
regularizing perturbations that were introduced in [23], and it was observed in [5] that
for generic models the same proof works without perturbations. The results in [22] were
written in terms of the discrete Ruelle probability cascades, whose overlap distribution
approximates the Parisi measure ζ ∗

β , but one can write them directly in terms of the Parisi
measure (without discretization) in terms of the solution of the SDE

dX (s) = βξ ′′(s)∂x�β

ζ ∗
β
(s, X (s))ds + ξ ′′(s)1/2dWs, X (0) = 0, (1.28)

as was done, for example, in [4] and [5]. We will not describe all these results precisely
here, but simply mention that, for q ∈ supp ζ ∗

β , asymptotically the coordinates of an

ancestor statem with 1
N ‖m‖2 = q look like i.i.d. random variables with the distribution

μq( · ) = P

(
∂x�

β

ζ ∗
β

(
q, X (q)

) ∈ ·
)
. (1.29)

In other words, μq is an asymptotic analogue of μm . We will show the following.

Theorem 7. For any q ∈ supp ζ ∗
β and μq defined in (1.29),

TAPβ(μq) = Pβ(ζ ∗
β ) − βEβ(q). (1.30)

Moreover, for any q ∈ [0, 1),
TAPβ(μq) ≤ Pβ(ζ ∗

β ) − βEβ(q). (1.31)

The first equation is an asymptotic analogue of (1.24), and the second equation states
that, in general, Pβ(ζ ∗

β ) − βEβ(q) is an upper bound on the TAP correction for such
measures.

1.3. TAP approach at zero temperature. Next, we will describe the analogue of the
above results at zero temperature. Let us define

TAP∞
N ,1(m, ε) = 1

N
max
B(m,ε)

(
HN (σ ) − HN (m)

)
, (1.32)

TAP∞
N ,n(m, ε, δ) = 1

nN
max

Bn(m,ε,δ)

n∑

i=1

(
HN (σ i ) − HN (m)

)
. (1.33)

Then we can write

max
σ∈�N

HN (σ )

N
≥ HN (m)

N
+ TAP∞

N ,1(m, ε) ≥ HN (m)

N
+ TAP∞

N ,n(m, ε, δ). (1.34)



TAP Free Energy II 263

We will be interested in points m ∈ [−1, 1]N where the above inequalities become
approximate equalities, for large N . In other words, we are interested to characterize
points m that have many near ground states orthogonal to each other relative to m.

Let N0,1 be the family of c.d.f.s induced by all measures γ on [0, 1) with
∫ 1

0
γ (s) ds =

∫ 1

0
γ ([0, s]) ds < ∞. (1.35)

For γ ∈ N0,1, consider the solution �γ to the following PDE,

∂t�γ = −ξ ′′(t)
2

(
∂xx�γ + γ (t)

(
∂x�γ

)2) (1.36)

on [0, 1]×Rwith the boundary condition�γ (1, x) = |x |. It was shown in [1, Corollary
2] (see also [12, Section 2]) how such solution �γ (t, x) can be defined for all (t, x) ∈
[0, 1] × R under the condition (1.35). For a ∈ [−1, 1], we define

�∞
γ (q, a) := inf

x∈R

(
�γ (q, x) − ax

)
. (1.37)

We will see that, for a ∈ (−1, 1), the minimizer is unique and finite (see Remark 19
below). We will denote this minimizer by �(q, a, γ ), so that

�∞
γ (q, a) := �γ

(
q, �(q, a, γ )

) − a�(q, a, γ ), a ∈ (−1, 1). (1.38)

Moreover, for a = ±1, this infimum is well-defined and (see Remark 15 below)

�∞
γ (q,±1) = 1

2

∫ 1

q
ξ ′′(s)γ (s) ds. (1.39)

If μ ∈ M∗ with q = ∫
a2 dμ(a), we define

TAP∞(μ, γ ) =
∫

�∞
γ (q, a) dμ(a) − 1

2

∫ 1

q
sξ ′′(s)γ (s) ds. (1.40)

Again, notice that this functional depends only on the values of γ (s) on the interval
[q, 1], so we can view it as a functional on the space Nq,1 of measures on [q, 1) such
that

∫ 1

q
γ (s) ds =

∫ 1

q
γ ([q, s]) ds < ∞.

Finally, we let

TAP∞(μ) = inf
γ∈N0,1

TAP∞(μ, γ ) = inf
γ∈Nq,1

TAP∞(μ, γ ). (1.41)

We are now ready to state our main results on the generalized TAP free energy at zero
temperature. The first is a uniform concentration result for the TAP free energy defined
in (1.33) around the (non-random) functional we have just defined (1.41), applied to the
empirical measure μm = 1

N

∑
i≤N δmi .
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Theorem 8. (TAP correction at zero temperature) For any c, t > 0, if ε, δ > 0 are small
enough and n is large enough then, for large N ,

P

(
∀m ∈ [−1, 1]N : ∣∣TAP∞

N ,n(m, ε, δ) − TAP∞(μm)
∣∣ < t

)
> 1 − e−cN . (1.42)

Recall that the Parisi formula for the ground state energy of the mixed p-spin model
derived in [3] states that

lim
N→∞ max

σ∈�N

HN (σ )

N
= inf

γ∈N0,1

(
�γ (0, 0) − 1

2

∫ 1

0
sξ ′′(s)γ (s) ds

)
, (1.43)

and this variational formula has a unique minimizer, denoted γ ∗. The next result is the
TAP representation for the ground state energy, which is the zero-temperature analogue
of the TAP representation for the free energy in Theorem 2 above.

Theorem 9. (TAP representation at zero temperature) For any q ∈ supp γ ∗ and any
t > 0,

lim
N→∞P

( ∣∣∣ max
σ∈�N

HN (σ )

N
− max

m∈SN (q)

(HN (m)

N
+ TAP∞(μm)

)∣∣∣ < t
)

= 1. (1.44)

Note that by combining the two theorems above, if m is an approximate maximizer
in (1.44), then the inequalities of (1.34) become approximate equalities. Namely,

max
σ∈�N

HN (σ )

N
≈ HN (m)

N
+ TAP∞

N ,1(m, ε) ≈ HN (m)

N
+ TAP∞

N ,n(m, ε, δ), (1.45)

provided that ε and δ are small enough, and n is large enough. In other words, any
generalized TAP state contains many samples σ i ∈ B(m, ε) which approximately max-
imize the energy, and such that the centered samples σ̃ i = σ i − m are approximately
orthogonal.

Recall that the functional TAP∞(μ) was defined in (1.41) as an infimum over the
space of c.d.f.s Nq,1. The following theorem shows that the minimizer is unique.

Theorem 10. For any μ ∈ M∗ with q = ∫
a2 dμ(a), γ → TAP∞(μ, γ ) has a unique

minimizer γμ ∈ Nq,1.

We think of the minimizer as the order parameter associated to a generalized TAP
state with μm = μ. It is related the order parameter of the original model through the
following theorem.

Theorem 11. (Ancestral property of zero-temperature TAP states) For any q ∈ supp γ ∗
and any t > 0,

lim
N→∞P

( ∣∣∣ max
σ∈�N

HN (σ )

N
− max

m∈SN (q)

(HN (m)

N
+ TAP∞(μm, γ ∗)

)∣∣∣ < t
)

= 1.(1.46)

Note that ifm is an approximatemaximizer in (1.44), then it must also be an approximate
maximizer of (1.46) and

TAP∞(μm) ≈ TAP∞(μm, γ ∗). (1.47)
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Next, in order to describe the critical point equations for the TAP states,

1

N
∇HN (m) = −∇ TAP∞(μm), (1.48)

we need to compute the gradient of TAP∞(μm). The statement is somewhat more in-
volved thanwhat onewould expect from the direct analogue of Theorem 4 above. Denote
γm := γμm and let

�(m) := 1

ξ ′(1) − ξ ′(q)

(
TAP∞(μm) −

∫ 1

q
(ξ ′(s) − ξ ′(q))γm(s) ds

)
. (1.49)

Theorem 12. (Gradient of TAP correction) For any m ∈ (−1, 1)N with 1
N ‖m‖2 = q, if

we denote

C(m) := ξ ′′(q)

∫ 1

q
γm(s) ds + ξ ′′(q)�(m), (1.50)

then

∇ TAP∞(μm) = − 1

N

(
�(q,mi , γm) + C(m)mi

)

i≤N
. (1.51)

If we combine (1.48) and (1.51), we can write

(∇HN (m))i − C(m)mi = �(q,mi , γm).

If we plug both sides into ∂x�γm (q, · ) and recall the definition of �, we get

∂x�γm

(
q, (∇HN (m))i − C(m)mi

)
= mi . (1.52)

These are the TAP equations at zero temperature.

2. Passing to Zero Temperature

Some of the zero temperature results above can be proved by adapting the proofs from
[14] to the zero-temperature setting. This, however, entails a rather involved and long
analysis. Instead, the approachwe shall take here is to relate the zero-temperature variants
to the results proved for positive temperature in [14], and use those as much as possible.
The main result of this section is Lemma 14 below, that bounds, for a given empirical
measureμ, the difference between the functional TAPβ(μ) (see (1.15)) at a given positive
temperature and the zero-temperature functional TAP∞(μ) (see (1.41)). It will allow us
to reduce zero-temperature results to the positive temperature results in the previous
section. We first prove the following simple consequence of Theorem 1, that bounds the
difference of the functional TAPβ(μ) at two different temperatures.

Lemma 13. For any 0 < β1 ≤ β2 and μ ∈ M∗,
∣∣∣
1

β1
TAPβ1(μ) − 1

β2
TAPβ2(μ)

∣∣∣ ≤ log 2

β1
. (2.1)
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Proof. For a fixed t > 0, by (1.17) and Gaussian concentration,

∣∣ETAP
β j
N ,n(m, ε, δ) − TAPβ j (μm)

∣∣ < 2t

for j = 1, 2, for large enough N . On the other hand,

ETAP∞
N ,n(m, ε, δ) ≤ 1

β j
ETAP

β j
N ,n(m, ε, δ) ≤ ETAP∞

N ,n(m, ε, δ) +
log 2

β j

and, therefore,

∣∣∣
1

β1
ETAPβ1

N ,n(m, ε, δ) − 1

β2
ETAPβ2

N ,n(m, ε, δ)

∣∣∣ ≤ log 2

β1
.

This implies that

∣∣∣
1

β1
TAPβ1(μm) − 1

β2
TAPβ2(μm)

∣∣∣ ≤ log 2 + 4t

β1
.

Choosing m = mN so that μm → μ and using continuity of TAPβ proves the same
inequality for arbitrary μ ∈ M∗. Since t is arbitrary, we get (2.1). ��

Let us denote an L1-distance on Nq,1 by

d1(γ, γ ′) :=
∫ 1

q
|γ (s) − γ ′(s)| ds.

It was proved in [1, Corollary 2] and [12, Proposition 2] that

∣∣∣�γ (t, x) − �γ ′(t, x)
∣∣∣ ≤ 2ξ ′′(1)d1(γ, γ ′). (2.2)

Since
∣∣∣�∞

γ (q, a) − �∞
γ ′ (q, a)

∣∣∣ ≤ sup
x

∣∣∣�γ (t, x) − �γ ′(t, x)
∣∣∣ ≤ 2ξ ′′(1)d1(γ, γ ′), (2.3)

we get that

∣∣∣TAP∞(μ, γ ) − TAP∞(μ, γ ′)
∣∣∣ ≤ 3ξ ′′(1)d1(γ, γ ′). (2.4)

Hence, γ → TAP∞(μ, γ ) is Lipschitz on (Nq,1, d1), which will be useful in the proof
of our next result.

Lemma 14. For any β > 0 and μ ∈ M∗, we have that
∣∣∣TAP∞(μ) − 1

β
TAPβ(μ)

∣∣∣ ≤ log 2

β
. (2.5)
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Proof. With q = ∫
a2 dμ(a), let ζ ∈ Mq,1. If we make the change of variables

�
β
βζ (t, x) := 1

β
�

β
ζ (t, βx),

it is easy to check that

∂t�
β
βζ = −ξ ′′(t)

2

(
∂xx�

β
βζ + βζ(t)

(
∂x�

β
βζ

)2)

with the boundary condition

�
β
βζ (1, x) = 1

β
log 2 cosh(βx).

Standard properties of the Parisi functional �
β
ζ extend to �

β
ζ . For example, it is well-

known that changing the boundary condition in the definition of�β
ζ by at most a constant

changes the solution by at most this constant, so the same holds for �
β
ζ . Observe that

|x | ≤ 1

β
log 2 cosh(βx) ≤ |x | + log 2

β
.

Since �
β
βζ and �βζ in (1.36) only differ in the boundary conditions, which differ by at

most log 2/β, we get

�βζ (q, x) ≤ �
β
βζ (q, x) ≤ �βζ (q, x) +

log 2

β
. (2.6)

Using this together with

inf
x∈R

(
�

β
βζ (q, x) − ax

)
= inf

x∈R

( 1

β
�

β
ζ (q, βx) − ax

)

= 1

β
inf
x∈R

(
�

β
ζ (q, x) − ax

)
= 1

β
�

β
ζ (q, a)

implies that

�∞
βζ (q, a) ≤ 1

β
�

β
ζ (q, a) ≤ �∞

βζ (q, a) +
log 2

β
. (2.7)

Note also that

1

β

β2

2

∫ 1

q
sξ ′′(s)ζ(s) ds = 1

2

∫ 1

q
sξ ′′(s)

(
βζ(s)

)
ds.

Combining the last two displays, we get

TAP∞(μ, βζ ) ≤ 1

β
TAPβ(μ, ζ ) ≤ TAP∞(μ, βζ ) +

log 2

β
. (2.8)



268 W.-K. Chen, D. Panchenko, E. Subag

If we denote by N β
q,1 the set of all measures on [q, 1] of total mass at most β, taking

infimum over all ζ ∈ Mq,1 gives

inf
γ∈N β

q,1

TAP∞(μ, γ ) ≤ 1

β
TAPβ(μ) ≤ inf

γ∈N β
q,1

TAP∞(μ, γ ) +
log 2

β
.

As β ↑ ∞, by (2.4), the infimum over γ ∈ N β
q,1 converges to the infimum over all

γ ∈ Nq,1, and using (2.1) finishes the proof. ��
Remark 15. It was shown in the proof of Theorem 10 (i) in [14] that

�
β
ζ (q,±1) = β2

2

∫ 1

q
ξ ′′(s)ζ(s) ds,

which together with (2.7) implies that

∣∣∣�∞
βζ (q,±1) − 1

2

∫ 1

q
ξ ′′(s)(βζ(s)) ds

∣∣∣ ≤ log 2

β
.

By (2.3), it follows that

�∞
γ (q,±1) = 1

2

∫ 1

q
ξ ′′(s)γ (s) ds (2.9)

for all γ ∈ Nq,1. ��

3. TAP Correction and Representation

In this section we combine Lemma 14 from the previous section and Theorems 1 and 2,
which concern the positive temperature case, to prove their zero-temperature analogues,
Theorems 8 and 9.

3.1. Proof of Theorem 8. Note that

TAP∞
N ,n(m, ε, δ) ≤ 1

β
TAPβ

N ,n(m, ε, δ) ≤ TAP∞
N ,n(m, ε, δ) +

log 2

β
.

Together with Lemma 14 this implies that

∣∣TAP∞
N ,n(m, ε, δ) − TAP∞(μm)

∣∣ ≤ 1

β

∣∣∣TAPβ
N ,n(m, ε, δ) − TAPβ(μm)

∣∣∣ +
2 log 2

β
.

This implies that the probability on the left-hand side of (1.42) is bounded from below
by

P

(
∀m ∈ [−1, 1]N : ∣∣TAPβ

N ,n(m, ε, δ) − TAPβ(μm)
∣∣ < βt − 2 log 2

)
.

If we take β large enough so that βt > 2 log 2 then our claim follows from Theorem 1.
��
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3.2. Proof of Theorem 9. Recall that it was proved in [1] that if we denote by ζ ∗
β ∈ M0,1

the minimizer of the Parisi formula for the free energy FN (β) of the original model, then
βζ ∗

β → γ ∗ vaguely, i.e., for any continuous function f with compact support in [0, 1),

lim
β→∞

∫

[0,1)
f (s) dβζ ∗

β (s) =
∫

[0,1)
f (s) dγ ∗(s).

Fix q in the support of γ ∗. Then there exists qβ in the support of ζ ∗
β such that qβ → q

as β → ∞. Note that

∣∣∣FN (β) − max
σ∈�N

HN (σ )

N

∣∣∣ ≤ log 2

β

and, from (2.5),

∣∣∣
1

β
TAPβ(μ) − TAP∞(μ)

∣∣∣ ≤ log 2

β
.

From these,

∣∣∣
(
FN (β) − max

m∈SN (qβ)

(HN (m)

N
+
1

β
TAPβ(μm)

))

−
(
max
σ∈�N

HN (σ )

N
− max

m∈SN (qβ)

(HN (m)

N
+ TAP∞(μm)

))∣∣∣ ≤ 2 log 2

β
.

(3.1)

To handle the second big bracket, observe that since TAPβ is continuous, it follows from
(2.5) that TAP∞ is uniformly continuous on M∗, since M∗ is compact. Hence, for any
ε > 0, there exists 0 < δ < min(ε, (1− q)/2) such that |TAP∞(μ) − TAP∞(μ′)| < ε

whenever μ,μ′ ∈ M∗ satisfy d1(μ,μ′) ≤ δ. From now on, we fix β large enough so
that qβ ∈ [q − δ, q + δ]. Note that for any m ∈ [−1, 1]N with ‖m‖2/N = q, we can
find m′ with ‖m′‖2/N = qβ such that ‖m − m′‖ ≤ δ

√
N . Furthermore, we can choose

m′ so that the absolute values of the coordinates of m and m′ are arranged in the same
order,

|mi1 | ≤ |mi2 | ≤ · · · ≤ |miN | �⇒ |m′
i1 | ≤ |m′

i2 | ≤ · · · ≤ |m′
iN |.

If μ|m| := 1
N

∑
i≤N δ|mi | then

d1(μ|m|, μ|m′|) = 1

N

N∑

i=1

∣∣|mi | − |m′
i |
∣∣ ≤ 1

N

N∑

i=1

∣∣mi − m′
i

∣∣ ≤ ‖m − m′‖√
N

≤ δ.

Hence, from the above uniform continuity,
∣∣TAP∞(μm) − TAP∞(μm′)

∣∣ = ∣∣TAP∞(μ|m|) − TAP∞(μ|m′|)
∣∣ < ε. (3.2)

In a similar manner, for any m ∈ [−1, 1]N with ‖m‖2/N = qβ , we can find m′ ∈
[−1, 1]N with ‖m′‖2/N = q so that ‖m − m′‖ ≤ δ

√
N and

∣∣TAP∞(μm) − TAP∞(μm′)
∣∣ = ∣∣TAP∞(μ|m|) − TAP∞(μ|m′|)

∣∣ < ε. (3.3)
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On the other hand, from the Dudley entropy integral formula, there exists a constant
C > 0 depending only on ξ such that

E max
‖m−m′‖<δ

√
N

∣∣∣
HN (m)

N
− HN (m′)

N

∣∣∣ ≤ Cδ,

which, combined with the Gaussian concentration inequality, implies that

max
‖m−m′‖<δ

√
N

∣∣∣
HN (m)

N
− HN (m′)

N

∣∣∣ ≤ 2Cδ

with probability at least 1 − C ′e−C ′δN , where C ′ is a constant depending only on ξ.

Hence, from this inequality and (3.2),

∣∣∣ max
m∈SN (q)

(HN (m)

N
+ TAP∞(μm)

)
− max

m∈SN (qβ)

(HN (m)

N
+ TAP∞(μm)

)∣∣∣ ≤ ε(1 + 2C)

with probability at least 1 − 2C ′e−C ′δN . Thus, from (3.1),

∣∣∣
(
FN (β) − max

m∈SN (qβ)

(HN (m)

N
+
1

β
TAPβ(μm)

))

−
(
max
σ∈�N

HN (σ )

N
− max

m∈SN (q)

(HN (m)

N
+ TAP∞(μm)

))∣∣∣ ≤ 2 log 2

β
+ ε(1 + 2C).

Our result then follows by using Theorem 2. ��

4. Ancestral Property of TAP States

This section is dedicated to the proof of Theorem 11. Unlike in the previous sec-
tion, here we work at zero-temperature directly. First, note that since TAP∞(μm) ≤
TAP∞(μm, γ ∗), using Theorem 9 and Gaussian concentration, our proof will be com-
plete if we can show that, whenever q lies in the support of γ ∗,

lim sup
N→∞

E max
m∈SN (q)

(HN (m)

N
+ TAP∞(μm, γ ∗)

)
≤ P∞(γ ∗).

Let N0,q be the space of all cumulative distribution functions γ induced by positive
measures on [0, q] satisfying

∫ q
0 γ (s) ds < ∞. From Guerra’s RSB bound for the

ground state energy,

lim
N→∞E max

m∈SN (q)

(HN (m)

N
+ TAP∞(μm, γ ∗)

)

= lim
N→∞E max

m∈SN (q)

(HN (m)

N
+

1

N

N∑

i=1

�∞
γ ∗(q,mi ) − 1

2

∫ 1

q
sξ ′′(s)γ ∗(s) ds

)

≤ Pq(λ, γ ) − 1

2

∫ 1

q
sξ ′′(s)γ ∗(s) ds
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for any γ ∈ N0,q , where

Pq(λ, γ ) := �λ
γ (0, 0) − 1

2

∫ q

0
sξ ′′(s)γ (s) ds,

and where �λ
γ is the solution to

∂t�
λ
γ = −ξ ′′(t)

2

(
∂xx�

λ
γ + γ (t)

(
∂x�

λ
γ

)2)

on [0, q] × R with the boundary condition

�λ
γ (q, x) := max

a∈[−1,1]

(
ax + λ(a − q) + �∞

γ ∗(q, a)
)
.

If now we take λ = 0 and γ = γ ∗1[0,q], then from the conjugation, �λ
γ (q, x) =

�γ ∗(q, x) and thus, �λ
γ (0, 0) = �γ ∗(0, 0). As a consequence,

P∞
q (λ, γ ) − 1

2

∫ 1

q
sξ ′′(s)γ ∗(s) ds = P∞(γ ∗).

This finishes our proof. ��

5. Continuity of the Parisi Functional

In this section we will prove that the Parisi functional is continuous when defined on an
extension of Nq,1 to measures that charge the point 1. Namely, we set N q,1 to be the
collection of all measures on [0, 1] of the form

ν(A) =
∫

A
γ (s) ds + �δ1(A), (5.1)

where γ ([0, q)) = 0, γ |[q,1) ∈ Nq,1, and� ∈ [0,∞).We equipN q,1 with the topology
of vague convergence.

Remark 16. Note that ifνn ∈ ∪q∈[0,1]N q,1 converges vaguely to certainν0 ∈ ∪q∈[0,1]N q,1,
then γn converges to γ0 a.e. on [0, 1), where (γn,�n) for n ≥ 0 are the pairs associ-
ated to νn on [0, 1). Indeed, this can be seen by noting that νn([0, ·]) for n ≥ 0 are
convex functions on [0, 1) and that limn→∞ νn([0, s]) = ν0([0, s]) for all s ∈ [0, 1)
due to the vague convergence of νn and the fact that ν0([0, ·]) is continuous on [0, 1).
Since νn([0, ·]) for n ≥ 0 are almost surely differentiable, we see that at the points of
simultaneous differentiability of νn([0, s]) for n ≥ 0, the Griffith lemma (see, e.g., [30])
implies

lim
n→∞ γn(s) = lim

n→∞
d

ds
ν0([0, s]) = d

ds
ν0([0, s]) = γ0(s).

We also mention that it is not necessarily true that �n → �0, instead the following
limit is valid

�0 = lim
n→∞ νn([0, 1]) −

∫ 1

0
γ0(s)ds.
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For each ν ∈ N q,1, if (γ,�) is the pair associated with ν, we define

�ν(q, x) := �γ (q, x) +
�ξ ′′(1)

2
.

In addition, we also define, for a ∈ [−1, 1],

�∞
ν (q, a) := inf

x∈R

(
�ν(q, x) − ax

)
= �∞

γ (q, a) +
�ξ ′′(1)

2
.

The main result of this section is the following proposition, which establishes the con-
tinuity of �ν(q, ·). It will be used in the proof of Theorems 10 and 12.

Proposition 17. For any q ∈ [0, 1], if νn → ν0 vaguely in N q,1 then

lim
n→∞ sup

x∈R

∣∣�νn (q, x) − �ν0(q, x)
∣∣ = 0 (5.2)

and

lim
n→∞ sup

a∈[−1,1]
∣∣�∞

νn
(q, a) − �∞

ν0
(q, a)

∣∣ = 0. (5.3)

We also prove the following corollary, which will be used in the proof of Theorem 12.

Corollary 18. If qn ∈ [0, 1) for n ≥ 0, limn→∞ qn = q ∈ [0, 1), and νn ∈ N qn ,1 →
ν0 ∈ N q,1 vaguely on [0, 1], then

lim
n→∞ sup

x∈R

∣∣�νn (qn, x) − �ν0(q, x)
∣∣ = 0 (5.4)

and

lim
n→∞ sup

a∈[−1,1]
∣∣�∞

νn
(qn, a) − �∞

ν0
(q, a)

∣∣ = 0. (5.5)

The proof of Proposition 17 utilizes the stochastic optimal control representation for
�γ (t, x) from [1, Corollary 2], which we now recall. For any q ≤ a ≤ b ≤ 1, let
Da,b be the collection of all progressively measurable processes u = (u(s))a≤s≤b with
respect to the filtration generated by the standard Brownian motion W = (Ws)a≤s≤b
and with sups∈[a,b] |u(s)| ≤ 1. Then we can express

�γ (a, x) = sup
u∈Da,b

E

[
�γ

(
b, x +

∫ b

a
ξ ′′γ u ds +

∫ b

a
ξ ′′1/2dWs

)
− 1

2

∫ b

a
ξ ′′γ u2 ds

]
.

(5.6)

In particular, for any γ ∈ Nq,1,

�γ (q, x) = sup
u∈Dq,1

[
E

∣∣∣x +
∫ 1

q
ξ ′′γ u ds +

∫ 1

q
ξ ′′1/2dWs

∣∣∣ − 1

2

∫ 1

q
ξ ′′γEu2 ds

]
. (5.7)

Remark 19. Notice that the representation (5.7) shows that limx→±∞ �γ (q, x)/|x | = 1,
which means that, for a ∈ (−1, 1), the minimizer in the definition of�∞

γ (q, a) in (1.37)
is unique and finite.
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For any q ′ ∈ [q, 1], denote

Iγ (q ′) :=
∫ 1

q ′
ξ ′′(s)γ (s) ds.

We will need the following estimate on �γ (q ′, x).

Lemma 20. For any γ ∈ Nq,1, q ′ ∈ [q, 1], and x ∈ R, we have

|x | + Iγ (q ′)
2

≤ �γ (q ′, x) ≤ |x | + Iγ (q ′)
2

+
(
ξ ′(1) − ξ ′(q ′)

)1/2
. (5.8)

Proof. Recall (5.6) for �γ (q ′, x) with (a, b) = (q ′, 1). Let u = sgn(x). Then, by (5.6)
and Jensen’s inequality,

�γ (q ′, x) ≥ E

[∣∣∣x +
∫ 1

q ′
ξ ′′γ u ds +

∫ 1

q ′
ξ ′′1/2dWs

∣∣∣ − 1

2

∫ 1

q ′
ξ ′′γ u2 ds

]

≥
∣∣∣x +

∫ 1

q ′
ξ ′′γ u ds

∣∣∣ − 1

2

∫ 1

q ′
ξ ′′γ u2 ds

= |x | +
∫ 1

q ′
ξ ′′γ ds − 1

2

∫ 1

q ′
ξ ′′γ ds = |x | + Iγ (q ′)

2
.

To establish the upper bound, for any u ∈ Dq ′,1, write

∣∣∣x +
∫ 1

q ′
ξ ′′γ u ds +

∫ 1

q ′
ξ ′′1/2dWs

∣∣∣ − 1

2

∫ 1

q ′
ξ ′′γ u2 ds

≤ |x | +
∣∣∣
∫ 1

q ′
ξ ′′γ u ds

∣∣∣ +
∣∣∣
∫ 1

q ′
ξ ′′1/2dWs

∣∣∣ − 1

2

∫ 1

q ′
ξ ′′γ u2 ds

and, using 2|u| ≤ u2 + 1, bound the second term by

∣∣∣
∫ 1

q ′
ξ ′′γ u ds

∣∣∣ ≤
∫ 1

q ′
ξ ′′γ |u| ds ≤ 1

2

∫ 1

q ′
ξ ′′γ u2 ds + 1

2

∫ 1

q ′
ξ ′′γ ds.

By (5.6), this implies that

�γ (q ′, x) = sup
u∈Dq′,1

E

[∣∣∣x +
∫ 1

q ′
ξ ′′γ u ds +

∫ 1

q ′
ξ ′′1/2dW

∣∣∣ − 1

2

∫ 1

q ′
ξ ′′γ u2 ds

]

≤ |x | + Iγ (q ′)
2

+ E

∣∣∣
∫ 1

q ′
ξ ′′1/2dW

∣∣∣

≤ |x | + Iγ (q ′)
2

+
(
ξ ′(1) − ξ ′(q ′)

)1/2
.

Taking the supremum over u gives the desired upper bound. ��
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5.1. Proof of Proposition 17. By the definition of �∞
ν , the assertion (5.3) evidently

follows from (5.2), so we only focus on proving (5.2). Obviously this assertion holds if
q = 1. From now on, assume that q ∈ [0, 1).

Let γn,�n and γ0,�0 be the pairs associated with νn and ν0 respectively. From
the vague convergence, γn(s) → γ (s) almost surely on [0, 1). Therefore, for any q ′ ∈
[q, 1),

sup
n≥1

sup
s∈[q,q ′]

γn(s) < ∞,

which yields, by the bounded convergence theorem,

lim
n→∞

∫ q ′

0
|γn(s) − γ0(s)| ds = 0. (5.9)

(However, of course, it is not necessarily true that �n → �0.)
Next, fix q ′ ∈ [q, 1). For any u ∈ Dq,q ′ and γ ∈ Nq,1, set

�γ (q ′, u) := E

[∣∣∣x +
∫ q ′

q
ξ ′′γ u ds +

∫ q ′

q
dBs

∣∣∣ − 1

2

∫ q ′

q
ξ ′′γ u2 ds

]
,

where dBs := ξ ′′(s)1/2dWs .Using (5.6) for�γn (q, x)with (a, b) = (q, q ′) and Lemma
20,

∣∣∣�γn (q, x) − 1

2
Iγn (q

′) − sup
u∈Dq,q′

�γn (q
′, u)

∣∣∣ ≤ (
ξ ′(1) − ξ ′(q ′)

)1/2
. (5.10)

In addition, by the triangle inequality,

∣∣∣�γn (q
′, u) − �γ0(q

′, u)

∣∣∣ ≤ 3

2

∫ q ′

q
ξ ′′|γn − γ0| ds. (5.11)

For any v ∈ Dq,1, if we write u = v1[q,q ′] then

�γ0(1, v) = E

[∣∣∣x +
∫ q ′

q
ξ ′′γ0u ds +

∫ q ′

q
dBs +

∫ 1

q ′
ξ ′′γ0v ds +

∫ 1

q ′
dBs

∣∣∣

− 1

2

∫ q ′

q
ξ ′′γ0u2 ds − 1

2

∫ 1

q ′
ξ ′′γ0v2 ds

]
,

which, by the triangle inequality and E
(∫ q ′

q dBs
)2 = ξ ′(1) − ξ ′(q ′) implies that

∣∣∣�γ0(1, v) − �γ0(q
′, u)

∣∣∣ ≤ 3

2

∫ 1

q ′
ξ ′′γ0 ds +

(
ξ ′(1) − ξ ′(q ′)

)1/2
.

From this inequality, (5.10) and (5.11), we see that by taking maximum over v ∈ Dq,1
and using (5.6) for �γ (q, x) with (a, b) = (q, 1), it follows that
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∣∣∣�γn (q, x) − 1

2
Iγn (q

′) − �γ0(q, x)
∣∣∣

≤ 3

2

∫ 1

q ′
ξ ′′γ0 ds +

3

2

∫ q ′

q
ξ ′′|γn − γ0| ds + 2

(
ξ ′(1) − ξ ′(q ′)

)1/2
.

Taking a limit and using (5.9) gives

lim sup
n→∞

sup
x∈R

∣∣∣�γn (q, x) − 1

2
Iγn (q

′) − �γ0(q, x)
∣∣∣

≤ 3

2

∫ 1

q ′
ξ ′′γ0 ds + 2

(
ξ ′(1) − ξ ′(q ′)

)1/2
.

(5.12)

Note that, since

Iγn (q
′) =

∫ 1

q ′
ξ ′′(s)γ (s) ds =

∫
ξ ′′dνn − ξ ′′(1)�n −

∫ q ′

q
ξ ′′γn ds,

we can rewrite the expression on the left-hand side of the above inequality as

�γn (q, x) − 1

2
Iγn (q

′) − �γ0(q, x)

= �νn (q, x) − �γ0(q, x) − 1

2

(∫
ξ ′′dνn −

∫ q ′

q
ξ ′′γn ds

)

= �νn (q, x) − �ν0(q, x) − 1

2

(∫
ξ ′′dνn −

∫ q ′

q
ξ ′′γn ds − ξ ′′(1)�0

)
.

From the vague convergence νn → ν0 and (5.9), the last term converges to

1

2

(∫
ξ ′′dν0 −

∫ q ′

q
ξ ′′γ0 ds − ξ ′′(1)�0

)
= 1

2

∫ 1

q ′
ξ ′′γ0 ds

and, therefore, (5.12) implies

lim sup
n→∞

sup
x∈R

∣∣∣�νn (q, x) − �ν0(q, x)
∣∣∣ ≤ 2

∫ 1

q ′
ξ ′′γ0 ds + 2

(
ξ ′(1) − ξ ′(q ′)

)1/2
.

The right-hand side vanishes as q ′ ↑ 1, which completes the proof. ��

5.2. Proof of Corollary 18. Let γ ′
n := 1[q,1]γn and ν′

n(A) := νn([q, 1] ∩ A). Then ν′
n

converges to ν0 vaguely and from Proposition 17,

lim
n→∞ sup

x∈R

∣∣�ν′
n
(q, x) − �ν0(q, x)

∣∣ = 0,

lim
n→∞ sup

a∈[−1,1]
∣∣�∞

ν′
n
(q, a) − �∞

ν0
(q, a)

∣∣ = 0.
(5.13)
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On the other hand, by using the representation (5.6) for �γ ′
n
(q, x) with (a, b) = (q, 1)

and �γn (qn, x) with (a, b) = (qn, 1), we see that

�γ ′
n
(q, x) = sup

u∈Dq,1

E

[∣∣∣x +
∫ 1

q
ξ ′′γnu ds +

∫ 1

q
ξ ′′1/2dWs

∣∣∣ − 1

2

∫ 1

q
ξ ′′γnu2 ds

]
,

�γn (qn, x) = sup
u∈Dqn ,1

E

[∣∣∣x +
∫ 1

qn
ξ ′′γnu ds +

∫ 1

qn
ξ ′′1/2dWs

∣∣∣ − 1

2

∫ 1

qn
ξ ′′γnu2 ds

]
.

From these, we see that

sup
x∈R

∣∣�γ ′
n
(q, x) − �γn (qn, x)

∣∣ ≤ 3

2

∫ qn∨q

qn∧q
ξ ′′γn ds + E

∣∣∣
∫ qn∨q

qn∧q
ξ ′′1/2dWs

∣∣∣

≤ 3ξ ′′(1)
2

|qn − q| max
qn∧q≤s≤qn∨q

γn(s) + E

∣∣∣
∫ qn∨q

qn∧q
ξ ′′1/2dWs

∣∣∣.

Note that from the vague convergence of νn to ν0, γn converges to γ0 a.s. Using the fact
that γn are nondecreasing, we see that

sup
n≥1

max
qn∧q≤s≤qn∨q

γn(s) < ∞.

Consequently,

lim
n→∞ sup

x∈R

∣∣�γ ′
n
(q, x) − �γn (qn, x)

∣∣ = 0,

lim
n→∞ sup

a∈[−1,1]
∣∣�∞

γ ′
n
(q, a) − �∞

γn
(qn, a)

∣∣ = 0.

This together with (5.13) completes our proof. ��

6. Uniqueness of the Minimizer

This section is devoted to the proof of Theorem 10. We begin with the following two
lemmas which will be needed in the proof. For any fixed measure μ ∈ M∗ with q =∫
a2dμ(a), it was proved in [14] that the functional ζ → TAPβ(μ, ζ ) has a minimizer

ζβ,μ in M0,1 and the restriction of this minimizer to [q, 1] (which can be viewed as an
element of Mq,1) is unique.

Recall the stochastic optimal control representation for �
β
ζ , which states that for any

ζ ∈ Mq,1, one can express

�
β
ζ (q, x) = sup

u

[
E log 2 cosh

(
x +

∫ 1

q
β2ξ ′′ζu ds +

∫ 1

q
βξ ′′1/2 dWs

)

−β2

2

∫ 1

q
ξ ′′ζEu2 ds

]
,

where the supremum is taken over all progressively measurable processes u on [q, 1]
with respect to the standard Brownian motion W. In particular, the supremum here is
attained by

uβ
x,ζ (s) = ∂x�

β
ζ (q, Xβ

x,ζ (s)), (6.1)
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where Xβ
x,ζ is the strong solution of

dXβ
x,ζ (s) = β2ξ ′′(s)ζ(s)∂x�

β
ζ (s, Xβ

x,ζ (s)) ds + βξ ′′(s)1/2dWs (6.2)

with the initial condition Xβ
x,ζ (q) = x .

Lemma 21. For any ζ ∈ Mq,1 and x ∈ R, we have that

∂β�
β
ζ (q, x) = β

(
ξ ′(1) − ξ ′(q) −

∫ 1

q
(ξ ′(s) − ξ ′(q))Euβ

x,ζ (s)
2dζ(s)

)
.

Proof. Let α be any nondecreasing function on [a, b] with right-continuity for some
0 ≤ a < b ≤ 1. For any f, g continuously differentiable functions on [a, b], the
following integration by parts is valid,

∫ b

a
g′(s) f (s)α(s)ds = g(b) f (b)α(b) − g(a) f (a)α(a)

−
∫ b

a
g(s) f (s)dα(s) −

∫ b

a
g(s) f ′(s)α(s)ds,

(6.3)

where the first integral on the right-hand side should be understood as the Riemann-
Stieltjes integral. Note that a direct differentiation of the Parisi PDE in β gives

∂s∂β�
β
ζ = −β2ξ ′′

2

(
∂xx∂β�

β
ζ + 2ζ

(
∂x�

β
ζ

)(
∂x∂β�

β
ζ

)) − βξ ′′(∂xx�β
ζ + ζ

(
∂x�

β
ζ

)2)
.

From the Feynman-Kac formula,

∂β�
β
ζ (q, x) =

∫ 1

q
βξ ′′(s)E

[
∂xx�

β
ζ (s, Xβ

x,ζ (s)) + ζ
(
∂x�

β
ζ (s, Xβ

x,ζ (s))
)2]

ds.

For convenience, from now on, we denote u(s) = ∂x�
β
ζ (s, Xβ

x,ζ (s)) and v(s) =
∂xx�

β
ζ (s, Xβ

x,ζ (s)). Using the usual integration by part gives

∫ 1

q
ξ ′′(s)Ev(s)ds = ξ ′(1)Ev(1) − ξ ′(q)Ev(q) + β2

∫ 1

q
ξ ′(s)ξ ′′(s)ζ(s)Ev(s)2ds

= ξ ′(1)(1 − Eu(1)2) − ξ ′(q)Ev(q) + β2
∫ 1

q
ξ ′(s)ξ ′′(s)ζ(s)Ev(s)2ds,

where the second equality used the fact that v(1) = 1 − u(1)2. In addition, from (6.3),
∫ 1

q
ξ ′′(s)ζ(s)Eu(s)2ds = ξ ′(1)Eu(1)2 − ξ ′(q)Eu(q)2

−
∫ 1

q
ξ ′(s)Eu(s)2dζ(s) − β2

∫ 1

q
ξ ′(s)ξ ′′(s)ζ(s)Ev(s)2ds.

These imply that

∂β�
β
ζ (q, x) = −βξ ′(q)

(
Ev(q) + ζ(q)Eu(q)2

)
+ β

(
ξ ′(1) −

∫ 1

q
ξ ′(s)Eu(s)2dζ(s)

)
.
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Finally, our proof is completed by plugging the following equation (see [14, Lemma
37]) into this equation,

Ev(q) + ζ(q)Eu(q)2 = 1 −
∫ 1

q
Eu(s)2dζ(s).

��
Lemma 22. For any β > 0 and μ ∈ M∗, we have that

β

∫ 1

q

(
ξ ′(s) − ξ ′(q)

)
ζβ,μ(s)ds ≤ TAP∞(μ). (6.4)

Furthermore, if μ is supported on [−1 + η, 1 − η] for some η ∈ (0, 1), then

d

dβ
TAPβ(μ) = β

∫ 1

q

(
ξ ′(s) − ξ ′(q)

)
ζβ,μ(s) ds → TAP∞(μ), as β → ∞. (6.5)

Proof of Lemma 22. If μ = δ1, the inequality (6.4), obviously, holds. From now on, we
assume that μ 	= δ1, so q = ∫

a2dμ(a) < 1. First, let us explain that it is enough to
prove the assertion (6.4) for measures μ with the support in (−1, 1). On the one hand,
we noted in the proof of Theorem 9 that TAP∞(μ) is continuous in μ and, moreover,
we can approximate any μ by measures with the support in (−1, 1) while keeping
q = ∫

a2dμ(a) fixed. On the other hand, it was shown in the proof of Theorem 10 (i i)
in [14] that TAPβ(μ, ζ ) is continuous inμ for any fixed ζ ∈ M0,1 and, by the properties
of the Parisi functional �ζ , it is L1-Lipschitz in ζ uniformly over μ, which implies that
(μ, ζ ) → TAPβ(μ, ζ ) is continuous. By the uniqueness of the minimizer restricted
to [q, 1], this implies that ζβ,μ is also continuous in μ restricted by q = ∫

a2dμ(a).

These observations imply that it is enough to prove Lemma 22 for μ with the support in
(−1, 1). From now on, we suppose that supp(μ) ⊆ [−(1 − η), 1 − η] for some η > 0.

Fix β > 0. For any h ≥ 0,

TAPβ(μ) − TAPβ−h(μ) ≥ TAPβ(μ, ζβ,μ) − TAPβ−h(μ, ζβ,μ)

=
∫ (

�
β
ζβ,μ

(q, a) − �
β−h
ζβ,μ

(q, a)
)
dμ(a) − β2 − (β − h)2

2

∫ 1

q
sξ ′′ζβ,μ ds

(6.6)

and

TAPβ+h(μ) − TAPβ(μ) ≤ TAPβ+h(μ, ζβ,μ) − TAPβ(μ, ζβ,μ)

=
∫ (

�
β+h
ζβ,μ

(q, a) − �
β
ζβ,μ

(q, a)
)
dμ(a) − (β + h)2 − β2

2

∫ 1

q
sξ ′′ζβ,μ ds.

(6.7)

Note that, for any a ∈ (−1, 1),

�
β
ζβ,μ

(q, a) − �
β−h
ζβ,μ

(q, a) ≥ �
β
ζβ,μ

(q, x(a)) − �
β−h
ζβ,μ

(q, x(a)),

�
β+h
ζβ,μ

(q, a) − �
β
ζβ,μ

(q, a) ≤ �
β+h
ζβ,μ

(q, x(a)) − �
β
ζβ,μ

(q, x(a)),
(6.8)

where x(a) is the minimizer of

�
β
ζβ,μ

(q, a) = inf
x

(
�

β
ζβ,μ

(q, x) − xa
)
.
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It was proved in Section 12.2 in [14] that x(a) is continuous and bounded on [0, 1− η].
Recall from Proposition 4 in [2] (with γ = β2 there) that

d

dβ
�

β
ζ (q, x) = β

(
ξ ′(1) − ξ ′(q) −

∫

[q,1]
(ξ ′(s) − ξ ′(q))Eux,ζ (s)

2dζ(s)
)
,

where uβ
x,ζ (s) was defined in (6.1). If we denote

f β(a, s) := Euβ

x(a),ζβ,μ
(s)2,

then
∫

d

dβ
�

β
ζβ,μ

(q, x(a))dμ(a)

= β
(
ξ ′(1) − ξ ′(q) −

∫ 1

q
(ξ ′(s) − ξ ′(q))

∫
f β(a, s)dμ(a)dζβ,μ(s)

)
.

To handle this equation, for any ζ ∈ Mq,1 and θ ∈ [0, 1], set ζθ = (1 − θ)ζβ,μ + θζ.

By a standard calculation (see e.g. [11]), one can compute the directional derivative of
TAPβ ,

d

dθ
TAPβ(μ, ζθ )

∣∣∣
θ=0+

= β2

2

∫ 1

q
ξ ′′(s)(ζ(s) − ζβ,μ(s))

(∫
f β(a, s) dμ(a) − s

)
ds,

which must be non-negative by the minimality of ζβ,μ. Again, in a standard way one
can readily see (by varying ζ ) that this forces

∫
f β(a, s) dμ(a) = s for any s ≥ q in the

support of ζβ,μ. This implies that

∫
d

dβ
�

β
ζβ,μ

(q, x(a))dμ(a) = β
(
ξ ′(1) − ξ ′(q) −

∫ 1

q
(ξ ′(s) − ξ ′(q))sdζβ,μ(s)

)
.

Here, note that from (6.3),

∫ 1

q
ξ ′′(s)sζβ,μ(s)ds = ξ ′(1) − ξ ′(q) −

∫ 1

q
(ξ ′(s) − ξ ′(q))sdζβ,μ(s)

−
∫ 1

q
(ξ ′(s) − ξ ′(q))ζβ,μ(s)ds.

Plugging these two equations into the previous display leads to

∫
d

dβ
�

β
ζβ,μ

(q, x(a))dμ(a) = β

∫ 1

q
ξ ′′(s)sζβ,μ(s)ds + β

∫ 1

q

(
ξ ′(s) − ξ ′(q)

)
ζβ,μ(s)ds.

From this, (6.6), (6.7), and (6.8) (together with our assumption that supp(μ) ⊂ (−1, 1))
it follows that the left and right derivatives of TAPβ(μ) (which exist from convexity in
β) satisfy

D−
β TAPβ(μ) ≥ β

∫ 1

q

(
ξ ′(s) − ξ ′(q)

)
ζβ,μ(s)ds,
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D+
β TAPβ(μ) ≤ β

∫ 1

q

(
ξ ′(s) − ξ ′(q)

)
ζβ,μ(s)ds.

Now, since TAPβ(μ) is a convex function in β, this implies that

d

dβ
TAPβ(μ) = β

∫ 1

q

(
ξ ′(s) − ξ ′(q)

)
ζβ,μ(s)ds.

From this and the convexity of TAPβ(μ) in β, the assertion (6.4) follows by noting that

d

dβ
TAPβ(μ) ≤ lim

β→∞
TAPβ(μ)

β
= TAP∞(μ),

while the assertion (6.5) is validated by using the above inequality and

TAP∞(μ) = lim
β→∞

TAPβ(μ) − TAP0(μ)

β
≤ lim

β→∞
d

dβ
TAPβ(μ).

This finishes the proof. ��

Proof of Theorem 10. Let μ be fixed and set q = ∫
a2dμ(a). In the case that q = 1, the

space Nq,1 is a singleton and the theorem follows trivially. From now on, assume that
q < 1. Denote by ζβ,μ the minimizer associated to TAPβ(μ). Note that, by Lemma 22
above,

β

∫ 1

q
(ξ ′(s) − ξ ′(q))ζβ,μ(s) ds ≤ TAP∞(μ), ∀β > 0. (6.9)

Denote γβ,μ := βζβ,μ and, for all measurable sets A ⊂ [q, 1], set

νβ,μ(A) =
∫

A
γβ,μ(s) ds.

Since ζβ,μ is nondecreasing, (6.9) implies that

γβ,μ(s) ≤ TAP∞(μ)

ξ(1) − ξ(s) − ξ ′(q)(1 − s)
, ∀s ∈ [q, 1).

On the other hand, from this inequality and (6.9), we also see that supβ>0

∫ 1
q γβ,μ ds <

∞. Because of these, we can choose a subsequence of β ↑ ∞ so that γβ,μ converges to

some γμ vaguely on [q, 1) and
∫ 1
q γβ,μ ds is convergent. For notational clarity, we will

assume that γβ,μ converges to γμ vaguely on [q, 1) and
∫ 1
q γβ,μ ds converges without

going to a subsequence. Note that since γβ,μ(s) → γμ(s) almost surely on [q, 1], by
Fatou’s lemma,

∫ 1
q γμ ds < ∞, whichmeans that γμ ∈ Nq,1. Furthermore, if we denote

� := lim
β→∞ νβ,μ([q, 1]) −

∫ 1

q
γμ ds,
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and define ν by

ν(A) :=
∫

A
γμ ds + �δ1(A)

then νβ,μ converges to ν vaguely on [q, 1]. Indeed, for any continuous function φ on
[q, 1] with sups∈[q,1] |φ(s)| ≤ 1,

∣∣∣
∫ 1

q
φd(νβ,μ − ν)

∣∣∣ ≤
∫ q ′

q
|γβ,μ − γ | ds +

∣∣∣
∫ 1

q ′
(φ − 1)d(νβ,μ − ν)

∣∣∣ +
∣∣∣
∫ 1

q ′
d(νβ,μ − ν)

∣∣∣

≤
∫ q ′

q
|γβ,μ − γ | ds + sup

s∈[q ′,1]
|φ(s) − 1|

∫ 1

q ′
(γβ,μ + γ ) ds

+
∣∣∣
∫ 1

q ′
d(νβ,μ − ν)

∣∣∣

and, passing to the limit,

lim sup
q ′↑1

lim sup
β→∞

∣∣∣
∫ 1

q
φd(νβ,μ − ν)

∣∣∣ ≤ lim sup
q ′↑1

lim sup
β→∞

∣∣∣
∫ 1

q ′
d(νβ,μ − ν)

∣∣∣ = 0,

where the right-hand side vanishes because, for any q ′ ∈ [q, 1),

∫ 1

q ′
d(νβ,μ − ν) =

∫ 1

q
γβ,μ ds −

∫ 1

q
γμ ds − �

+
∫ q ′

q
(γβ,μ − γμ) ds → 0 as β → ∞.

Next we prove that γμ is a minimizer to TAP∞(μ). From Proposition 17,

lim
β→∞ sup

a∈[−1,1]

∣∣∣�∞
γβ,μ

(q, a) − �∞
γμ

(q, a) − �ξ ′′(1)
2

∣∣∣

= lim
β→∞ sup

a∈[−1,1]

∣∣∣�∞
νβ,μ

(q, a) − �∞
ν (q, a)

∣∣∣ = 0.

Also, note that from the vague convergence of νβ,μ to ν,

∫ 1

q
ξ ′′sγβ,μ ds =

∫ 1

q
ξ ′′s dνβ,μ →

∫ 1

q
ξ ′′s dν =

∫ 1

q
ξ ′′sγμ ds +

�ξ ′′(1)
2

.

Together these lead to

lim
β→∞TAP∞(μ, γβ,μ) = TAP∞(μ, γμ). (6.10)

Since, from (2.8),

∣∣∣TAP∞(μ, γβ,μ) − 1

β
TAPβ(μ, ζβ,μ)

∣∣∣ ≤ log 2

β
(6.11)
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and, from Lemma 14,

1

β
TAPβ(μ) = 1

β
TAPβ(μ, ζβ,μ) → TAP∞(μ), (6.12)

we conclude that TAP∞(μ) ≥ TAP∞(μ, γμ). Hence, γμ is a minimizer to TAP∞(μ).

Finally, we show that theminimizer to TAP∞(μ) is unique. To see this, we recall from
Lemma 5 in [12] that�γ (q, x) is a strictly convex functional in (γ, x) ∈ Nq,1×R. This
implies that for any a ∈ (−1, 1),�∞

γ (q, a) is strictly convex in γ and so is TAP∞(μ, γ ).

Hence, TAP∞(μ) has a unique minimizer, γμ. ��
Remark 23. Recall the measures νβ,μ and ν in the above proof. From (6.5), we see that

TAP∞(μ) = lim
β→∞

∫ 1

q
(ξ ′(s) − ξ ′(q))dνβ,μ(s) =

∫ 1

q
(ξ ′(s) − ξ ′(q))dν(s)

=
∫ 1

q
(ξ ′(s) − ξ ′(q))γ0(s) ds + (ξ ′(1) − ξ ′(q))�.

Moreover, we showed that γβ,μ(s) = βζβ,μ(s) converges to γμ(s) almost surely on
[q, 1) as β → ∞.

7. Energy of TAP States

In this section, we will prove Theorem 5.

Proof of Theorem 5. Let us denote

fN (β) := sup
m∈SN (q)

fm(β) = sup
m∈SN (q)

(βHN (m)

N
+ TAPβ(μm)

)
. (7.1)

Recall from Theorem 2 that for any q in the support of the Parisi measure ζ ∗
β , the

following limits exist almost surely (using Borell’s inequality and the concentration of
the free energy),

P(β) := lim
N→∞ fN (β) = lim

N→∞
(
βFN (β)

) = βPβ(ζ ∗
β ) (7.2)

and, by [2, Remark 1], P(β) is differentiable with

P ′(β) = d

dβ
lim

N→∞
(
βFN (β)

) = β

∫ 1

0
ξ ′(s)ζ ∗

β (s) ds. (7.3)

Since TAPβ
N ,n(m, ε, δ) is convex in β and, by Theorem 1, it converges to TAPβ(μm)

uniformly in m ∈ [−1, 1]N , it follows that, for any μ ∈ M∗, TAPβ(μ) is convex in
β > 0, which implies that fm(β) and fN (β) are convex in β. Since

fN (β ± h) = max
m∈SN (q)

fm(β ± h) ≥ max
m∈Mβ,q (εN )

fm(β ± h),

for any m ∈ Mβ,q(εN ) and h > 0, we can write

fN (β + h) − fN (β)

h
≥ fm(β + h) − fm(β) − εN

h
≥ f ′

m(β) − εN

h
,
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fN (β) − fN (β − h)

h
≤ fm(β) − fm(β − h) + εN

h
≤ f ′

m(β) +
εN

h
,

using convexity in the last inequality in each line, where the existence of f ′
m(β) is

guaranteed by (6.5). Taking the supremum in the first line and infimum in the second
line over m ∈ Mβ,q(εN ) and taking limits,

P(β) − P(β − h)

h
≤ lim inf

N→∞ inf
Mβ,q (εN )

f ′
m(β)

≤ lim sup
N→∞

sup
Mβ,q (εN )

f ′
m(β) ≤ P(β + h) − P(β)

h
.

Letting h ↓ 0 and using that P is differentiable implies that

lim
N→∞ sup

Mβ,q (εN )

∣∣∣ f ′
m(β) − P ′(β)

∣∣∣ = 0.

By (6.5), denoting as before ζβ,m := ζβ,μm , for any m ∈ (−1, 1)N ,

f ′
m(β) = HN (m)

N
+ β

∫ 1

q
(ξ ′(s) − ξ ′(q))ζβ,m(s) ds.

By continuity of TAPβ(μ, ζ ) in bothμ and ζ and uniqueness of the minimizer, the order
parameter ζβ,m is continuous in m, so the same formula holds for all m ∈ [−1, 1]N .
Together with (7.3) this gives

lim
N→∞ sup

Mβ,q (εN )

∣∣∣
HN (m)

N
+ β

∫ 1

q

(
ξ ′(s) − ξ ′(q)

)
ζβ,m(s) ds − β

∫ 1

0
ξ ′(s)ζ ∗

β (s) ds
∣∣∣ = 0.

(7.4)

To finish the proof of (1.23), it remains to show that

lim
N→∞ sup

m∈Mβ,q (εN )

∫ 1

q
|ζβ,m(s) − ζ ∗

β (s)| ds = 0. (7.5)

Also, (1.24) will follow simply by using (7.2) and the equality in (1.25) is valid directly
from integration by parts. Note that, for any m0 ∈ Mβ,q(εN ),

fN (β) − εN ≤ βHN (m0)

N
+ TAPβ(μm0)

= βHN (m0)

N
+ TAPβ(μm0 , ζ

∗
β ) + TAPβ(μm0) − TAPβ(μm0 , ζ

∗
β )

≤ sup
m∈SN (q)

(βHN (m)

N
+ TAPβ(μm, ζ ∗

β )
)
+ TAPβ(μm0) − TAPβ(μm0 , ζ

∗
β )
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and TAPβ(μm0) ≤ TAPβ(μm0 , ζ
∗
β ). These imply that

sup
m∈Mβ,q (εN )

∣∣∣TAPβ(μm, ζ ∗
β ) − TAPβ(μm)

∣∣∣

≤ sup
SN (q)

(βHN (m)

N
+ TAPβ(μm, ζ ∗

β )
)

− fN (β) + εN → 0,

where the a.s. convergence follows from Theorems 2 and 3 above, the concentration of
the free energy, and the Borell inequality. Now, assume on the contrary that (7.5) is not
true. From this and the above limit, we can choose mN ∈ Mβ,q(εN ) so that (by passing
to a subsequence if necessary) μmN → μ0 and ζβ,mN → ζ0 for some μ0 ∈ M∗ and
ζ0 ∈ Mq ,

∫ 1

q
|ζ0(s) − ζ ∗

β (s)| ds = lim
N→∞

∫ 1

q
|ζβ,mN (s) − ζ ∗

β (s)| ds > 0, (7.6)

and, from the continuity of TAPβ on M∗ × Mq ,
∣∣∣TAPβ(μ0, ζ

∗
β ) − TAPβ(μ0, ζ0)

∣∣∣

= lim
N→∞

∣∣∣TAPβ(μmN , ζ ∗
β ) − TAPβ(μmN , ζβ,mN )

∣∣∣

= lim
N→∞

∣∣∣TAPβ(μmN , ζ ∗
β ) − TAPβ(μmN )

∣∣∣ = 0. (7.7)

The optimality of ζβ,mN ,

TAPβ(μmN ) = TAPβ(μmN , ζβ,mN ) ≤ TAPβ(μmN , ζ ), ∀ζ ∈ Mq ,

yields that

TAPβ(μ0, ζ0) = lim
N→∞TAPβ(μmN , ζβ,mN )

≤ lim
N→∞TAPβ(μmN , ζ ) = TAPβ(μ0, ζ ), ∀ζ ∈ Mq .

This means that ζ0 is a minimizer of TAPβ(μ0, · ). Recall that the minimizer is unique
[14, Theorem 10], so, by (7.7), ζ ∗

β = ζ0 on [q, 1]. This contradicts (7.6) and finishes the
proof of (7.5). ��

8. Energy of Ancestor Measure

In this section, we will prove Theorem 7.

Proof of Theorem 7. Recall (6.2) and let X (s) = Xβ

0,ζ ∗
β
(s) for s ∈ [0, 1]. Denote

u(s) = ∂x�
β
ζβ,μ

(s, X (s)) and v(s) = ∂xx�
β
ζβ,μ

(s, X (s)).

Let μ be the distribution function of the random variable u(q). Note that

�
β

ζ ∗
β
(q, a) = �

β

ζ ∗
β
(q, x(a)) − ax(a),
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where x(a) satisfies ∂x�
β

ζ ∗
β
(q, x(a)) = a. Since ∂x�

β

ζ ∗
β
(q, ·) is strictly increasing, it

follows that if a = u(q), then x(a) = X (q) and hence,
∫

�
β

ζ ∗
β
(q, a)dμ(a) = E�

β

ζ ∗
β
(q, X (q)) − EX (q)u(q)

= E�
β

ζ ∗
β
(q, X (q)) − β2

2

∫ q

0
ξ ′′(s)ζ ∗

β (s)Eu(s)2ds

− EX (q)u(q) +
β2

2

∫ q

0
ξ ′′(s)ζ ∗

β (s)Eu(s)2ds

= �
β

ζ ∗
β
(0, 0) − EX (q)u(q) +

β2

2

∫ q

0
ξ ′′(s)ζ ∗

β (s)Eu(s)2ds.

Here, the middle term can be computed through

EX (q)u(q) = E

(
β2

∫ q

0
ξ ′′(s)ζ ∗

β (s)u(s)ds + β

∫ q

0

√
ξ ′′(s)dWs

)
u(q)

= β2
∫ q

0
ξ ′′(s)ζ ∗

β (s)Eu2(s)ds + β2
E

(∫ q

0

√
ξ ′′(s)dWs

)

×
(∫ q

0

√
ξ ′′(s)v(s)dWs

)

= β2
∫ q

0
ξ ′′(s)

(
Ev(s) + ζ ∗

β (s)Eu2(s)
)
ds.

To handle this equation, note that dEu(t)2 = β2ξ ′′(t)Ev(t)2dt and v(1) = 1 − u(1)2.
These and (6.3) imply that

1 − Eu(1)2 − Ev(s) = Ev(1) − Ev(s) = −β2
∫ 1

s
ξ ′′(t)ζ ∗

β (t)Ev(t)2dt

= −
(
Eu(1)2 − Eu(s)2ζ ∗

β (s) −
∫ 1

s
Eu(t)2dζ ∗

β (t)
)
,

which together with (6.3) leads to

Ev(s) + ζ ∗
β (s)Eu(s)2 = 1 −

∫ 1

s
Eu(t)2dζ ∗

β (t) = 1 −
∫ 1

s
tdζ ∗

β (t)

= sζ ∗
β (s) +

∫ 1

s
ζ ∗
β (t)dt.

Since

β−1Eβ(q) =
∫ q

0
ξ ′′(s)

(∫ 1

s
ζ ∗
β (t)dt

)
ds,

it follows that

EX (q)u(q) = β2
∫ q

0
ξ ′′(s)

(
sζ ∗

β (s) +
∫ 1

s
ζ ∗
β (t)dt

)
ds
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= β2
∫ q

0
ξ ′′(s)sζ ∗

β (s)ds + βEβ(q).

Consequently,

TAPβ(μ) = �ζ ∗
β
(0, 0) − β2

∫ q

0
ξ ′′(s)sζ ∗

β (s)ds − βEβ(q)

+
β2

2

∫ q

0
ξ ′′(s)ζ ∗

β (s)Eu(s)2ds − β2

2

∫ 1

q
ξ ′′(s)sζ ∗

β (s)ds

= Pβ(ζ ∗
β ) − βEβ(q) +

β2

2

∫ q

0
ξ ′′(s)ζ ∗

β (s)(Eu(s)2 − s)ds.

Note that by the minimality of ζ ∗
β , for any ζ ∈ M0,1,

d

dθ
Pβ

(
(1 − θ)ζ ∗

β + θζ
)∣∣∣

θ=0+
= β2

2

∫ 1

0
ξ ′′(s)(ζ(s) − ζ ∗

β (s))(Eu(s)2 − s)ds ≥ 0.

If, for s ∈ [0, 1], we take

ζ(s) = 2−1ζ ∗
β (s)1[0,q)(s) + ζ ∗

β (s)1[q,1](s),

then this inequality implies that

∫ q

0
ξ ′′(s)ζ ∗

β (s)(Eu(s)2 − s)ds ≤ 0.

Hence,

TAPβ(μ) ≤ Pβ(ζ ∗
β ) − βEβ(q).

Finally, if q is in the support of ζ ∗
β , then from [13, Equation (46)],

∫ q

0
ξ ′′(s)ζ ∗

β (s)(Eu(s)2 − s)ds = 0,

which gives

TAPβ(μ) = Pβ(ζ ∗
β ) − βEβ(q).

This finishes the proof. ��
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9. Gradient of TAP∞

In this sectionweestablish theproof ofTheorem12.Recall that byLemma14,β−1 TAPβ(μ)

converges to TAP∞(μ), uniformly in μ ∈ M∗ as β → ∞. Let N ≥ 1 be fixed. Let B
be any compact subset of (−1, 1)N . For any m ∈ (−1, 1)N , define

f (m) = − 1

N

(
�(qm,mi , γm) + miξ

′′(qm)

∫ 1

qm
γm ds + miξ

′′(qm)�(m)
)

i≤N
,

where qm := ∑N
i=1 m

2
i /N and

�(m) := 1

ξ ′(1) − ξ ′(qm)

(
TAP∞(μm) −

∫ 1

qm
(ξ ′(s) − ξ ′(qm))γm(s) ds

)
.

In the following, we will verify that

lim
β→∞ sup

m∈B

∥∥∥
1

β
∇ TAPβ(μm) − f (m)

∥∥∥
2

= 0. (9.1)

If this is valid, this means that the gradient of TAP∞(μm) exists for all m ∈ (−1, 1)N

and is equal to f (m), which finishes our proof. We now establish the above limit by
three steps.
Step 1. Let βn > 0 and mn ∈ B be two sequences with βn → ∞ and mn → m0 ∈ B
so that

lim
n→∞

∥∥∥
1

βn
∇ TAPβn (mn) − f (mn)

∥∥∥
2

= lim sup
β→∞

sup
m∈B

∥∥∥
1

β
∇ TAPβ(m) − f (m)

∥∥∥
2
.

If ζβn ,mn is the minimizer in the definition of TAPβn (μmn ), let us denote

ζn := ζβn ,mn , γn := βnζn = βnζβn ,mn . (9.2)

By the definition of N qmn ,1 (see (5.1)), if we define a measure νn on [0, 1] by

νn(A) =
∫

A
γn(s) ds,

then from (6.4), it satisfies that
∫ 1

0

(
ξ ′(s) − ξ ′(qmn )

)
dνn(ds) ≤ sup

μ∈M∗
TAP∞(μ). (9.3)

From this upper bound, we can pass to a subsequence along which νn converges to some
ν0 ∈ N qm0 ,1 vaguely on [0, 1], where

ν0(A) =
∫

A
γ∗(s) ds + �∗δ1(A)

for some γ∗ ∈ Nqm0 ,1 and �∗ ≥ 0. For notational clarity, we will assume throughout
the rest of the proof that these hold without passing to a subsequence of βn . We claim
that

(γ∗,�∗) = (γm0 ,�(m0)), (9.4)
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where we recall (1.49) and that γm := γμm is the minimizer as in Theorem 10. Indeed,
by the uniform convergence of β−1 TAPβ(μ) to TAP∞(μ) and continuity of TAP∞,

lim
n→∞

1

βn
TAPβn (μmn ) = TAP∞(μm0) = TAP∞(μm0 , γm0). (9.5)

On the other hand, by (2.8),

lim
n→∞

1

βn
TAPβn (μmn ) = lim

n→∞
1

βn
TAPβn (μmn , ζn) = lim

n→∞TAP∞(μmn , γn).

For q ∈ [0, 1) and h ∈ R
N , set

TAP∞(m, γ, h) := 1

N

N∑

i=1

(
�γ (qm, hi ) − mihi

) − 1

2

∫ 1

qm
sξ ′′(s)γ (s) ds (9.6)

so that

TAP∞(μmn , γn) = inf
h∈RN

TAP∞(mn, γn, h). (9.7)

If m0 ∈ (−1 + η, 1 − η)N , then mn ∈ (−1 + η, 1 − η)N for large n. It is clear from the
representation (5.7) and the uniform control in (9.3) that the minimizer hn belongs to
some cube [−L , L]N , where L depends only on η and the upper bound in (9.3). Let us
choose further subsequence along which hn → h∗. Then, using Proposition 17 exactly
as in the argument leading to (6.10), we get

lim
n→∞TAP∞(μmn , γn) = lim

n→∞TAP∞(mn, γn, hn) = TAP∞(m0, γ∗, h∗).

By (9.5), this also equals to

TAP∞(μm0 , γm0) = TAP∞(m0, γm0 , hm0) (9.8)

for some hm0 ∈ [−L , L]N . By the strict convexity of the functional (9.6), we must have
that γ∗ = γm0 and h∗ = hm0 .

Note that for anym ∈ [−1+η, 1−η]N , TAPβ(μm, ζ ) is strictly convex in ζ ∈ Mq,1

and that TAPβ(μm, ζ ) is continuous in [−1+η, 1−η]N ×M0,1. From these, we see that
ζβ,μm is continuous in (β,m). As a result, from Lemma 22, d

dβ TAP(μm) is continuous

onm ∈ [−1+η, 1−η]N for all β > 0. Furthermore, this derivative is nondecreasing in β

and, asβ → ∞, it converges toTAP∞(μm), which is a continuous function.Hence, from
Dini’s theorem, d

dβ TAPβ(μm) converges to TAP∞(μm) uniformly in m ∈ [−1 + η, 1−
η]N . From this, Remark 23, and the definition of ν0, the limit

∫ 1
0

(
ξ ′(s)− ξ ′(qmn )

)
dνn(s)

can be written in two ways,

∫ 1

qm0

(
ξ ′(s) − ξ ′(qm0)

)
γ∗(s) ds +

(
ξ ′(1) − ξ ′(qm0)

)
�∗ = lim

n→∞
d

dβ
TAPβn (μmn )

= TAP∞(μm0) =
∫ 1

qm0

(
ξ ′(s) − ξ ′(qm0)

)
γm0(s) ds +

(
ξ ′(1) − ξ ′(qm0)

)
�(m0).
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Since we showed that γ∗ = γm0 , this implies that �∗ = �(m0) and finishes the proof
of (9.4).

Step 2. Next, we handle the limit of the gradient of β−1 TAPβ(μm). Recall that from
Theorem 4,

1

β
∇ TAPβ(μm) = − 1

N

( 1

β
�β(qm,mi , ζβ,m) + miβξ ′′(qm)

∫ 1

qm
ζβ,m ds

)

i≤N
. (9.9)

Here, the second term on the right-hand side can be handled by using the fact that
mn → m0, the vague convergence of νn, and (9.4), to obtain that

∫ 1

qmn

βnζn(s) ds = νn([0, 1]) → ν0([0, 1]) =
∫ 1

qm0

γm0(s) ds + �(m0). (9.10)

Next, we treat the first term on the right-hand side of (9.9). Recall that for any ζ ∈ Nq,1,

a ∈ [−1, 1], and β > 0, we have that

1

β
�

β
ζ (q, a) = inf

x

( 1

β
�

β
ζ (q, βx) − ax

)
.

Denote by

xn,i = 1

βn
�βn (qmn ,mn,i , ζn), ∀1 ≤ i ≤ N .

Let us again assume without loss of generality that the following limits exist on the
extended real line, xi := limn→∞ xn,i for all 1 ≤ i ≤ N . Then from (2.6), (2.7), and
Corollary 18,

�ν0(qm0 , xi ) − m0,i xi = lim
n→∞ �νn (qmn , xn,i ) − mn,i xn,i = lim

n→∞
1

βn
�

βn
ζn

(qmn ,mn,i )

= lim
n→∞ �∞

νn
(qmn ,mn,i ) = �∞

ν0
(qm0 ,m0,i ) = �∞

γm0
(qm0 ,m0,i ) +

ξ ′′(1)�∗
2

,

which means that xi = �(qm0 ,m0,i , γm0). Combining this with (9.4), (9.9), and (9.10),
we arrive at

lim
n→∞

1

βn
∇ TAPβn (μmn ) = f (m0). (9.11)

Step 3. Finally, we show that limn→∞ f (mn) = f (m0) in a similar manner as the first
and second steps. Once this is verified, this and (9.11) together imply the desired uniform
convergence and hence finish our proof. Recall from Remark 23 that for each n, if we
define the measure ν′

n on [0, 1] by

ν′
n(A) =

∫

A
γmn (s) ds + �(mn)δ1(A),

then
∫ 1

0

(
ξ ′(s) − ξ ′(qmn )

)
dν′

n(s) =
∫ 1

qmn

(
ξ ′(s) − ξ ′(qmn )

)
γmn (s) ds

+
(
ξ ′(1) − ξ ′(qmn )

)
�(mn) = TAP∞(μmn ).

(9.12)
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Note that ν′
n ∈ N qmn ,1 . As in Step 1, we can assume without loss of generality that ν′

n

vaguely converges to some ν′
0 ∈ N qm0 ,1 defined as

ν′
0(A) :=

∫

A
γ ′∗(s) ds + �′

0δ1(A)

for some γ ′∗ ∈ Nqm0 ,1 and �′
0 ≥ 0. We claim that

(γ ′∗,�′
0) = (γm0 ,�(m0)). (9.13)

By the argument in Step 1 above,

TAP∞(μm0 , γ
′∗) = lim

n→∞TAP∞(μmn , γmn ) = lim
n→∞TAP∞(μmn ) = TAP∞(μm0).

Hence, the uniqueness of the minimizer forces γ ′∗ = γm0 . On the other hand, the vague
convergence of ν′

n to ν′
0 and (9.12) imply that

∫

qm0

(
ξ ′(s) − ξ ′(qm0)

)
γm0(s) ds +

(
ξ ′(1) − ξ ′(qm0)

)
�′

0

=
∫ 1

0

(
ξ ′(s) − ξ ′(qm0)

)
ν′
0(s) = lim

n→∞

∫ 1

0

(
ξ ′(s) − ξ ′(qmn )

)
dν′

n(s) = TAP∞(μm0),

which means that �′
0 = �(m0). These complete the proof of (9.13). Now, from (9.13),

lim
n→∞mn,iξ

′′(qmn )

∫ 1

qmn

γmn ds + mn,iξ
′′(qmn )�(mn) = lim

n→∞mn,iξ
′′(qmn )ν

′
n([0, 1])

= m0,iξ
′′(qm0)ν

′
0([0, 1]) = m0,iξ

′′(qm0)

∫ 1

qm0

γm0 ds + m0,iξ
′′(qm0)�(m0).

Furthermore, following a similar argument as we handled the first term on the right-hand
side of (9.9) in the second step, it can also be obtained that

lim
n→∞ �(qmn ,mn,i , γmn ) = �(qm0 ,m0,i , γm0).

This togetherwith the above limit gives that limn→∞ f (mn) = f (m0) and this completes
our proof. ��
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